diff --git a/.github/dlsmt.sh b/.github/dlsmt.sh new file mode 100755 index 0000000..f741a67 --- /dev/null +++ b/.github/dlsmt.sh @@ -0,0 +1,73 @@ +# No shebang! + +## Weigl's little helper to download SMT-solvers. +# SPDX-License-Identifier: GPL-2.0-or-later + +# This script is meant to be executed inside an Github Action to download the SMT-solver. +# It uses the Github cli tool "gh", which allows an easy access to the releases of a +# repository, and to download it artifacts. +# +# This script will always the latest uploaded artifact. +# +# +# For performance, you should consider caching. This script skips downloading if files are present. + + +## Github workflow commands +# Please have a look at https://docs.github.com/en/actions/using-workflows/workflow-commands-for-github-actions +# which explains a lot of workflow commands and special files in Github Actions. + + +## TODO +# It would be nice to convert it into a real! Github action, which can also exploit +# the API library of Github. A manual/tutorial is here: +# +# https://docs.github.com/en/actions/creating-actions/developing-a-third-party-cli-action + +mkdir smt-solvers +cd smt-solvers + + +################################################# +echo "::group::{install z3}" +echo "Check for Z3, if present skip installation" + +if readlink -f */bin/z3; then + echo "::notice::{Z3 found. Caching works! Skip installation}" +else + echo "Download Z3" + wget 'https://github.com/Z3Prover/z3/releases/download/z3-4.12.2/z3-4.12.2-x64-glibc-2.31.zip' + unzip -n z3*.zip + rm z3-*.zip +fi + +Z3=$(readlink -f */bin/z3) +chmod u+x $Z3 +echo "Z3 added to path: $Z3" +echo $(dirname $Z3) >> $GITHUB_PATH + +echo "::endgroup::" +################################################# + +################################################# +echo "::group::{install cvc5}" +if -f cvc5-Linux; then + echo "::notice::{Z3 found. Caching works! Skip installation}" +else + echo "Install CVC5" + gh release download --skip-existing -p 'cvc5-Linux' -R cvc5/cvc5 +fi + +CVC5=$(readlink -f cvc5-Linux) +echo "CVC5 installed and added to path: CVC5" +chmod u+x $CVC5 +echo $(dirname $CVC5) >> $GITHUB_PATH + +echo "::endgroup::" +################################################# + +echo "::group::{check installation/versions}" +$Z3 -version + +$CVC5 --version +echo "::endgroup::" \ No newline at end of file diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 269ba31..f3b598e 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -1,51 +1,45 @@ -name: Broad Release Tests +name: Proof Replay -on: - workflow_dispatch: - push: - branches: ["main", "master"] - schedule: - - cron: '0 5 * * 1' # every monday morning +on: [ push ] permissions: - checks: write + checks: write jobs: - unit-tests: - strategy: - fail-fast: false - matrix: - os: [macos-latest, ubuntu-latest, windows-latest] - java: [8,11,17,21] - continue-on-error: false - runs-on: ${{ matrix.os }} - env: - GH_TOKEN: ${{ github.token }} - steps: - - uses: actions/checkout@v3 - - name: Set up JDK ${{ matrix.java }} - uses: actions/setup-java@v3 - with: - java-version: ${{ matrix.java }} - distribution: 'corretto' + compile_and_test: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v3 + - name: Set up JDK 21 + uses: actions/setup-java@v3 + with: + java-version: 21 + distribution: 'corretto' + - name: Build with Gradle + uses: gradle/gradle-build-action@v2.4.2 + with: + arguments: --continue assemble check - - name: Build with Gradle - uses: gradle/gradle-build-action@v2.4.2 - with: - arguments: --continue test + replay-proofs: + strategy: + fail-fast: false + matrix: + # target: [ check-overflow-methods, check-overflow-constructors, check-methods, check-constructors ] + # Reduce checks until overflow is fixed + target: [ check-methods, check-constructors ] + runs-on: ubuntu-latest + env: + GH_TOKEN: ${{ github.token }} - - name: Verify with KeY - uses: gradle/gradle-build-action@v2.4.2 - with: - arguments: --continue checkAll - - - - name: Upload test results - uses: actions/upload-artifact@v3.1.1 - if: success() || failure() - with: - name: test-results-${{ matrix.os }} - path: | - **/build/test-results/*/*.xml - **/build/reports/ - !**/jacocoTestReport.xml + steps: + - uses: actions/checkout@v3 + - name: Set up JDK 21 + uses: actions/setup-java@v3 + with: + java-version: 21 + distribution: 'corretto' + - name: Install SMT-Solvers + run: .github/dlsmt.sh + shell: bash + - name: "Verify with KeY ${{ matrix.target }}" + run: make ${{ matrix.target }} diff --git a/Makefile b/Makefile new file mode 100644 index 0000000..29fd787 --- /dev/null +++ b/Makefile @@ -0,0 +1,50 @@ +KEY_JAR=tools/key-2.11.0-exe.jar +KEY_OVERFLOW_JAR=tools/key-2.11.0-o-exe.jar +CI_TOOL=tools/citool-1.4.0-mini.jar + +checkCommand=java -Dlogback.configurationFile=./gradle/disablelogging.xml -Dkey.contractOrder="contract-order.txt" -cp "$(KEY_JAR):$(CI_TOOL)" de.uka.ilkd.key.CheckerKt --no-auto-mode --proof-path src/main/key + +checkOverflowCommand=java -Dlogback.configurationFile=./gradle/disablelogging.xml -Dkey.contractOrder="contract-order.txt" -cp "$(KEY_OVERFLOW_JAR):$(CI_TOOL)" de.uka.ilkd.key.CheckerKt -v --no-auto-mode --proof-path src/main/key-overflow + +default: + @echo Available targets: + @sed -n 's/^\([a-zA-Z_-]\+\):.*/ \1/p' Makefile + +proofSettings: + mkdir -p $${HOME}/.key + cp proofIndependentSettings.props $${HOME}/.key + +run: + @echo Consider loading one of the following files: + @find -iname "project*.key" + java -Dkey.contractOrder="contract-order.txt" -jar $(KEY_JAR) + +compile: + find -name "*.java" > sources.txt + javac @sources.txt + +constr-src: + rm -rf src/main/java-constr + cp -r src/main/java src/main/java-constr + sed -i 's/no_state int bucketStart/int bucketStart/' src/main/java-constr/de/wiesler/BucketPointers.java + sed -i 's/no_state int bucketSize/int bucketSize/' src/main/java-constr/de/wiesler/BucketPointers.java + +constr-overflow-src: + rm -rf src/main/java-constr-overflow + cp -r src/main/java src/main/java-constr-overflow + sed -i 's/no_state int bucketStart/int bucketStart/' src/main/java-constr-overflow/de/wiesler/BucketPointers.java + sed -i 's/no_state int bucketSize/int bucketSize/' src/main/java-constr-overflow/de/wiesler/BucketPointers.java + +check: check-methods check-constructors check-overflow-methods check-overflow-constructors + +check-methods: proofSettings + $(checkCommand) --forbid-contracts-file "contracts/ignore.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-methods.json src/main/key/project.key + +check-constructors: constr-src + $(checkCommand) --contracts-file contracts/constructors.txt -s statistics-constructors.json src/main/key/project-constr.key + +check-overflow-methods: + $(checkOverflowCommand) --contracts-file "contracts/overflow.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-overflow-methods.json src/main/key-overflow/project.key + +check-overflow-constructors: constr-overflow-src + $(checkOverflowCommand) --contracts-file "contracts/constructors.txt" -s statistics-overflow-constructors.json src/main/key-overflow/project-constr.key diff --git a/README.md b/README.md index e777c99..ff796c6 100644 --- a/README.md +++ b/README.md @@ -1,22 +1,159 @@ -# Formal Specification and Verification of a Java Implementation of In-Place Super Scalar Sample Sort +# A Formally Verified Efficient Sorting Routine For Java -This is the verified code and all proof files. +This repostiory contains a sorting routine for Java programs that +combines two important properties that a decent algorithm should have: [2] +1. The implementation is competitively efficient. +2. The implementation is correct in all possible application cases. -The code in [`src`](src) is based on [this](https://github.com/jwiesler/ips4o) Rust rewrite of the [original paper implementation](https://github.com/ips4o/ips4o). +The first point is shown empirically by benchmarking (see Section 5 of +[2] and the [Sascha Witt's +repository](https://github.com/SaschaWitt/ips4o-java-benchmark)). The +correctness of the implementation has been formally proven using the +[deductive verification engine KeY](https://www.key-project.org) with +which Java programs can be verified against a formal specification +using the [Java Modeling Language +(JML)](https://www.cs.ucf.edu/~leavens/JML/index.shtml). -The proofs are located in [`proofs`](proofs) and can be loaded using the KeY binaries in [`tools`](tools). -The [`contracts`](contracts) folder contains listing of subsets of all contracts used for filtering. -The proof statistics can be found in [`statistics`](statistics). +You can use the algorithm in your Java programs by declaring a +maven/gradle dependency in your project (s. below). +## In-Place Super Scalar Sample Sort + +The sorting algorithm [1] implemented in this project is a Java +implementation of in-place super scalar sample sort (ips4o), an award +winning highly efficient sorting routine that was algorithmically +engineered to make use of CPU features like caching, predictive +execution or SIMD. + +The [source code](src/main/java) is based on [this Rust +rewrite](https://github.com/jwiesler/ips4o) of the [original paper +implementation](https://github.com/ips4o/ips4o). + +The source code comprises approximately 900 lines of code. The JML +specification that annotates the Java code (in comments) adds another +2500 lines to the sources. + +## Using ips4o in your project + +You can use the following [maven coordinates](todo) to use `ips4o` in your JVM projects. + + +```groovy +dependencies { + implementation("org.key-project.ips4o:ips4o-verify:1.0") +} +``` + +```xml + + org.key-project.ips4o + ips4o-verify + 1.0 + +``` + +## Verified Properties + +In this case study, the following properties of the Java ips4o implementation +have been specified and successfully verified: +1. **Sorting Property:** The array is sorted after the method invocation. +2. **Permutation Property:** The content of the input array after sorting is a permutation of the initial content. +3. **Exception Safety:** No uncaught exceptions are thrown. +4. **Memory Safety:** The implementation does not modify any previously allocated memory location except the entries of the input array. +5. **Termination:** Every method invocation terminates. +6. **Absence of Overflows:** During the execution of the method, no integer operation will overflow or underflow. + +The top-level specification of the sorting routine reads as follows: +``` +/*@ public normal_behaviour + @ requires values.length <= Buffers.MAX_LEN; + @ + @ ensures \dl_seqPerm(\dl_array2seq(values), \old(\dl_array2seq(values))); + @ ensures Functions.isSortedSlice(values, 0, values.length); + @ + @ assignable values[*]; + @*/ +public static void sort(int[] values) { ... } +``` + +This repository contains the verified code incl. the specification and all proof files. ## Usage -You can either run the respective KeY binaries in [`tools`](tools) or take some inspiration from the [`justfile`](justfile). -Make sure to pass `-Dkey.contractOrder=""` to java such that the contract order file is loaded. +### Compilation + +In order to compile the sources invoke +``` +./gradlew compileJava +``` + +In order to obtain a jar file with the binary class files of the implementation invoke +``` +./gradlew jar +``` +and find the jar file in `./build/libs/ips4o-verify-1.0.jar`. + +### Verification + +In order to check / redo the proofs, you can load the interactive interface of KeY using +``` +make run +``` + +To check whether all proofs can be replpayed, invoke +``` +make check +``` +This may take some time (possible hours). + +You find the respective KeY binaries in the directory +[`tools`](tools). The [`Makefile`](Makefile) gives you hints on how to +execute the checker. + +The proofs are located in [`proofs`](proofs) and can be loaded using +the KeY binaries in [`tools`](tools). + +The [`contracts`](contracts) folder contains listing of subsets of all +contracts used for filtering. The proof statistics can be found in +[`statistics`](statistics). + + +Make sure to pass `-Dkey.contractOrder=""` +to java such that the contract order file is loaded. ## Caveats -* Overflow proofs and annotations can be found on the branch `overflow`. They have to be loaded using the second KeY binary [`key-2.11.0-o-exe.jar`](tools/key-2.11.0-o-exe.jar). -* To run proofs in [`contracts/constructors.txt`](contracts/constructors.txt) the `no_state` modifier on `BucketPointers::bucketStart` and `BucketPointers::bucketSize` has to be removed. Both methods are only `no_state` when using the final heap which has a soundness problem with constructors. There is currently no nicer way to do this in KeY automatically. + +* The overflow proofs have been conducted after the other proofs. The + annotated sources can be found under + [`src/main/java-overflow`](src/main/java-overflow). In them most + artifacts are assumed without proving them (using the `_free`) since + they have been shown in the original proof obligations. They have + to be loaded using the second KeY binary + [`key-2.11.0-o-exe.jar`](tools/key-2.11.0-o-exe.jar). + +* To run proofs in + [`contracts/constructors.txt`](contracts/constructors.txt) the + `no_state` modifier on `BucketPointers::bucketStart` and + `BucketPointers::bucketSize` has to be removed. Both methods are + only `no_state` when using the final heap which has a soundness + problem with constructors. There is currently no nicer way to do + this in KeY automatically. The Makefile takes care of this + adaptation. + * The methods `Tree::classify`, `Tree::classify_all` as well as `Tree::build` were left out as future work. + * To run the code use the `bench` branch which has the proper fallback sorting algorithm not commented out. + * The sampling function `Functions::select_n` is left empty and should probably be implemented. + +## Publications + +1. Axtmann, M., Ferizovic, D., Sanders, P., Witt, S.: [*Engineering +in-place (shared- memory) sorting +algorithms*](https://dl.acm.org/doi/full/10.1145/3505286). ACM +Transaction on Parallel Computing 9(1), 2:1– 2:62 (2022), see also +[github.com/ips4o](https://github.com/ips4o). Conference version in +ESA 2017 + +2. B. Beckert, P. Sanders, M. Ulbrich, J. Wiesler, and S. Witt: + *Formally Verifying an Efficient Sorter*. arxiv diff --git a/build.gradle.kts b/build.gradle.kts index a6d94fe..dbd16c7 100644 --- a/build.gradle.kts +++ b/build.gradle.kts @@ -108,84 +108,4 @@ nexusPublishing { // If you get the error "java.net.SocketTimeoutException: timeout", these lines will help. connectTimeout = Duration.ofMinutes(3) clientTimeout = Duration.ofMinutes(3) -} - -// verification - -val keyClasspath: Configuration = configurations.create("key") -val keyClasspathOverflow: Configuration = configurations.create("keyoverflow") -dependencies { - keyClasspath(files("tools/key-2.11.0-exe.jar", "tools/citool-1.4.0-mini.jar")) - keyClasspathOverflow(files("tools/key-2.11.0-o-exe.jar", "tools/citool-1.4.0-mini.jar")) -} - -val mainClassName = "de.uka.ilkd.key.CheckerKt" - -fun JavaExec.checkCommand() { - mainClass = "de.uka.ilkd.key.CheckerKt" - classpath = keyClasspath - systemProperty("key.contractOrder", "contract-order.txt") - args("--verbose", "--no-auto-mode", "--proof-path", "src/main/key/", "src/main/key/project.key") - group = "key" - tasks.named("check").get().dependsOn(this) -} - -fun JavaExec.checkOverflowCommand() { - mainClass = "de.uka.ilkd.key.CheckerKt" - systemProperty("key.contractOrder", "contract-order.txt") - args("-v", "--no-auto-mode", "--proof-path", "proofs-overflow/", "src/main/key/project.key") - classpath = keyClasspathOverflow - group = "key" - tasks.named("check").get().dependsOn(this) -} - -tasks.create("run") { - mainClass = "de.uka.ilkd.key.core.Main" - classpath = files("tools/key-2.11.0-exe.jar", "tools/citool-1.4.0-mini.jar") - systemProperty("key.contractOrder", "contract-order.txt") -} - -tasks.create("checkAll") { - checkCommand() - args("--forbid-contracts-file", "contracts/ignore.txt", "-s", "statistics.json") -} - -tasks.create("checkMethods") { - checkCommand() - args( - "--forbid-contracts-file", "contracts/ignore.txt", "-s", "statistics-methods.json", - "--forbid-contracts-file", "contracts/constructors.txt" - ) -} - -tasks.create("checkConstructors") { - checkCommand() - args("--contracts-file", "contracts/constructors.txt", "-s", "statistics-constructors.json") -} - -tasks.create("checkClassTarget") -{ - checkCommand() - args( - "--forbid-contracts", - "-file", - "contracts/ignore.txt", - "--contracts-filter", - """^de.wiesler.{{target}}[.*""", - "-s", - "statistics.json" - ) -} - -tasks.create("checkOverflowMethods") { - checkOverflowCommand() - args( - "--contracts-file", "contracts/overflow.txt", "--forbid-contracts-file", "contracts/constructors.txt", - "-s", "statistics-overflow-methods.json" - ) -} - -tasks.create("checkOverflowConstructors") { - checkOverflowCommand() - args("--contracts-file", "contracts/constructors.txt", "-s", "statistics-overflow-constructors.json") -} +} \ No newline at end of file diff --git a/contract-order.txt b/contract-order.txt index f4f088d..e794972 100644 --- a/contract-order.txt +++ b/contract-order.txt @@ -109,6 +109,7 @@ de.wiesler.Partition[de.wiesler.Partition::bucketCountsToTotalCount([I,int,int,[ de.wiesler.SampleParameters[de.wiesler.SampleParameters::isValidForLen(int)].JML model_behavior operation contract.0 +de.wiesler.Sorter[de.wiesler.Sorter::seqUpd(\seq,int,int)].JML model_behavior operation contract.0 de.wiesler.Sorter[de.wiesler.Sorter::allBucketsInRangeSorted([I,int,int,[I,int,int,int)].JML model_behavior operation contract.0 de.wiesler.Sorter[de.wiesler.Sorter::allBucketsPartitioned([I,int,int,[I,int)].JML model_behavior operation contract.0 de.wiesler.Sorter[de.wiesler.Sorter::allBucketsPartitionedLemma(de.wiesler.Classifier,[I,int,int,[I)].JML model_behavior operation contract.0 @@ -227,6 +228,7 @@ de.wiesler.Classifier[de.wiesler.Classifier::classify_locally_batched([I,int,int de.wiesler.Classifier[de.wiesler.Classifier::classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +de.wiesler.Sorter[de.wiesler.Sorter::insertion_sort([I,int,int)].JML normal_behavior operation contract.0 de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0 de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0 diff --git a/gradle/disablelogging.xml b/gradle/disablelogging.xml new file mode 100644 index 0000000..ce4ce39 --- /dev/null +++ b/gradle/disablelogging.xml @@ -0,0 +1,13 @@ + + + + + + [%date{HH:mm:ss.SSS}] %highlight(%-5level) %cyan(%logger{0}) - %msg%ex%n + + + + + + + diff --git a/justfile b/justfile deleted file mode 100644 index ec68a4e..0000000 --- a/justfile +++ /dev/null @@ -1,34 +0,0 @@ -KEY_JAR := "tools/key-2.11.0-exe.jar" -KEY_OVERFLOW_JAR := "tools/key-2.11.0-o-exe.jar" -CI_TOOL := "tools/citool-1.4.0-mini.jar" - -checkCommand := 'java -Dkey.contractOrder="contract-order.txt" -cp "' + KEY_JAR + ';' + CI_TOOL + '" de.uka.ilkd.key.CheckerKt --no-auto-mode --proof-path proofs/ project.key' -checkOverflowCommand := 'java -Dkey.contractOrder="contract-order.txt" -cp "' + KEY_OVERFLOW_JAR + ';' + CI_TOOL + '" de.uka.ilkd.key.CheckerKt -v --no-auto-mode --proof-path proofs-overflow/ project.key' - -default: - @just --list - -run: - java -Dkey.contractOrder="contract-order.txt" -jar {{KEY_JAR}} - -compile: - find -name "*.java" > sources.txt - javac @sources.txt - -check: - {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" -s statistics.json - -check-methods: - {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-methods.json - -check-constructors: - {{checkCommand}} --contracts-file contracts/constructors.txt -s statistics-constructors.json - -check-class target: - {{checkCommand}} --forbid-contracts-file "contracts/ignore.txt" --contracts-filter "^de\.wiesler\.{{target}}\[.*" -s statistics.json - -check-overflow-methods: - {{checkOverflowCommand}} --contracts-file "contracts/overflow.txt" --forbid-contracts-file "contracts/constructors.txt" -s statistics-overflow-methods.json - -check-overflow-constructors: - {{checkOverflowCommand}} --contracts-file "contracts/constructors.txt" -s statistics-overflow-constructors.json diff --git a/loc.sh b/loc.sh deleted file mode 100644 index 9b36d09..0000000 --- a/loc.sh +++ /dev/null @@ -1,6 +0,0 @@ -for f in src/de/wiesler/*.java; do - spec=$(cat "$f" | egrep "@" | egrep -v "@\s*$" | egrep -v "@ //" | wc -l) - code=$(cat "$f" | egrep -v "(@|^\s+$)" | wc -l) - base=$(basename $f) - echo "$base,$code,$spec" -done diff --git a/los.csv b/los.csv deleted file mode 100644 index 22ab0a7..0000000 --- a/los.csv +++ /dev/null @@ -1,15 +0,0 @@ -BMC.java,13,0 -BucketPointers.java,48,441 -Buffers.java,44,175 -Classifier.java,123,481 -Cleanup.java,102,181 -Constants.java,45,16 -Functions.java,43,149 -Increment.java,9,6 -Partition.java,30,73 -PartitionResult.java,9,4 -Permute.java,130,413 -SampleParameters.java,42,28 -Sorter.java,93,382 -Storage.java,24,57 -Tree.java,34,97 diff --git a/proofIndependentSettings.props b/proofIndependentSettings.props new file mode 100644 index 0000000..502b524 --- /dev/null +++ b/proofIndependentSettings.props @@ -0,0 +1,72 @@ +#Proof-Independent-Settings-File. Generated Fri Oct 27 16:18:59 CEST 2023 +#Fri Oct 27 16:18:59 CEST 2023 +[General]UseJML=true +[SMTSettings]solverParametersV1CVC4=\#beg--no-print-success -m --interactive --lang smt2\#end +[View][Heatmap]maxAge=5 +[View]SequentViewTooltips=true +[General]RightClickMacros=true +[View]HideIntermediateProofsteps=false +[SMTSettings]solverCommandZ3\ FP=\#begz3\#end +[View][Heatmap]newest=true +[View]ShowWholeTaclet=false +[View]SourceViewTooltips=true +[View]showUninstantiatedTaclet=true +[View][Heatmap]sf=true +[SMTSettings]objectBound=3 +[View]HighlightOrigin=true +[General]DnDDirectionSensitive=true +[SMTSettings]solverParametersV1Z3=\#beg-in -smt2\#end +[View]UseSystemLookAndFeel=false +[View]ShowLoadExamplesDialog=true +[SMTSettings]fieldBound=3 +[SMTSettings]SolverTimeout=20000 +[View]UseUnicodeSymbols=false +[View]SyntaxHighlighting=true +[View]hideInteractiveGoals=false +[Extensions]disabled= +[SMTSettings]intBound=3 +[General]StupidMode=true +[SMTSettings]solverParametersV1Z3\ FP=\#beg-in -smt2\#end +[SMTSettings]timeoutZ3\ FP=-1 +[SMTSettings]solverCommandZ3_CE=\#begz3\#end +[SMTSettings]solverCommandZ3\ (Legacy\ Translation)=\#begz3\#end +[SMTSettings]solverParametersV1CVC4\ (Legacy\ Translation)=\#beg--no-print-success -m --interactive --lang smt2\#end +[View]ConfirmExit=true +[SMTSettings]ActiveSolver=\#begZ3\#end +[View]clutterRules=add_eq,add_greatereq,add_lesseq,add_non_neq_square,apply_eq_monomialseqTermCut,boxToDiamond,case_distinction_l,case_distinction_r,commute_and_2,commute_or_2,cut_direct_l,cut_direct_r,divIncreasingNeg,divIncreasingPos,divide_equation,divide_geq,equal_add_one,geq_add_one,instAll,instEx,jdivAddMultDenom,jmodAltZero,jmodDivisble,jmodUnique1,jmodeUnique2,jmodjmod,leq_add_one,less_is_total,less_zero_is_total,local_cut,polySimp_addOrder,polySimp_expand,pullOut,typeStatic +[SMTSettings]solverCommandINVISMT=\#beginvismt\#end +[View]HideClosedSubtrees=false +[View]FontIndex=2 +[SMTSettings]solverParametersV1Z3_CE=\#beg-in -smt2\#end +[SMTSettings]checkForSupport=true +[View]uiFontSizeFactor=1.0 +[View]HideAutomodeProofsteps=false +[View][Heatmap]enabled=false +[SMTSettings]solverParametersV1Z3\ (Legacy\ Translation)=\#beg-in -smt2\#end +[View]clutterRuleSets=inEqSimp_commute,inEqSimp_expand,inEqSimp_nonLin,inEqSimp_nonLin_divide,inEqSimp_special_nonLin,notHumanReadable,obsolete,polySimp_directEquations,polySimp_normalise,pullOutQuantifierAll,pullOutQuantifierEx +[General]AutoSavePeriod=0 +[SMTSettings]solverCommandZ3=\#begz3\#end +[General]EnsureSourceConsistency=true +[SMTSettings]locsetBound=3 +[SMTSettings]solverCommandCVC4=\#begcvc4\#end +[SMTSettings]pathForSMTTranslation=\#beg\#end +[SMTSettings]timeoutZ3_CE=-1 +[View]notifyLoadBehaviour=false +[View]folderBookmarks=/home/mattias +[View]PrettySyntax=true +[SMTSettings]solverCommandCVC4\ (Legacy\ Translation)=\#begcvc4\#end +[SMTSettings]timeoutZ3\ (Legacy\ Translation)=-1 +[SMTSettings]maxConcurrentProcesses=2 +[SMTSettings]timeoutCVC4\ (Legacy\ Translation)=-1 +[SMTSettings]showSMTResDialog=false +[SMTSettings]solverParametersV1INVISMT=\#beg-in\#end +[SMTSettings]timeoutCVC4=-1 +[SMTSettings]timeoutINVISMT=-1 +[SMTSettings]modeOfProgressDialog=0 +[SMTSettings]pathForTacletTranslation=\#beg\#end +[View]MaxTooltipLines=40 +[SMTSettings]timeoutZ3=-1 +[LemmaGenerator]showDialogWhenUsingTacletsAsAxioms=true +[View]HidePackagePrefix=false +[LemmaGenerator]showDialogWhenAddingAxioms=true +[SMTSettings]heapBound=3 diff --git a/src/main/java/de/wiesler/BMC.java b/src/main/java-overflow/de/wiesler/BMC.java similarity index 100% rename from src/main/java/de/wiesler/BMC.java rename to src/main/java-overflow/de/wiesler/BMC.java diff --git a/src/main/java-overflow/de/wiesler/BucketPointers.java b/src/main/java-overflow/de/wiesler/BucketPointers.java new file mode 100644 index 0000000..c30dcb8 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/BucketPointers.java @@ -0,0 +1,587 @@ +package de.wiesler; + +public final class BucketPointers { + // 2 * n integer (read, write) + private /*@ spec_public @*/ final int[] buffer; + + //@ ghost final int num_buckets; + //@ ghost final \seq bucket_starts; + //@ ghost final int first_empty_position; + + //@ public instance invariant_free 0 <= 2 * this.num_buckets <= this.buffer.length; + //@ public instance invariant_free 0 <= this.first_empty_position <= (int) this.bucket_starts[num_buckets] <= Buffers.MAX_LEN && Buffers.isBlockAligned(this.first_empty_position); + //@ public instance invariant_free this.bucket_starts.length == this.num_buckets + 1; + //@ public instance invariant_free (int) this.bucket_starts[0] == 0 && Functions.isSortedSeqTransitive(this.bucket_starts); + //@ public instance invariant_free (\forall int b; 0 <= b < this.num_buckets; this.isValidBucketPointer(b)); + //@ accessible \inv: this.buffer[*]; + + /*@ model_behaviour + @ requires true; + @ model boolean isValidBucketPointer(int bucket) { + @ return this.bucketStart(bucket) <= this.buffer[2 * bucket] <= this.bucketStart(bucket + 1) && + @ this.bucketStart(bucket) <= this.buffer[2 * bucket + 1] <= this.bucketStart(bucket + 1) && + @ (this.bucketStart(bucket) == this.buffer[2 * bucket] || this.buffer[2 * bucket] <= this.first_empty_position) && + @ Buffers.isBlockAligned(this.buffer[2 * bucket]) && + @ Buffers.isBlockAligned(this.buffer[2 * bucket + 1]); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket <= this.num_buckets; + @ requires \invariant_for(this); + @ + @ ensures_free 0 <= \result <= this.bucketStart(this.num_buckets) <= Buffers.MAX_LEN; + @ ensures_free Buffers.isBlockAligned(\result); + @ ensures_free bucket < this.num_buckets ==> \result <= this.bucketStart(bucket + 1); + @ ensures_free 0 < bucket <= this.num_buckets ==> this.bucketStart(bucket - 1) <= \result; + @ + @ // final only no_state + @ model int bucketStart(int bucket) { + @ return Buffers.blockAligned((int) this.bucket_starts[bucket]); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires \invariant_for(this); + @ + @ ensures_free \result >= 0; + @ ensures_free Buffers.isBlockAligned(\result); + @ + @ // final only no_state + @ model int bucketSize(int bucket) { + @ return this.bucketStart(bucket + 1) - this.bucketStart(bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ ensures_free 0 <= this.bucketStart(bucket) <= \result <= this.bucketStart(bucket + 1) <= this.bucketStart(this.num_buckets); + @ ensures_free \result <= this.first_empty_position || \result == this.bucketStart(bucket); + @ ensures_free this.first_empty_position <= this.bucketStart(this.num_buckets); + @ ensures_free Buffers.isBlockAligned(\result); + @ + @ accessible this.buffer[2 * bucket]; + @ model int lastReadOf(int bucket) { + @ return this.buffer[2 * bucket]; + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ ensures_free 0 <= this.bucketStart(bucket) <= \result <= this.bucketStart(bucket + 1) <= this.bucketStart(this.num_buckets); + @ ensures_free Buffers.isBlockAligned(\result); + @ + @ accessible this.buffer[2 * bucket + 1]; + @ model int nextWriteOf(int bucket) { + @ return this.buffer[2 * bucket + 1]; + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ accessible this.buffer[2 * bucket + 1]; + @ model int writtenCountOfBucket(int bucket) { + @ return this.nextWriteOf(bucket) - this.bucketStart(bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ accessible this.buffer[2 * bucket + 1]; + @ model int remainingWriteCountOfBucket(int bucket) { + @ return this.bucketStart(bucket + 1) - this.nextWriteOf(bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ ensures_free \result >= 0; + @ ensures_free Buffers.isBlockAligned(\result); + @ + @ accessible this.buffer[2 * bucket], this.buffer[2 * bucket + 1]; + @ model int toReadCountOfBucket(int bucket) { + @ return this.nextWriteOf(bucket) < this.lastReadOf(bucket) ? this.lastReadOf(bucket) - this.nextWriteOf(bucket) : 0; + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires overflow.length == Buffers.BUFFER_SIZE; + @ requires \invariant_for(classifier); + @ + @ accessible values[begin + this.bucketStart(bucket) .. begin + this.nextWriteOf(bucket) - 1], overflow[*], this.buffer[2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*]; + @ model boolean writtenElementsOfBucketClassified(Classifier classifier, int[] values, int begin, int end, int[] overflow, int bucket) { + @ return end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket) ? + @ classifier.isClassOfSlice(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket) - Buffers.BUFFER_SIZE, bucket) && + @ classifier.isClassOfSlice(overflow, 0, Buffers.BUFFER_SIZE, bucket) : + @ classifier.isClassOfSlice(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket), bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires \invariant_for(classifier); + @ + @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*]; + @ model boolean elementsToReadOfBucketBlockClassified(Classifier classifier, int[] values, int begin, int end, int bucket) { + @ return this.nextWriteOf(bucket) < this.lastReadOf(bucket) ==> classifier.isClassifiedBlocksRange(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket)); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires overflow.length == Buffers.BUFFER_SIZE; + @ + @ accessible values[begin + this.bucketStart(bucket) .. begin + this.nextWriteOf(bucket) - 1], overflow[*], this.buffer[2 * bucket + 1]; + @ model int writtenElementsOfBucketCountElement(int[] values, int begin, int end, int[] overflow, int bucket, int element) { + @ return end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket) ? + @ Functions.countElement(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket) - Buffers.BUFFER_SIZE, element) + + @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element) : + @ Functions.countElement(values, begin + this.bucketStart(bucket), begin + this.nextWriteOf(bucket), element); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1]; + @ model int elementsToReadOfBucketCountElement(int[] values, int begin, int end, int bucket, int element) { + @ return Functions.countElement(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket), element); + @ } + @*/ + + /*@ model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires overflow.length == Buffers.BUFFER_SIZE; + @ + @ model int countElement(int[] values, int begin, int end, int[] overflow, int element) { + @ return this.elementsToReadCountElement(values, begin, end, element) + + @ this.writtenElementsCountElement(values, begin, end, overflow, element); + @ } + @*/ + + /*@ model_behaviour + @ requires overflow.length == Buffers.BUFFER_SIZE; + @ + @ model int writtenElementsCountElement(int[] values, int begin, int end, int[] overflow, int element) { + @ return (\sum int b; 0 <= b < this.num_buckets; + @ this.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= split_bucket < this.num_buckets; + @ requires begin + this.bucketStart(split_bucket) <= begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE <= begin + this.nextWriteOf(split_bucket); + @ ensures_free \result; + @ model boolean writtenElementsCountElementSplitBucket(int[] values, int begin, int end, int[] overflow, int split_bucket) { + @ return (\forall int element; true; + @ this.writtenElementsCountElement(values, begin, end, overflow, element) == + @ (\sum int b; 0 <= b < this.num_buckets; + @ (b == split_bucket) ? + @ Functions.countElement(values, begin + this.bucketStart(split_bucket), begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE, element) : + @ this.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element) + @ ) + + @ (end - begin < this.nextWriteOf(split_bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(split_bucket) ? + @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element) : + @ Functions.countElement(values, begin + this.nextWriteOf(split_bucket) - Buffers.BUFFER_SIZE, begin + this.nextWriteOf(split_bucket), element)) + @ ); + @ } + @*/ + + /*@ model_behaviour + @ requires true; + @ + @ model int elementsToReadCountElement(int[] values, int begin, int end, int element) { + @ return (\sum int b; 0 <= b < this.num_buckets; + @ this.elementsToReadOfBucketCountElement(values, begin, end, b, element) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= split_bucket < this.num_buckets; + @ requires begin + this.nextWriteOf(split_bucket) <= mid <= begin + this.lastReadOf(split_bucket); + @ ensures_free \result; + @ model boolean elementsToReadCountElementSplitBucket(int[] values, int begin, int mid, int end, int split_bucket, boolean pullout_first) { + @ return (\forall int element; true; + @ this.elementsToReadCountElement(values, begin, end, element) == + @ (\sum int b; 0 <= b < this.num_buckets; (b == split_bucket) ? + @ (pullout_first ? + @ Functions.countElement(values, mid, begin + this.lastReadOf(b), element) : + @ Functions.countElement(values, begin + this.nextWriteOf(b), mid, element) + @ ) : + @ this.elementsToReadOfBucketCountElement(values, begin, end, b, element)) + + @ (pullout_first ? + @ Functions.countElement(values, begin + this.nextWriteOf(split_bucket), mid, element) : + @ Functions.countElement(values, mid, begin + this.lastReadOf(split_bucket), element) + @ ) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires 0 <= begin <= end <= values.length; + @ requires this.num_buckets == classifier.num_buckets; + @ requires \invariant_for(classifier); + @ ensures_free \result >= 0; + @ accessible values[begin + this.nextWriteOf(bucket) .. begin + this.lastReadOf(bucket) - 1], this.buffer[2 * bucket..2 * bucket + 1], classifier.sorted_splitters[*], classifier.tree.tree[*]; + @ model int elementsToReadOfBucketCountClassEq(Classifier classifier, int[] values, int begin, int end, int bucket, int cls) { + @ return classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(bucket), begin + this.lastReadOf(bucket), cls); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires 0 <= begin <= end <= values.length; + @ ensures_free \result >= 0; + @ model int elementsToReadCountClassEq(Classifier classifier, int[] values, int begin, int end, int bucket) { + @ return (\sum int b; 0 <= b < this.num_buckets; + @ this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= split_bucket < this.num_buckets; + @ requires this.num_buckets == classifier.num_buckets; + @ requires begin + this.nextWriteOf(split_bucket) <= mid <= begin + this.lastReadOf(split_bucket); + @ ensures_free \result; + @ model boolean elementsToReadCountClassEqSplitBucket(Classifier classifier, int[] values, int begin, int mid, int end, int split_bucket, boolean pullout_first) { + @ return (\forall int bucket; 0 <= bucket < this.num_buckets; + @ this.elementsToReadCountClassEq(classifier, values, begin, end, bucket) == + @ (\sum int b; 0 <= b < this.num_buckets; (b == split_bucket) ? + @ (pullout_first ? + @ classifier.countClassOfSliceEq(values, mid, begin + this.lastReadOf(b), bucket) : + @ classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(b), mid, bucket) + @ ) : + @ this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket)) + + @ (pullout_first ? + @ classifier.countClassOfSliceEq(values, begin + this.nextWriteOf(split_bucket), mid, bucket) : + @ classifier.countClassOfSliceEq(values, mid, begin + this.lastReadOf(split_bucket), bucket) + @ ) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ ensures_free \result; + @ model boolean disjointBucketsLemma(int bucket) { + @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket; + @ (b < bucket ==> this.bucketStart(b + 1) <= this.bucketStart(bucket)) && + @ (b > bucket ==> this.bucketStart(bucket + 1) <= this.bucketStart(b)) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end; + @ requires end - begin == (int) this.bucket_starts[num_buckets]; + @ ensures_free \result; + @ model boolean overflowBucketCharacteristic(int begin, int end) { + @ return (\forall int b; 0 <= b < this.num_buckets; + @ end - begin < this.nextWriteOf(b) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(b) ==> + @ this.bucketStart(b) < end - begin && + @ this.nextWriteOf(b) == this.bucketStart(b + 1) && + @ this.bucketStart(b + 1) == this.bucketStart(this.num_buckets) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end; + @ requires 0 <= bucket < this.num_buckets; + @ requires end - begin == (int) this.bucket_starts[num_buckets]; + @ requires end - begin < this.nextWriteOf(bucket) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(bucket); + @ requires this.disjointBucketsLemma(bucket); + @ requires this.overflowBucketCharacteristic(begin, end); + @ ensures_free \result; + @ model boolean overflowBucketUniqueLemma(int begin, int end, int bucket) { + @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket; + @ // Show that nextWriteOf(bucket) == bucketStart(bucket) == bucketStart(num_buckets) + @ // b > bucket: writtenCountOfBucket can't be > 0 since nextWriteOf(b) <= bucketStart(num_buckets) + @ // b < bucket: bucketStart(bucket) <= end - begin + @ !(end - begin < this.nextWriteOf(b) && Buffers.BUFFER_SIZE <= this.writtenCountOfBucket(b)) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ requires begin + this.bucketStart(bucket) <= subBegin <= subEnd <= begin + this.bucketStart(bucket + 1); + @ requires this.disjointBucketsLemma(bucket); + @ ensures_free \result; + @ model boolean disjointBucketsAreaLemma(int[] values, int begin, int end, int bucket, int subBegin, int subEnd) { + @ return (\forall int b; 0 <= b < this.num_buckets && b != bucket; + @ \disjoint(\dl_arrayRange(values, begin + this.bucketStart(b), begin + this.nextWriteOf(b) - 1), \dl_arrayRange(values, subBegin, subEnd - 1)) && + @ \disjoint(\dl_arrayRange(values, begin + this.nextWriteOf(b), begin + this.lastReadOf(b) - 1), \dl_arrayRange(values, subBegin, subEnd - 1)) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires start <= read <= stop; + @ static model no_state boolean readIsMaximal(int start, int read, int stop, int first_empty_position) { + @ return read == (first_empty_position <= start ? start : (stop <= first_empty_position ? stop : first_empty_position)); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ accessible this.buffer[2 * bucket..2 * bucket + 1]; + @ model boolean isAtInitialBucketState(int bucket) { + @ return this.writtenCountOfBucket(bucket) == 0 && + @ BucketPointers.readIsMaximal(this.bucketStart(bucket), this.lastReadOf(bucket), this.bucketStart(bucket + 1), this.first_empty_position); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ + @ model boolean isAtInitialState() { + @ return (\forall int b; 0 <= b < this.num_buckets; + @ this.isAtInitialBucketState(b) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires end - begin == (int) this.bucket_starts[num_buckets]; + @ requires this.isAtInitialState(); + @ requires classifier.isClassifiedBlocksRange(values, begin, begin + this.first_empty_position); + @ + @ ensures_free \result; + @ + @ model boolean initialReadAreasBlockClassified(Classifier classifier, int[] values, int begin, int end) { + @ return (\forall int b; 0 <= b < this.num_buckets; this.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b)); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires end - begin == (int) this.bucket_starts[num_buckets]; + @ requires this.isAtInitialState(); + @ + @ ensures_free \result; + @ + @ model boolean initialReadAreasCountLemma(int[] values, int begin, int end) { + @ return (\forall int iv; 0 <= iv <= this.num_buckets; + @ (\forall int element; true; + @ Functions.countElement(values, begin, begin + (this.bucketStart(iv) < first_empty_position ? this.bucketStart(iv) : first_empty_position), element) == + @ (\sum int b; 0 <= b < iv; this.elementsToReadOfBucketCountElement(values, begin, end, b, element)) + @ ) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.initialReadAreasCountLemma(values, begin, end); + @ + @ ensures_free \result; + @ + @ model boolean initialReadAreasCount(int[] values, int begin, int end) { + @ return (\forall int element; true; + @ Functions.countElement(values, begin, begin + first_empty_position, element) == + @ this.elementsToReadCountElement(values, begin, end, element) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires end - begin == (int) this.bucket_starts[num_buckets]; + @ requires this.isAtInitialState(); + @ + @ ensures_free \result; + @ + @ model boolean initialReadAreasCountBucketElementsLemma(Classifier classifier, int[] values, int begin, int end) { + @ return (\forall int iv; 0 <= iv <= this.num_buckets; + @ (\forall int bucket; 0 <= bucket < this.num_buckets; + @ classifier.countClassOfSliceEq(values, begin, begin + (this.bucketStart(iv) < first_empty_position ? this.bucketStart(iv) : first_empty_position), bucket) == + @ (\sum int b; 0 <= b < iv; this.elementsToReadOfBucketCountClassEq(classifier, values, begin, end, b, bucket)) + @ ) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.initialReadAreasCountBucketElementsLemma(classifier, values, begin, end); + @ + @ ensures_free \result; + @ + @ model boolean initialReadAreasCountBucketElements(Classifier classifier, int[] values, int begin, int end) { + @ return (\forall int bucket; 0 <= bucket < this.num_buckets; + @ classifier.countClassOfSliceEq(values, begin, begin + first_empty_position, bucket) == + @ this.elementsToReadCountClassEq(classifier, values, begin, end, bucket) + @ ); + @ } + @*/ + + /*@ model_behaviour + @ requires_free 0 <= start <= stop <= Buffers.MAX_LEN; + @ ensures_free \result; + @ static model no_state boolean alignedBoundariesKeepEnoughSpace(int start, int stop) { + @ return stop - start - Buffers.bufferSizeForBucketLen(stop - start) <= Buffers.blockAligned(stop) - Buffers.blockAligned(start); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free Functions.isSortedSliceTransitive(bucket_starts, 0, num_buckets + 1); + @ requires_free num_buckets + 1 <= bucket_starts.length; + @ requires_free bucket_starts[num_buckets] <= Buffers.MAX_LEN; + @ requires_free bucket_starts[0] == 0; + @ requires_free 0 <= 2 * num_buckets <= buffer.length; + @ requires_free 0 <= first_empty_position <= bucket_starts[num_buckets]; + @ requires_free Buffers.isBlockAligned(first_empty_position); + @ requires_free \disjoint(bucket_starts[*], buffer[*]); + @ + @ ensures_free this.num_buckets == num_buckets && this.buffer == buffer && this.first_empty_position == first_empty_position; + @ ensures_free bucket_starts[num_buckets] == (int) this.bucket_starts[num_buckets]; + @ ensures_free this.isAtInitialState(); + @ ensures_free (\forall int b; 0 <= b < num_buckets; + @ // enough space to write everything except the buffer content + @ bucket_starts[b + 1] - bucket_starts[b] - Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) <= this.bucketSize(b) + @ ); + @ ensures_free (\forall int b; 0 <= b <= num_buckets; this.bucketStart(b) == Buffers.blockAligned(bucket_starts[b])); + @ + @ assignable_free buffer[0..2 * num_buckets - 1]; + @*/ + public BucketPointers(final int[] bucket_starts, final int num_buckets, final int first_empty_position, final int[] buffer) { + //@ set this.num_buckets = num_buckets; + //@ set this.first_empty_position = first_empty_position; + //@ set this.bucket_starts = \dl_seq_def_workaround(0, num_buckets + 1, bucket_starts); + + /*@ assume + @ (\forall int b; 0 <= b <= num_buckets; this.bucketStart(b) == Buffers.blockAligned(bucket_starts[b])) && + @ Functions.isSortedSeqTransitive(this.bucket_starts); + @*/ + + this.buffer = buffer; + + /*@ loop_invariant_free 0 <= bucket && bucket <= num_buckets; + @ loop_invariant_free (\forall int b; 0 <= b < bucket; + @ this.isValidBucketPointer(b) && + @ this.isAtInitialBucketState(b) && + @ bucket_starts[b + 1] - bucket_starts[b] - Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) <= this.bucketSize(b) + @ ); + @ + @ decreases num_buckets - bucket; + @ + @ assignable_free this.buffer[0..2 * num_buckets - 1]; + @*/ + for (int bucket = 0; bucket < num_buckets; ++bucket) { + //@ assume 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets]; + int start = Buffers.align_to_next_block(bucket_starts[bucket]); + int stop = Buffers.align_to_next_block(bucket_starts[bucket + 1]); + //@ assume start == this.bucketStart(bucket) && stop == this.bucketStart(bucket + 1) && start <= stop; + int read = -1; + + /*@ normal_behaviour + @ ensures_free start <= read <= stop; + @ ensures_free Buffers.isBlockAligned(read); + @ ensures_free BucketPointers.readIsMaximal(start, read, stop, this.first_empty_position); + @ + @ assignable_free \strictly_nothing; + @*/ + { + if (first_empty_position <= start) { + read = start; + } else if (stop <= first_empty_position) { + read = stop; + } else { + read = first_empty_position; + } + } + + this.buffer[2 * bucket] = read; + this.buffer[2 * bucket + 1] = start; + + //@ assume BucketPointers.alignedBoundariesKeepEnoughSpace(bucket_starts[bucket], bucket_starts[bucket + 1]); + } + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ + @ ensures_free \result == this.nextWriteOf(bucket); + @ ensures_free \result == this.writtenCountOfBucket(bucket) + this.bucketStart(bucket); + @ + @ assignable_free \strictly_nothing; + @*/ + public int write(int bucket) { + final int write_pos = 2 * bucket + 1; + return this.buffer[write_pos]; + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ requires_free this.bucketSize(bucket) >= this.writtenCountOfBucket(bucket) + Buffers.BUFFER_SIZE; + @ + @ ensures_free \old(this.nextWriteOf(bucket)) + Buffers.BUFFER_SIZE == this.nextWriteOf(bucket); + @ ensures_free \old(this.remainingWriteCountOfBucket(bucket)) == this.remainingWriteCountOfBucket(bucket) + Buffers.BUFFER_SIZE; + @ ensures_free \old(this.writtenCountOfBucket(bucket)) + Buffers.BUFFER_SIZE == this.writtenCountOfBucket(bucket); + @ ensures_free this.lastReadOf(bucket) == \old(this.lastReadOf(bucket)); + @ // read count either decreased or stayed 0 + @ ensures_free \old(this.toReadCountOfBucket(bucket)) >= Buffers.BUFFER_SIZE ? + @ this.toReadCountOfBucket(bucket) < \old(this.toReadCountOfBucket(bucket)) : + @ this.toReadCountOfBucket(bucket) == 0; + @ + @ ensures_free \result.position == \old(this.nextWriteOf(bucket)); + @ ensures_free \result.occupied <==> \old(this.toReadCountOfBucket(bucket)) >= Buffers.BUFFER_SIZE; + @ + @ assignable_free this.buffer[2 * bucket + 1]; + @*/ + public Increment increment_write(int bucket) { + final int read_pos = 2 * bucket; + final int write_pos = 2 * bucket + 1; + final int write = this.buffer[write_pos]; + this.buffer[write_pos] += Buffers.BUFFER_SIZE; + return new Increment(this.buffer[read_pos] > write, write); + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ + @ ensures_free \result <==> this.toReadCountOfBucket(bucket) >= Buffers.BUFFER_SIZE; + @ + @ assignable_free \strictly_nothing; + @*/ + public boolean hasRemainingRead(int bucket) { + final int read_pos = 2 * bucket; + final int write_pos = 2 * bucket + 1; + int read = this.buffer[read_pos]; + final int write = this.buffer[write_pos]; + return read > write; + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ requires_free this.toReadCountOfBucket(bucket) != 0; + @ + @ ensures_free \result == this.lastReadOf(bucket); + @ + @ ensures_free this.toReadCountOfBucket(bucket) + Buffers.BUFFER_SIZE == \old(this.toReadCountOfBucket(bucket)); + @ ensures_free \old(this.lastReadOf(bucket)) == this.lastReadOf(bucket) + Buffers.BUFFER_SIZE; + @ // ensures (\forall int b; 0 <= b < this.num_buckets && b != bucket; this.toReadCountOfBucket(b) == \old(this.toReadCountOfBucket(b))); + @ // ensures (\forall int b; 0 <= b < this.num_buckets; this.writtenCountOfBucket(b) == \old(this.writtenCountOfBucket(b))); + @ + @ assignable_free this.buffer[2 * bucket]; + @*/ + public int decrement_read(int bucket) { + final int read_pos = 2 * bucket; + int read = this.buffer[read_pos]; + read -= Buffers.BUFFER_SIZE; + this.buffer[read_pos] = read; + return read; + } +} diff --git a/src/main/java-overflow/de/wiesler/Buffers.java b/src/main/java-overflow/de/wiesler/Buffers.java new file mode 100644 index 0000000..4a9a40c --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Buffers.java @@ -0,0 +1,283 @@ +package de.wiesler; + +public final class Buffers { + public static final int BUFFER_SIZE = 1024 / 4; + public static final int MAX_INT = 0x7FFFFFFF; + public static final int MAX_LEN = MAX_INT - BUFFER_SIZE + 1; + + /*@ public model_behaviour + @ requires 0 <= len; + @ + @ ensures_free 0 <= \result <= BUFFER_SIZE; + @ + @ // A remainder modulo BUFFER_SIZE that is never 0 for nonempty buckets + @ static no_state model int bufferSizeForBucketLen(int len) { + @ return (len >= Buffers.BUFFER_SIZE && len % Buffers.BUFFER_SIZE == 0) ? + @ Buffers.BUFFER_SIZE : (len % Buffers.BUFFER_SIZE); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= value <= MAX_LEN; + @ + @ // checked by exhaustive search below + @ ensures_free Buffers.isBlockAligned(\result); + @ ensures_free \result >= value; + @ ensures_free \result - value < BUFFER_SIZE; + @ + @ static no_state model int blockAligned(int value) { + @ return (value + BUFFER_SIZE - 1) & (-BUFFER_SIZE); + @ } + @*/ + + private static boolean testBlockAlignedContract(int value, int result) { + return + result % BUFFER_SIZE == 0 && + result >= value && + result - value < BUFFER_SIZE; + } + + /*@ public model_behaviour + @ requires value >= 0; + @ + @ static no_state model boolean isBlockAligned(int value) { + @ return value % BUFFER_SIZE == 0; + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= i; + @ requires 0 <= j; + @ requires isBlockAligned(i) && isBlockAligned(j); + @ + @ ensures_free \result; + @ + @ static model boolean isBlockAlignedAdd(int i, int j) { + @ return isBlockAligned(i + j); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= j <= i; + @ requires isBlockAligned(i) && isBlockAligned(j); + @ + @ ensures_free \result; + @ + @ static model boolean isBlockAlignedSub(int i, int j) { + @ return isBlockAligned(i - j); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= offset <= MAX_LEN; + @ + @ ensures_free \result == blockAligned(offset); + @ + @ assignable_free \strictly_nothing; + @*/ + public static int align_to_next_block(int offset) { + return (offset + BUFFER_SIZE - 1) & (-BUFFER_SIZE); + } + + public static void testContracts(int i) { + if (0 <= i && i <= MAX_LEN && !testBlockAlignedContract(i, align_to_next_block(i))) { + throw new Error("blockAligned contract fails for " + i); + } + } + + private /*@ spec_public @*/ final int[] buffer; + private /*@ spec_public @*/ final int[] indices; + //@ ghost final int num_buckets; + + /*@ public model_behaviour + @ requires true; + @ + @ ensures_free \result ==> this.count() == 0; + @ ensures_free \result ==> (\forall int element; true; this.countElement(element) == 0); + @ model boolean isEmpty() { + @ return (\forall int b; 0 <= b < this.num_buckets; this.bufferLen(b) == 0); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ ensures_free 0 <= \result <= BUFFER_SIZE; + @ accessible this.indices[bucket]; + @ model int bufferLen(int bucket) { + @ return this.indices[bucket]; + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ accessible this.buffer[bucket * BUFFER_SIZE + offset]; + @ model int bufferElement(int bucket, int offset) { + @ return this.buffer[bucket * BUFFER_SIZE + offset]; + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ + @ accessible this.indices[0..this.num_buckets - 1]; + @ model int count() { + @ return (\sum int b; 0 <= b < this.num_buckets; this.bufferLen(b)); + @ } + @*/ + + /*@ public model_behaviour + @ requires \invariant_for(classifier); + @ requires classifier.num_buckets == this.num_buckets; + @ + @ accessible this.indices[0..this.num_buckets - 1], this.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1], classifier.sorted_splitters[*], classifier.tree.tree[*]; + @ model boolean isClassifiedWith(Classifier classifier) { + @ return (\forall + @ int b; + @ 0 <= b < this.num_buckets; + @ classifier.isClassOfSlice(this.buffer, b * BUFFER_SIZE, b * BUFFER_SIZE + this.bufferLen(b), b) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ + @ model int countElementInBucket(int bucket, int element) { + @ return Functions.countElement(this.buffer, bucket * BUFFER_SIZE, bucket * BUFFER_SIZE + this.bufferLen(bucket), element); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ + @ accessible this.indices[0..this.num_buckets - 1], this.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @ model int countElement(int element) { + @ return (\sum int b; 0 <= b < this.num_buckets; this.countElementInBucket(b, element)); + @ } + @*/ + + /*@ + @ invariant_free this.buffer != this.indices; + @ invariant_free this.buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS; + @ invariant_free this.indices.length == Constants.MAX_BUCKETS; + @ invariant_free 0 <= this.num_buckets <= Constants.MAX_BUCKETS; + @ invariant_free (\forall int b; 0 <= b && b < this.num_buckets; 0 <= this.indices[b] && this.indices[b] <= BUFFER_SIZE); + @ + @ accessible \inv: this.indices[*]; + @*/ + + /*@ public normal_behaviour + @ requires_free buffer != indices; + @ requires_free buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS; + @ requires_free indices.length == Constants.MAX_BUCKETS; + @ requires_free 0 <= num_buckets <= Constants.MAX_BUCKETS; + @ + @ ensures_free this.num_buckets == num_buckets; + @ ensures_free this.buffer == buffer; + @ ensures_free this.indices == indices; + @ ensures_free this.isEmpty(); + @ + @ assignable_free indices[0..num_buckets - 1]; + @*/ + public Buffers(int[] buffer, int[] indices, int num_buckets) { + this.buffer = buffer; + this.indices = indices; + //@ set this.num_buckets = num_buckets; + + Functions.fill(this.indices, 0, num_buckets, 0); + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket && bucket < this.num_buckets; + @ + @ requires_free this.bufferLen(bucket) != BUFFER_SIZE; + @ + @ ensures_free this.bufferLen(bucket) == \old(this.bufferLen(bucket)) + 1; + @ ensures_free this.bufferElement(bucket, \old(this.bufferLen(bucket))) == value; + @ ensures_free this.count() == \old(this.count()) + 1; + @ + @ ensures_free (\forall int element; true; this.countElement(element) == \old(this.countElement(element)) + (element == value ? 1 : 0)); + @ + @ assignable_free this.indices[bucket]; + @ assignable_free this.buffer[bucket * BUFFER_SIZE + this.bufferLen(bucket)]; + @*/ + public void push(int bucket, int value) { + /*@ normal_behaviour + @ assignable \nothing; + @*/ + { + value = value; + } + int buffer_offset = bucket * BUFFER_SIZE; + int index = this.indices[bucket]; + this.buffer[buffer_offset + index] = value; + this.indices[bucket] = index + 1; + //@ assume Functions.countElementSplit(this.buffer, bucket * BUFFER_SIZE, bucket * BUFFER_SIZE + index, bucket * BUFFER_SIZE + index + 1); + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ requires_free \disjoint(values[*], this.buffer[*], this.indices[*]); + @ requires_free this.bufferLen(bucket) == BUFFER_SIZE; + @ requires_free 0 <= write <= end <= values.length; + @ requires_free end - write >= BUFFER_SIZE; + @ + @ ensures_free this.bufferLen(bucket) == 0; + @ ensures_free (\forall int i; 0 <= i && i < BUFFER_SIZE; values[write + i] == \old(this.buffer[bucket * BUFFER_SIZE + i])); + @ ensures_free (\forall int element; true; + @ \old(this.countElement(element)) == + @ Functions.countElement(values, write, write + BUFFER_SIZE, element) + + @ this.countElement(element) + @ ); + @ ensures_free this.count() == \old(this.count()) - BUFFER_SIZE; + @ + @ assignable_free this.indices[bucket]; + @ assignable_free values[write..write + BUFFER_SIZE - 1]; + @*/ + public void flush(int bucket, int[] values, int write, int end) { + int buffer_offset = bucket * BUFFER_SIZE; + Functions.copy_nonoverlapping(this.buffer, buffer_offset, values, write, BUFFER_SIZE); + this.indices[bucket] = 0; + //@ assume (\forall int element; true; \old(this.countElementInBucket(bucket, element)) == Functions.countElement(values, write, write + BUFFER_SIZE, element)); + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket && bucket < this.num_buckets; + @ requires_free \disjoint(values[*], this.buffer[*], this.indices[*]); + @ + @ requires_free 0 <= head_start <= head_start + head_len <= values.length; + @ requires_free 0 <= tail_start <= tail_start + tail_len <= values.length; + @ + @ requires_free head_len + tail_len == this.bufferLen(bucket); + @ // Don't overlap + @ requires_free \disjoint(values[head_start..(head_start + head_len - 1)], values[tail_start..(tail_start + tail_len - 1)]); + @ + @ ensures_free (\forall int i; 0 <= i && i < head_len; values[head_start + i] == \old(this.bufferElement(bucket, i))); + @ ensures_free (\forall int i; 0 <= i && i < tail_len; values[tail_start + i] == \old(this.bufferElement(bucket, head_len + i))); + @ + @ ensures_free (\forall int element; true; + @ Functions.countElement(values, head_start, head_start + head_len, element) + + @ Functions.countElement(values, tail_start, tail_start + tail_len, element) == + @ \old(this.countElementInBucket(bucket, element)) + @ ); + @ + @ assignable_free values[head_start..(head_start + head_len - 1)]; + @ assignable_free values[tail_start..(tail_start + tail_len - 1)]; + @*/ + public void distribute(int bucket, int[] values, int head_start, int head_len, int tail_start, int tail_len) { + //@ assume head_len + tail_len == this.indices[bucket]; + int offset = bucket * BUFFER_SIZE; + //@ assume Functions.countElementSplit(this.buffer, offset, offset + head_len, offset + head_len + tail_len); + Functions.copy_nonoverlapping(this.buffer, offset, values, head_start, head_len); + Functions.copy_nonoverlapping(this.buffer, offset + head_len, values, tail_start, tail_len); + } + + /*@ public normal_behaviour + @ requires_free 0 <= bucket < this.num_buckets; + @ ensures_free \result == this.bufferLen(bucket); + @ assignable_free \strictly_nothing; + @*/ + public int len(int bucket) { + return this.indices[bucket]; + } +} diff --git a/src/main/java-overflow/de/wiesler/Classifier.java b/src/main/java-overflow/de/wiesler/Classifier.java new file mode 100644 index 0000000..22c68b9 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Classifier.java @@ -0,0 +1,759 @@ +package de.wiesler; + +public final class Classifier { + public static final int STORAGE_SIZE = (1 << Constants.LOG_MAX_BUCKETS); + + private /*@ spec_public @*/ final Tree tree; + private /*@ spec_public @*/ final int num_buckets; + private /*@ spec_public @*/ final int[] sorted_splitters; + private /*@ spec_public @*/ final boolean equal_buckets; + + /*@ invariant_free 2 <= this.num_buckets <= Constants.MAX_BUCKETS; + @ invariant_free this.num_buckets == (this.equal_buckets ? 2 * this.tree.num_buckets : this.tree.num_buckets); + @ invariant_free this.tree.sorted_splitters == this.sorted_splitters; + @ invariant_free Functions.isSortedSliceTransitive(this.sorted_splitters, 0, this.tree.num_buckets); + @ invariant_free this.sorted_splitters[this.tree.num_buckets - 1] == this.sorted_splitters[this.tree.num_buckets - 2]; + @ invariant_free \invariant_for(this.tree); + @ + @ accessible \inv: this.sorted_splitters[*], this.tree.tree[*]; + @*/ + + // This is a wrapper around classify not to be expanded in partition. + /*@ public model_behaviour + @ ensures_free 0 <= \result < this.num_buckets; + @ ensures_free this.isClassifiedAs(value, \result); + @ accessible this.sorted_splitters[*], this.tree.tree[*]; + @ model int classOf(int value) { + @ return this.classify(value); + @ } + @*/ + + /*@ public model_behaviour + @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1]; + @ model boolean isClassOfSlice(int[] values, int begin, int end, int bucket) { + @ return (\forall + @ int i; + @ begin <= i < end; + @ this.classOf(values[i]) == bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires begin <= mid <= end; + @ + @ ensures_free \result; + @ + @ // Verified + @ model boolean isClassOfSliceSplit(int[] values, int begin, int mid, int end, int bucket) { + @ return this.isClassOfSlice(values, begin, end, bucket) <==> + @ this.isClassOfSlice(values, begin, mid, bucket) && this.isClassOfSlice(values, mid, end, bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.isClassOfSlice(src, srcPos, srcPos + length, bucket); + @ requires (\forall int i; 0 <= i && i < length; dest[destPos + i] == src[srcPos + i]); + @ + @ ensures_free \result; + @ + @ // Verified + @ model boolean isClassOfSliceCopy(int[] src, int srcPos, int[] dest, int destPos, int length, int bucket) { + @ return this.isClassOfSlice(dest, destPos, destPos + length, bucket); + @ } + @*/ + + /*@ public model_behaviour + @ accessible values[begin..end - 1], this.sorted_splitters[*], this.tree.tree[*]; + @ model int countClassOfSliceEq(int[] values, int begin, int end, int bucket) { + @ return (\num_of + @ int i; + @ begin <= i < end; + @ this.classOf(values[i]) == bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.isClassOfSlice(values, begin, end, bucket); + @ requires begin <= end; + @ + @ ensures_free \result; + @ + @ model boolean countClassOfSliceEqLemma(int[] values, int begin, int end, int bucket) { + @ return (\forall int b; 0 <= b < this.num_buckets; + @ this.countClassOfSliceEq(values, begin, end, b) == + @ (b == bucket ? end - begin : 0) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1]; + @ model boolean isClassifiedBlock(int[] values, int begin, int end) { + @ return (\exists int bucket; 0 <= bucket < this.num_buckets; this.isClassOfSlice(values, begin, end, bucket)); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.isClassifiedBlock(values, begin, end); + @ requires this.classOf(values[begin]) == bucket; + @ + @ ensures_free \result; + @ + @ model boolean classOfClassifiedBlockFromFirst(int[] values, int begin, int end, int bucket) { + @ return this.isClassOfSlice(values, begin, end, bucket); + @ } + @*/ + + /*@ public model_behaviour + @ requires Buffers.isBlockAligned(end - begin); + @ accessible this.sorted_splitters[*], this.tree.tree[*], values[begin..end - 1]; + @ model boolean isClassifiedBlocksRange(int[] values, int begin, int end) { + @ return (\forall + @ int block; + @ 0 <= block && block < (end - begin) / Buffers.BUFFER_SIZE; + @ this.isClassifiedBlock(values, begin + block * Buffers.BUFFER_SIZE, begin + (block + 1) * Buffers.BUFFER_SIZE) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires begin <= mid <= end; + @ requires Buffers.isBlockAligned(end - begin); + @ requires Buffers.isBlockAligned(mid - begin); + @ + @ ensures_free \result; + @ + @ model boolean isClassifiedBlocksRangeSplit(int[] values, int begin, int mid, int end) { + @ return this.isClassifiedBlocksRange(values, begin, end) <==> + @ this.isClassifiedBlocksRange(values, begin, mid) && this.isClassifiedBlocksRange(values, mid, end); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free tree != sorted_splitters; + @ requires_free 1 <= log_buckets <= Constants.LOG_MAX_BUCKETS; + @ requires_free 0 <= (1 << log_buckets) <= sorted_splitters.length; + @ requires_free Functions.isSortedSliceTransitive(sorted_splitters, 0, 1 << log_buckets); + @ requires_free (1 << log_buckets) <= tree.length; + @ requires_free sorted_splitters[(1 << log_buckets) - 1] == sorted_splitters[(1 << log_buckets) - 2]; + @ + @ ensures_free this.tree.tree == tree && this.sorted_splitters == sorted_splitters; + @ ensures_free this.tree.log_buckets == log_buckets && this.equal_buckets == equal_buckets && this.num_buckets == (equal_buckets ? 2 * (1 << log_buckets) : (1 << log_buckets)); + @ + @ assignable_free tree[*]; + @*/ + public Classifier(int[] sorted_splitters, int[] tree, int log_buckets, boolean equal_buckets) { + int num_buckets = 1 << log_buckets; + //@ assume 2 <= num_buckets <= (1 << Constants.LOG_MAX_BUCKETS); + + int num_splitters = num_buckets - 1; + //@ assume (sorted_splitters[num_splitters] == sorted_splitters[num_splitters - 1]); + + this.tree = new Tree(sorted_splitters, tree, log_buckets); + //@ assume this.tree.log_buckets == log_buckets; + //@ assume sorted_splitters[num_splitters] == sorted_splitters[num_splitters - 1]; + this.sorted_splitters = sorted_splitters; + /*@ normal_behaviour + @ ensures_free this.num_buckets == (equal_buckets ? 2 * num_buckets : num_buckets); + @ assignable_free this.num_buckets; + @*/ + { + this.num_buckets = equal_buckets ? 2 * num_buckets : num_buckets; + } + this.equal_buckets = equal_buckets; + } + + /*@ public model_behaviour + @ requires this.tree.classOfFirstSplitters(); + @ ensures_free \result; + @ + @ model boolean classOfFirstSplitters() { + @ return this.classOf(this.sorted_splitters[0]) != this.classOf(this.sorted_splitters[1]); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= num_splitters <= splitters.length; + @ requires_free (\forall + @ int j; + @ 0 <= j < num_splitters - 1; + @ splitters[j] < splitters[j + 1] + @ ); + @ requires_free \disjoint(splitters[*], tree[*]); + @ + @ requires_free 2 <= num_splitters && num_splitters <= num_buckets - 1; + @ requires_free 2 <= num_buckets && num_buckets <= (1 << Constants.LOG_MAX_BUCKETS); + @ requires_free splitters.length == Classifier.STORAGE_SIZE; + @ requires_free tree.length == Classifier.STORAGE_SIZE; + @ + @ ensures_free \fresh(\result); + @ ensures_free \invariant_free_for(\result); + @ ensures \invariant_for(\result); + @ ensures_free \result.sorted_splitters == splitters && \result.tree.tree == tree; + @ ensures_free \result.num_buckets % 2 == 0; + @ ensures_free splitters[0] == \old(splitters[0]) && splitters[1] == \old(splitters[1]); + @ ensures_free \result.classOf(splitters[0]) != \result.classOf(splitters[1]); + @ + @ assignable_free splitters[*], tree[*]; + @*/ + public static Classifier from_sorted_samples( + int[] splitters, + int[] tree, + int num_splitters, + int num_buckets + ) { + // Check for duplicate splitters + boolean use_equal_buckets = (num_buckets - 1 - num_splitters) >= Constants.EQUAL_BUCKETS_THRESHOLD; + + // Fill the array to the next power of two + int log_buckets = Constants.log2(num_splitters) + 1; + // Cut for result >= Constants.LOG_MAX_BUCKETS, lower bound + //@ assume log_buckets <= Constants.LOG_MAX_BUCKETS; + int actual_num_buckets = 1 << log_buckets; + //@ assume actual_num_buckets <= splitters.length && num_splitters < actual_num_buckets; + + /*@ loop_invariant_free num_splitters <= i && i <= actual_num_buckets; + @ + @ loop_invariant_free (\forall + @ int j; + @ 0 <= j < num_splitters; + @ // It is unchanged + @ splitters[j] == \old(splitters[j]) + @ ); + @ loop_invariant_free (\forall int j; num_splitters <= j < i; splitters[j] == splitters[num_splitters - 1]); + @ loop_invariant_free 0 <= i <= splitters.length; + @ loop_invariant_free Functions.isSortedSlice(splitters, 0, i); + @ + @ decreases actual_num_buckets - i; + @ assignable_free splitters[num_splitters..actual_num_buckets - 1]; + @*/ + for (int i = num_splitters; i < actual_num_buckets; ++i) { + splitters[i] = splitters[num_splitters - 1]; + } + + Classifier classifier = new Classifier(splitters, tree, log_buckets, use_equal_buckets); + //@ assume classifier.classOfFirstSplitters(); + return classifier; + } + + /*@ public normal_behaviour + @ ensures_free \result == this.num_buckets; + @ assignable_free \strictly_nothing; + @*/ + public int num_buckets() { + return this.num_buckets; + } + + /*@ public normal_behaviour + @ ensures_free \result == this.equal_buckets; + @ assignable_free \strictly_nothing; + @*/ + public boolean equal_buckets() { + return this.equal_buckets; + } + + /*@ public model_behaviour + @ requires true; + @ + @ model boolean isClassifiedAs(int value, int bucket) { + @ return this.equal_buckets ? + @ ((bucket % 2 == 0 || bucket == this.num_buckets - 1) ? + @ ((0 < bucket ==> this.sorted_splitters[bucket / 2 - 1] < value) && + @ (bucket < this.num_buckets - 1 ==> value < this.sorted_splitters[bucket / 2])) : + @ (this.sorted_splitters[bucket / 2] == value && + @ // elements land in equality buckets iff the non equality bucket actually allows elements + @ (0 < bucket / 2 ==> this.sorted_splitters[bucket / 2 - 1] < value))) : + @ ((0 < bucket ==> this.sorted_splitters[bucket - 1] < value) && + @ (bucket < this.num_buckets - 1 ==> value <= this.sorted_splitters[bucket])); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ + @ ensures_free \result; + @ + @ model boolean classOfTrans() { + @ return (\forall int i, j, classI, classJ; 0 <= classI < classJ < this.num_buckets; + @ this.isClassifiedAs(i, classI) && this.isClassifiedAs(j, classJ) ==> i < j + @ ); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free \dl_inInt(value); + @ ensures_free 0 <= \result < this.num_buckets; + @ ensures_free this.isClassifiedAs(value, \result); + @ + @ // Needed to bring this method to logic + @ ensures_free \result == this.classify(value); + @ + @ assignable_free \strictly_nothing; + @ + @ accessible this.sorted_splitters[*], this.tree.tree[*]; + @*/ + public int classify(int value) { + /*@ normal_behaviour + @ assignable \nothing; + @*/ + { + value = value; + } + int index = this.tree.classify(value); + int bucket; + if (this.equal_buckets) { + int bucket_index = index - this.num_buckets / 2; + boolean equal_to_splitter = !Constants.cmp(value, this.sorted_splitters[bucket_index]); + bucket = 2 * index + Constants.toInt(equal_to_splitter) - this.num_buckets; + } else { + bucket = index - this.num_buckets; + } + return bucket; + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin == indices.length; + @ requires_free \disjoint(values[*], indices[*], this.tree.tree[*], this.sorted_splitters[*]); + @ + @ ensures_free (\forall int i; 0 <= i && i < indices.length; this.classOf(values[begin + i]) == indices[i]); + @ + @ assignable_free indices[*]; + @*/ + public void classify_all(int[] values, int begin, int end, int[] indices) { + this.tree.classify_all(values, begin, end, indices); + if (this.equal_buckets) { + /*@ loop_invariant_free 0 <= i <= indices.length; + @ loop_invariant_free (\forall int j; 0 <= j < i; this.classify(values[begin + j]) == indices[j]); + @ loop_invariant_free (\forall int j; i <= j < indices.length; this.tree.classify(values[begin + j]) == indices[j]); + @ loop_invariant_free \invariant_for(this) && \invariant_for(this.tree); + @ + @ decreases indices.length - i; + @ assignable_free indices[*]; + @*/ + for (int i = 0; i < indices.length; ++i) { + final int value = values[begin + i]; + //@ assume \dl_inInt(value); + final int index = indices[i]; + //@ assert this.tree.num_buckets <= index < 2 * this.tree.num_buckets; + //@ assume 0 <= (index - this.num_buckets / 2) < this.sorted_splitters.length; + final int bucket = index - this.num_buckets / 2; + final boolean equal_to_splitter = !Constants.cmp(value, this.sorted_splitters[bucket]); + indices[i] = 2 * index + Constants.toInt(equal_to_splitter) - this.num_buckets; + } + } else { + /*@ loop_invariant_free 0 <= i <= indices.length; + @ loop_invariant_free (\forall int j; 0 <= j < i; this.classify(values[begin + j]) == indices[j]); + @ loop_invariant_free (\forall int j; i <= j < indices.length; this.tree.classify(values[begin + j]) == indices[j]); + @ loop_invariant_free \invariant_for(this) && \invariant_for(this.tree); + @ + @ decreases indices.length - i; + @ assignable_free indices[*]; + @*/ + for (int i = 0; i < indices.length; ++i) { + //@ assume \dl_inInt(values[begin + i]); + indices[i] -= this.num_buckets; + } + } + } + + /*@ model_behaviour + @ requires bucket_starts.length >= this.num_buckets; + @ accessible this.sorted_splitters[*]; + @ accessible this.tree.tree[*]; + @ accessible values[begin..write - 1]; + @ accessible bucket_starts[0..this.num_buckets]; + @ model boolean allElementsCounted(int[] values, int begin, int write, int[] bucket_starts) { + @ return + @ (\forall int b; 0 <= b && b < this.num_buckets; bucket_starts[b] == this.countClassOfSliceEq(values, begin, write, b)) && + @ (\sum int b; 0 <= b < this.num_buckets; bucket_starts[b]) == write - begin; + @ } + @*/ + + public static final int BATCH_SIZE = 16; + + /*@ model_behaviour + @ requires \invariant_for(buffers); + @ + @ requires bucket_starts.length >= this.num_buckets; + @ requires buffers.num_buckets == this.num_buckets; + @ requires Buffers.isBlockAligned(write - begin); + @ accessible + @ this.sorted_splitters[*], this.tree.tree[*], + @ values[begin..write - 1], + @ bucket_starts[0..this.num_buckets], + @ buffers.indices[0..this.num_buckets - 1], + @ buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @ model boolean isClassifiedUntil(int[] values, int begin, int write, int i, int[] bucket_starts, Buffers buffers) { + @ return this.allElementsCounted(values, begin, write, bucket_starts) && + @ isClassifiedBlocksRange(values, begin, write) && + @ buffers.isClassifiedWith(this) && + @ (\forall int b; 0 <= b < this.num_buckets; isValidBufferLen(buffers.bufferLen(b), bucket_starts[b])) && + @ buffers.count() == i - write; + @ } + @*/ + + /*@ model_behaviour + @ requires \invariant_for(buffers); + @ ensures_free \result >= 0; + @ + @ accessible values[begin..write - 1]; + @ accessible values[read..end - 1]; + @ accessible buffers.indices[0..buffers.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * buffers.num_buckets - 1]; + @ model static int countElement(int[] values, int begin, int write, int read, int end, Buffers buffers, int element) { + @ return + @ // element in [begin,write) + @ Functions.countElement(values, begin, write, element) + + @ // element in [read,end) + @ Functions.countElement(values, read, end, element) + + @ // element in all buffers + @ buffers.countElement(element); + @ } + @*/ + + /*@ model_behaviour + @ requires 0 <= len <= Buffers.BUFFER_SIZE; + @ + @ ensures_free \result ==> Buffers.bufferSizeForBucketLen(len + writtenElements) == len; + @ static model no_state boolean isValidBufferLen(int len, int writtenElements) { + @ return + @ 0 <= writtenElements && + @ Buffers.isBlockAligned(writtenElements) && + @ (0 < writtenElements ==> len != 0); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(buffers); + @ + @ requires_free bucket_starts.length >= this.num_buckets + 1; + @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]); + @ requires_free buffers.num_buckets == this.num_buckets; + @ + @ requires_free 0 <= begin <= end <= values.length; + @ + @ requires_free begin <= write <= i && i + indices.length <= end; + @ requires_free Buffers.isBlockAligned(write - begin); + @ requires_free (i - begin) % BATCH_SIZE == 0; + @ requires_free indices.length <= BATCH_SIZE; + @ + @ requires_free (\forall int j; 0 <= j < indices.length; this.classOf(values[i + j]) == indices[j]); + @ + @ requires_free this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers); + @ + @ ensures_free \invariant_free_for(buffers) && \invariant_free_for(this); + @ ensures \invariant_for(buffers) && \invariant_for(this); + @ + @ ensures_free write <= \result && \result <= i && Buffers.isBlockAligned(\result - begin); + @ ensures_free this.isClassifiedUntil(values, begin, \result, i + indices.length, bucket_starts, buffers); + @ + @ ensures_free (\forall int element; true; + @ \old(Classifier.countElement(values, begin, write, i, end, buffers, element)) == + @ Classifier.countElement(values, begin, \result, i + indices.length, end, buffers, element) + @ ); + @ + @ // Bucket starts + @ + @ assignable_free values[write..i - 1]; + @ assignable_free bucket_starts[0..this.num_buckets - 1]; + @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @*/ + private int finish_batch(int[] indices, int[] values, int begin, int write, int i, int end, int[] bucket_starts, Buffers buffers) { + //@ ghost int old_write = write; + /*@ loop_invariant_free 0 <= j && j <= indices.length; + @ + @ loop_invariant_free \old(write) <= write && write <= i; + @ loop_invariant_free Buffers.isBlockAligned(write - begin); + @ + @ loop_invariant_free this.isClassifiedUntil(values, begin, write, i + j, bucket_starts, buffers); + @ + @ loop_invariant_free (\forall int element; true; + @ \old(Classifier.countElement(values, begin, old_write, i, end, buffers, element)) == + @ Classifier.countElement(values, begin, write, i + j, end, buffers, element) + @ ); + @ + @ loop_invariant_free \invariant_for(buffers) && \invariant_for(this); + @ + @ decreases indices.length - j; + @ + @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @ assignable_free values[old_write..i - 1]; + @ assignable_free bucket_starts[0..this.num_buckets - 1]; + @*/ + for (int j = 0; j < indices.length; ++j) { + //@ ghost \dl_Heap heapAtLoopBodyBegin = \dl_heap(); + + int bucket = indices[j]; + int value = values[i + j]; + + //@ assume this.classOf(value) == bucket; + //@ assume 0 <= bucket < this.num_buckets; + + /*@ public normal_behaviour + @ ensures_free buffers.bufferLen(bucket) != Buffers.BUFFER_SIZE; + @ + @ ensures_free \old(write) <= write && write <= i; + @ ensures_free Buffers.isBlockAligned(write - begin); + @ + @ ensures_free this.allElementsCounted(values, begin, write, bucket_starts) && + @ isClassifiedBlocksRange(values, begin, write) && + @ buffers.isClassifiedWith(this) && + @ buffers.count() == i + j - write; + @ + @ ensures_free (\forall int b; 0 <= b < this.num_buckets; + @ isValidBufferLen(buffers.bufferLen(b) + (b == bucket ? 1 : 0), bucket_starts[b]) + @ ); + @ + @ ensures_free (\forall int element; true; + @ \old(Classifier.countElement(values, begin, old_write, i, end, buffers, element)) == + @ Classifier.countElement(values, begin, write, i + j, end, buffers, element) + @ ); + @ + @ ensures_free \invariant_free_for(buffers) && \invariant_free_for(this); + @ ensures \invariant_for(buffers) && \invariant_for(this); + @ + @ assignable_free buffers.indices[bucket]; + @ assignable_free values[old_write..i - 1]; + @ assignable_free bucket_starts[bucket]; + @*/ + { + if (buffers.len(bucket) == Buffers.BUFFER_SIZE) { + // Use element lower bound + /*@ assume write + 256 <= i && + @ Buffers.isBlockAlignedAdd(write - begin, Buffers.BUFFER_SIZE) && + @ Buffers.isBlockAlignedAdd(bucket_starts[bucket], Buffers.BUFFER_SIZE); + @*/ + + // This was moved ahead to remove heap modifications after flush, changes nothing in the algorithm + bucket_starts[bucket] += Buffers.BUFFER_SIZE; + + buffers.flush(bucket, values, write, i); + + /*@ assume + @ \invariant_for(this) && + @ Buffers.isBlockAligned(write + Buffers.BUFFER_SIZE - begin) && + @ Buffers.isBlockAligned(bucket_starts[bucket]); + @*/ + + // Split off the written part + /*@ assume + @ this.isClassifiedBlocksRangeSplit(values, begin, write, write + Buffers.BUFFER_SIZE) && + @ this.isClassOfSliceCopy(buffers.buffer, bucket * Buffers.BUFFER_SIZE, values, write, Buffers.BUFFER_SIZE, bucket) && + @ Functions.countElementSplit(values, begin, write, write + Buffers.BUFFER_SIZE); + @*/ + //@ assume this.isClassOfSlice(values, write, write + Buffers.BUFFER_SIZE, bucket); + //@ assume this.countClassOfSliceEqLemma(values, write, write + Buffers.BUFFER_SIZE, bucket); + /*@ assume (\forall int b; 0 <= b && b < this.num_buckets; + @ \at(this.countClassOfSliceEq(values, begin, write, b), heapAtLoopBodyBegin) + (b == bucket ? Buffers.BUFFER_SIZE : 0) == + @ this.countClassOfSliceEq(values, begin, write + Buffers.BUFFER_SIZE, b) + @ ); + @*/ + + /*@ assume (\sum int b; 0 <= b < this.num_buckets; bucket_starts[b]) == + @ (\sum int b; 0 <= b < this.num_buckets; \at(bucket_starts[b], heapAtLoopBodyBegin)) + Buffers.BUFFER_SIZE; + @*/ + + write += Buffers.BUFFER_SIZE; + } + } + //@ assume \dl_inInt(value); + buffers.push(bucket, value); + //@ assume \invariant_for(this) && Functions.countElementSplit(values, i + j, i + j + 1, end); + // permutation property: elements in [begin,write) stayed the same, split first in [read,end), split on element = value + } + + return write; + } + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(buffers); + @ + @ requires_free bucket_starts.length >= this.num_buckets + 1; + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free (\forall int b; 0 <= b < this.num_buckets; bucket_starts[b] == 0); + @ requires_free buffers.isEmpty(); + @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]); + @ requires_free buffers.num_buckets == this.num_buckets; + @ + @ ensures_free \invariant_free_for(buffers); + @ ensures \invariant_for(buffers); + @ + @ // classifies until end - (end - begin) % BATCH_SIZE + @ + @ ensures_free begin <= \result && \result <= (end - (end - begin) % BATCH_SIZE) && Buffers.isBlockAligned(\result - begin); + @ ensures_free this.isClassifiedUntil(values, begin, \result, end - (end - begin) % BATCH_SIZE, bucket_starts, buffers); + @ ensures_free (\forall int element; true; + @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) == + @ Classifier.countElement(values, begin, \result, end - (end - begin) % BATCH_SIZE, end, buffers, element) + @ ); + @ + @ assignable_free values[begin..end - (end - begin) % BATCH_SIZE - 1]; + @ assignable_free bucket_starts[0..this.num_buckets - 1]; + @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @*/ + public int classify_locally_batched(int[] values, int begin, int end, int[] bucket_starts, Buffers buffers) { + int write = begin; + int i = begin; + + /*@ assume + @ this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers) && + @ (\forall int element; true; + @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) == + @ Classifier.countElement(values, begin, write, i, end, buffers, element) + @ ); + @*/ + if (end - begin >= BATCH_SIZE) { + int cutoff = end - BATCH_SIZE; + final int[] indices = new int[BATCH_SIZE]; + //@ assume \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]); + + /*@ loop_invariant_free begin <= i && i <= end - (end - begin) % BATCH_SIZE; + @ + @ loop_invariant_free begin <= write && write <= i; + @ loop_invariant_free (i - begin) % BATCH_SIZE == 0; + @ loop_invariant_free Buffers.isBlockAligned(write - begin); + @ + @ // Bucket starts contain all elements in values[..write] + @ loop_invariant_free this.isClassifiedUntil(values, begin, write, i, bucket_starts, buffers); + @ + @ loop_invariant_free (\forall int element; true; + @ \old(Classifier.countElement(values, begin, begin, begin, end, buffers, element)) == + @ Classifier.countElement(values, begin, write, i, end, buffers, element) + @ ); + @ + @ loop_invariant_free \invariant_for(buffers) && \invariant_for(this); + @ + @ decreases end - i; + @ + @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @ assignable_free values[begin..end - (end - begin) % BATCH_SIZE - 1]; + @ assignable_free bucket_starts[0..this.num_buckets - 1]; + @ assignable_free indices[*]; + @*/ + while (i <= cutoff) { + this.classify_all(values, i, i + BATCH_SIZE, indices); + + write = this.finish_batch(indices, values, begin, write, i, end, bucket_starts, buffers); + + i += BATCH_SIZE; + } + //@ assume i == end - (end - begin) % BATCH_SIZE; + } + + return write; + } + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(buffers); + @ + @ requires_free bucket_starts.length >= this.num_buckets + 1; + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]); + @ requires_free buffers.num_buckets == this.num_buckets; + @ requires_free this.isClassifiedUntil(values, begin, write, end, bucket_starts, buffers); + @ requires_free begin <= write <= end; + @ requires_free Buffers.isBlockAligned(write - begin); + @ + @ ensures_free Functions.isValidBucketStarts(bucket_starts, this.num_buckets) && bucket_starts[this.num_buckets] == end - begin; + @ ensures_free (\forall int b; 0 <= b < this.num_buckets; + @ bucket_starts[b + 1] - bucket_starts[b] == + @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b)) + @ ); + @ + @ assignable_free bucket_starts[0..this.num_buckets]; + @*/ + public void calculate_bucket_starts(int[] values, int begin, int write, int end, int[] bucket_starts, Buffers buffers) { + // bucket_starts contains the bucket counts without buffer contents + // Calculate bucket starts + int sum = 0; + + /*@ loop_invariant_free 0 <= j <= this.num_buckets; + @ loop_invariant_free 0 < j ==> bucket_starts[j - 1] <= sum && bucket_starts[0] == 0; + @ loop_invariant_free sum == (\sum int b; 0 <= b < j; + @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b)) + @ ); + @ loop_invariant_free Functions.isSortedSlice(bucket_starts, 0, j); + @ loop_invariant_free (\forall int b; j <= b < this.num_buckets; bucket_starts[b] == \old(this.countClassOfSliceEq(values, begin, write, b))); + @ loop_invariant_free (\forall int b; 0 <= b < j; + @ (b + 1 == j ? sum : bucket_starts[b + 1]) - bucket_starts[b] == + @ \old(this.countClassOfSliceEq(values, begin, write, b)) + \old(buffers.bufferLen(b)) + @ ); + @ + @ decreases this.num_buckets - j; + @ + @ assignable_free bucket_starts[0..this.num_buckets]; + @*/ + for (int j = 0; j < this.num_buckets; ++j) { + //@ assume \invariant_for(buffers); + /*@ assume + @ bucket_starts[j] == \old(this.countClassOfSliceEq(values, begin, write, j)) && + @ buffers.bufferLen(j) == \old(buffers.bufferLen(j)); + @*/ + // Add the partially filled buffers + int size = bucket_starts[j] + buffers.len(j); + + // Exclusive prefix sum + bucket_starts[j] = sum; + sum += size; + //@ assume size >= 0; + } + bucket_starts[this.num_buckets] = sum; + + //@ assume sum == end - begin && Functions.isSortedSlice(bucket_starts, 0, this.num_buckets + 1); + } + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(buffers); + @ + @ requires_free bucket_starts.length >= this.num_buckets + 1; + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free (\forall int b; 0 <= b < this.num_buckets; bucket_starts[b] == 0); + @ requires_free buffers.isEmpty(); + @ requires_free \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*]); + @ requires_free buffers.num_buckets == this.num_buckets; + @ + @ ensures_free begin <= \result && \result <= end && Buffers.isBlockAligned(\result - begin); + @ ensures_free this.isClassifiedBlocksRange(values, begin, \result); + @ ensures_free buffers.isClassifiedWith(this); + @ ensures_free Functions.isValidBucketStarts(bucket_starts, this.num_buckets) && bucket_starts[this.num_buckets] == end - begin; + @ + @ ensures_free (\forall int b; 0 <= b < this.num_buckets; + @ // Bucket starts contains the bucket counts + @ bucket_starts[b + 1] - bucket_starts[b] == + @ buffers.bufferLen(b) + this.countClassOfSliceEq(values, begin, \result, b) && + @ // Buffer len is correct for the bucket size + @ buffers.bufferLen(b) == Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) + @ ); + @ ensures_free (\forall int element; true; + @ \old(Functions.countElement(values, begin, end, element)) == + @ Functions.countElement(values, begin, \result, element) + + @ buffers.countElement(element) + @ ); + @ ensures_free \invariant_free_for(buffers); + @ ensures \invariant_for(buffers); + @ + @ // All values are either in a buffer or in values[..\result] + @ // Bucket starts + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_starts[0..this.num_buckets]; + @ assignable_free buffers.indices[0..this.num_buckets - 1], buffers.buffer[0..Buffers.BUFFER_SIZE * this.num_buckets - 1]; + @*/ + public int classify_locally(int[] values, int begin, int end, int[] bucket_starts, Buffers buffers) { + /*@ assume (\forall int element; true; + @ Functions.countElement(values, begin, end, element) == + @ Classifier.countElement(values, begin, begin, begin, end, buffers, element) + @ ); + @*/ + int write = this.classify_locally_batched(values, begin, end, bucket_starts, buffers); + int i = end - (end - begin) % BATCH_SIZE; + //@ assume end - i >= 0; + int[] indices = new int[end - i]; + //@ assume \disjoint(values[*], bucket_starts[*], buffers.buffer[*], buffers.indices[*], this.sorted_splitters[*], this.tree.tree[*], indices[*]); + this.classify_all(values, i, end, indices); + write = this.finish_batch(indices, values, begin, write, i, end, bucket_starts, buffers); + + this.calculate_bucket_starts(values, begin, write, end, bucket_starts, buffers); + return write; + } +} diff --git a/src/main/java-overflow/de/wiesler/Cleanup.java b/src/main/java-overflow/de/wiesler/Cleanup.java new file mode 100644 index 0000000..ed460fe --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Cleanup.java @@ -0,0 +1,335 @@ +package de.wiesler; + +public final class Cleanup { + /*@ public model_behaviour + @ requires \invariant_for(classifier); + @ + @ accessible values[begin + bucket_begin..begin + bucket_end - 1], classifier.sorted_splitters[*], classifier.tree.tree[*]; + @ + @ static model boolean cleanedUpSlice(int[] values, int begin, int end, int bucket_begin, int bucket_end, Classifier classifier, int bucket) { + @ return classifier.isClassOfSlice(values, begin + bucket_begin, begin + bucket_end, bucket) && + @ Sorter.smallBucketIsSorted(values, begin, end, bucket_begin, bucket_end); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets); + @ requires_free bucket_starts[classifier.num_buckets] == end - begin; + @ requires_free classifier.num_buckets == buffers.num_buckets && classifier.num_buckets == bucket_pointers.num_buckets; + @ requires_free \invariant_free_for(buffers) && \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier); + @ requires \invariant_for(buffers) && \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ requires_free \disjoint(values[*], bucket_starts[*], overflow[*], bucket_pointers.buffer[*], buffers.indices[*], buffers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]); + @ requires_free overflow.length == Buffers.BUFFER_SIZE; + @ + @ requires_free (\forall int b; 0 <= b <= classifier.num_buckets; + @ bucket_pointers.bucketStart(b) == Buffers.blockAligned(bucket_starts[b]) + @ ); + @ requires_free (\forall int b; 0 <= b < classifier.num_buckets; + @ classifier.isClassOfSlice(buffers.buffer, b * Buffers.BUFFER_SIZE, b * Buffers.BUFFER_SIZE + buffers.bufferLen(b), b) && + @ // All elements are read + @ bucket_pointers.toReadCountOfBucket(b) == 0 && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) && + @ // Remaining elements: bucket size == buffer length + written elements + @ bucket_starts[b + 1] - bucket_starts[b] == buffers.bufferLen(b) + bucket_pointers.writtenCountOfBucket(b) && + @ buffers.bufferLen(b) == Buffers.bufferSizeForBucketLen(bucket_starts[b + 1] - bucket_starts[b]) + @ ); + @ + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; + @ classifier.isClassOfSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], b) && + @ Sorter.smallBucketIsSorted(values, begin, end, bucket_starts[b], bucket_starts[b + 1]) + @ ); + @ + @ // Permutation property + @ ensures_free (\forall int element; true; + @ \old(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element)) + + @ \old(buffers.countElement(element)) == + @ Functions.countElement(values, begin, end, element) + @ ); + @ + @ assignable_free values[begin..end - 1]; + @*/ + public static void cleanup( + final int[] values, + final int begin, + final int end, + final Buffers buffers, + final int[] bucket_starts, + final BucketPointers bucket_pointers, + final Classifier classifier, + final int[] overflow + ) { + //@ ghost \dl_Heap heapOld = \dl_heap(); + final int num_buckets = classifier.num_buckets(); + final boolean is_last_level = end - begin <= Constants.SINGLE_LEVEL_THRESHOLD; + + /*@ loop_invariant_free 0 <= bucket <= num_buckets; + @ loop_invariant_free (\forall int b; 0 <= b < bucket; + @ cleanedUpSlice(values, begin, end, \old(bucket_starts[b]), \old(bucket_starts[b + 1]), classifier, b) + @ ); + @ + @ loop_invariant_free (\forall int element; true; + @ (\sum int b; 0 <= b < bucket; \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element))) + + @ (\sum int b; 0 <= b < bucket; \old(buffers.countElementInBucket(b, element))) == + @ Functions.countElement(values, begin, begin + \old(bucket_starts[bucket]), element) + @ ); + @ + @ loop_invariant_free (\forall int b; bucket <= b < classifier.num_buckets; + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) && + @ (\forall int element; true; + @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element)) == + @ bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, b, element) && + @ \old(buffers.countElementInBucket(b, element)) == + @ buffers.countElementInBucket(b, element)) + @ ); + @ + @ loop_invariant_free \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers); + @ + @ assignable_free values[begin..end - 1]; + @ + @ decreases num_buckets - bucket; + @*/ + for (int bucket = 0; bucket < num_buckets; ++bucket) { + //@ assert \old(Functions.bucketStartsOrdering(bucket_starts, num_buckets, bucket)); + final int relative_start = bucket_starts[bucket]; + final int relative_stop = bucket_starts[bucket + 1]; + final int relative_write = bucket_pointers.write(bucket); + //@ assert \dl_inInt(begin + relative_start) && \dl_inInt(begin + relative_stop); + final int start = begin + relative_start; + final int stop = begin + relative_stop; + final int write = begin + relative_write; + + /*@ assume 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] && + @ Buffers.blockAligned(bucket_starts[num_buckets]) == bucket_pointers.bucketStart(num_buckets); + @*/ + + //@ assert \dl_inInt(begin + bucket_pointers.bucketStart(bucket)) && \dl_inInt(begin + bucket_pointers.bucketStart(bucket + 1)); + + /*@ normal_behaviour + @ ensures_free classifier.isClassOfSlice(values, start, stop, bucket); + @ ensures_free (\forall int element; true; + @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld) + + @ \at(buffers.countElementInBucket(bucket, element), heapOld) == + @ Functions.countElement(values, start, stop, element) + @ ); + @ + @ assignable_free values[start..stop - 1]; + @*/ + { + /*@ assume relative_write == \old(bucket_pointers.nextWriteOf(bucket)) && + @ Buffers.blockAligned(bucket_starts[bucket]) == bucket_pointers.bucketStart(bucket) && + @ Buffers.blockAligned(bucket_starts[bucket + 1]) == bucket_pointers.bucketStart(bucket + 1); + @*/ + //@ assume Buffers.blockAligned(bucket_starts[bucket]) <= relative_write <= Buffers.blockAligned(bucket_starts[bucket + 1]); + + final int head_start = start; + int head_stop = -1; + + int tail_start = -1; + final int tail_stop = stop; + + /*@ normal_behaviour + @ requires_free begin <= start <= stop <= end; + @ + @ ensures_free \invariant_free_for(classifier) && \invariant_free_for(bucket_pointers); + @ ensures \invariant_for(classifier) && \invariant_for(bucket_pointers); + @ + @ ensures_free start <= head_start <= head_stop <= tail_start <= tail_stop <= stop <= end <= values.length; + @ ensures_free tail_start - head_stop == \at(bucket_pointers.writtenCountOfBucket(bucket), heapOld); + @ ensures_free classifier.isClassOfSlice(values, head_stop, tail_start, bucket); + @ ensures_free (\forall int element; true; + @ Functions.countElement(values, head_stop, tail_start, element) == + @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld) + @ ); + @ + @ assignable_free values[start..stop - 1]; + @*/ + { + // Overflow happened: + // - block was written at least once + // - write was out of bounds + + if (relative_stop - relative_start <= Buffers.BUFFER_SIZE) { + // Nothing written + // Valid: use precondition and split on the buffer length + //@ assume \old(bucket_pointers.writtenCountOfBucket(bucket)) == 0; + //@ assume (\forall int element; true; \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) == 0); + + // Bucket is at most one block large => head is the full block, no tail + head_stop = stop; + tail_start = stop; + // verified + } else { + final int aligned_relative_start = Buffers.align_to_next_block(relative_start); + //@ assume aligned_relative_start == Buffers.blockAligned(relative_start); + //@ assume aligned_relative_start == bucket_pointers.bucketStart(bucket); + head_stop = begin + aligned_relative_start; + + // Valid: use precondition and observer dependency + //@ assume head_start <= head_stop <= tail_stop; + + if (stop < write) { + // Final block has been written + // Write pointer must be at aligned end of bucket + + // Valid: use contract from nextWrite and blockAlign + //@ assume relative_write == Buffers.blockAligned(relative_stop); + + if (end < write) { + // Overflow: write is out of bounds, content is in overflow + + tail_start = write - Buffers.BUFFER_SIZE; + + // Valid: Use contract of blockAligned + //@ assume head_start <= head_stop <= tail_start <= tail_stop; + + int tail_len = tail_stop - tail_start; + + // There must be space for all elements + // Valid: Precondition and observer + //@ assume Buffers.BUFFER_SIZE + buffers.bufferLen(bucket) == (tail_stop - tail_start) + (head_stop - head_start); + + // Fill tail + Functions.copy_nonoverlapping(overflow, 0, values, tail_start, tail_len); + + // Write remaining elements to end of head + int head_elements = Buffers.BUFFER_SIZE - tail_len; + head_stop -= head_elements; + Functions.copy_nonoverlapping(overflow, tail_len, values, head_stop, head_elements); + + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + + /*@ assume + @ classifier.isClassOfSlice(overflow, 0, Buffers.BUFFER_SIZE, bucket) && + @ // Follows from writtenElementsOfBucketClassified + @ classifier.isClassOfSlice(values, head_stop + head_elements, tail_start, bucket) && + @ classifier.isClassOfSliceSplit(overflow, 0, tail_len, Buffers.BUFFER_SIZE, bucket) && + @ classifier.isClassOfSliceSplit(values, head_stop, head_stop + head_elements, tail_start, bucket) && + @ classifier.isClassOfSliceSplit(values, head_stop, tail_start, tail_stop, bucket); + @*/ + /*@ assume + @ classifier.isClassOfSliceCopy(overflow, 0, values, tail_start, tail_len, bucket) && + @ classifier.isClassOfSliceCopy(overflow, tail_len, values, head_stop, head_elements, bucket); + @*/ + + /*@ assume (\forall int element; true; + @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) == + @ Functions.countElement(values, head_stop + head_elements, tail_start, element) + + @ Functions.countElement(overflow, 0, Buffers.BUFFER_SIZE, element) + @ ); + @*/ + + /*@ assume + @ // Split overflow buffer + @ Functions.countElementSplit(overflow, 0, tail_len, Buffers.BUFFER_SIZE) && + @ // Split off tail + @ Functions.countElementSplit(values, head_stop, tail_start, tail_stop) && + @ // Split off head + @ Functions.countElementSplit(values, head_stop, head_stop + head_elements, tail_start); + @*/ + + tail_start = tail_stop; + // rest verified + } else { + // Normal overflow: write is in bounds and content is after the end of the bucket + int overflow_len = write - stop; + + //@ assume head_start <= head_stop <= stop <= stop + overflow_len <= end; + + // Must fit, no other empty space left + // Follows from precondition and lots of observers + //@ assume overflow_len + buffers.bufferLen(bucket) == head_stop - head_start; + // Follows from previous and buffer length >= 0 + //@ assume head_start <= head_stop - overflow_len; + + // Write overflow of last block to [head_stop - overflow_len..head_stop) + head_stop -= overflow_len; + + Functions.copy_nonoverlapping(values, stop, values, head_stop, overflow_len); + + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + + //@ assume classifier.isClassOfSlice(values, head_stop + overflow_len, write, bucket); + //@ assume classifier.isClassOfSliceSplit(values, head_stop + overflow_len, stop, write, bucket); + //@ assume classifier.isClassOfSliceCopy(values, stop, values, head_stop, overflow_len, bucket); + //@ assume classifier.isClassOfSliceSplit(values, head_stop, head_stop + overflow_len, stop, bucket); + + /*@ assume (\forall int element; true; + @ \old(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element)) == + @ Functions.countElement(values, begin + bucket_pointers.bucketStart(bucket), begin + \old(bucket_pointers.nextWriteOf(bucket)), element) + @ ); + @*/ + //@ assume Functions.countElementSplit(values, head_stop + overflow_len, stop, write); + //@ assume Functions.countElementSplit(values, head_stop, head_stop + overflow_len, stop); + + // Tail is empty + tail_start = tail_stop; + // rest verified (all the dependency contracts) + } + } else { + // No overflow, write <= stop + tail_start = write; + + // verified: use equality + } + } + + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + } + + int head_len = head_stop - head_start; + int tail_len = tail_stop - tail_start; + //@ assume buffers.bufferLen(bucket) == head_len + tail_len; + // Write remaining elements from buffer to head and tail + buffers.distribute( + bucket, + values, + head_start, + head_len, + tail_start, + tail_len + ); + /*@ assume Functions.countElementSplit(values, head_start, head_stop, tail_stop) && + @ Functions.countElementSplit(values, head_stop, tail_start, tail_stop) && + @ buffers.bufferLen(bucket) == head_len + tail_len && + @ \invariant_for(classifier); + @*/ + //@ ghost int bucketOffset = bucket * Buffers.BUFFER_SIZE; + /*@ assume + @ classifier.isClassOfSlice(buffers.buffer, bucketOffset, bucketOffset + buffers.bufferLen(bucket), bucket) && + @ classifier.isClassOfSliceSplit(buffers.buffer, bucketOffset, bucketOffset + head_len, bucketOffset + buffers.bufferLen(bucket), bucket); + @*/ + /*@ assume + @ classifier.isClassOfSliceCopy(buffers.buffer, bucketOffset, values, head_start, head_len, bucket) && + @ classifier.isClassOfSliceCopy(buffers.buffer, bucketOffset + head_len, values, tail_start, tail_len, bucket) && + @ classifier.isClassOfSliceSplit(values, head_start, head_stop, tail_stop, bucket) && + @ classifier.isClassOfSliceSplit(values, head_stop, tail_start, tail_stop, bucket); + @*/ + } + + /*@ normal_behaviour + @ ensures_free cleanedUpSlice(values, begin, end, \at(bucket_starts[bucket], heapOld), \at(bucket_starts[bucket + 1], heapOld), classifier, bucket); + @ ensures_free (\forall int element; true; + @ \at(bucket_pointers.writtenElementsOfBucketCountElement(values, begin, end, overflow, bucket, element), heapOld) + + @ \at(buffers.countElementInBucket(bucket, element), heapOld) == + @ Functions.countElement(values, start, stop, element) + @ ); + @ + @ assignable_free values[start..stop - 1]; + @*/ + {} + + /*@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers) && + @ Functions.countElementSplit(values, begin, begin + \old(bucket_starts[bucket]), begin + \old(bucket_starts[bucket + 1])) && + @ (\forall int b; 0 <= b < num_buckets && b != bucket; + @ (b < bucket ==> 0 <= \old(bucket_starts[b]) <= \old(bucket_starts[b + 1]) <= \old(bucket_starts[bucket])) && + @ (b > bucket ==> \old(bucket_starts[bucket + 1]) <= \old(bucket_starts[b]) <= \old(bucket_starts[b + 1]) <= \old(bucket_starts[num_buckets]) && + @ \old(bucket_starts[b]) <= bucket_pointers.bucketStart(b) + @ )); + @*/ + } + } +} diff --git a/src/main/java-overflow/de/wiesler/Constants.java b/src/main/java-overflow/de/wiesler/Constants.java new file mode 100644 index 0000000..01bbbf0 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Constants.java @@ -0,0 +1,70 @@ +package de.wiesler; + +public final class Constants { + public static final int BASE_CASE_SIZE = 32; + public static final int ACTUAL_BASE_CASE_SIZE = 4 * BASE_CASE_SIZE; + public static final int LOG_MAX_BUCKETS = 8; + public static final int MAX_BUCKETS = 1 << (LOG_MAX_BUCKETS + 1); + public static final int SINGLE_LEVEL_THRESHOLD = BASE_CASE_SIZE * (1 << LOG_MAX_BUCKETS); + public static final int TWO_LEVEL_THRESHOLD = SINGLE_LEVEL_THRESHOLD * (1 << LOG_MAX_BUCKETS); + public static final int EQUAL_BUCKETS_THRESHOLD = 5; + + /*@ public model_behaviour + @ requires n > 0; + @ static no_state model boolean isLog2Of(int n, int log) { + @ return log >= 0 && + @ log <= 30 && + @ (1 << log) <= n && + @ (log != 30 ==> n < (1 << (log + 1))); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free n > 0; + @ + @ ensures_free isLog2Of(n, \result); + @ + @ assignable_free \strictly_nothing; + @*/ + public static int log2(int n) { + int log = 0; + if ((n & 0xffff0000) != 0) { + n >>>= 16; + log = 16; + } + if (n >= 256) { + n >>>= 8; + log += 8; + } + if (n >= 16) { + n >>>= 4; + log += 4; + } + if (n >= 4) { + n >>>= 2; + log += 2; + } + return log + (n >>> 1); + } + + private static boolean testLogContract(int n, int log) { + return log >= 0 && + log <= 30 && + (1 << log) <= n && + (log == 30 || n < (1 << (log + 1))); + } + + public static void testContracts(int i) { + if (i > 0 && !testLogContract(i, log2(i))) { + throw new Error("log2 contract fails for " + i); + } + } + + public static /*@ strictly_pure */ int toInt(boolean b) { + return b ? 1 : 0; + } + + public static /*@ strictly_pure */ boolean cmp(int a, int b) { + return a < b; + } +} diff --git a/src/main/java-overflow/de/wiesler/Functions.java b/src/main/java-overflow/de/wiesler/Functions.java new file mode 100644 index 0000000..c801669 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Functions.java @@ -0,0 +1,233 @@ +package de.wiesler; + +public final class Functions { + /*@ public model_behaviour + @ accessible values[begin..end - 1]; + @ + @ static model int countElement(int[] values, int begin, int end, int element) { + @ return (\num_of int i; begin <= i < end; values[i] == element); + @ } + @*/ + + /*@ public model_behaviour + @ requires begin <= mid <= end; + @ + @ ensures_free \result; + @ + @ static model boolean countElementSplit(int[] values, int begin, int mid, int end) { + @ return (\forall int element; true; countElement(values, begin, end, element) == countElement(values, begin, mid, element) + countElement(values, mid, end, element)); + @ } + @*/ + + /*@ public model_behaviour + @ ensures_free \result ==> Functions.isSortedSliceTransitive(values, begin, end); + @ + @ accessible values[begin..end - 1]; + @ static model boolean isSortedSlice(int[] values, int begin, int end) { + @ return (\forall int i; begin <= i && i < end - 1; values[i] <= values[i + 1]); + @ } + @*/ + + /*@ public model_behaviour + @ ensures_free \result ==> Functions.isSortedSlice(values, begin, end); + @ + @ accessible values[begin..end - 1]; + @ + @ static model boolean isSortedSliceTransitive(int[] values, int begin, int end) { + @ return + @ (\forall int i; begin <= i < end; + @ (\forall int j; i <= j < end; values[i] <= values[j])); + @ } + @*/ + + /*@ public model_behaviour + @ ensures_free \result; + @ static model boolean isSortedSeqTransitiveFromSlice(int[] values, int begin, int end) { + @ return isSortedSliceTransitive(values, begin, end) ==> isSortedSeqTransitive(\dl_seq_def_workaround(begin, end, values)); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ static no_state model boolean isSortedSeqTransitive(\seq values) { + @ return + @ (\forall int i; 0 <= i < values.length; + @ (\forall int j; i <= j < values.length; (int) values[i] <= (int) values[j])); + @ } + @*/ + + /*@ public model_behaviour + @ accessible bucket_starts[0..num_buckets]; + @ static model boolean isValidBucketStarts(int[] bucket_starts, int num_buckets) { + @ return 2 <= num_buckets && + @ num_buckets + 1 <= bucket_starts.length && + @ isSortedSliceTransitive(bucket_starts, 0, num_buckets + 1) && + @ bucket_starts[0] == 0; + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free 1 <= num_samples && num_samples <= end - begin; + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ + @ assignable_free values[begin..end - 1]; + @*/ + public static void select_n(int[] values, int begin, int end, int num_samples) {} + + /*@ public normal_behaviour + @ ensures_free \result == ((a >= b) ? a : b); + @ assignable_free \strictly_nothing; + @*/ + public static int max(int a, int b) { + return (a >= b) ? a : b; + } + + /*@ public normal_behaviour + @ ensures_free \result == ((a <= b) ? a : b); + @ assignable_free \strictly_nothing; + @*/ + public static int min(int a, int b) { + return (a <= b) ? a : b; + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ + @ ensures_free (\forall int i; begin <= i < end; values[i] == value); + @ + @ assignable_free values[begin..end - 1]; + @*/ + public static void fill(int[] values, int begin, int end, int value) { + /*@ loop_invariant_free begin <= i <= end; + @ loop_invariant_free (\forall int j; begin <= j < i; values[j] == value); + @ assignable_free values[begin..end - 1]; + @ decreases end - i; + @*/ + for (int i = begin; i < end; i++) { + values[i] = value; + } + } + + /*@ public normal_behaviour + @ requires_free 0 <= length; + @ requires_free 0 <= srcPos && srcPos + length <= src.length; + @ requires_free 0 <= destPos && destPos + length <= dest.length; + @ requires_free \disjoint(src[srcPos..srcPos + length - 1], dest[destPos..destPos + length - 1]); + @ + @ ensures_free (\forall int i; 0 <= i && i < length; dest[destPos + i] == src[srcPos + i]); + @ // ensures \dl_seq_def_workaround(destPos, destPos + length, dest) == \dl_seq_def_workaround(srcPos, srcPos + length, src); + @ ensures_free (\forall int element; true; + @ countElement(dest, destPos, destPos + length, element) == countElement(src, srcPos, srcPos + length, element) + @ ); + @ + @ assignable_free dest[destPos..destPos + length - 1]; + @*/ + public static void copy_nonoverlapping(int[] src, int srcPos, int[] dest, int destPos, int length) { + /*@ loop_invariant_free 0 <= i <= length; + @ loop_invariant_free (\forall int j; 0 <= j < i; dest[destPos + j] == src[srcPos + j]); + @ + @ decreases length - i; + @ + @ assignable_free dest[destPos..destPos + length - 1]; + @*/ + for (int i = 0; i < length; ++i) { + dest[destPos + i] = src[srcPos + i]; + } + // System.arraycopy(src, srcPos, dest, destPos, length); + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free Functions.isSortedSlice(values, begin, end); + @ requires_free \disjoint(target[*], values[*]); + @ + @ requires_free target.length >= count; + @ + @ requires_free count > 0; + @ requires_free step > 0; + @ requires_free begin + count * step - 1 < end; + @ + @ ensures_free (\forall + @ int i; + @ 0 <= i < \result; + @ // It is from the source array + @ (\exists int j; begin <= j < end; values[j] == target[i]) + @ ); + @ ensures_free (\forall + @ int i; + @ 0 <= i < \result; + @ // It is unique in the target array (or: strictly ascending) + @ (i < \result - 1 ==> target[i] < target[i + 1]) + @ ); + @ ensures_free 1 <= \result <= count; + @ + @ assignable_free target[0..count - 1]; + @*/ + public static int copy_unique( + int[] values, + int begin, + int end, + int count, + int step, + int[] target + ) { + int offset = begin + step - 1; + //@ assume offset < end; + target[0] = values[offset]; + int target_offset = 1; + offset += step; + + /*@ + @ loop_invariant_free 1 <= i && i <= count; + @ loop_invariant_free 1 <= target_offset && target_offset <= i; + @ + @ loop_invariant_free begin <= offset; + @ loop_invariant_free offset == begin + (step * (i + 1)) - 1; + @ loop_invariant_free i < count ==> offset < end; + @ + @ loop_invariant_free (\forall + @ int j; + @ 0 <= j < target_offset; + @ // It is from the source array + @ (\exists int k; begin <= k < end; values[k] == target[j]) + @ ); + @ loop_invariant_free (\forall + @ int j; + @ 0 <= j < target_offset - 1; + @ // It is unique in the target array (or: strictly ascending) + @ target[j] < target[j + 1] + @ ); + @ + @ decreases count - i; + @ assignable_free target[1..count - 1]; + @*/ + for (int i = 1; i < count; ++i) { + // multiply both sides by step, this can't be proven automatically + //@ assume i + 2 <= count ==> (i + 2) * step <= count * step; + if (Constants.cmp(target[target_offset - 1], values[offset])) { + target[target_offset] = values[offset]; + target_offset += 1; + } + offset += step; + } + + return target_offset; + } + + /*@ public model_behaviour + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets); + @ requires 0 <= bucket < num_buckets; + @ + @ ensures_free \result; + @ + @ static model boolean bucketStartsOrdering(int[] bucket_starts, int num_buckets, int bucket) { + @ return 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] && + @ (\forall int b; 0 <= b < num_buckets && b != bucket; + @ (b < bucket ==> 0 <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[bucket]) && + @ (b > bucket ==> bucket_starts[bucket + 1] <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[num_buckets]) + @ ); + @ } + @*/ +} diff --git a/src/main/java-overflow/de/wiesler/Increment.java b/src/main/java-overflow/de/wiesler/Increment.java new file mode 100644 index 0000000..e1ad783 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Increment.java @@ -0,0 +1,17 @@ +package de.wiesler; + +public final class Increment { + public final boolean occupied; + public final int position; + + /*@ public normal_behaviour + @ requires_free true; + @ ensures_free this.occupied == occupied; + @ ensures_free this.position == position; + @ assignable_free \nothing; + @*/ + public Increment(boolean occupied, int position) { + this.occupied = occupied; + this.position = position; + } +} diff --git a/src/main/java-overflow/de/wiesler/Partition.java b/src/main/java-overflow/de/wiesler/Partition.java new file mode 100644 index 0000000..2b70ebb --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Partition.java @@ -0,0 +1,117 @@ +package de.wiesler; + +public final class Partition { + /*@ public model_behaviour + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets); + @ requires 0 <= begin <= end <= values.length; + @ + @ ensures_free \result; + @ static model boolean bucketCountsToTotalCount(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) { + @ return (\forall int bucket; 0 <= bucket <= num_buckets; + @ (\forall int element; true; + @ (\sum int b; 0 <= b < bucket; Functions.countElement(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], element)) == + @ Functions.countElement(values, begin, begin + bucket_starts[bucket], element) + @ ) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ static model boolean allBucketsClassified(int[] values, int begin, int end, Classifier classifier, int[] bucket_starts) { + @ return (\forall int b; 0 <= b < classifier.num_buckets; + @ classifier.isClassOfSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1], b) + @ ); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free bucket_starts.length == Constants.MAX_BUCKETS + 1; + @ requires_free (\forall int b; 0 <= b < bucket_starts.length; bucket_starts[b] == 0); + @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE; + @ requires_free \invariant_free_for(storage) && \invariant_free_for(classifier); + @ requires \invariant_for(storage) && \invariant_for(classifier); + @ + @ requires_free \disjoint( + @ values[*], + @ bucket_starts[*], + @ classifier.tree.tree[*], + @ classifier.sorted_splitters[*], + @ storage.bucket_pointers[*], + @ storage.buffers_buffer[*], + @ storage.buffers_indices[*], + @ storage.swap_1[*], + @ storage.swap_2[*], + @ storage.overflow[*] + @ ); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets); + @ ensures_free bucket_starts[classifier.num_buckets] == end - begin; + @ ensures_free allBucketsClassified(values, begin, end, classifier, bucket_starts); + @ ensures_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, classifier.num_buckets, 0, classifier.num_buckets); + @ ensures_free \invariant_free_for(storage) && \invariant_free_for(classifier); + @ ensures \invariant_for(storage) && \invariant_for(classifier); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_starts[*]; + @ assignable_free storage.bucket_pointers[*]; + @ assignable_free storage.buffers_buffer[*]; + @ assignable_free storage.buffers_indices[*]; + @ assignable_free storage.swap_1[*]; + @ assignable_free storage.swap_2[*]; + @ assignable_free storage.overflow[*]; + @*/ + public static void partition( + int[] values, + int begin, + int end, + int[] bucket_starts, + Classifier classifier, + Storage storage + ) { + Buffers buffers = new Buffers(storage.buffers_buffer, storage.buffers_indices, classifier.num_buckets()); + int first_empty_position = classifier.classify_locally(values, begin, end, bucket_starts, buffers); + //@ ghost \dl_Heap heapAfterClassify = \dl_heap(); + + BucketPointers bucket_pointers = new BucketPointers( + bucket_starts, + classifier.num_buckets(), + first_empty_position - begin, + storage.bucket_pointers + ); + + /*@ assume + @ \invariant_for(classifier) && + @ Buffers.blockAligned(end - begin) == bucket_pointers.bucketStart(bucket_pointers.num_buckets); + @*/ + /*@ assume + @ bucket_pointers.initialReadAreasCount(values, begin, end) && + @ bucket_pointers.initialReadAreasBlockClassified(classifier, values, begin, end) && + @ bucket_pointers.initialReadAreasCountBucketElements(classifier, values, begin, end); + @*/ + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ \at(classifier.countClassOfSliceEq(values, begin, first_empty_position, b), heapAfterClassify) == + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) + @ ); + @*/ + + int[] overflow = storage.overflow; + Permute.permute(values, begin, end, classifier, bucket_pointers, storage.swap_1, storage.swap_2, overflow); + + Cleanup.cleanup(values, + begin, + end, + buffers, + bucket_starts, + bucket_pointers, + classifier, + overflow); + + //@ assume Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets); + //@ assume Partition.bucketCountsToTotalCount(values, begin, end, bucket_starts, classifier.num_buckets); + //@ assume (\forall int element; true; Functions.countElement(values, begin, end, element) == \old(Functions.countElement(values, begin, end, element))); + } +} diff --git a/src/main/java-overflow/de/wiesler/PartitionResult.java b/src/main/java-overflow/de/wiesler/PartitionResult.java new file mode 100644 index 0000000..e450ff7 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/PartitionResult.java @@ -0,0 +1,16 @@ +package de.wiesler; + +public final class PartitionResult { + public final int num_buckets; + public final boolean equal_buckets; + + /*@ public normal_behaviour + @ ensures_free this.num_buckets == num_buckets && this.equal_buckets == equal_buckets; + @ + @ assignable_free \nothing; + @*/ + public PartitionResult(int num_buckets, boolean equal_buckets) { + this.num_buckets = num_buckets; + this.equal_buckets = equal_buckets; + } +} diff --git a/src/main/java-overflow/de/wiesler/Permute.java b/src/main/java-overflow/de/wiesler/Permute.java new file mode 100644 index 0000000..06e5c35 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Permute.java @@ -0,0 +1,637 @@ +package de.wiesler; + +public final class Permute { + // Places the block in current_swap into target_bucket + // Might skip blocks in current_swap if they are occupied and already in the right bucket + // + // If the target is occupied it is copied to other_swap and current_swap is placed in its position => result >= 0 && result == new_target + // Else it is placed there or in the overflow buffer => result == -1 + // + // Permutation between: + // * the occupied area of each bucket + // * the written area of each bucket + // * current_swap + // * overflow if written + // and + // * the new occupied area of each bucket + // * the new written area of each bucket + // * other_swap + // * overflow if written now or before + /*@ public normal_behaviour + @ requires_free \invariant_free_for(bucket_pointers); + @ requires \invariant_for(bucket_pointers); + @ requires_free \invariant_free_for(classifier); + @ requires \invariant_for(classifier); + @ requires_free classifier.num_buckets == bucket_pointers.num_buckets; + @ requires_free current_swap.length == Buffers.BUFFER_SIZE && other_swap.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE; + @ + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free 0 <= target_bucket < classifier.num_buckets; + @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin; + @ requires_free bucket_pointers.first_empty_position <= end - begin; + @ + @ requires_free \disjoint(values[*], current_swap[*], other_swap[*], overflow[*], bucket_pointers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]); + @ + @ // The buffer is classified as target_bucket + @ requires_free classifier.isClassOfSlice(current_swap, 0, Buffers.BUFFER_SIZE, target_bucket); + @ + @ requires_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // Enough space for bucket elements + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) + @ <= bucket_pointers.bucketSize(b) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // Count of bucket elements is maintained + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + + @ (b == \result ? Buffers.BUFFER_SIZE : 0) == + @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0)) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // only decreases elements to read + @ bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b)) + @ ); + @ + @ ensures_free bucket_pointers.remainingWriteCountOfBucket(target_bucket) < \old(bucket_pointers.remainingWriteCountOfBucket(target_bucket)); + @ + @ ensures_free \result != -1 ==> + @ classifier.isClassOfSlice(other_swap, 0, Buffers.BUFFER_SIZE, \result) && + @ 0 <= \result < classifier.num_buckets; + @ + @ ensures_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) + + @ (\result != -1 ? Functions.countElement(other_swap, 0, Buffers.BUFFER_SIZE, element) : 0) == + @ \old(bucket_pointers.countElement(values, begin, end, overflow, element)) + + @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element)) + @ ); + @ + @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier); + @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[2 * target_bucket + 1]; + @ assignable_free other_swap[*], overflow[*]; + @*/ + private static int swap_block( + int target_bucket, + int[] values, + int begin, + int end, + Classifier classifier, + BucketPointers bucket_pointers, + int[] current_swap, + int[] other_swap, + int[] overflow + ) { + //@ assume bucket_pointers.bucketStart(classifier.num_buckets) == Buffers.blockAligned(end - begin) && bucket_pointers.disjointBucketsLemma(target_bucket); + + /*@ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) == + @ \old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) + @ ); + @ + @ // current_swap isn't changed, we need to maintain only countElement + @ loop_invariant_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) == + @ \old(bucket_pointers.countElement(values, begin, end, overflow, element)) + @ ); + @ + @ loop_invariant_free bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, target_bucket); + @ // All written elements are classified as b + @ loop_invariant_free bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, target_bucket); + @ loop_invariant_free bucket_pointers.toReadCountOfBucket(target_bucket) <= \old(bucket_pointers.toReadCountOfBucket(target_bucket)); + @ loop_invariant_free bucket_pointers.remainingWriteCountOfBucket(target_bucket) <= \old(bucket_pointers.remainingWriteCountOfBucket(target_bucket)); + @ + @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ assignable_free bucket_pointers.buffer[2 * target_bucket + 1]; + @ + @ decreases bucket_pointers.remainingWriteCountOfBucket(target_bucket); + @*/ + while (true) { + //@ ghost \dl_Heap heapAtLoopBodyBegin = \dl_heap(); + + //@ assume bucket_pointers.writtenCountOfBucket(target_bucket) + Buffers.BUFFER_SIZE <= bucket_pointers.bucketSize(target_bucket); + Increment increment = bucket_pointers.increment_write(target_bucket); + boolean occupied = increment.occupied; + int write = begin + increment.position; + + /*@ assume + @ Buffers.isBlockAligned(increment.position) && + @ begin <= write <= end && + @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapAtLoopBodyBegin); + @*/ + + /*@ assume + @ \old(bucket_pointers.disjointBucketsAreaLemma(values, begin, end, target_bucket, write, write + Buffers.BUFFER_SIZE)) && + @ \at(bucket_pointers.disjointBucketsAreaLemma(values, begin, end, target_bucket, write, write + Buffers.BUFFER_SIZE), heapAtLoopBodyBegin); + @*/ + + if (occupied) { + // Follows from contract of lastReadOf and definition of toReadCount + // other case is start == read which contradicts start <= write < read + //@ assume \at(bucket_pointers.lastReadOf(target_bucket), heapAtLoopBodyBegin) - \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin) >= Buffers.BUFFER_SIZE; + /*@ assume \at(bucket_pointers.elementsToReadCountClassEqSplitBucket( + @ classifier, + @ values, + @ begin, + @ begin + bucket_pointers.nextWriteOf(target_bucket) + Buffers.BUFFER_SIZE, + @ end, + @ target_bucket, + @ true + @ ), heapAtLoopBodyBegin) && + @ \at(bucket_pointers.elementsToReadCountElementSplitBucket( + @ values, + @ begin, + @ begin + bucket_pointers.nextWriteOf(target_bucket) + Buffers.BUFFER_SIZE, + @ end, + @ target_bucket, + @ true + @ ), heapAtLoopBodyBegin) && + @ Buffers.isBlockAlignedSub(bucket_pointers.lastReadOf(target_bucket), \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin)); + @*/ + //@ assume write + Buffers.BUFFER_SIZE <= end && Buffers.isBlockAligned(bucket_pointers.lastReadOf(target_bucket) - \at(bucket_pointers.nextWriteOf(target_bucket), heapAtLoopBodyBegin)); + + //@ assume \dl_inInt(values[write]); + int new_target = classifier.classify(values[write]); + //@ assume classifier.isClassifiedBlocksRange(values, write, begin + bucket_pointers.lastReadOf(target_bucket)); + //@ assume classifier.isClassifiedBlocksRangeSplit(values, write, write + Buffers.BUFFER_SIZE, begin + bucket_pointers.lastReadOf(target_bucket)); + //@ assume classifier.classOfClassifiedBlockFromFirst(values, write, write + Buffers.BUFFER_SIZE, new_target); + //@ assume classifier.classOfClassifiedBlockFromFirst(values, write, write + Buffers.BUFFER_SIZE, new_target); + //@ assume \at(classifier.countClassOfSliceEqLemma(values, write, write + Buffers.BUFFER_SIZE, new_target), heapAtLoopBodyBegin); + + //@ assume bucket_pointers.toReadCountOfBucket(target_bucket) <= \old(bucket_pointers.toReadCountOfBucket(target_bucket)); + //@ assume bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, target_bucket); + + // Todo disjointness of the ranges + // Write area is disjoint from all other read and write areas + + // Swap only if this block is not already in the right bucket + if (new_target != target_bucket) { + //@ ghost \dl_Heap heapBeforeWrite = \dl_heap(); + + // Copy to other swap + Functions.copy_nonoverlapping(values, write, other_swap, 0, Buffers.BUFFER_SIZE); + //@ assume \invariant_for(classifier); + //@ assume classifier.isClassOfSliceCopy(values, write, other_swap, 0, Buffers.BUFFER_SIZE, new_target); + + // Copy in current swap + Functions.copy_nonoverlapping(current_swap, 0, values, write, Buffers.BUFFER_SIZE); + + /*@ assume + @ \invariant_for(classifier) && + @ \invariant_for(bucket_pointers) && + @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapBeforeWrite) && + @ bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite); + @*/ + + //@ assume classifier.isClassOfSliceCopy(current_swap, 0, values, write, Buffers.BUFFER_SIZE, target_bucket); + + /*@ assume + @ classifier.isClassOfSliceSplit( + @ values, + @ begin + bucket_pointers.bucketStart(target_bucket), + @ write, + @ write + Buffers.BUFFER_SIZE, + @ target_bucket + @ ) && + @ bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket); + @*/ + + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) + + @ (b == new_target ? Buffers.BUFFER_SIZE : 0) == + @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) && + @ bucket_pointers.writtenCountOfBucket(b) == + @ \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) + @ ); + @*/ + + /*@ assume (\forall int element; true; + @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) + + @ Functions.countElement(other_swap, 0, Buffers.BUFFER_SIZE, element) == + @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin) && + @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) == + @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) + + @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element)) + @ ); + @*/ + return new_target; + } + + /*@ assume + @ classifier.isClassOfSliceSplit( + @ values, + @ begin + bucket_pointers.bucketStart(target_bucket), + @ write, + @ write + Buffers.BUFFER_SIZE, + @ target_bucket + @ ) && + @ bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket); + @*/ + + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) == + @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) && + @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) + @ ); + @*/ + + /*@ assume (\forall int element; true; + @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) + + @ Functions.countElement(values, write, write + Buffers.BUFFER_SIZE, element) == + @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin) && + @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) == + @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) + + @ Functions.countElement(values, write, write + Buffers.BUFFER_SIZE, element) + @ ); + @*/ + {} + } else { + // Destination block is empty + // Read area is empty + //@ ghost \dl_Heap heapBeforeWrite = \dl_heap(); + + /*@ normal_behaviour + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ ensures_free (\forall int element; true; + @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) == + @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBodyBegin) + + @ \old(Functions.countElement(current_swap, 0, Buffers.BUFFER_SIZE, element)) + @ ); + @ ensures_free \invariant_free_for(classifier) && \invariant_free_for(bucket_pointers); + @ ensures \invariant_for(classifier) && \invariant_for(bucket_pointers); + @ assignable_free values[write..write + (write + Buffers.BUFFER_SIZE <= end ? Buffers.BUFFER_SIZE - 1 : 0)], overflow[*]; + @*/ + { + if (end < write + Buffers.BUFFER_SIZE) { + //@ assume write + Buffers.BUFFER_SIZE == begin + Buffers.blockAligned(end - begin); + // Out-of-bounds; write to overflow buffer instead + Functions.copy_nonoverlapping(current_swap, 0, overflow, 0, Buffers.BUFFER_SIZE); + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + //@ assume bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite); + // writtenCount >= 256 follows from increment_write + //@ assume classifier.isClassOfSliceCopy(current_swap, 0, overflow, 0, Buffers.BUFFER_SIZE, target_bucket); + //@ assume bucket_pointers.overflowBucketUniqueLemma(begin, end, target_bucket); + // TODO show that this can't be happening for all other buckets (by disjointness) + {} + } else { + // Write block + Functions.copy_nonoverlapping(current_swap, 0, values, write, Buffers.BUFFER_SIZE); + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + //@ assume bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite); + //@ assume classifier.isClassOfSliceCopy(current_swap, 0, values, write, Buffers.BUFFER_SIZE, target_bucket); + /*@ assume classifier.isClassOfSliceSplit( + @ values, + @ begin + bucket_pointers.bucketStart(target_bucket), + @ write, + @ write + Buffers.BUFFER_SIZE, + @ target_bucket + @ ); + @*/ + } + + //@ assume bucket_pointers.writtenElementsCountElementSplitBucket(values, begin, end, overflow, target_bucket); + } + /*@ assume + @ bucket_pointers.lastReadOf(target_bucket) == \at(bucket_pointers.lastReadOf(target_bucket), heapBeforeWrite) && + @ bucket_pointers.nextWriteOf(target_bucket) == \at(bucket_pointers.nextWriteOf(target_bucket), heapBeforeWrite); + @*/ + + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) == + @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBodyBegin) && + @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBodyBegin) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) + @ ); + @*/ + + /*@ assume (\forall int element; true; + @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) == + @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBodyBegin) + @ ); + @*/ + + return -1; + } + } + } + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(bucket_pointers); + @ requires \invariant_for(bucket_pointers); + @ requires_free \invariant_free_for(classifier); + @ requires \invariant_for(classifier); + @ requires_free classifier.num_buckets == bucket_pointers.num_buckets; + @ requires_free swap_1.length == Buffers.BUFFER_SIZE && swap_2.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE; + @ requires_free \disjoint(values[*], swap_1[*], swap_2[*], overflow[*], bucket_pointers.buffer[*], classifier.sorted_splitters[*], classifier.tree.tree[*]); + @ + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free 0 <= target_bucket < classifier.num_buckets; + @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin; + @ requires_free bucket_pointers.first_empty_position <= end - begin; + @ + @ // swap_1 is classified as target_bucket + @ requires_free classifier.isClassOfSlice(swap_1, 0, Buffers.BUFFER_SIZE, target_bucket); + @ requires_free (\forall int b; 0 <= b < classifier.num_buckets; + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) + @ <= bucket_pointers.bucketSize(b) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; + @ (countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) == + @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0))) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ // only decreases elements to read + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b))); + @ + @ ensures_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) == + @ \old( + @ bucket_pointers.countElement(values, begin, end, overflow, element) + + @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element)) + @ ); + @ + @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier); + @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[*]; + @ assignable_free swap_1[*], swap_2[*], overflow[*]; + @*/ + private static void place_block( + int target_bucket, + final int[] values, + final int begin, + final int end, + final Classifier classifier, + final BucketPointers bucket_pointers, + final int[] swap_1, + final int[] swap_2, + final int[] overflow + ) { + //@ ghost int first_target_bucket = target_bucket; + boolean first_is_current_swap = true; + + /*@ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // The old countBucketElementsEverywhere is missing the BUFFER_SIZE elements of first_target_bucket that were in swap_1 + @ // The current countBucketElementsEverywhere is missing the BUFFER_SIZE elements of target_bucket that are in swap_1 + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + + @ (b == target_bucket ? Buffers.BUFFER_SIZE : 0) == + @ (\old(countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier)) + + @ (b == first_target_bucket ? Buffers.BUFFER_SIZE : 0)) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ loop_invariant_free 0 <= target_bucket < classifier.num_buckets; + @ // The buffer is classified as target_bucket + @ loop_invariant_free classifier.isClassOfSlice(first_is_current_swap ? swap_1 : swap_2, 0, Buffers.BUFFER_SIZE, target_bucket); + @ // only decreases elements to read + @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; bucket_pointers.toReadCountOfBucket(b) <= \old(bucket_pointers.toReadCountOfBucket(b))); + @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ loop_invariant_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) + + @ Functions.countElement(first_is_current_swap ? swap_1 : swap_2, 0, Buffers.BUFFER_SIZE, element) == + @ \old(bucket_pointers.countElement(values, begin, end, overflow, element)) + + @ \old(Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element)) + @ ); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[*]; + @ assignable_free swap_1[*], swap_2[*], overflow[*]; + @ + @ decreases (\sum int b; 0 <= b < classifier.num_buckets; bucket_pointers.remainingWriteCountOfBucket(b)); + @*/ + while (true) { + int new_target = swap_block( + target_bucket, + values, + begin, + end, + classifier, + bucket_pointers, + first_is_current_swap ? swap_1 : swap_2, + first_is_current_swap ? swap_2 : swap_1, + overflow + ); + if (new_target == -1) { + break; + } + first_is_current_swap = !first_is_current_swap; + target_bucket = new_target; + } + } + + /*@ model_behaviour + @ requires_free 0 <= bucket < bucket_pointers.num_buckets; + @ requires_free bucket_pointers.num_buckets == classifier.num_buckets; + @ static model int countBucketElementsEverywhere(int[] values, int begin, int end, int bucket, BucketPointers bucket_pointers, Classifier classifier) { + @ return bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, bucket) + bucket_pointers.writtenCountOfBucket(bucket); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free \invariant_free_for(bucket_pointers); + @ requires \invariant_for(bucket_pointers); + @ requires_free \invariant_free_for(classifier); + @ requires \invariant_for(classifier); + @ requires_free classifier.num_buckets == bucket_pointers.num_buckets; + @ requires_free swap_1.length == Buffers.BUFFER_SIZE && swap_2.length == Buffers.BUFFER_SIZE && overflow.length == Buffers.BUFFER_SIZE; + @ requires_free \disjoint(values[*], swap_1[*], swap_2[*], overflow[*], classifier.sorted_splitters[*], classifier.tree.tree[*], bucket_pointers.buffer[*]); + @ + @ // requires (int) bucket_pointers.aligned_bucket_starts[0] == 0 && (int) bucket_pointers.aligned_bucket_starts[classifier.num_buckets] == Buffers.blockAligned(end - begin); + @ + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free (int) bucket_pointers.bucket_starts[classifier.num_buckets] == end - begin; + @ requires_free bucket_pointers.first_empty_position <= end - begin; + @ requires_free (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) <= bucket_pointers.bucketSize(b) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ bucket_pointers.writtenCountOfBucket(b) == 0 + @ ); + @ + @ ensures_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // Blocks are maintained + @ bucket_pointers.writtenCountOfBucket(b) == + @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) && + @ // All elements are read + @ bucket_pointers.toReadCountOfBucket(b) == 0 && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ + @ ensures_free (\forall int element; true; + @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) == + @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element)) + @ ); + @ + @ ensures_free \invariant_free_for(bucket_pointers) && \invariant_free_for(classifier); + @ ensures \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[*]; + @ assignable_free swap_1[*], swap_2[*], overflow[*]; + @*/ + public static void permute( + final int[] values, + final int begin, + final int end, + final Classifier classifier, + final BucketPointers bucket_pointers, + final int[] swap_1, + final int[] swap_2, + final int[] overflow + ) { + //@ assume bucket_pointers.bucketStart(classifier.num_buckets) == Buffers.blockAligned(end - begin); + final int num_buckets = classifier.num_buckets(); + + /*@ loop_invariant_free 0 <= bucket <= num_buckets; + @ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ loop_invariant_free (\forall int b; 0 <= b < bucket; bucket_pointers.toReadCountOfBucket(b) == 0); + @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // Blocks are maintained + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) == + @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ loop_invariant_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) == + @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element)) + @ ); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[*]; + @ assignable_free swap_1[*], swap_2[*], overflow[*]; + @ + @ decreases num_buckets - bucket; + @*/ + for (int bucket = 0; bucket < num_buckets; ++bucket) { + /*@ loop_invariant_free \invariant_for(bucket_pointers) && \invariant_for(classifier); + @ + @ loop_invariant_free (\forall int b; 0 <= b < bucket; bucket_pointers.toReadCountOfBucket(b) == 0); + @ loop_invariant_free (\forall int b; 0 <= b < classifier.num_buckets; + @ // Blocks are maintained + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) == + @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) && + @ bucket_pointers.elementsToReadOfBucketBlockClassified(classifier, values, begin, end, b) && + @ // All written elements are classified as b + @ bucket_pointers.writtenElementsOfBucketClassified(classifier, values, begin, end, overflow, b) + @ ); + @ loop_invariant_free (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) == + @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element)) + @ ); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free bucket_pointers.buffer[*]; + @ assignable_free swap_1[*], swap_2[*], overflow[*]; + @ + @ decreases bucket_pointers.toReadCountOfBucket(bucket); + @*/ + while (bucket_pointers.hasRemainingRead(bucket)) { + //@ ghost \dl_Heap heapAtLoopBegin = \dl_heap(); + + /*@ assume + @ bucket_pointers.elementsToReadCountClassEqSplitBucket(classifier, values, begin, begin + bucket_pointers.lastReadOf(bucket) - Buffers.BUFFER_SIZE, end, bucket, false) && + @ bucket_pointers.elementsToReadCountElementSplitBucket(values, begin, begin + bucket_pointers.lastReadOf(bucket) - Buffers.BUFFER_SIZE, end, bucket, false); + @*/ + int read = bucket_pointers.decrement_read(bucket); + + //@ assume begin + read + Buffers.BUFFER_SIZE <= end; + + Functions.copy_nonoverlapping(values, begin + read, swap_1, 0, Buffers.BUFFER_SIZE); + //@ assume \invariant_for(classifier) && \invariant_for(bucket_pointers); + /*@ assume bucket_pointers.lastReadOf(bucket) == read && + @ bucket_pointers.nextWriteOf(bucket) == \at(bucket_pointers.nextWriteOf(bucket), heapAtLoopBegin); + @*/ + /*@ assume bucket_pointers.nextWriteOf(bucket) <= read && + @ bucket_pointers.toReadCountOfBucket(bucket) < \at(bucket_pointers.toReadCountOfBucket(bucket), heapAtLoopBegin); + @*/ + //@ assume Buffers.isBlockAlignedSub(read, bucket_pointers.nextWriteOf(bucket)); + //@ assume Buffers.isBlockAligned(read - bucket_pointers.nextWriteOf(bucket)); + //@ assume Buffers.isBlockAlignedAdd(read - bucket_pointers.nextWriteOf(bucket), Buffers.BUFFER_SIZE); + //@ assume Buffers.isBlockAligned(read + Buffers.BUFFER_SIZE - bucket_pointers.nextWriteOf(bucket)); + + //@ assume classifier.isClassifiedBlocksRange(values, begin + bucket_pointers.nextWriteOf(bucket), begin + read + Buffers.BUFFER_SIZE); + //@ assume classifier.isClassifiedBlocksRangeSplit(values, begin + bucket_pointers.nextWriteOf(bucket), begin + read, begin + read + Buffers.BUFFER_SIZE); + //@ assume classifier.isClassifiedBlock(values, begin + read, begin + read + Buffers.BUFFER_SIZE); + int first_value = swap_1[0]; + //@ assume \dl_inInt(first_value); + int target_bucket = classifier.classify(first_value); + //@ assume classifier.classOfClassifiedBlockFromFirst(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket); + /*@ assume + @ classifier.isClassOfSlice(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket) && + @ classifier.isClassOfSliceCopy(values, begin + read, swap_1, 0, Buffers.BUFFER_SIZE, target_bucket); + @*/ + //@ assume classifier.countClassOfSliceEqLemma(values, begin + read, begin + read + Buffers.BUFFER_SIZE, target_bucket); + + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b) + (b == target_bucket ? Buffers.BUFFER_SIZE : 0) == + @ \at(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b), heapAtLoopBegin) && + @ bucket_pointers.writtenCountOfBucket(b) == \at(bucket_pointers.writtenCountOfBucket(b), heapAtLoopBegin) + @ ); + @*/ + + /*@ assume (\forall int b; 0 <= b < classifier.num_buckets; + @ countBucketElementsEverywhere(values, begin, end, b, bucket_pointers, classifier) + (b == target_bucket ? Buffers.BUFFER_SIZE : 0) == + @ \old(bucket_pointers.elementsToReadCountClassEq(classifier, values, begin, end, b)) + @ ); + @*/ + + /*@ assume (\forall int element; true; + @ bucket_pointers.elementsToReadCountElement(values, begin, end, element) + + @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element) == + @ \at(bucket_pointers.elementsToReadCountElement(values, begin, end, element), heapAtLoopBegin) && + @ bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element) == + @ \at(bucket_pointers.writtenElementsCountElement(values, begin, end, overflow, element), heapAtLoopBegin) + @ ); + @*/ + /*@ assume (\forall int element; true; + @ bucket_pointers.countElement(values, begin, end, overflow, element) + + @ Functions.countElement(swap_1, 0, Buffers.BUFFER_SIZE, element) == + @ \old(bucket_pointers.elementsToReadCountElement(values, begin, end, element)) + @ ); + @*/ + + place_block( + target_bucket, + values, + begin, + end, + classifier, + bucket_pointers, + swap_1, + swap_2, + overflow + ); + } + } + } +} diff --git a/src/main/java-overflow/de/wiesler/SampleParameters.java b/src/main/java-overflow/de/wiesler/SampleParameters.java new file mode 100644 index 0000000..e36e7af --- /dev/null +++ b/src/main/java-overflow/de/wiesler/SampleParameters.java @@ -0,0 +1,90 @@ +package de.wiesler; + +public final class SampleParameters { + public final int num_samples; + public final int num_buckets; + public final int step; + + /*@ public normal_behaviour + @ requires_free n >= Constants.BASE_CASE_SIZE; + @ + @ assignable_free \strictly_nothing; + @*/ + public static int log_buckets(int n) { + if (n <= Constants.SINGLE_LEVEL_THRESHOLD) { + // Only one more level until the base case, reduce the number of buckets + return Functions.max(1, Constants.log2(n / Constants.BASE_CASE_SIZE)); + } else if (n <= Constants.TWO_LEVEL_THRESHOLD) { + // Only two more levels until we reach the base case, split the buckets + // evenly + return Functions.max(1, (Constants.log2(n / Constants.BASE_CASE_SIZE) + 1) / 2); + } else { + // Use the maximum number of buckets + return Constants.LOG_MAX_BUCKETS; + } + } + + /*@ public normal_behaviour + @ requires_free n >= Constants.BASE_CASE_SIZE; + @ + @ assignable_free \strictly_nothing; + @*/ + public static int oversampling_factor(int n) { + return Constants.log2(n) / 5; + } + + /*@ public model_behaviour + @ requires true; + @ accessible \nothing; + @ model boolean isValidForLen(int n) { + @ return + @ 3 <= this.num_samples <= n / 2 && + @ // This states the same as the previous line but is somehow hard to deduce + @ this.num_samples < n && + @ 1 <= this.step && + @ 2 <= this.num_buckets <= 1 << Constants.LOG_MAX_BUCKETS && + @ this.num_buckets % 2 == 0 && + @ // there are enough samples to perform num_buckets selections with the given step size + @ this.step * this.num_buckets - 1 <= this.num_samples; + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ accessible \nothing; + @ model boolean isInInt() { + @ return + @ \dl_inInt(this.num_samples) && + @ \dl_inInt(this.step) && + @ \dl_inInt(this.num_buckets); + @ } + @*/ + + private static boolean isValidForLen(SampleParameters p, int n) { + return + 3 <= p.num_samples && p.num_samples <= n / 2 && + p.num_samples < n && + 1 <= p.step && + 2 <= p.num_buckets && p.num_buckets <= 1 << Constants.LOG_MAX_BUCKETS && + p.num_buckets % 2 == 0 && + p.step * p.num_buckets - 1 <= p.num_samples; + } + + /*@ public normal_behaviour + @ requires_free n >= Constants.ACTUAL_BASE_CASE_SIZE; + @ ensures_free this.isValidForLen(n) && this.isInInt(); + @ assignable_free \nothing; + @*/ + public SampleParameters(int n) { + int log_buckets = log_buckets(n); + this.num_buckets = 1 << log_buckets; + this.step = Functions.max(1, oversampling_factor(n)); + this.num_samples = step * num_buckets - 1; + } + + public static void testContracts(int i) { + if (i >= Constants.ACTUAL_BASE_CASE_SIZE && !isValidForLen(new SampleParameters(i), i)) { + throw new Error("SampleParameters contract fails for " + i); + } + } +} diff --git a/src/main/java-overflow/de/wiesler/Sorter.java b/src/main/java-overflow/de/wiesler/Sorter.java new file mode 100644 index 0000000..3c0b84d --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Sorter.java @@ -0,0 +1,646 @@ +package de.wiesler; + +public final class Sorter { + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free Constants.ACTUAL_BASE_CASE_SIZE < end - begin <= Buffers.MAX_LEN; + @ requires_free \invariant_free_for(storage); + @ requires_free \disjoint(storage.allArrays, values[*]); + @ requires \invariant_for(storage); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free \result.isValidForLen(end - begin); + @ ensures_free Functions.isSortedSlice(values, begin, begin + \result.num_samples); + @ ensures_free \invariant_free_for(storage); + @ ensures_free \fresh(\result); + @ ensures \invariant_for(storage); + @ ensures \result.isInInt(); + @ + @ // Calls sort directly => +0 + @ measured_by end - begin, 0; + @ + @ assignable_free storage.allArrays; + @ assignable_free values[begin..end - 1]; + @*/ + private static SampleParameters sample(int[] values, int begin, int end, Storage storage) { + SampleParameters parameters = new SampleParameters(end - begin); + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ measured_by end - begin, 0; + @ assignable_free \strictly_nothing; + @*/ + {;;} + + Functions.select_n(values, begin, end, parameters.num_samples); + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ measured_by end - begin, 0; + @ assignable_free \strictly_nothing; + @*/ + {;;} + //@ ghost \seq before_sort = \dl_seq_def_workaround(begin, end, values); + sort(values, begin, begin + parameters.num_samples, storage); + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), before_sort); + @ measured_by end - begin, 0; + @ assignable_free \strictly_nothing; + @*/ + {;;} + + return parameters; + } + + /*@ public model_behaviour + @ requires true; + @ + @ static model boolean isBucketPartitioned(int[] values, int begin, int end, int bucket_begin, int bucket_end) { + @ return // for all bucket elements + @ (\forall + @ int i; + @ begin + bucket_begin <= i < begin + bucket_end; + @ // all subsequent elements are bigger + @ (\forall int j; begin + bucket_end <= j < end; values[i] < values[j]) + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets]; + @ + @ // accessible values[begin..end - 1], bucket_starts[0..num_buckets + 1]; + @ + @ static model boolean allBucketsPartitioned(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) { + @ return (\forall int b; 0 <= b < num_buckets; Sorter.isBucketPartitioned(values, begin, end, bucket_starts[b], bucket_starts[b + 1])); + @ } + @*/ + + /*@ public model_behaviour + @ requires \invariant_for(classifier); + @ requires 0 <= begin <= end <= values.length; + @ requires nonEmptyBucketsLemma(classifier, values, begin, end, bucket_starts); + @ requires classifier.classOfTrans(); + @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets]; + @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts); + @ + @ ensures_free \result; + @ + @ static model boolean allBucketsPartitionedLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) { + @ return allBucketsPartitioned(values, begin, end, bucket_starts, classifier.num_buckets); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires 0 <= lower && lower <= upper && upper <= num_buckets; + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets]; + @ + @ // accessible values[begin..end - 1], bucket_starts[0..num_buckets + 1]; + @ + @ static model boolean allBucketsInRangeSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) { + @ return (\forall int b; lower <= b < upper; Functions.isSortedSlice(values, begin + bucket_starts[b], begin + bucket_starts[b + 1])); + @ } + @*/ + + /*@ public model_behaviour + @ accessible values[begin..end - 1]; + @ + @ static model boolean isEqualityBucket(int[] values, int begin, int end) { + @ return + @ (\forall int i; begin <= i < end - 1; values[i] == values[i + 1]); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires 0 <= lower && lower <= upper && upper <= num_buckets; + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets]; + @ + @ // accessible values[begin..end - 1], bucket_starts[lower..upper]; + @ + @ static model boolean equalityBucketsInRange(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) { + @ return + @ (\forall int b; + @ lower <= b < upper && b % 2 == 1; + @ Sorter.isEqualityBucket(values, begin + bucket_starts[b], begin + bucket_starts[b + 1])); + @ } + @*/ + + /*@ public model_behaviour + @ requires \invariant_for(classifier); + @ requires 0 <= begin <= end <= values.length; + @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets]; + @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts); + @ + @ ensures_free \result; + @ + @ static model boolean equalityBucketsLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) { + @ return classifier.equal_buckets ==> + @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, classifier.num_buckets, 1, classifier.num_buckets - 1); + @ } + @*/ + + /*@ public model_behaviour + @ requires true; + @ static model boolean smallBucketIsSorted(int[] values, int begin, int end, int bucket_begin, int bucket_end) { + @ return true; + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires 0 <= lower <= upper <= num_buckets; + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && end - begin == bucket_starts[num_buckets]; + @ // accessible values[begin..end - 1], bucket_starts[lower..upper]; + @ + @ static model boolean smallBucketsInRangeSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets, int lower, int upper) { + @ return (\forall int b; lower <= b < upper; Sorter.smallBucketIsSorted(values, begin, end, bucket_starts[b], bucket_starts[b + 1])); + @ } + @*/ + + /*@ public model_behaviour + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && len == bucket_starts[num_buckets]; + @ + @ accessible bucket_starts[0..num_buckets]; + @ + @ static model boolean notAllValuesInOneBucket(int[] bucket_starts, int num_buckets, int len) { + @ return (\forall int b; 0 <= b < num_buckets; bucket_starts[b + 1] - bucket_starts[b] < len); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= begin <= end <= values.length; + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets); + @ requires bucket_starts[num_buckets] == end - begin; + @ + @ // Buckets are partitioned + @ requires Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets); + @ + @ // Buckets are sorted + @ requires Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, num_buckets); + @ + @ requires bucketIndexFromOffset(bucket_starts, num_buckets, end - begin); + @ + @ ensures_free \result; + @ + @ static model boolean sortednessFromPartitionSorted(int[] values, int begin, int end, int[] bucket_starts, int num_buckets) { + @ return Functions.isSortedSlice(values, begin, end); + @ } + @*/ + + /*@ public model_behaviour + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets); + @ requires bucket_starts[num_buckets] == len; + @ + @ ensures_free \result; + @ // ( nv >= 0 + @ // -> nv <= num_buckets & i_0 < bucket_starts[nv] + @ // -> \exists int b; (0 <= b & b < nv & bucket_starts[b] <= i_0 & i_0 < bucket_starts[b + 1])) + @ + @ static model boolean bucketIndexFromOffset(int[] bucket_starts, int num_buckets, int len) { + @ return (\forall int i; 0 <= i < len; (\exists int b; 0 <= b < num_buckets; bucket_starts[b] <= i < bucket_starts[b + 1])); + @ } + @*/ + + /*@ public model_behaviour + @ requires \invariant_for(classifier); + @ requires Functions.isValidBucketStarts(bucket_starts, classifier.num_buckets) && end - begin == bucket_starts[classifier.num_buckets]; + @ requires bucketIndexFromOffset(bucket_starts, classifier.num_buckets, end - begin); + @ requires Partition.allBucketsClassified(values, begin, end, classifier, bucket_starts); + @ + @ ensures_free \result; + @ + @ static model boolean nonEmptyBucketsLemma(Classifier classifier, int[] values, int begin, int end, int[] bucket_starts) { + @ return (\forall int i; begin <= i < end; + @ bucket_starts[classifier.classOf(values[i])] <= i - begin < bucket_starts[classifier.classOf(values[i]) + 1] + @ ); + @ } + @*/ + + /*@ public model_behaviour + @ requires Functions.isValidBucketStarts(bucket_starts, num_buckets) && len == bucket_starts[num_buckets]; + @ requires (\forall int b; 0 <= b < num_buckets; + @ (\exists int c; 0 <= c < num_buckets && b != c; bucket_starts[c] < bucket_starts[c + 1]) + @ ); + @ + @ ensures_free \result; + @ + @ static model boolean notAllValuesInOneBucketLemma(int[] bucket_starts, int num_buckets, int len) { + @ return notAllValuesInOneBucket(bucket_starts, num_buckets, len); + @ } + @*/ + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free bucket_starts.length == Constants.MAX_BUCKETS + 1; + @ requires_free (\forall int b; 0 <= b < bucket_starts.length; bucket_starts[b] == 0); + @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free \invariant_free_for(storage); + @ requires \invariant_for(storage); + @ + @ requires_free \disjoint(values[*], bucket_starts[*], storage.allArrays); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free \result != null ==> + @ \result.num_buckets % 2 == 0 && + @ Functions.isValidBucketStarts(bucket_starts, \result.num_buckets) && + @ bucket_starts[\result.num_buckets] == end - begin && + @ // Buckets are partitioned + @ Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, \result.num_buckets) && + @ // Small buckets are sorted + @ Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, \result.num_buckets, 0, \result.num_buckets) && + @ // Equality buckets at odd indices except the last bucket + @ (\result.equal_buckets ==> Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, \result.num_buckets, 1, \result.num_buckets - 1)) && + @ Sorter.notAllValuesInOneBucket(bucket_starts, \result.num_buckets, end - begin); + @ ensures_free \invariant_free_for(storage); + @ ensures \invariant_for(storage); + @ + @ // Calls sample which has +0 => +1 + @ measured_by end - begin, 1; + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @ assignable_free bucket_starts[*]; + @*/ + private static /*@ nullable */ PartitionResult partition( + int[] values, + int begin, + int end, + int[] bucket_starts, + Storage storage + ) { + /*@ normal_behaviour + @ ensures_free \disjoint( + @ values[*], + @ bucket_starts[*], + @ storage.tree[*], + @ storage.splitters[*], + @ storage.bucket_pointers[*], + @ storage.buffers_buffer[*], + @ storage.buffers_indices[*], + @ storage.swap_1[*], + @ storage.swap_2[*], + @ storage.overflow[*] + @ ); + @ + @ assignable_free \strictly_nothing; + @ + @ measured_by end - begin, 1; + @*/ + {;;} + + //@ ghost \seq oldValues = \dl_seq_def_workaround(begin, end, values); + + final SampleParameters sample = sample(values, begin, end, storage); + final int num_samples = sample.num_samples; + final int num_buckets = sample.num_buckets; + final int step = sample.step; + final int[] splitters = storage.splitters; + + //@ ghost \seq before_copy_unique = \dl_seq_def_workaround(begin, end, values); + + // Select num_buckets - 1 splitters + final int num_splitters = Functions.copy_unique(values, begin, begin + num_samples, num_buckets - 1, step, splitters); + + //@ ghost \seq before_from_sorted_samples = \dl_seq_def_workaround(begin, end, values); + /*@ normal_behaviour + @ ensures_free before_from_sorted_samples == before_copy_unique; + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(before_from_sorted_samples, oldValues); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + + if (num_splitters <= 1) { + return null; + } + + // >= 2 unique splitters, therefore >= 3 buckets and >= 2 nonempty buckets + final Classifier classifier = Classifier.from_sorted_samples(splitters, storage.tree, num_splitters, num_buckets); + + // Create this first, classifier is immutable and this removes heap mutations after partition + final PartitionResult r = new PartitionResult(classifier.num_buckets(), classifier.equal_buckets()); + + //@ ghost \seq valuesBeforePartition = \dl_seq_def_workaround(begin, end, values); + /*@ normal_behaviour + @ ensures_free valuesBeforePartition == before_from_sorted_samples; + @ ensures_free \invariant_free_for(classifier); + @ ensures \invariant_for(classifier); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(valuesBeforePartition, oldValues); + @ ensures_free (\exists int i; begin <= i < end; (\exists int j; begin <= j < end; classifier.classOf(values[i]) != classifier.classOf(values[j]))); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + Partition.partition(values, begin, end, bucket_starts, classifier, storage); + + //@ ghost \seq valuesAfterPartition = \dl_seq_def_workaround(begin, end, values); + /*@ normal_behaviour + @ ensures_free bucketIndexFromOffset(bucket_starts, classifier.num_buckets, end - begin); + @ ensures_free (\exists int i; 0 <= i < valuesAfterPartition.length; + @ (\exists int j; 0 <= j < valuesAfterPartition.length; + @ classifier.classOf((int) valuesAfterPartition[i]) != classifier.classOf((int) valuesAfterPartition[j])) + @ ); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + + /*@ normal_behaviour + @ ensures_free (\exists int i; begin <= i < end; (\exists int j; begin <= j < end; classifier.classOf(values[i]) != classifier.classOf(values[j]))); + @ ensures_free nonEmptyBucketsLemma(classifier, values, begin, end, bucket_starts); + @ ensures_free equalityBucketsLemma(classifier, values, begin, end, bucket_starts); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + + /*@ normal_behaviour + @ ensures_free notAllValuesInOneBucketLemma(bucket_starts, classifier.num_buckets, end - begin); + @ ensures_free allBucketsPartitionedLemma(classifier, values, begin, end, bucket_starts); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + + // assignable: apply eq of allArrays + + return r; + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free 0 <= bucket && bucket < num_buckets; + @ requires_free Functions.isValidBucketStarts(bucket_starts, num_buckets) && bucket_starts[num_buckets] == end - begin; + @ requires_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket); + @ + @ // Stays partitioned + @ requires_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets); + @ // All subsequent buckets keep the sorting property + @ requires_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket, num_buckets); + @ // Equality buckets + @ requires_free equal_buckets ==> + @ (bucket % 2 == 0 || bucket == num_buckets - 1) && + @ // starting at the next bucket, ending before the last bucket + @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1); + @ requires_free Sorter.notAllValuesInOneBucket(bucket_starts, num_buckets, end - begin); + @ requires_free \disjoint(storage.allArrays, values[*], bucket_starts[*]); + @ requires_free \invariant_free_for(storage); + @ requires \invariant_for(storage); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ + @ // Previous stay sorted, current is now sorted + @ ensures_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket + 1); + @ // Stays partitioned + @ ensures_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets); + @ // All subsequent buckets keep the sorting property + @ ensures_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets); + @ // Equality buckets at odd indices except the last bucket + @ ensures_free equal_buckets ==> + @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1); + @ ensures_free \invariant_free_for(storage); + @ ensures \invariant_for(storage); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @ + @ measured_by end - begin, 1; + @*/ + private static void sample_sort_recurse_on(int[] values, int begin, int end, Storage storage, int[] bucket_starts, int num_buckets, boolean equal_buckets, int bucket) { + int inner_begin = begin + bucket_starts[bucket]; + int inner_end = begin + bucket_starts[bucket + 1]; + + /*@ normal_behaviour + @ ensures_free Functions.bucketStartsOrdering(bucket_starts, num_buckets, bucket); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + /*@ normal_behaviour + @ ensures_free 0 <= bucket_starts[bucket] <= bucket_starts[bucket + 1] <= bucket_starts[num_buckets] && + @ (\forall int b; 0 <= b < num_buckets && b != bucket; + @ (b < bucket ==> 0 <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[bucket]) && + @ (b > bucket ==> bucket_starts[bucket + 1] <= bucket_starts[b] <= bucket_starts[b + 1] <= bucket_starts[num_buckets])); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin + bucket_starts[bucket], inner_end, values), \old(\dl_seq_def_workaround(begin + bucket_starts[bucket], begin + bucket_starts[bucket + 1], values))); + @ ensures_free Functions.isSortedSlice(values, begin + bucket_starts[bucket], inner_end); + @ assignable_free values[inner_begin..inner_end - 1], storage.allArrays; + @ measured_by end - begin, 1; + @*/ + { + if (inner_end - inner_begin > Constants.ACTUAL_BASE_CASE_SIZE) { + sample_sort(values, inner_begin, inner_end, storage); + } else { + base_case_sort(values, inner_begin, inner_end); + } + } + /*@ normal_behaviour + @ ensures_free \dl_seq_def_workaround(begin, inner_begin, values) == \old(\dl_seq_def_workaround(begin, begin + bucket_starts[bucket], values)); + @ ensures_free \dl_seq_def_workaround(inner_end, end, values) == \old(\dl_seq_def_workaround(begin + bucket_starts[bucket + 1], end, values)); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, inner_begin, values), \old(\dl_seq_def_workaround(begin, begin + bucket_starts[bucket], values))); + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(inner_end, end, values), \old(\dl_seq_def_workaround(begin + bucket_starts[bucket + 1], end, values))); + @ assignable_free \strictly_nothing; + @ measured_by end - begin, 1; + @*/ + {;;} + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin > Constants.ACTUAL_BASE_CASE_SIZE; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free \invariant_free_for(storage); + @ requires \invariant_for(storage); + @ requires_free \disjoint(storage.allArrays, values[*]); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free Functions.isSortedSlice(values, begin, end); + @ ensures_free \invariant_free_for(storage); + @ ensures \invariant_for(storage); + @ + @ // partition has +1, sample_sort_recurse +0 => +2 + @ measured_by end - begin, 2; + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @*/ + private static void sample_sort(int[] values, int begin, int end, Storage storage) { + int[] bucket_starts = Storage.createArray(Constants.MAX_BUCKETS + 1); + + /*@ normal_behaviour + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free \disjoint(\all_fields(values), \all_fields(bucket_starts), storage.allArrays); + @ ensures_free \disjoint(storage.*, storage.allArrays); + @ + @ assignable_free \strictly_nothing; + @ + @ measured_by end - begin, 2; + @*/ + {;;} + + PartitionResult partition = partition(values, begin, end, bucket_starts, storage); + + if (partition == null) { + fallback_sort(values, begin, end); + return; + } + + int num_buckets = partition.num_buckets; + boolean equal_buckets = partition.equal_buckets; + + /*@ normal_behaviour + @ // this is needed in many places and harder to deduce + @ requires_free \disjoint(\all_fields(values), \all_fields(bucket_starts), storage.allArrays, storage.*); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, num_buckets); + @ ensures_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets); + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @ + @ measured_by end - begin, 2; + @*/ + { + /*@ loop_invariant_free 0 <= bucket && bucket <= num_buckets; + @ loop_invariant_free equal_buckets ==> bucket % 2 == 0; + @ loop_invariant_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ + @ loop_invariant_free Sorter.allBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, 0, bucket < num_buckets || !equal_buckets ? bucket : num_buckets - 1); + @ // Stays partitioned + @ loop_invariant_free Sorter.allBucketsPartitioned(values, begin, end, bucket_starts, num_buckets); + @ // All subsequent buckets keep the small sorted property (especially the last one if equal_buckets) + @ loop_invariant_free Sorter.smallBucketsInRangeSorted(values, begin, end, bucket_starts, num_buckets, bucket < num_buckets || !equal_buckets ? bucket : num_buckets - 1, num_buckets); + @ loop_invariant_free equal_buckets ==> + @ bucket % 2 == 0 && bucket != num_buckets - 1 && + @ // starting at the next bucket, ending before the last bucket + @ Sorter.equalityBucketsInRange(values, begin, end, bucket_starts, num_buckets, bucket + 1, num_buckets - 1); + @ + @ decreases num_buckets - bucket; + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @*/ + for (int bucket = 0; bucket < num_buckets; bucket += 1 + Constants.toInt(equal_buckets)) { + sample_sort_recurse_on(values, begin, end, storage, bucket_starts, num_buckets, equal_buckets, bucket); + } + + if (equal_buckets) { + sample_sort_recurse_on(values, begin, end, storage, bucket_starts, num_buckets, equal_buckets, num_buckets - 1); + } + } + + /*@ normal_behaviour + @ ensures_free sortednessFromPartitionSorted(values, begin, end, bucket_starts, num_buckets); + @ + @ assignable_free \strictly_nothing; + @ + @ measured_by end - begin, 2; + @*/ + {;;} + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free (\forall int element; true; + @ Functions.countElement(values, begin, end, element) == + @ \old(Functions.countElement(values, begin, end, element)) + @ ); + @ ensures_free Functions.isSortedSlice(values, begin, end); + @ + @ assignable_free values[begin..end - 1]; + @*/ + public static void fallback_sort(int[] values, int begin, int end) { + // insertion_sort(values, begin, end); + } + + public static void insertion_sort(int[] values, int begin, int end) { + if (end - begin < 2) return; + + for (++begin; begin < end; ++begin) { + int value = values[begin]; + int hole = begin; + for (int i = begin - 1; i > 0 && value < values[i]; --i) { + values[hole] = values[i]; + hole = i; + } + values[hole] = value; + } + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free Functions.isSortedSlice(values, begin, end); + @ + @ assignable_free values[begin..end - 1]; + @*/ + private static void base_case_sort(int[] values, int begin, int end) { + fallback_sort(values, begin, end); + } + + /*@ public normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free end - begin <= Buffers.MAX_LEN; + @ requires_free \invariant_free_for(storage); + @ requires \invariant_for(storage); + @ requires_free \disjoint(storage.allArrays, values[*]); + @ + @ ensures_free \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ ensures_free Functions.isSortedSlice(values, begin, end); + @ ensures_free \invariant_free_for(storage); + @ ensures \invariant_for(storage); + @ + @ // sample_sort has +2 => +3 + @ measured_by end - begin, 3; + @ + @ assignable_free values[begin..end - 1]; + @ assignable_free storage.allArrays; + @*/ + public static void sort(int[] values, int begin, int end, Storage storage) { + if (end - begin <= Constants.ACTUAL_BASE_CASE_SIZE) { + base_case_sort(values, begin, end); + } else { + sample_sort(values, begin, end, storage); + } + } + + /*@ public normal_behaviour + @ requires_free values.length <= Buffers.MAX_LEN; + @ + @ ensures_free \dl_seqPerm(\dl_array2seq(values), \old(\dl_array2seq(values))); + @ ensures_free Functions.isSortedSlice(values, 0, values.length); + @ + @ assignable_free values[*]; + @*/ + public static void sort(int[] values) { + Storage storage = new Storage(); + //@ assume \disjoint(storage.allArrays, values); + sort(values, 0, values.length, storage); + } +} diff --git a/src/main/java-overflow/de/wiesler/Storage.java b/src/main/java-overflow/de/wiesler/Storage.java new file mode 100644 index 0000000..dc958f5 --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Storage.java @@ -0,0 +1,90 @@ +package de.wiesler; + +public final class Storage { + /*@ public normal_behaviour + @ requires_free length >= 0; + @ ensures_free \result.length == length; + @ ensures_free \fresh(\result); + @ ensures_free (\forall int i; 0 <= i < length; \result[i] == 0); + @ assignable_free \nothing; + @*/ + static int[] createArray(int length) { + return new int[length]; + } + + final int[] tree; + final int[] splitters; + final int[] bucket_pointers; + final int[] buffers_buffer; + final int[] buffers_indices; + final int[] swap_1; + final int[] swap_2; + final int[] overflow; + + //@ ghost final \locset allArrays; + + /*@ public instance invariant_free this.tree.length == Classifier.STORAGE_SIZE && + @ this.splitters.length == Classifier.STORAGE_SIZE && + @ this.bucket_pointers.length == 2 * Constants.MAX_BUCKETS && + @ this.buffers_buffer.length == Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS && + @ this.buffers_indices.length == Constants.MAX_BUCKETS && + @ this.swap_1.length == Buffers.BUFFER_SIZE && + @ this.swap_2.length == Buffers.BUFFER_SIZE && + @ this.overflow.length == Buffers.BUFFER_SIZE; + @*/ + + /*@ public instance invariant_free this.allArrays == \set_union( + @ \set_union( + @ \set_union( + @ \all_fields(tree), + @ \all_fields(splitters) + @ ), + @ \set_union( + @ \all_fields(bucket_pointers), + @ \all_fields(buffers_buffer) + @ ) + @ ), + @ \set_union( + @ \set_union( + @ \all_fields(buffers_indices), + @ \all_fields(swap_1) + @ ), + @ \set_union( + @ \all_fields(swap_2), + @ \all_fields(overflow) + @ ) + @ ) + @ ); + @*/ + + /*@ public instance invariant_free \disjoint( + @ \all_fields(tree), + @ \all_fields(splitters), + @ \all_fields(bucket_pointers), + @ \all_fields(buffers_buffer), + @ \all_fields(buffers_indices), + @ \all_fields(swap_1), + @ \all_fields(swap_2), + @ \all_fields(overflow) + @ ); + @*/ + + //@ accessible \inv: this.*; + + /*@ public normal_behaviour + @ ensures_free \fresh(this.allArrays); + @ assignable_free \nothing; + @*/ + public Storage() { + this.splitters = createArray(Classifier.STORAGE_SIZE); + this.tree = createArray(Classifier.STORAGE_SIZE); + this.bucket_pointers = createArray(2 * Constants.MAX_BUCKETS); + this.buffers_buffer = createArray(Buffers.BUFFER_SIZE * Constants.MAX_BUCKETS); + this.buffers_indices = createArray(Constants.MAX_BUCKETS); + this.swap_1 = createArray(Buffers.BUFFER_SIZE); + this.swap_2 = createArray(Buffers.BUFFER_SIZE); + this.overflow = createArray(Buffers.BUFFER_SIZE); + + //@ set this.allArrays = \set_union(\set_union(\set_union(\all_fields(tree), \all_fields(splitters)), \set_union(\all_fields(bucket_pointers), \all_fields(buffers_buffer))), \set_union(\set_union(\all_fields(buffers_indices), \all_fields(swap_1)), \set_union(\all_fields(swap_2), \all_fields(overflow)))); + } +} diff --git a/src/main/java-overflow/de/wiesler/Tree.java b/src/main/java-overflow/de/wiesler/Tree.java new file mode 100644 index 0000000..6d5783d --- /dev/null +++ b/src/main/java-overflow/de/wiesler/Tree.java @@ -0,0 +1,442 @@ +package de.wiesler; + +public final class Tree { + private /*@ spec_public @*/ final int[] tree; + private /*@ spec_public @*/ final int log_buckets; + //@ ghost final int num_buckets; + //@ ghost final int[] sorted_splitters; + + /*@ public invariant 1 <= this.log_buckets <= Constants.LOG_MAX_BUCKETS; + @ public invariant this.num_buckets == (1 << this.log_buckets); + @ public invariant 2 <= this.num_buckets <= this.tree.length; + @ public invariant this.num_buckets <= this.sorted_splitters.length; + @ public invariant Functions.isSortedSliceTransitive(this.sorted_splitters, 0, this.num_buckets - 1); + @ + @ invariant (\forall int i; 1 <= i < this.num_buckets; 1 <= Tree.pi(i, this.log_buckets) < this.num_buckets); + @ invariant (\forall int i; 1 <= i < this.num_buckets; this.tree[i] == this.sorted_splitters[Tree.pi(i, this.log_buckets) - 1]); + @ + @ accessible \inv: this.tree[*], this.sorted_splitters[*]; + @*/ + + /*@ public normal_behaviour + @ requires_free 1 <= log_buckets <= Constants.LOG_MAX_BUCKETS; + @ requires_free 0 <= (1 << log_buckets) <= sorted_splitters.length; + @ requires_free Functions.isSortedSliceTransitive(sorted_splitters, 0, (1 << log_buckets) - 1); + @ requires_free (1 << log_buckets) <= tree.length; + @ requires_free \disjoint(sorted_splitters[*], tree[*]); + @ + @ ensures_free this.log_buckets == log_buckets; + @ ensures_free this.tree == tree; + @ ensures_free this.sorted_splitters == sorted_splitters; + @ + @ assignable_free tree[*]; + @*/ + public Tree(int[] sorted_splitters, int[] tree, int log_buckets) { + //@ set num_buckets = 1 << log_buckets; + //@ set this.sorted_splitters = sorted_splitters; + final int num_buckets = 1 << log_buckets; + final int num_splitters = num_buckets - 1; + + //@ assume 2 <= num_buckets <= tree.length; + + this.log_buckets = log_buckets; + this.tree = tree; + this.build(sorted_splitters); + //@ assert (1 << this.log_buckets) == \dl_pow(2, this.log_buckets); + //@ assert (\forall int i; 1 <= i < this.num_buckets; Tree.piInRangeLower(i, log_buckets) && Tree.piInRangeUpper(i, log_buckets)); + } + + /*@ public normal_behaviour + @ requires this.tree != null && sorted_splitters != null; + @ requires \disjoint(sorted_splitters[*], this.tree[*]); + @ requires this.num_buckets <= sorted_splitters.length; + @ requires 1 <= this.log_buckets <= Constants.LOG_MAX_BUCKETS; + @ requires 2 <= this.num_buckets <= tree.length; + @ requires this.num_buckets == (1 << this.log_buckets); + @ requires Functions.isSortedSliceTransitive(sorted_splitters, 0, (1 << this.log_buckets) - 1); + @ + @ ensures (\forall int i; 1 <= i < this.num_buckets; this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1]); + @ + @ assignable this.tree[*]; + @*/ + /*@ helper */ void build(int[] sorted_splitters) { + //@ assert 1 <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, 6); + //@ assert (1 << this.log_buckets) == \dl_pow(2, this.log_buckets); + int num_buckets = 1 << this.log_buckets; + //@ assert this.num_buckets == num_buckets; + + int tree_offset = 1; + int offset = num_buckets; + /*@ loop_invariant 0 <= l <= this.log_buckets; + @ loop_invariant tree_offset == \dl_pow(2, l); + @ loop_invariant offset == \dl_pow(2, this.log_buckets - l); + @ loop_invariant (\forall int i; 1 <= i < tree_offset; + @ this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1] + @ ); + @ + @ decreases this.log_buckets - l; + @ assignable this.tree[*]; + @*/ + for (int l = 0; l < this.log_buckets; ++l) { + final int step = offset; + offset /= 2; + + //@ assert step == \dl_pow(2, this.log_buckets - l); + //@ assert offset == \dl_pow(2, this.log_buckets - l - 1); + //@ assert step == offset * 2; + //@ assert 1 <= offset < num_buckets; + //@ assert \dl_pow(2, l + 1) <= num_buckets; + + //@ ghost int tree_start_offset = tree_offset; + + //@ assert \dl_pow(2, l + 1) - \dl_pow(2, l) == \dl_pow(2, l); + //@ assert step * \dl_pow(2, l) == \dl_pow(2, this.log_buckets); + //@ assert offset - 1 + step * \dl_pow(2, l) >= num_buckets; + //@ assert offset - 1 + step * (\dl_pow(2, l) - 1) < num_buckets; + + /*@ loop_invariant offset - 1 <= o < step + num_buckets; + @ loop_invariant o == offset - 1 + step * (tree_offset - tree_start_offset); + @ loop_invariant \dl_pow(2, l) <= tree_offset <= \dl_pow(2, l + 1); + @ loop_invariant (\forall int i; 1 <= i < tree_offset; + @ this.tree[i] == sorted_splitters[Tree.pi(i, this.log_buckets) - 1] + @ ); + @ + @ decreases step + num_buckets - o; + @ assignable this.tree[*]; + @*/ + for (int o = offset - 1; o < num_buckets; o += step) { + //@ assert \dl_log(2, tree_offset) == l; + //@ assert Tree.pi(tree_offset, this.log_buckets) - 1 == o; + this.tree[tree_offset] = sorted_splitters[o]; + tree_offset += 1; + } + + //@ assert tree_offset == \dl_pow(2, l + 1); + } + } + + /*@ model_behaviour + @ requires true; + @ static no_state model int pi(int b, int log_buckets) { + @ return (2 * (b - \dl_pow(2, \dl_log(2, b))) + 1) * \dl_pow(2, log_buckets - 1 - \dl_log(2, b)); + @ } + @*/ + + /*@ public model_behaviour + @ requires 0 <= bucket < this.num_buckets; + @ + @ model boolean isClassifiedAs(int value, int bucket) { + @ return ((0 < bucket ==> this.sorted_splitters[bucket - 1] < value) && + @ (bucket < this.num_buckets - 1 ==> value <= this.sorted_splitters[bucket])); + @ } + @*/ + + /*@ public model_behaviour + @ requires this.sorted_splitters[0] < this.sorted_splitters[1]; + @ ensures_free \result; + @ + @ model boolean classOfFirstSplitters() { + @ return this.classify(this.sorted_splitters[0]) != this.classify(this.sorted_splitters[1]); + @ } + @*/ + + /*@ model_behaviour + @ requires b >= 1; + @ ensures \result; + @ // Provable using powLogMore2 + @ static model boolean piLemmaUpperBound(int b) { + @ return 2 * (b - \dl_pow(2, \dl_log(2, b))) + 1 < \dl_pow(2, \dl_log(2, b) + 1); + @ } + @*/ + + /*@ model_behaviour + @ requires 1 <= b < \dl_pow(2, log_buckets); + @ requires 1 <= log_buckets; + @ ensures \result; + @ static model boolean piInRangeLower(int b, int log_buckets) { + @ return 1 <= Tree.pi(b, log_buckets); + @ } + @*/ + + /*@ model_behaviour + @ requires 1 <= b < \dl_pow(2, log_buckets); + @ requires 1 <= log_buckets; + @ requires Tree.piLemmaUpperBound(b); + @ ensures \result; + @ static model boolean piInRangeUpper(int b, int log_buckets) { + @ return Tree.pi(b, log_buckets) < \dl_pow(2, log_buckets); + @ } + @*/ + + /*@ model_behaviour + @ requires 1 <= b < \dl_pow(2, log_buckets - 1); + @ requires 1 <= log_buckets; + @ ensures \result; + @ static model boolean piLemmaLeft(int b, int log_buckets) { + @ return Tree.pi(b, log_buckets) - Tree.pi(2 * b, log_buckets) == \dl_pow(2, log_buckets - 2 - \dl_log(2, b)); + @ } + @*/ + + /*@ model_behaviour + @ requires 1 <= b < \dl_pow(2, log_buckets - 1); + @ requires 1 <= log_buckets; + @ ensures \result; + @ static model boolean piLemmaRight(int b, int log_buckets) { + @ return Tree.pi(2 * b + 1, log_buckets) - Tree.pi(b, log_buckets) == \dl_pow(2, log_buckets - 2 - \dl_log(2, b)); + @ } + @*/ + + /*@ model_behaviour + @ requires 1 <= b < \dl_pow(2, log_buckets - 1); + @ requires 1 <= log_buckets; + @ ensures \result; + @ static model boolean piLemma(int b, int log_buckets) { + @ return Tree.piLemmaLeft(b, log_buckets) && Tree.piLemmaRight(b, log_buckets); + @ } + @*/ + + /*@ model_behaviour + @ requires log_buckets >= 1; + @ ensures \result; + @ static model boolean piOf1(int log_buckets) { + @ return Tree.pi(1, log_buckets) == \dl_pow(2, log_buckets) - \dl_pow(2, log_buckets) / 2; + @ } + @*/ + + /*@ model_behaviour + @ requires true; + @ accessible this.sorted_splitters[*]; + @ model boolean binarySearchInvariant(int b, int d, int value) { + @ return d - 1 <= b <= this.num_buckets - 1 && + @ (b - d == -1 || this.sorted_splitters[b - d] < value) && + @ (b == this.num_buckets - 1 || value <= this.sorted_splitters[b]); + @ } + @*/ + + /*@ model_behaviour + @ requires this.binarySearchInvariant(b, d, value); + @ requires 0 <= l < this.log_buckets; + @ requires d == \dl_pow(2, this.log_buckets - l); + @ ensures \result; + @ + @ model boolean binarySearchInvariantLemma(int b, int d, int value, int l) { + @ return this.binarySearchInvariant(this.sorted_splitters[b - d / 2] < value ? b : b - d / 2, d / 2, value); + @ } + @*/ + + /*@ model_behaviour + @ requires true; + @ // final only no_state + @ model boolean treeSearchInvariant(int b, int l, int b_bin, int d_bin) { + @ return \dl_pow(2, l) <= b < \dl_pow(2, l + 1) && + @ \dl_log(2, b) == l && + @ (l < this.log_buckets ==> b_bin - d_bin / 2 == Tree.pi(b, this.log_buckets) - 1) && + @ (l == this.log_buckets ==> b_bin == b - \dl_pow(2, this.log_buckets)); + @ } + @*/ + + /*@ normal_behaviour + @ requires this.binarySearchInvariant(b_bin, d_bin, value); + @ requires treeSearchInvariant(b, l, b_bin, d_bin); + @ requires 0 <= l < this.log_buckets; + @ requires d_bin == \dl_pow(2, this.log_buckets - l); + @ requires this.num_buckets == \dl_pow(2, this.log_buckets); + @ ensures treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2); + @ ensures \result; + @ assignable \strictly_nothing; + @*/ + boolean treeSearchInvariantLemmaImpl(int b, int l, int b_bin, int d_bin, int value) { + //@ assert 1 <= \dl_pow(2, l); + //@ assert \dl_pow(2, l + 1) == 2 * \dl_pow(2, l); + //@ assert \dl_pow(2, l + 2) == 2 * \dl_pow(2, l + 1); + //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets); + //@ assert this.sorted_splitters[b_bin - d_bin / 2] == this.tree[b]; + //@ assert \dl_log(2, 2 * b + (this.tree[b] < value ? 1 : 0)) == l + 1; + if (l < this.log_buckets - 1) { + //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets - 1); + //@ assert Tree.piLemma(b, this.log_buckets); + /*@ assert Tree.pi(2 * b + (this.tree[b] < value ? 1 : 0), this.log_buckets) - Tree.pi(b, this.log_buckets) == ( + @ this.tree[b] < value ? (\dl_pow(2, this.log_buckets - 2 - \dl_log(2, b))) : -(\dl_pow(2, this.log_buckets - 2 - \dl_log(2, b))) + @ ); + @*/ + //@ assert \dl_pow(2, this.log_buckets - 2 - \dl_log(2, b)) == d_bin / 2 / 2; + } + return true; + } + + /*@ model_behaviour + @ requires this.binarySearchInvariant(b_bin, d_bin, value); + @ requires treeSearchInvariant(b, l, b_bin, d_bin); + @ requires 0 <= l < this.log_buckets; + @ requires d_bin == \dl_pow(2, this.log_buckets - l); + @ requires this.num_buckets == \dl_pow(2, this.log_buckets); + @ ensures \result ==> treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2); + @ ensures \result; + @ + @ model boolean treeSearchInvariantLemma(int b, int l, int b_bin, int d_bin, int value) { + @ return treeSearchInvariantLemmaImpl(b, l, b_bin, d_bin, value); + @ } + @*/ + + /*@ normal_behaviour + @ requires_free \dl_inInt(value); + @ ensures_free this.num_buckets <= \result < 2 * this.num_buckets; + @ + @ ensures_free this.isClassifiedAs(value, \result - this.num_buckets); + @ + @ // Needed to bring this method to logic + @ ensures_free \result == this.classify(value); + @ + @ assignable_free \strictly_nothing; + @ + @ accessible this.tree[*], this.sorted_splitters[*]; + @*/ + int classify(int value) { + //@ assert \dl_pow(2, 1) <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, Constants.LOG_MAX_BUCKETS); + //@ assert \dl_pow(2, this.log_buckets) == this.num_buckets; + //@ ghost int b_bin = this.num_buckets - 1; + //@ ghost int d_bin = this.num_buckets; + int b = 1; + + //@ assert Tree.piOf1(this.log_buckets); + + /*@ loop_invariant 0 <= l && l <= this.log_buckets; + @ loop_invariant d_bin == \dl_pow(2, this.log_buckets - l); + @ + @ // Ghost binary search + @ loop_invariant this.binarySearchInvariant(b_bin, d_bin, value); + @ loop_invariant this.treeSearchInvariant(b, l, b_bin, d_bin); + @ + @ decreases this.log_buckets - l; + @ assignable \strictly_nothing; + @*/ + for (int l = 0; l < this.log_buckets; ++l) { + //@ assert treeSearchInvariantLemma(b, l, b_bin, d_bin, value); + //@ assert this.binarySearchInvariantLemma(b_bin, d_bin, value, l); + //@ assert treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2); + //@ assert this.binarySearchInvariant(this.sorted_splitters[b_bin - d_bin / 2] < value ? b_bin : b_bin - d_bin / 2, d_bin / 2, value); + + //@ assert (d_bin / 2) * 2 == d_bin; + //@ set d_bin = d_bin / 2; + //@ assert 0 <= \dl_pow(2, this.log_buckets - l) <= \dl_pow(2, this.log_buckets); + //@ assert 0 <= b_bin - d_bin < this.num_buckets; + //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets); + //@ assert 0 <= b < this.num_buckets; + //@ assert d_bin == \dl_pow(2, this.log_buckets - l - 1); + //@ assert \dl_inInt(l + 1); + //@ assert \dl_inInt(2 * b + (this.tree[b] < value ? 1 : 0)); + //@ set b_bin = this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin; + b = 2 * b + (this.tree[b] < value ? 1 : 0); + } + return b; + } + + /*@ normal_behaviour + @ requires_free 0 <= begin <= end <= values.length; + @ requires_free indices.length == end - begin; + @ requires_free \disjoint(values[*], indices[*], this.tree[*], this.sorted_splitters[*]); + @ + @ ensures_free (\forall int i; 0 <= i < indices.length; this.num_buckets <= indices[i] < 2 * this.num_buckets); + @ // Needed to bring this method to logic + @ ensures_free (\forall int i; 0 <= i < indices.length; indices[i] == this.classify(values[begin + i])); + @ + @ assignable_free indices[*]; + @*/ + void classify_all(int[] values, int begin, int end, int[] indices) { + Functions.fill(indices, 0, indices.length, 1); + + //@ assert \dl_pow(2, 1) <= \dl_pow(2, this.log_buckets) <= \dl_pow(2, Constants.LOG_MAX_BUCKETS); + //@ assert \dl_pow(2, this.log_buckets) == this.num_buckets; + //@ ghost int[] b_bins = new int[indices.length]; + //@ ghost int d_bin = this.num_buckets; + + //@ assert Tree.piOf1(this.log_buckets); + + /*@ loop_invariant 0 <= o <= indices.length; + @ + @ // Ghost binary search + @ loop_invariant (\forall int j; 0 <= j < o; + @ b_bins[j] == this.num_buckets - 1 + @ ); + @ + @ decreases indices.length - o; + @ assignable b_bins[*]; + @*/ + for (int o = 0; o < indices.length; ++o) { + //@ set b_bins[o] = this.num_buckets - 1; + } + + /*@ loop_invariant 0 <= l && l <= this.log_buckets; + @ loop_invariant d_bin == \dl_pow(2, this.log_buckets - l); + @ + @ // Ghost binary search + @ loop_invariant (\forall int i; 0 <= i < indices.length; + @ this.binarySearchInvariant(b_bins[i], d_bin, values[begin + i]) && + @ this.treeSearchInvariant(indices[i], l, b_bins[i], d_bin) + @ ); + @ + @ decreases this.log_buckets - l; + @ assignable b_bins[*], indices[*]; + @*/ + for (int l = 0; l < this.log_buckets; ++l) { + //@ assert (d_bin / 2) * 2 == d_bin; + //@ set d_bin = d_bin / 2; + + //@ assert \dl_pow(2, l + 1) == 2 * \dl_pow(2, l) && \dl_pow(2, l + 2) == 2 * \dl_pow(2, l + 1); + + /*@ loop_invariant 0 <= j && j <= indices.length; + @ + @ loop_invariant (\forall int i; 0 <= i < j; + @ this.binarySearchInvariant(b_bins[i], d_bin, values[begin + i]) && + @ this.treeSearchInvariant(indices[i], l + 1, b_bins[i], d_bin) + @ ); + @ + @ loop_invariant (\forall int i; j <= i < indices.length; + @ this.binarySearchInvariant(b_bins[i], 2 * d_bin, values[begin + i]) && + @ this.treeSearchInvariant(indices[i], l, b_bins[i], 2 * d_bin) + @ ); + @ + @ decreases indices.length - j; + @ assignable b_bins[*], indices[*]; + @*/ + for (int j = 0; j < indices.length; ++j) { + //@ assert indices != b_bins && values != b_bins; + //@ assert this.sorted_splitters != b_bins && this.tree != b_bins; + + /*@ normal_behaviour + @ ensures this.binarySearchInvariant(b_bins[j], d_bin, values[begin + j]) && + @ this.treeSearchInvariant(indices[j], l + 1, b_bins[j], d_bin); + @ assignable b_bins[j], indices[j]; + @*/ + { + int value = values[begin + j]; + int b = indices[j]; + + //@ ghost int b_bin = b_bins[j]; + /*@ assert this.binarySearchInvariant(b_bin, 2 * d_bin, value) && + @ this.treeSearchInvariant(b, l, b_bin, 2 * d_bin); + @*/ + + //@ assert treeSearchInvariantLemma(b, l, b_bin, 2 * d_bin, value); + //@ assert \invariant_for(this); + //@ assert this.binarySearchInvariantLemma(b_bin, 2 * d_bin, value, l); + //@ assert treeSearchInvariant(2 * b + (this.tree[b] < value ? 1 : 0), l + 1, this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin, d_bin); + //@ assert this.binarySearchInvariant(this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin, d_bin, value); + + //@ assert 0 <= \dl_pow(2, this.log_buckets - l) <= \dl_pow(2, this.log_buckets); + //@ assert 0 <= b_bin - d_bin < this.num_buckets; + //@ assert \dl_pow(2, l + 1) <= \dl_pow(2, this.log_buckets); + //@ assert 0 <= b < this.num_buckets; + //@ assert d_bin == \dl_pow(2, this.log_buckets - l - 1); + //@ assert \dl_inInt(l + 1); + //@ assert \dl_inInt(2 * b + (this.tree[b] < value ? 1 : 0)); + //@ set b_bins[j] = this.sorted_splitters[b_bin - d_bin] < value ? b_bin : b_bin - d_bin; + indices[j] = 2 * b + (this.tree[b] < value ? 1 : 0); + } + {;;} + } + } + + //@ assert d_bin == 1; + } +} diff --git a/src/main/java/de/wiesler/Cleanup.java b/src/main/java/de/wiesler/Cleanup.java index 53c944a..50ec32c 100644 --- a/src/main/java/de/wiesler/Cleanup.java +++ b/src/main/java/de/wiesler/Cleanup.java @@ -315,7 +315,16 @@ public static void cleanup( @ @ assignable values[start..stop - 1]; @*/ - {} + { + if (stop - start <= Constants.ACTUAL_BASE_CASE_SIZE || is_last_level) { + //@ ghost \seq bucketValuesBeforeSort = \dl_seq_def_workaround(start, stop, values); + // seqPerm(seq, seq2) + // forall i in seq2; f(i) ==> forall i in seq; f(i) + Sorter.fallback_sort(values, start, stop); + //@ ghost \seq bucketValuesAfterSort = \dl_seq_def_workaround(start, stop, values); + //@ assert (\forall int i; 0 <= i < bucketValuesAfterSort.length; classifier.classOf((int)bucketValuesAfterSort[i]) == bucket); + } + } /*@ assert \invariant_for(classifier) && \invariant_for(bucket_pointers) && \invariant_for(buffers) && @ Functions.countElementSplit(values, begin, begin + \old(bucket_starts[bucket]), begin + \old(bucket_starts[bucket + 1])) && diff --git a/src/main/java/de/wiesler/Sorter.java b/src/main/java/de/wiesler/Sorter.java index 04276f9..a842c27 100644 --- a/src/main/java/de/wiesler/Sorter.java +++ b/src/main/java/de/wiesler/Sorter.java @@ -565,19 +565,63 @@ private static void sample_sort(int[] values, int begin, int end, Storage storag @ assignable values[begin..end - 1]; @*/ public static void fallback_sort(int[] values, int begin, int end) { - // insertion_sort(values, begin, end); + insertion_sort(values, begin, end); } + /*@ model_behaviour + @ requires 0 <= idx < seq.length; + @ ensures (\forall int x; 0 <= x < seq.length; + @ \result[x] == (x == idx ? value : seq[x])); + @ ensures \result.length == seq.length; + @ static no_state model \seq seqUpd(\seq seq, int idx, int value) { + @ return \seq_concat(\seq_concat( + @ \seq_sub(seq, 0, idx), + @ \seq_singleton(value)), + @ \seq_sub(seq, idx+1, seq.length)); + @ } + @*/ + + /*@ public normal_behaviour + @ requires 0 <= begin <= end <= values.length; + @ + @ ensures \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), \old(\dl_seq_def_workaround(begin, end, values))); + @ + @ ensures Functions.isSortedSlice(values, begin, end); + @ + @ assignable values[begin..end - 1]; + @*/ public static void insertion_sort(int[] values, int begin, int end) { if (end - begin < 2) return; + int k = begin + 1; - for (++begin; begin < end; ++begin) { - int value = values[begin]; - int hole = begin; - for (int i = begin - 1; i > 0 && value < values[i]; --i) { + /*@ loop_invariant \dl_seqPerm(\dl_seq_def_workaround(begin, end, values), + @ \old(\dl_seq_def_workaround(begin, end, values))); + @ loop_invariant begin < k <= end; + @ loop_invariant (\forall int x; k <= x < end; values[x] == \old(values[x])); + @ loop_invariant Functions.isSortedSlice(values, begin, k); + @ assignable values[begin..end - 1]; + @ decreases end - k; + @*/ + for (; k < end; ++k) { + int value = values[k]; + int hole = k; + + /*@ loop_invariant hole == i + 1; + @ loop_invariant begin-1 <= i < k; + @ loop_invariant i == k - 1 || Functions.isSortedSlice(values, begin, k+1); + @ loop_invariant Functions.isSortedSlice(values, begin, k); + @ loop_invariant \dl_seqPerm( + @ seqUpd(\dl_seq_def_workaround(begin, end, values), hole - begin, value), + @ \old(\dl_seq_def_workaround(begin, end, values))); + @ loop_invariant value <= values[hole]; + @ assignable values[begin..k]; + @ decreases i + 1; + */ + for(int i = k - 1; i >= begin && value < values[i]; i--) { values[hole] = values[i]; hole = i; } + values[hole] = value; } } diff --git a/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..6d8dfe5 --- /dev/null +++ b/src/main/java/de/wiesler/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,8039 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Tue Oct 24 17:46:35 CEST 2023 +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:off , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:off , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=7000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "."; + +\proofObligation "#Proof Obligation Settings +#Tue Oct 24 17:46:35 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "mattias" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "98267") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "4")) +(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1")) +(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv")) +(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_insertion_sort,savedHeapBefore_insertion_sort,_beginBefore_insertion_sort,_endBefore_insertion_sort,_valuesBefore_insertion_sort")) + (builtin "One Step Simplification" (formula "8")) +(rule "ifUnfold" (formula "8") (term "1") (inst "#boolv=x")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x")) +(rule "compound_less_than_comparison_1" (formula "8") (term "1") (inst "#v0=x_1")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x_1")) +(rule "assignmentSubtractionInt" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "translateJavaSubInt" (formula "8") (term "0,1,0")) +(rule "polySimp_elimSub" (formula "8") (term "0,1,0")) +(rule "polySimp_addComm0" (formula "8") (term "0,1,0")) +(rule "less_than_comparison_simple" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "ifSplit" (formula "8")) +(branch "if x true" + (builtin "One Step Simplification" (formula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "methodCallEmptyReturn" (formula "9") (term "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "tryEmpty" (formula "9") (term "1")) + (rule "emptyModality" (formula "9") (term "1")) + (rule "andRight" (formula "9")) + (branch "Case 1" + (rule "andRight" (formula "9")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0")) + (rule "allRight" (formula "9") (inst "sk=i_0")) + (rule "impRight" (formula "9")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "11")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) +) +(branch "if x false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationAssign" (formula "9") (term "1")) + (rule "variableDeclaration" (formula "9") (term "1") (newnames "k")) + (rule "assignmentAdditionInt" (formula "9") (term "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaAddInt" (formula "9") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,1,0")) + (rule "for_to_while" (formula "9") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "elim_double_block_3" (formula "9") (term "1")) + (builtin "Loop Invariant" (formula "9") (newnames "variant,b,heapBefore_LOOP,kBefore_LOOP,k_0,heap_After_LOOP,anon_heap_LOOP,o,f")) + (branch "Invariant Initially Valid" + (rule "andRight" (formula "9")) + (branch "Case 1" + (rule "andRight" (formula "9")) + (branch "Case 1" + (rule "andRight" (formula "9")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "9")) + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "9")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltRight" (formula "7")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "9"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaAddInt" (formula "8") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "1,1,0,0")) + (rule "allRight" (formula "8") (inst "sk=i_0")) + (rule "impRight" (formula "8")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "10")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "2")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "9")) + ) + ) + (branch "Body Preserves Invariant" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,2,0,0,0,0,1,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1,1")) + (rule "andLeft" (formula "8")) + (rule "impRight" (formula "12")) + (rule "andLeft" (formula "9")) + (rule "eqSymm" (formula "14") (term "1,0,0,1,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "11") (term "2,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "2,1,0,1,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,2,1,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,1,1,1,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "mul_literals" (formula "14") (term "1,2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "11") (term "2,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "2,1,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "variableDeclarationAssign" (formula "1") (term "1")) + (rule "variableDeclarationAssign" (formula "14") (term "1")) + (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_1")) + (rule "variableDeclaration" (formula "14") (term "1") (newnames "exc_25")) + (rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "variableDeclaration" (formula "14") (term "1") (newnames "thrownExc")) + (rule "blockThrow" (formula "14") (term "1,0,0,1")) + (rule "elementOfArrayRange" (formula "14") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "less_than_comparison_simple" (formula "11") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "methodCallEmpty" (formula "11") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "emptyModality" (formula "11") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "notRight" (formula "11")) + (rule "ifUnfold" (formula "14") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "14") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "replace_known_left" (formula "14") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "arrayLengthNotNegative" (formula "7") (term "0")) + (rule "arrayLengthIsAnInt" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ifSplit" (formula "15")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "value")) + (rule "assignment_array2" (formula "15")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "16") (term "1")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "hole")) + (rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "variableDeclarationAssign" (formula "16") (term "1")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "i")) + (rule "assignmentSubtractionInt" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0")) + (builtin "Loop Invariant" (formula "16") (newnames "variant_0,b_0,heapBefore_LOOP_0,iBefore_LOOP,holeBefore_LOOP,i_0,hole_0,heap_After_LOOP_0,anon_heap_LOOP_0,o,f")) + (branch "Invariant Initially Valid" + (rule "andRight" (formula "16")) + (branch "Case 1" + (rule "andRight" (formula "16")) + (branch "Case 1" + (rule "andRight" (formula "16")) + (branch "Case 1" + (rule "andRight" (formula "16")) + (branch "Case 1" + (rule "andRight" (formula "16")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "16")) + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "16")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0")) + (rule "mul_literals" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_ltRight" (formula "14")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "16")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "1")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_zero_right" (formula "11") (term "0")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "16")) + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "16")) + (builtin "One Step Simplification" (formula "17")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "17") (term "3,0")) + (rule "translateJavaSubInt" (formula "16") (term "1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimSub" (formula "16") (term "0")) + (rule "mul_literals" (formula "16") (term "1,0")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "17") (term "3,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,0")) + (rule "times_zero_1" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "16")) + (rule "selectOfAnon" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "15")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRange" (formula "16") (term "0,1") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "16")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "16")) + (rule "wellFormedAnon" (formula "16")) + (builtin "SMTRule") + ) + ) + (branch "Body Preserves Invariant" + (builtin "One Step Simplification" (formula "15")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "3,0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "18") (term "1,0,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "18") (term "0,1,1,1,0,1")) + (rule "translateJavaSubInt" (formula "18") (term "1,0,1,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "18") (term "3,0,1,1,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "18") (term "0,0,1,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "18") (term "0,1,1,1,0,1,1")) + (rule "andLeft" (formula "15")) + (rule "impRight" (formula "19")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "eqSymm" (formula "24") (term "0,1,0,0,0,0,1,1,0,1")) + (rule "eqSymm" (formula "24") (term "1,0,0,1,0,1,1,0,1")) + (rule "eqSymm" (formula "19") (term "0")) + (rule "polySimp_elimSub" (formula "24") (term "0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "17") (term "0")) + (rule "mul_literals" (formula "17") (term "1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,0,1,0,0,0,0,1,1,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,0,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "3,0,1,1,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,1,0,1")) + (rule "polySimp_addComm0" (formula "19") (term "3,0,1")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,1,0,0,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "variableDeclarationAssign" (formula "1") (term "1")) + (rule "variableDeclarationAssign" (formula "24") (term "1")) + (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_0_1")) + (rule "variableDeclaration" (formula "24") (term "1") (newnames "exc_26")) + (rule "assignment" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "variableDeclaration" (formula "24") (term "1") (newnames "thrownExc_1")) + (rule "blockThrow" (formula "24") (term "1,0,0,1")) + (rule "blockThrow" (formula "24") (term "1,0,0,1")) + (rule "elementOfArrayRange" (formula "24") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24")) (ifInst "" (formula "5"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "pullOutSelect" (formula "21") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "25")) (ifInst "" (formula "5"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_or" (formula "18")) + (rule "compound_assignment_3_nonsimple" (formula "23") (term "1")) + (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_3")) + (rule "compound_assignment_3_nonsimple" (formula "26") (term "1")) + (rule "ifElseUnfold" (formula "23") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_4")) + (rule "compound_assignment_2" (formula "23") (term "1") (inst "#v=x_5")) + (rule "variableDeclarationAssign" (formula "23") (term "1")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_5")) + (rule "greater_equal_than_comparison_simple" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "compound_assignment_1_new" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "ifElseUnfold" (formula "26") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_6")) + (rule "compound_assignment_2" (formula "26") (term "1") (inst "#v=x_7")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_7")) + (rule "greater_equal_than_comparison_simple" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "compound_assignment_1_new" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "ifElseSplit" (formula "23")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "24")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "27") (term "0,0,1,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "27")) + (rule "assignment" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "methodCallEmpty" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "emptyModality" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "closeTrue" (formula "24")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "24")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "compound_less_than_comparison_2" (formula "24") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "24") (term "1")) + (rule "variableDeclaration" (formula "24") (term "1") (newnames "x_8")) + (rule "assignment" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "variableDeclarationAssign" (formula "24") (term "1")) + (rule "variableDeclaration" (formula "24") (term "1") (newnames "x_9")) + (rule "assignment_array2" (formula "24")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "methodCallEmpty" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "emptyModality" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "notRight" (formula "26")) + (rule "ifElseSplit" (formula "29")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "29") (term "1") (inst "#v1=x_5") (inst "#v0=x_4")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_10")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_11")) + (rule "assignment_array2" (formula "29")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "replaceKnownSelect_taclet0110011_3" (formula "29") (term "0,1,0")) + (rule "less_than_comparison_simple" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "blockEmpty" (formula "29") (term "1")) + (rule "ifSplit" (formula "29")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "eval_order_array_access3" (formula "29") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_12")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_13")) + (rule "assignment_array2" (formula "29")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "replaceKnownSelect_taclet0110011_3" (formula "29") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "29")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "postdecrement" (formula "29") (term "1")) + (rule "compound_subtraction_1" (formula "29") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_14")) + (rule "widening_identity_cast_5" (formula "29") (term "1")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "assignmentSubtractionInt" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "translateJavaSubInt" (formula "29") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,0")) + (rule "tryEmpty" (formula "29") (term "1")) + (rule "methodCallEmpty" (formula "29") (term "1")) + (rule "emptyModality" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "29")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "29")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i_1") (userinteraction)) + (builtin "One Step Simplification" (formula "30") (userinteraction)) + (rule "allRight" (formula "30") (inst "sk=i_1_0") (userinteraction)) + (rule "eqTermCut" (formula "30") (term "1,0,1,1,0") (inst "s=i_0") (userinteraction)) + (branch "Assume k_0 = i_0" + (rule "translateJavaSubInt" (formula "31") (term "1,1,0") (userinteraction)) + (rule "orLeft" (formula "23") (userinteraction)) + (branch " de.wiesler.Functions.isSortedSlice(values, begin, 1 + k_0) @heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] = TRUE" + (builtin "SMTRule") + ) + (branch "-1 + k_0 = i_0" + (builtin "SMTRule") + ) + ) + (branch "Assume k_0 != i_0" + (rule "translateJavaSubInt" (formula "31") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1")) + (rule "notLeft" (formula "1")) + (rule "impRight" (formula "31")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "31") (term "1") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "33") (term "0,0") (ifseqformula "23")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "1") (term "3,0,1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "5") (term "0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "8") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_left" (formula "19") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "20"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0")) + (rule "wellFormedAnon" (formula "26") (term "1,0")) + (rule "wellFormedAnon" (formula "26") (term "0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "29")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "26") (term "0")) + (rule "wellFormedAnon" (formula "26") (term "1,0")) + (rule "wellFormedAnon" (formula "26") (term "0,1,0")) + (rule "replace_known_left" (formula "26") (term "1,1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "30")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "27"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0")) + (rule "wellFormedAnon" (formula "26") (term "1,0")) + (rule "wellFormedAnon" (formula "26") (term "0,1,0")) + (rule "replace_known_right" (formula "26") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "21")) (ifInst "" (formula "27"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEqRigid" (formula "2") (term "1,0,2,2,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_contradEq7" (formula "24") (term "1") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,1")) + (rule "leq_literals" (formula "24") (term "0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "shift_paren_or" (formula "17") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "allLeft" (formula "23") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1")) + (rule "add_literals" (formula "23") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "23") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "23") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "23") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "allLeft" (formula "20") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1")) + (rule "add_literals" (formula "20") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "20") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_10" (formula "20") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "29")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "20") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "20") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "allLeft" (formula "24") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "replace_known_left" (formula "24") (term "1,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "allLeft" (formula "25") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet0110000000010110011_24" (formula "25") (term "1,1")) + (rule "replaceKnownSelect_taclet0110000000010110011_22" (formula "25") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_25" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_23" (formula "25") (term "0,1")) + (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "allLeft" (formula "25") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "25") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "31")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "25") (ifseqformula "2")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0")) + (rule "add_literals" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "closeFalse" (formula "25")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "1")) + (rule "add_literals" (formula "6") (term "0,1")) + (rule "add_zero_left" (formula "6") (term "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_literals" (formula "28") (term "0")) + (rule "equal_literals" (formula "28")) + (rule "false_right" (formula "28")) + (rule "applyEqRigid" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "commute_or" (formula "24") (term "0,0,1,0")) + (rule "cut_direct" (formula "23") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "23") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,1") (ifseqformula "21")) + (rule "applyEq" (formula "16") (term "1,0,0,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "23") (term "1,1,1,0,0") (ifseqformula "21")) + (rule "applyEq" (formula "23") (term "2,1,0,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,0,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "17") (term "1,1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "16") (term "1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "applyEqRigid" (formula "21") (term "1,0,0,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "23") (term "0,2,1") (ifseqformula "20")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0") (ifseqformula "20")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "25") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "false_right" (formula "25")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "24") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "all_pull_out3" (formula "15") (term "0")) + (rule "shift_paren_or" (formula "15") (term "0,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "all_pull_out3" (formula "21") (term "0")) + (rule "shift_paren_or" (formula "21") (term "0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "allLeft" (formula "16") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "26")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0")) + (rule "replace_known_left" (formula "16") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "16") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "26")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_subsumption0" (formula "16") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "allLeft" (formula "23") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "23") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet011110000000010110011_20" (formula "23") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet011110000000010110011_21" (formula "23") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "23") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet011110000000010110011_18" (formula "23") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet011110000000010110011_19" (formula "23") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "23") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "23") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "23")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_strengthen1" (formula "22") (ifseqformula "27")) + (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "false_right" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "shift_paren_or" (formula "17") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "all_pull_out3" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,0")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0,0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "1,1,0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "31")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1,1,0") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "commute_or" (formula "24") (term "0,0")) + (rule "allLeft" (formula "17") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,1,1,0,0")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0,0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "1,1,0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "32")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "17") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEqReverse" (formula "18") (term "1,1,0") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "commute_or" (formula "17") (term "0,0")) + (rule "allLeft" (formula "19") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet111110000000010110011_20" (formula "19") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_21" (formula "19") (term "1,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,2,0,1")) + (rule "add_literals" (formula "19") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "19") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "19") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_10" (formula "19") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "allLeft" (formula "25") (inst "t=begin<>")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "allLeft" (formula "26") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "26") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "26") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "1,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0")) + (rule "leq_literals" (formula "26") (term "0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "35")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,0")) + (rule "replace_known_left" (formula "26") (term "1,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "allLeft" (formula "27") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet111110000000010110011_18" (formula "27") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_19" (formula "27") (term "1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0,1")) + (rule "add_literals" (formula "27") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "27") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "27") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "27") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "1,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "allLeft" (formula "32") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet111110000000010110011_18" (formula "32") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_19" (formula "32") (term "1,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,2,0,1")) + (rule "add_literals" (formula "32") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "32") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "32") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_5" (formula "32") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "32") (term "1")) + (rule "replace_known_left" (formula "32") (term "1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "allLeft" (formula "29") (inst "t=begin")) + (rule "replaceKnownSelect_taclet111110000000010110011_24" (formula "29") (term "0,1")) + (rule "replaceKnownSelect_taclet111110000000010110011_22" (formula "29") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_25" (formula "29") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111110000000010110011_23" (formula "29") (term "1,1")) + (rule "replace_known_left" (formula "29") (term "1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "allLeft" (formula "29") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet110000000010110011_12" (formula "29") (term "1,1")) + (rule "replaceKnownSelect_taclet110000000010110011_14" (formula "29") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_13" (formula "29") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000010110011_15" (formula "29") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "29") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,1")) + (rule "leq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,1")) + (rule "leq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "29")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "22") (term "1")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "25")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "27") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "wellFormedAnon" (formula "19") (term "0,1,0")) + (rule "replace_known_left" (formula "19") (term "1,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "22")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "20"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "18") (term "0,0")) + (rule "wellFormedAnon" (formula "18") (term "1,0")) + (rule "wellFormedAnon" (formula "18") (term "0,1,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "19") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "allRight" (formula "24") (inst "sk=i_1_0")) + (rule "impRight" (formula "24")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "29")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "2") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "24") (term "0,0")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,0,1,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "25"))) + (rule "true_left" (formula "24")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "24") (term "0,1")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_right" (formula "24") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "20"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0,1,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "25") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1")) + (rule "nnf_imp2or" (formula "25") (term "0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "25") (term "0,1,0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1,0,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1")) + (rule "nnf_imp2or" (formula "24") (term "0,1")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1")) + (rule "cut_direct" (formula "26") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,1,0,1") (ifseqformula "26")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "26")) + (rule "applyEq" (formula "26") (term "2,1,0,0,1,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "23") (term "1,1,1,0,0,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "0,2,1") (ifseqformula "24")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "2,1,0,1,1,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "1,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "8") (term "0,2,1,1") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "21") (term "1,1,0,0,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "2,1,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "1,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,1,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0,1,0,0") (ifseqformula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "2") (term "0,0") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0,1")) + (rule "commute_or" (formula "19") (term "0,0,1,0,0")) + (rule "impLeft" (formula "20")) + (branch "Case 1" + (rule "allRight" (formula "24") (inst "sk=i_1_1")) + (rule "orRight" (formula "24")) + (rule "orRight" (formula "24")) + (rule "inEqSimp_geqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "impLeft" (formula "22")) + (branch "Case 1" + (rule "allRight" (formula "26") (inst "sk=i_1_2")) + (rule "orRight" (formula "26")) + (rule "orRight" (formula "26")) + (rule "allRight" (formula "28") (inst "sk=j_0")) + (rule "orRight" (formula "28")) + (rule "orRight" (formula "28")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_geqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1")) + (rule "polySimp_elimOne" (formula "5") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "polySimp_elimOne" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "32")) (ifInst "" (formula "18"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "2"))) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1")) + (rule "polySimp_elimOne" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "33")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "8"))) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "all_pull_out3" (formula "30") (term "0")) + (rule "shift_paren_or" (formula "30") (term "0,0")) + (rule "shift_paren_or" (formula "30") (term "0,0,0")) + (rule "allLeft" (formula "31") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "31") (term "1,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0")) + (rule "leq_literals" (formula "31") (term "0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "leq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "pullOutSelect" (formula "31") (term "1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "31") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_commuteGeq" (formula "32")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "31") (term "1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "31") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "11") (ifseqformula "31")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_literals" (formula "11") (term "0")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + (branch "Case 2" + (rule "all_pull_out3" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,0")) + (rule "allLeft" (formula "25") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "25") (term "1,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "25") (term "1,0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "25") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "25")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "Case 2" + (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "19")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "allLeft" (formula "15") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "15")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "replace_known_left" (formula "15") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "15") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "15")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteGeq" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "15") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "15") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "allLeft" (formula "24") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq0" (formula "24") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet101000000010110011_18" (formula "24") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet101000000010110011_19" (formula "24") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet101000000010110011_20" (formula "24") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet101000000010110011_21" (formula "24") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "24") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "24") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_strengthen1" (formula "23") (ifseqformula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "commute_or" (formula "26") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEqRigid" (formula "2") (term "1,0,2,0,1,0") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "allLeft" (formula "23") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "23") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_5" (formula "23") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0")) + (rule "leq_literals" (formula "23") (term "0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "24") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_5" (formula "24") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "25")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "1")) + (rule "add_literals" (formula "6") (term "0,1")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "allLeft" (formula "25") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet1000000010110011_14" (formula "25") (term "0,1")) + (rule "replaceKnownSelect_taclet1000000010110011_12" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_15" (formula "25") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000000010110011_13" (formula "25") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "selectOfStore" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "castDel" (formula "29") (term "1,0")) + (rule "selectOfAnon" (formula "29") (term "2,0")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "28")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRange" (formula "29") (term "0,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "29")) + (rule "selectOfAnon" (formula "29") (term "2,2,0")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "28")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRange" (formula "29") (term "0,2,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "29")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "allRight" (formula "29") (inst "sk=f_0")) + (rule "allRight" (formula "29") (inst "sk=o_0")) + (rule "orRight" (formula "29")) + (rule "orRight" (formula "29")) + (rule "selectOfAnon" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "elementOfArrayRange" (formula "31") (term "0,0,0,0") (inst "iv=iv")) + (rule "selectOfStore" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "castDel" (formula "31") (term "1,1")) + (rule "selectOfAnon" (formula "31") (term "2,1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30"))) + (rule "elementOfArrayRange" (formula "31") (term "0,0,2,1") (inst "iv=iv")) + (rule "selectOfAnon" (formula "31") (term "2,2,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "elementOfArrayRange" (formula "31") (term "0,0,0,2,2,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "SMTRule") + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "SMTRule") + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "SMTRule") + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "25")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (rule "false_right" (formula "25")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "commute_or" (formula "1")) + (rule "ifElseSplit" (formula "27")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "27") (term "1") (inst "#v1=x_5") (inst "#v0=x_4")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_10")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_11")) + (rule "assignment_array2" (formula "27")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "blockEmpty" (formula "29") (term "1")) + (rule "ifSplit" (formula "29")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access3" (formula "30") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_12")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_13")) + (rule "assignment_array2" (formula "30")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "30")) + (rule "replaceKnownSelect_taclet012110011_3" (formula "30") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "30")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "30")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "postdecrement" (formula "30") (term "1")) + (rule "compound_subtraction_1" (formula "30") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_14")) + (rule "widening_identity_cast_5" (formula "30") (term "1")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "assignmentSubtractionInt" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaSubInt" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "0,1,0")) + (rule "mul_literals" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,0")) + (rule "tryEmpty" (formula "30") (term "1")) + (rule "methodCallEmpty" (formula "30") (term "1")) + (rule "emptyModality" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "30")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "30")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "selectOfStore" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "castDel" (formula "30") (term "1,0")) + (rule "selectOfAnon" (formula "30") (term "2,0")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRange" (formula "30") (term "0,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "30")) + (rule "selectOfAnon" (formula "30") (term "2,2,0")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRange" (formula "30") (term "0,2,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "30")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "allRight" (formula "30") (inst "sk=f_0")) + (rule "allRight" (formula "30") (inst "sk=o_0")) + (rule "orRight" (formula "30")) + (rule "orRight" (formula "30")) + (rule "selectOfAnon" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "elementOfArrayRange" (formula "32") (term "0,0,0,0") (inst "iv=iv")) + (rule "selectOfStore" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "castDel" (formula "32") (term "1,1")) + (rule "selectOfAnon" (formula "32") (term "2,1")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "31"))) + (rule "elementOfArrayRange" (formula "32") (term "0,0,2,1") (inst "iv=iv")) + (rule "selectOfAnon" (formula "32") (term "2,2,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "elementOfArrayRange" (formula "32") (term "0,0,0,2,2,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (builtin "SMTRule") + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (builtin "SMTRule") + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "tryEmpty" (formula "30") (term "1")) + (rule "methodCallEmpty" (formula "30") (term "1")) + (rule "emptyModality" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "23"))) + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "orRight" (formula "30")) + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "selectOfAnon" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRange" (formula "30") (term "0,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "30")) + (rule "selectOfAnon" (formula "30") (term "2,0")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "29")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRange" (formula "30") (term "0,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "30")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "allRight" (formula "30") (inst "sk=f_0")) + (rule "allRight" (formula "30") (inst "sk=o_0")) + (rule "orRight" (formula "30")) + (rule "orRight" (formula "30")) + (rule "selectOfAnon" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "31"))) + (rule "elementOfArrayRange" (formula "32") (term "0,0,1") (inst "iv=iv")) + (rule "selectOfAnon" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "elementOfArrayRange" (formula "32") (term "0,0,0,0") (inst "iv=iv")) + (rule "selectOfAnon" (formula "32") (term "2,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "elementOfArrayRange" (formula "32") (term "0,0,0,2,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (builtin "SMTRule") + ) + ) + ) + ) + ) + (branch "Use Case" + (builtin "One Step Simplification" (formula "15")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "3,0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "1,0,0,0,0")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "eqSymm" (formula "18") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0")) + (rule "mul_literals" (formula "16") (term "1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "3,0,1")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "variableDeclarationAssign" (formula "23") (term "1")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "b_0_1")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,0")) + (rule "pullOutSelect" (formula "20") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "24")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "18")) + (rule "compound_assignment_3_nonsimple" (formula "25") (term "1")) + (rule "ifElseUnfold" (formula "25") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "25") (term "1") (newnames "x_3")) + (rule "compound_assignment_2" (formula "25") (term "1") (inst "#v=x_4")) + (rule "variableDeclarationAssign" (formula "25") (term "1")) + (rule "variableDeclaration" (formula "25") (term "1") (newnames "x_4")) + (rule "greater_equal_than_comparison_simple" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "compound_assignment_1_new" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "ifElseSplit" (formula "25")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "methodCallEmpty" (formula "26") (term "1")) + (rule "emptyModality" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "assignment_to_primitive_array_component" (formula "26")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "26")) + (rule "blockEmpty" (formula "26") (term "1")) + (rule "preincrement" (formula "26") (term "1")) + (rule "compound_int_cast_expression" (formula "26") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_5")) + (rule "remove_parentheses_right" (formula "26") (term "1")) + (rule "assignmentAdditionInt" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "26") (term "1")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "tryEmpty" (formula "26") (term "1")) + (rule "methodCallEmpty" (formula "26") (term "1")) + (rule "emptyModality" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_homoEq" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1")) + (rule "mul_literals" (formula "18") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "24")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "17")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0")) + (rule "applyEqRigid" (formula "20") (term "1,0,0,1") (ifseqformula "17")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "0,0,0,1")) + (rule "add_zero_left" (formula "20") (term "0,0,1")) + (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "17")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "23")) + (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "0") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "3")) + (rule "applyEqReverse" (formula "25") (term "3,0,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "15") (ifseqformula "2")) + (rule "applyEq" (formula "20") (term "0,0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "15")) + (rule "applyEq" (formula "20") (term "0,2,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "19") (term "0,2,2,0") (ifseqformula "14")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "14")) + (rule "applyEq" (formula "22") (term "0,2,0,0") (ifseqformula "14")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,0")) + (rule "times_zero_1" (formula "15") (term "0")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "13") (term "1,1") (ifseqformula "14")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "16") (term "1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,1")) + (rule "add_literals" (formula "16") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1")) + (rule "add_zero_right" (formula "16") (term "0,0,1")) + (rule "leq_literals" (formula "16") (term "0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "17") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "allRight" (formula "19") (inst "sk=i_1_0")) + (rule "impRight" (formula "19")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "21")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "23")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0")) + (rule "wellFormedAnon" (formula "20") (term "1,0")) + (rule "wellFormedAnon" (formula "20") (term "0,1,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "17")) (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = begin TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "2") (term "1,0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "shift_paren_or" (formula "17") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "allLeft" (formula "18") (inst "t=begin<>")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "23")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "18") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "23")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0")) + (rule "replace_known_left" (formula "18") (term "1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "18") (ifseqformula "22")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0")) + (rule "add_literals" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + (branch "i_1_0 = begin FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "2") (ifseqformula "23")) + (rule "inEqSimp_contradEq7" (formula "23") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "false_right" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "shift_paren_or" (formula "19") (term "0,0")) + (rule "shift_paren_or" (formula "19") (term "0,0,0")) + (rule "allLeft" (formula "20") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet1000020011_10" (formula "20") (term "1,1")) + (rule "replaceKnownSelect_taclet1000020011_8" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_11" (formula "20") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_9" (formula "20") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "20") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "leq_literals" (formula "20") (term "0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "leq_literals" (formula "20") (term "0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "3")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "26") (inst "sk=f_0")) + (rule "allRight" (formula "26") (inst "sk=o_0")) + (rule "orRight" (formula "26")) + (rule "orRight" (formula "26")) + (rule "selectOfStore" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "castDel" (formula "28") (term "1,1")) + (rule "selectOfAnon" (formula "28") (term "2,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "elementOfArrayRange" (formula "28") (term "0,0,0,2,1") (inst "iv=iv")) + (rule "selectOfAnon" (formula "28") (term "2,2,1")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27"))) + (rule "elementOfArrayRange" (formula "28") (term "0,0,2,2,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "27")) + (builtin "SMTRule") + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "26") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_5")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_6")) + (rule "assignment_array2" (formula "26")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "methodCallEmpty" (formula "28") (term "1")) + (rule "emptyModality" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "impRight" (formula "28")) + (rule "notLeft" (formula "1")) + (rule "assignment_to_primitive_array_component" (formula "29")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "blockEmpty" (formula "29") (term "1")) + (rule "preincrement" (formula "29") (term "1")) + (rule "compound_int_cast_expression" (formula "29") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_7")) + (rule "remove_parentheses_right" (formula "29") (term "1")) + (rule "assignmentAdditionInt" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "translateJavaAddInt" (formula "29") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "29") (term "1")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "tryEmpty" (formula "29") (term "1")) + (rule "methodCallEmpty" (formula "29") (term "1")) + (rule "emptyModality" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i_1") (userinteraction)) + (builtin "One Step Simplification" (formula "29") (userinteraction)) + (rule "allRight" (formula "29") (inst "sk=i_1_0") (userinteraction)) + (rule "orLeft" (formula "21") (userinteraction)) + (branch " de.wiesler.Functions.isSortedSlice(values, begin, 1 + k_0) @heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] = TRUE" + (rule "translateJavaAddInt" (formula "29") (term "0,2,1,1")) + (rule "translateJavaSubInt" (formula "29") (term "1,1,0")) + (rule "impRight" (formula "29")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "4")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "7") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "1") (term "3,0,1,1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "8") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "25") (term "0")) + (rule "wellFormedAnon" (formula "25") (term "1,0")) + (rule "wellFormedAnon" (formula "25") (term "0,1,0")) + (rule "replace_known_right" (formula "25") (term "0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "26"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "25") (term "0")) + (rule "wellFormedAnon" (formula "25") (term "1,0")) + (rule "wellFormedAnon" (formula "25") (term "0,1,0")) + (rule "replace_known_left" (formula "25") (term "1,1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "29")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "26"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "26") (term "0,1,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,2,2,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "8") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "commute_or" (formula "21") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "21") (term "0")) + (rule "shift_paren_or" (formula "21") (term "0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "allLeft" (formula "17") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1")) + (rule "add_literals" (formula "17") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "17") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_2" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_10" (formula "17") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "26")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "17") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "allLeft" (formula "23") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1")) + (rule "add_literals" (formula "23") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "23") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_1" (formula "23") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "23") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "10"))) + (rule "replaceKnownSelect_taclet0010000120011_18" (formula "23") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0010000120011_19" (formula "23") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "allLeft" (formula "21") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "replace_known_left" (formula "21") (term "1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "allLeft" (formula "22") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_1" (formula "22") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "22") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "29")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "28")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "7") (term "1")) + (rule "add_literals" (formula "7") (term "0,1")) + (rule "add_zero_left" (formula "7") (term "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0")) + (rule "equal_literals" (formula "26")) + (rule "false_right" (formula "26")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "2")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "23") (term "0,0")) + (rule "shift_paren_or" (formula "23") (term "0,0,0")) + (rule "allLeft" (formula "22") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet010000120011_12" (formula "22") (term "1,1")) + (rule "replaceKnownSelect_taclet010000120011_14" (formula "22") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_13" (formula "22") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_15" (formula "22") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,1")) + (rule "leq_literals" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "6")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + (branch "-1 + k_0 = i_0" + (rule "translateJavaAddInt" (formula "29") (term "0,2,1,1")) + (rule "translateJavaSubInt" (formula "29") (term "1,1,0")) + (rule "impRight" (formula "29")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_homoEq" (formula "23")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "4")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "6") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "7") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "7") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "6") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "applyEq" (formula "9") (term "0,1,0,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "21") (term "3,0") (ifseqformula "26")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "9") (term "0,2,1,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "19") (term "0,1,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "7") (term "0,0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "3") (term "0,1,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "applyEqRigid" (formula "27") (term "0,1,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,0,0")) + (rule "add_literals" (formula "27") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "27") (term "0,1,0,0")) + (rule "leq_literals" (formula "27") (term "1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "9") (term "1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "8") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "1") (term "2,1,0,0,0,1,0") (ifseqformula "24")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEqRigid" (formula "25") (term "3,0") (ifseqformula "24")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "24")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "applyEqRigid" (formula "8") (term "0,0,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "23") (term "0,1,0") (ifseqformula "24")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,0")) + (rule "times_zero_1" (formula "23") (term "0")) + (rule "leq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "25")) + (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "1") (term "3,0,1,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "3") (term "0,0") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "applyEq" (formula "1") (term "2,1,0,0,1,0") (ifseqformula "22")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "replace_known_left" (formula "6") (term "0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "1") (term "3,0,1,0,0") (ifseqformula "23")) + (rule "applyEqReverse" (formula "3") (term "0,0") (ifseqformula "23")) + (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0") (ifseqformula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "22")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_left" (formula "16") (term "0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "23")) (ifInst "" (formula "15")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_left" (formula "16") (term "0,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "24")) (ifInst "" (formula "9")) (ifInst "" (formula "15"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "commute_or" (formula "16") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,0")) + (rule "times_zero_1" (formula "6") (term "0")) + (rule "qeq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "4")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "22") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "false_right" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "all_pull_out3" (formula "15") (term "0")) + (rule "shift_paren_or" (formula "15") (term "0,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "allLeft" (formula "20") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet110000120011_11" (formula "20") (term "1,1")) + (rule "replaceKnownSelect_taclet110000120011_14" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_12" (formula "20") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_15" (formula "20") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "20") (term "1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_literals" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "29") (inst "sk=f_0")) + (rule "allRight" (formula "29") (inst "sk=o_0")) + (rule "orRight" (formula "29")) + (rule "orRight" (formula "29")) + (rule "selectOfStore" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "castDel" (formula "31") (term "1,1")) + (rule "selectOfAnon" (formula "31") (term "2,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "elementOfArrayRange" (formula "31") (term "0,0,0,2,1") (inst "iv=iv")) + (rule "selectOfAnon" (formula "31") (term "2,2,1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30"))) + (rule "elementOfArrayRange" (formula "31") (term "0,0,2,2,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "30")) + (builtin "SMTRule") + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (builtin "SMTRule") + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but k Out of Bounds!)" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15"))) + (builtin "SMTRule") + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Use Case" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "polySimp_elimSub" (formula "13") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "13") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0")) + (rule "mul_literals" (formula "10") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "2,1,0,0")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "b_1")) + (rule "less_than_comparison_simple" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "emptyModality" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "impRight" (formula "13")) + (rule "notLeft" (formula "1")) + (rule "methodCallEmpty" (formula "14") (term "1")) + (rule "tryEmpty" (formula "14") (term "1")) + (rule "emptyModality" (formula "14") (term "1")) + (rule "andRight" (formula "14")) + (branch "Case 1" + (rule "andRight" (formula "14")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "14")) + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "14")) + (rule "closeTrue" (formula "14")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "14")) + (rule "allRight" (formula "14") (inst "sk=f_0")) + (rule "allRight" (formula "14") (inst "sk=o_0")) + (rule "orRight" (formula "14")) + (rule "orRight" (formula "14")) + (rule "selectOfAnon" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "15"))) + (rule "elementOfArrayRange" (formula "16") (term "0,0,1") (inst "iv=iv")) + (builtin "SMTRule") + ) + ) +) +) +} diff --git a/src/main/java/de/wiesler/notes.tmp b/src/main/java/de/wiesler/notes.tmp new file mode 100644 index 0000000..1695e56 --- /dev/null +++ b/src/main/java/de/wiesler/notes.tmp @@ -0,0 +1,43 @@ + + +sp(su(cur),old) + +before = su(cur) + +su(cur') = swap(before, i, hole) + +--------------- + +sp(su(cur'), old) + + +sp(swap(before, i, hole), old) + + +cut: sp(swap(before, i, hole), before) + + + + + + +1 2 4 5 3 + +1 2 4 5 5 + 3 + +1 2 4 4 5 + 3 + ^ hole + ^ i + + ^ hole + ^ i + +1 2 4 3 5 + + + +upd(S, hole, value) + + diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..562a43c --- /dev/null +++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,4908 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 15:23:19 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 15:23:19 CEST 2022 +contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "14944") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "15")) +(rule "translateJavaAddInt" (formula "9") (term "3,0")) +(rule "translateJavaAddInt" (formula "10") (term "0")) +(rule "translateJavaMulInt" (formula "13") (term "1")) +(rule "translateJavaMulInt" (formula "14") (term "0")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_mulComm0" (formula "13") (term "1")) +(rule "polySimp_mulComm0" (formula "14") (term "0")) +(rule "polySimp_addComm0" (formula "9") (term "3,0")) +(rule "polySimp_addComm0" (formula "10") (term "0")) +(rule "disjointDefinition" (formula "18")) + (builtin "One Step Simplification" (formula "18")) +(rule "notLeft" (formula "18")) +(rule "eqSymm" (formula "18")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "assignment" (formula "21") (term "1")) + (builtin "One Step Simplification" (formula "21")) +(rule "variableDeclarationAssign" (formula "21") (term "1")) +(rule "variableDeclaration" (formula "21") (term "1") (newnames "self_25")) +(rule "arrayLengthIsAShort" (formula "14") (term "0")) +(rule "expand_inShort" (formula "14")) +(rule "replace_short_MIN" (formula "14") (term "0,1")) +(rule "replace_short_MAX" (formula "14") (term "1,0")) +(rule "andLeft" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "arrayLengthNotNegative" (formula "16") (term "0")) +(rule "arrayLengthNotNegative" (formula "10") (term "0")) +(rule "arrayLengthIsAShort" (formula "11") (term "0")) +(rule "expand_inShort" (formula "11")) +(rule "replace_short_MAX" (formula "11") (term "1,0")) +(rule "replace_short_MIN" (formula "11") (term "0,1")) +(rule "andLeft" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "27") (term "1") (inst "#v0=b")) +(rule "variableDeclaration" (formula "27") (term "1") (newnames "b")) +(rule "methodBodyExpand" (formula "27") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "27")) +(rule "variableDeclaration" (formula "27") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "27") (term "1") (inst "#v0=b_1")) +(rule "variableDeclaration" (formula "27") (term "1") (newnames "b_1")) +(rule "allocateInstance" (formula "27")) + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallWithinClass" (formula "30") (term "1")) +(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallSuper" (formula "30") (term "1")) +(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallEmpty" (formula "30") (term "1")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallEmpty" (formula "30") (term "1")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "30") (term "1")) +(rule "methodCallReturn" (formula "30") (term "1")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallEmpty" (formula "30") (term "1")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "variableDeclarationAssign" (formula "30") (term "1")) +(rule "variableDeclaration" (formula "30") (term "1") (newnames "var")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "variableDeclarationAssign" (formula "30") (term "1")) +(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_1")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "variableDeclarationAssign" (formula "30") (term "1")) +(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_2")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "variableDeclarationAssign" (formula "30") (term "1")) +(rule "variableDeclaration" (formula "30") (term "1") (newnames "var_3")) +(rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore_,savedHeapBefore_,varBefore_,var_1Before_,var_2Before_,var_3Before_,readBefore_,startBefore_,stopBefore_")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallSuper" (formula "30") (term "1")) +(rule "methodBodyExpand" (formula "30") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "30")) +(rule "methodCallEmpty" (formula "30") (term "1")) +(rule "blockEmpty" (formula "30") (term "1")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "assignment_write_attribute_this" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (builtin "Block Contract (Internal)" (formula "30") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "9")) (ifInst "" (formula "27")) (ifInst "" (formula "1"))) + (rule "andLeft" (formula "25")) + (rule "translateJavaAddInt" (formula "32") (term "1,3,0,1,0,0")) + (rule "eqSymm" (formula "32") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "32") (term "1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "1,3,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,3,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,3,0,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,3,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,3,0,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,3,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,3,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,3,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,3,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "32") (term "2,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,3,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0")) + (rule "dismissNonSelectedField" (formula "26") (term "0")) + (rule "dismissNonSelectedField" (formula "26") (term "0")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "emptyStatement" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "emptyStatement" (formula "32") (term "1")) + (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "29"))) + (rule "castDel" (formula "26") (term "0")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "tryEmpty" (formula "31") (term "1")) + (rule "blockEmptyLabel" (formula "31") (term "1")) + (rule "blockEmpty" (formula "31") (term "1")) + (rule "methodCallEmpty" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "emptyModality" (formula "31") (term "1")) + (rule "andRight" (formula "31")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "31")) + (rule "closeTrue" (formula "31")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "31")) + (rule "closeTrue" (formula "31")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "30")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "30")) + (rule "wellFormedStorePrimitive" (formula "30")) + (rule "wellFormedStorePrimitive" (formula "30")) + (rule "wellFormedStorePrimitive" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "22")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "wellFormedStoreObject" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "wellFormedStorePrimitive" (formula "26")) + (rule "wellFormedCreate" (formula "26")) + (rule "close" (formula "26") (ifseqformula "2")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "andRight" (formula "30")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "30")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaAddInt" (formula "30") (term "1,3,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,3,0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "2,3,0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "0")) + (rule "dismissNonSelectedField" (formula "30") (term "0")) + (rule "dismissNonSelectedField" (formula "30") (term "0")) + (rule "dismissNonSelectedField" (formula "30") (term "0")) + (rule "dismissNonSelectedField" (formula "30") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "20")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeTrue" (formula "27")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "30")) + ) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,0,1")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "translateJavaAddInt" (formula "34") (term "1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,3,0,0,1")) + (rule "translateJavaAddInt" (formula "28") (term "1,3,0,0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,3,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,3,0,0,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "replace_known_left" (formula "26") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "polySimp_addComm0" (formula "33") (term "1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,3,0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,3,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,3,0,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,0,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "33") (term "2,3,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,3,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "26") (term "2,3,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "27") (term "0,0") (inst "selectSK=de_wiesler_BucketPointers_bucket_starts_0")) + (rule "simplifySelectOfStore" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "castDel" (formula "27") (term "0")) + (rule "applyEq" (formula "26") (term "3,0,0,1,0") (ifseqformula "27")) + (rule "applyEq" (formula "34") (term "3,0,1,0") (ifseqformula "27")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "commute_and_2" (formula "26") (term "0,0")) + (rule "elim_double_block_2" (formula "34") (term "1")) + (rule "commute_and" (formula "26") (term "1,0,0,0")) + (rule "shift_paren_and" (formula "26") (term "0,0,0")) + (rule "commute_and" (formula "26") (term "0,0,0,0")) + (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "34")) + (rule "ifSplit" (formula "34")) + (branch "if x true" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "34") (term "1")) + (rule "assignment_write_attribute_this" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "for_to_while" (formula "34") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "bucket")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "loopScopeInvDia" (formula "34") (term "1") (newnames "bucket_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "34")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "impRight" (formula "35")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaMulInt" (formula "38") (term "0,2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "2,1,0,1,0,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,1,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,1,0,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,1,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0,0,1,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,0,0,1,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,0,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,2,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,0,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "pullOutSelect" (formula "38") (term "0,1,0,1,0,1,0") (inst "selectSK=de_wiesler_BucketPointers_buffer_0")) + (rule "applyEq" (formula "4") (term "0,1,0,0,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,1,0,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,1,0,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0,1,0,0,0,0,0,1,1,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,0,1,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "39") (term "0,1,0,1,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,1,0,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,1,0,0,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "4") (term "0,1,0,0,0,0,0,1,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "variableDeclaration" (formula "38") (term "1") (newnames "x_1")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,1,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "equalityToSeqGetAndSeqLenLeft" (formula "31") (inst "iv=iv")) + (rule "andLeft" (formula "31")) + (rule "applyEq" (formula "32") (term "0,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "ifElseUnfold" (formula "38") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "38") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "38") (term "1")) + (builtin "One Step Simplification" (formula "38")) + (rule "ifElseSplit" (formula "38")) + (branch "if x_2 true" + (builtin "Block Contract (Internal)" (formula "39") (newnames "exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "14")) (ifInst "" (formula "36")) (ifInst "" (formula "6"))) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "34")) + (rule "eqSymm" (formula "41") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "variableDeclarationAssign" (formula "41") (term "1")) + (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (rule "pullOutSelect" (formula "35") (term "0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "38"))) + (rule "castDel" (formula "35") (term "0")) + (rule "applyEqReverse" (formula "36") (term "0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "tryEmpty" (formula "40") (term "1")) + (rule "blockEmptyLabel" (formula "40") (term "1")) + (rule "blockEmpty" (formula "40") (term "1")) + (rule "methodCallEmpty" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "emptyModality" (formula "40") (term "1")) + (rule "andRight" (formula "40")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "40")) + (rule "closeTrue" (formula "40")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "40")) + (rule "closeTrue" (formula "40")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "39")) + (branch "Case 1" + (rule "andRight" (formula "39")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "39")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "39")) + (rule "wellFormedAnon" (formula "39")) + (rule "replace_known_left" (formula "39") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "32"))) + (rule "wellFormedStorePrimitive" (formula "34") (term "0")) + (rule "wellFormedStorePrimitive" (formula "34") (term "0")) + (rule "wellFormedStorePrimitive" (formula "34") (term "0")) + (rule "wellFormedStorePrimitive" (formula "34") (term "0")) + (rule "wellFormedCreate" (formula "34") (term "0")) + (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1")) + (rule "close" (formula "35") (ifseqformula "11")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "39")) + (branch "Case 1" + (rule "andRight" (formula "39")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "35"))) + (rule "closeTrue" (formula "39")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "39")) + (rule "orRight" (formula "39")) + (rule "dismissNonSelectedField" (formula "39") (term "0")) + (rule "dismissNonSelectedField" (formula "39") (term "0")) + (rule "dismissNonSelectedField" (formula "39") (term "0")) + (rule "dismissNonSelectedField" (formula "39") (term "0")) + (rule "dismissNonSelectedField" (formula "39") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "closeTrue" (formula "35")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "6"))) + (rule "closeTrue" (formula "39")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "36")) + (rule "translateJavaAddInt" (formula "38") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "37") (term "0,2,1")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "polySimp_addComm0" (formula "37") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "35")) + (rule "simplifySelectOfAnon" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43"))) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0,0")) + (rule "eqSymm" (formula "35") (term "0,0,0,0,0")) + (rule "replace_known_right" (formula "35") (term "0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "35")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "35") (term "0")) + (rule "pullOutSelect" (formula "38") (term "1") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "simplifySelectOfAnon" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "44"))) + (rule "dismissNonSelectedField" (formula "38") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "38") (term "0,0,0")) + (rule "eqSymm" (formula "38") (term "0,0,0,0,0")) + (rule "replace_known_right" (formula "38") (term "0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "38")) + (rule "ifthenelse_negated" (formula "38") (term "0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "1,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "1,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "1,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "1,0")) + (rule "pullOutSelect" (formula "39") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "45"))) + (rule "dismissNonSelectedField" (formula "39") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "39") (term "0,0,0")) + (rule "eqSymm" (formula "39") (term "0,0,0,0,0")) + (rule "replace_known_right" (formula "39") (term "0,0,0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "39")) + (rule "dismissNonSelectedField" (formula "39") (term "2,0")) + (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "39") (term "2,0")) + (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "39") (term "2,0")) + (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "39") (term "2,0")) + (rule "dismissNonSelectedField" (formula "39") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "39") (term "0")) + (rule "dismissNonSelectedField" (formula "39") (term "0,0,0")) + (rule "pullOutSelect" (formula "35") (term "1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfCreate" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43"))) + (rule "applyEqReverse" (formula "36") (term "1,0") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "pullOutSelect" (formula "35") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "39") (term "0,0,0") (ifseqformula "35")) + (rule "applyEq" (formula "40") (term "0,0,0") (ifseqformula "35")) + (rule "simplifySelectOfCreate" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43"))) + (rule "castDel" (formula "35") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "35") (term "0,0")) + (rule "replace_known_right" (formula "35") (term "1,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43"))) + (rule "applyEqReverse" (formula "39") (term "0,0,0") (ifseqformula "35")) + (rule "applyEqReverse" (formula "40") (term "0,0,0") (ifseqformula "35")) + (rule "applyEqReverse" (formula "36") (term "0,0,0") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "replace_known_left" (formula "38") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "38")) + (rule "simplifySelectOfCreate" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "42"))) + (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "38")) + (rule "applyEqReverse" (formula "37") (term "0") (ifseqformula "38")) + (rule "hideAuxiliaryEq" (formula "38")) + (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "35")) + (rule "applyEqReverse" (formula "37") (term "1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "replace_known_left" (formula "37") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "37")) + (rule "simplifySelectOfCreate" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "40"))) + (rule "applyEqReverse" (formula "38") (term "0") (ifseqformula "37")) + (rule "hideAuxiliaryEq" (formula "37")) + (rule "elim_double_block_2" (formula "43") (term "1")) + (rule "ifUnfold" (formula "43") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "43") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "43") (term "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "replace_known_left" (formula "43") (term "0,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "43")) + (rule "ifSplit" (formula "43")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "44")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "44")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "43") (term "1")) + (rule "variableDeclarationAssign" (formula "43") (term "1")) + (rule "variableDeclaration" (formula "43") (term "1") (newnames "start")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "43") (term "1")) + (rule "variableDeclarationAssign" (formula "43") (term "1")) + (rule "variableDeclaration" (formula "43") (term "1") (newnames "var_4")) + (rule "assignment_array2" (formula "43")) + (branch "Normal Execution (var != null)" + (builtin "One Step Simplification" (formula "43")) + (rule "replaceKnownSelect_taclet20112_3" (formula "43") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_12" (formula "43") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "43") (newnames "heapBefore_align_to_next_block,result_21,exc_27") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0")) + (branch "Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "38") (term "0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "eqSymm" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "assignment" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "blockEmpty" (formula "47") (term "1")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "stop")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "47") (term "1")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "var_5")) + (rule "eval_order_array_access5" (formula "47") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4")) + (rule "assignmentAdditionInt" (formula "47") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47")) + (rule "replace_int_MIN" (formula "47") (term "0,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "47") (term "0,1")) + (rule "add_literals" (formula "47") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "46") (term "1") (ifseqformula "2")) + (rule "leq_literals" (formula "46") (term "0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_leqRight" (formula "46")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "21")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "47")) + (rule "translateJavaAddInt" (formula "47") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,0")) + (rule "assignment_array2" (formula "47")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "47")) + (rule "replaceKnownSelect_taclet20112_4" (formula "47") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_11" (formula "47") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "47") (newnames "heapBefore_align_to_next_block_0,result_22,exc_28") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0")) + (branch "Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "42") (term "0,1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,0,1,0")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "eqSymm" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "blockEmpty" (formula "51") (term "1")) + (builtin "Block Contract (Internal)" (formula "51") (newnames "exc_29,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "14")) (ifInst "" (formula "48")) (ifInst "" (formula "6"))) + (rule "andLeft" (formula "46")) + (rule "eqSymm" (formula "53") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "47") (term "0,0")) + (rule "dismissNonSelectedField" (formula "47") (term "0,0")) + (rule "dismissNonSelectedField" (formula "47") (term "0,0")) + (rule "dismissNonSelectedField" (formula "47") (term "0,0")) + (rule "dismissNonSelectedField" (formula "47") (term "0,0")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "exc_29_1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "emptyStatement" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "emptyStatement" (formula "53") (term "1")) + (rule "pullOutSelect" (formula "47") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "47")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "50"))) + (rule "castDel" (formula "47") (term "0")) + (rule "applyEqReverse" (formula "48") (term "0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "hideAuxiliaryEq" (formula "47")) + (rule "tryEmpty" (formula "52") (term "1")) + (rule "blockEmptyLabel" (formula "52") (term "1")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "methodCallEmpty" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "emptyModality" (formula "52") (term "1")) + (rule "andRight" (formula "52")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "52")) + (rule "closeTrue" (formula "52")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "52")) + (rule "closeTrue" (formula "52")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "51")) + (branch "Case 1" + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51")) + (rule "wellFormedAnon" (formula "51")) + (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "44"))) + (rule "wellFormedStorePrimitive" (formula "46") (term "0")) + (rule "wellFormedStorePrimitive" (formula "46") (term "0")) + (rule "wellFormedStorePrimitive" (formula "46") (term "0")) + (rule "wellFormedStorePrimitive" (formula "46") (term "0")) + (rule "wellFormedCreate" (formula "46") (term "0")) + (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "46")) + (rule "dismissNonSelectedField" (formula "46") (term "0")) + (rule "dismissNonSelectedField" (formula "46") (term "0")) + (rule "dismissNonSelectedField" (formula "46") (term "0")) + (rule "dismissNonSelectedField" (formula "46") (term "0")) + (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "45"))) + (rule "applyEqReverse" (formula "47") (term "0") (ifseqformula "1")) + (rule "close" (formula "47") (ifseqformula "11")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "51")) + (branch "Case 1" + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "47"))) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51")) + (rule "orRight" (formula "51")) + (rule "dismissNonSelectedField" (formula "51") (term "0")) + (rule "dismissNonSelectedField" (formula "51") (term "0")) + (rule "dismissNonSelectedField" (formula "51") (term "0")) + (rule "dismissNonSelectedField" (formula "51") (term "0")) + (rule "dismissNonSelectedField" (formula "51") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "47") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "closeTrue" (formula "47")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "6"))) + (rule "closeTrue" (formula "51")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "52")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "eqSymm" (formula "48")) + (rule "translateJavaAddInt" (formula "49") (term "2,1")) + (rule "eqSymm" (formula "49")) + (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polySimp_addComm0" (formula "48") (term "2,0")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "elim_double_block_2" (formula "55") (term "1")) + (rule "ifUnfold" (formula "55") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "55") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "replace_known_left" (formula "55") (term "0,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "55")) + (rule "ifSplit" (formula "55")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "55") (term "1")) + (rule "variableDeclarationAssign" (formula "55") (term "1")) + (rule "variableDeclaration" (formula "55") (term "1") (newnames "read")) + (rule "assignment" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (builtin "Block Contract (Internal)" (formula "55") (newnames "anonOut_heap,exc_0,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,read_Before_BLOCK#0,o,f,anonOut_read")) + (branch "Validity" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "14")) (ifInst "" (formula "52")) (ifInst "" (formula "6"))) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "50") (term "1,0,1,0")) + (rule "expand_inInt" (formula "50") (term "1,1,0")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "50") (term "0,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,0,0,0,1,0")) + (rule "leq_literals" (formula "50") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "42")) (ifInst "" (formula "38")) (ifInst "" (formula "11"))) + (rule "leq_literals" (formula "50") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "variableDeclarationAssign" (formula "57") (term "1")) + (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "pullOutSelect" (formula "51") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "51")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "54"))) + (rule "castDel" (formula "51") (term "0")) + (rule "applyEqReverse" (formula "52") (term "0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "hideAuxiliaryEq" (formula "51")) + (rule "ifElseUnfold" (formula "56") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_6")) + (rule "less_equal_than_comparison_simple" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "arrayLengthIsAShort" (formula "16") (term "0")) + (rule "expand_inShort" (formula "16")) + (rule "replace_short_MIN" (formula "16") (term "0,1")) + (rule "replace_short_MAX" (formula "16") (term "1,0")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "equalityToSeqGetAndSeqLenLeft" (formula "32") (inst "iv=iv")) + (rule "andLeft" (formula "32")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "32") (term "0,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "ifElseSplit" (formula "56")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "assignment" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "tryEmpty" (formula "57") (term "1")) + (rule "blockEmptyLabel" (formula "57") (term "1")) + (rule "blockEmpty" (formula "57") (term "1")) + (rule "methodCallEmpty" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyModality" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "closeTrue" (formula "57")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "ifElseUnfold" (formula "57") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "57") (term "1") (newnames "x_7")) + (rule "less_equal_than_comparison_simple" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "ifElseSplit" (formula "57")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "58")) + (builtin "One Step Simplification" (formula "1")) + (rule "assignment" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "tryEmpty" (formula "58") (term "1")) + (rule "blockEmptyLabel" (formula "58") (term "1")) + (rule "blockEmpty" (formula "58") (term "1")) + (rule "methodCallEmpty" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "emptyModality" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "closeTrue" (formula "58")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "58")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "assignment" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "tryEmpty" (formula "58") (term "1")) + (rule "blockEmptyLabel" (formula "58") (term "1")) + (rule "blockEmpty" (formula "58") (term "1")) + (rule "methodCallEmpty" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "emptyModality" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "closeTrue" (formula "58")) + ) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "55")) + (branch + (rule "andRight" (formula "55")) + (branch + (rule "andRight" (formula "55")) + (branch + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "55")) + ) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "wellFormedAnon" (formula "55")) + (rule "replace_known_left" (formula "55") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "26")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "50")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "48"))) + (rule "wellFormedStorePrimitive" (formula "50") (term "0")) + (rule "wellFormedStorePrimitive" (formula "50") (term "0")) + (rule "wellFormedStorePrimitive" (formula "50") (term "0")) + (rule "wellFormedStorePrimitive" (formula "50") (term "0")) + (rule "wellFormedCreate" (formula "50") (term "0")) + (rule "replace_known_left" (formula "50") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "50")) + (rule "dismissNonSelectedField" (formula "50") (term "0")) + (rule "dismissNonSelectedField" (formula "50") (term "0")) + (rule "dismissNonSelectedField" (formula "50") (term "0")) + (rule "dismissNonSelectedField" (formula "50") (term "0")) + (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "applyEqReverse" (formula "51") (term "0") (ifseqformula "1")) + (rule "close" (formula "51") (ifseqformula "11")) + ) + ) + (branch + (rule "andRight" (formula "55")) + (branch + (rule "andRight" (formula "55")) + (branch + (rule "andRight" (formula "55")) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55")) + (rule "replace_int_MIN" (formula "55") (term "0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0")) + (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_leqRight" (formula "55")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "43") (ifseqformula "1")) + (rule "qeq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "closeFalse" (formula "43")) + ) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55")) + (rule "replace_int_MIN" (formula "55") (term "0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0")) + (rule "leq_literals" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "leq_literals" (formula "55")) + (rule "closeTrue" (formula "55")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55")) + (rule "replace_int_MIN" (formula "55") (term "0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0")) + (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_leqRight" (formula "55")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "39") (ifseqformula "1")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "closeFalse" (formula "39")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55")) + (rule "replace_int_MIN" (formula "55") (term "0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0")) + (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_leqRight" (formula "55")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch + (rule "andRight" (formula "55")) + (branch + (rule "andRight" (formula "55")) + (branch + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "51"))) + (rule "closeTrue" (formula "55")) + ) + (branch + (builtin "One Step Simplification" (formula "55")) + (rule "orRight" (formula "55")) + (rule "dismissNonSelectedField" (formula "55") (term "0")) + (rule "dismissNonSelectedField" (formula "55") (term "0")) + (rule "dismissNonSelectedField" (formula "55") (term "0")) + (rule "dismissNonSelectedField" (formula "55") (term "0")) + (rule "dismissNonSelectedField" (formula "55") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "26")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "51") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "6"))) + (rule "closeTrue" (formula "55")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "50") (term "0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,0,1,0")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "52")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "pullOutSelect" (formula "57") (term "3,0") (inst "selectSK=de_wiesler_BucketPointers_first_empty_position_0")) + (rule "simplifySelectOfAnon" (formula "57")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60"))) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0,0")) + (rule "ifthenelse_negated" (formula "57") (term "0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "57") (term "1,0") (inst "selectSK=de_wiesler_BucketPointers_first_empty_position_1")) + (rule "simplifySelectOfAnon" (formula "57")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "61"))) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "2,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "2,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "57") (term "0,0,1,0,0")) + (rule "elementOfArrayRange" (formula "57") (term "0,0,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "57")) + (rule "ifthenelse_negated" (formula "57") (term "0")) + (rule "pullOutSelect" (formula "58") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "applyEq" (formula "57") (term "0,0,0") (ifseqformula "58")) + (rule "simplifySelectOfCreate" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "62"))) + (rule "castDel" (formula "58") (term "0")) + (rule "applyEqReverse" (formula "57") (term "0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "57")) + (rule "simplifySelectOfStore" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "castDel" (formula "57") (term "0")) + (rule "applyEqReverse" (formula "59") (term "0,0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEqReverse" (formula "60") (term "3,0") (ifseqformula "59")) + (rule "applyEqReverse" (formula "59") (term "0") (ifseqformula "57")) + (rule "applyEqReverse" (formula "60") (term "3,0") (ifseqformula "57")) + (rule "hideAuxiliaryEq" (formula "58")) + (rule "hideAuxiliaryEq" (formula "57")) + (rule "hideAuxiliaryEq" (formula "57")) + (rule "ifUnfold" (formula "63") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "replace_known_left" (formula "63") (term "0,0,1,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "63")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "equalityToSeqGetAndSeqLenLeft" (formula "32") (inst "iv=iv")) + (rule "andLeft" (formula "32")) + (rule "applyEq" (formula "33") (term "0,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "ifSplit" (formula "63")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "64")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "64")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "63") (term "1")) + (rule "eval_order_array_access1" (formula "63") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "pullOutSelect" (formula "63") (term "0,1,0") (inst "selectSK=de_wiesler_BucketPointers_buffer_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0,0")) + (rule "replaceKnownSelect_taclet21200100120112_17" (formula "1") (term "0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "1") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60"))) + (rule "replaceKnownSelect_taclet112_1" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet112_2" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replaceKnownSelect_taclet21200100120112_17" (formula "1") (term "0,0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "1") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access2" (formula "64") (term "1") (inst "#ar1=x_arr_2") (inst "#v0=x_2")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_7")) + (rule "elementOfArrayRange" (formula "1") (term "0,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "64") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "assignmentMultiplicationInt" (formula "63") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63")) + (rule "replace_int_MIN" (formula "63") (term "0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "2")) + (rule "greater_literals" (formula "61") (term "0,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0,1")) + (rule "leq_literals" (formula "61") (term "0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_leqRight" (formula "61")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "23")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "14")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "63")) + (rule "translateJavaMulInt" (formula "63") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "63")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "63")) + (rule "eval_order_array_access1" (formula "63") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_3")) + (rule "assignment_read_attribute_this" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "dismissNonSelectedField" (formula "63") (term "0,1,0")) + (rule "replaceKnownSelect_taclet121200100120112_22" (formula "63") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet121200100120112_24" (formula "63") (term "0,1,0")) + (rule "eval_order_array_access2" (formula "63") (term "1") (inst "#ar1=x_arr_4") (inst "#v0=x_2")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_arr_4")) + (rule "assignment" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_8")) + (rule "compound_addition_1" (formula "63") (term "1") (inst "#v=x_9")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "x_9")) + (rule "assignmentMultiplicationInt" (formula "63") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63")) + (rule "replace_int_MIN" (formula "63") (term "0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption6" (formula "59") (term "1") (ifseqformula "2")) + (rule "greater_literals" (formula "59") (term "0,0,1")) + (builtin "One Step Simplification" (formula "59")) + (rule "mul_literals" (formula "59") (term "1,0,1")) + (rule "leq_literals" (formula "59") (term "0,1")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_leqRight" (formula "59")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "15")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "63")) + (rule "translateJavaMulInt" (formula "63") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "63") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63")) + (rule "replace_int_MAX" (formula "63") (term "1,0")) + (rule "replace_int_MIN" (formula "63") (term "0,1")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "polySimp_addComm0" (formula "63") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "63") (term "0,1")) + (rule "add_literals" (formula "63") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63") (term "0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "2")) + (rule "greater_literals" (formula "61") (term "0,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0,1")) + (rule "leq_literals" (formula "61") (term "0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_leqRight" (formula "61")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "49")) + (rule "mul_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "15")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "63")) + (rule "translateJavaAddInt" (formula "63") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "63")) + (branch "Normal Execution (x_arr_4 != null)" + (builtin "One Step Simplification" (formula "63")) + (builtin "Block Contract (Internal)" (formula "63") (newnames "exc_1,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "14")) (ifInst "" (formula "60")) (ifInst "" (formula "6"))) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "58")) + (rule "eqSymm" (formula "65") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "59") (term "0")) + (rule "dismissNonSelectedField" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0")) + (rule "replaceKnownSelect_taclet21200100120112_17" (formula "59") (term "0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "59") (term "0,0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "exc_1_1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "emptyStatement" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "emptyStatement" (formula "64") (term "1")) + (rule "tryEmpty" (formula "64") (term "1")) + (rule "blockEmptyLabel" (formula "64") (term "1")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "methodCallEmpty" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "emptyModality" (formula "64") (term "1")) + (rule "andRight" (formula "64")) + (branch + (builtin "One Step Simplification" (formula "64")) + (rule "closeTrue" (formula "64")) + ) + (branch + (builtin "One Step Simplification" (formula "64")) + (rule "closeTrue" (formula "64")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "63")) + (branch + (rule "andRight" (formula "63")) + (branch + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "63")) + ) + (branch + (builtin "One Step Simplification" (formula "63")) + (rule "wellFormedStorePrimitiveArray" (formula "63")) + (rule "wellFormedStorePrimitiveArray" (formula "63")) + (rule "wellFormedAnon" (formula "63")) + (rule "wellFormedAnon" (formula "63") (term "0")) + (rule "replace_known_left" (formula "63") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "51"))) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "25")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "56"))) + (rule "wellFormedStorePrimitive" (formula "58") (term "0")) + (rule "wellFormedStorePrimitive" (formula "58") (term "0")) + (rule "wellFormedStorePrimitive" (formula "58") (term "0")) + (rule "wellFormedStorePrimitive" (formula "58") (term "0")) + (rule "wellFormedCreate" (formula "58") (term "0")) + (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "58")) + (rule "dismissNonSelectedField" (formula "58") (term "0")) + (rule "dismissNonSelectedField" (formula "58") (term "0")) + (rule "dismissNonSelectedField" (formula "58") (term "0")) + (rule "dismissNonSelectedField" (formula "58") (term "0")) + (rule "pullOutSelect" (formula "58") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "55"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "applyEqReverse" (formula "59") (term "0") (ifseqformula "1")) + (rule "close" (formula "59") (ifseqformula "11")) + ) + ) + (branch + (rule "andRight" (formula "63")) + (branch + (rule "andRight" (formula "63")) + (branch + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "59"))) + (rule "closeTrue" (formula "63")) + ) + (branch + (builtin "One Step Simplification" (formula "63")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "orRight" (formula "63")) + (rule "orRight" (formula "63")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "dismissNonSelectedField" (formula "63") (term "0")) + (rule "replaceKnownSelect_taclet21200100120112_17" (formula "63") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet21200100120112_19" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "closeTrue" (formula "63")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "6"))) + (rule "closeTrue" (formula "63")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "64")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "translateJavaAddInt" (formula "60") (term "0,2,1,0")) + (rule "replace_known_left" (formula "59") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0")) + (rule "pullOutSelect" (formula "59") (term "0,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63"))) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63"))) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "65"))) + (rule "replaceKnownSelect_taclet20112_3" (formula "59") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_12" (formula "59") (term "2,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0")) + (rule "ifthenelse_negated" (formula "59") (term "0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet20112_8" (formula "59") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_9" (formula "59") (term "0,0,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEqReverse" (formula "60") (term "0,0") (ifseqformula "59")) + (rule "hideAuxiliaryEq" (formula "59")) + (rule "pullOutSelect" (formula "59") (term "1,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63"))) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63"))) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "65"))) + (rule "replaceKnownSelect_taclet20112_4" (formula "59") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_11" (formula "59") (term "2,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0,0")) + (rule "ifthenelse_negated" (formula "59") (term "0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "59") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet20112_8" (formula "59") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20112_9" (formula "59") (term "0,0,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEqReverse" (formula "60") (term "1,0") (ifseqformula "59")) + (rule "hideAuxiliaryEq" (formula "59")) + (rule "elim_double_block_2" (formula "65") (term "1")) + (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "65")) + (rule "ifSplit" (formula "65")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "emptyStatement" (formula "65") (term "1")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "preincrement" (formula "65") (term "1")) + (rule "compound_int_cast_expression" (formula "65") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_11")) + (rule "remove_parentheses_right" (formula "65") (term "1")) + (rule "assignmentAdditionInt" (formula "65") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65")) + (rule "replace_int_MIN" (formula "65") (term "0,1")) + (rule "replace_int_MAX" (formula "65") (term "1,0")) + (rule "polySimp_addComm0" (formula "65") (term "1,1")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,1")) + (rule "add_literals" (formula "65") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "65") (term "1") (ifseqformula "2")) + (rule "leq_literals" (formula "65") (term "0,1")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_leqRight" (formula "65")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "21")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "50")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "23")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaAddInt" (formula "65") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "65") (term "1")) + (rule "assignment" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "lsContinue" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "precOfInt" (formula "65")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "65") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,1")) + (rule "add_literals" (formula "65") (term "1,1,0,1")) + (rule "times_zero_1" (formula "65") (term "1,0,1")) + (rule "add_zero_right" (formula "65") (term "0,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,1")) + (rule "add_literals" (formula "65") (term "0,0,0,1")) + (rule "add_zero_left" (formula "65") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "65") (term "0,1")) + (rule "add_literals" (formula "65") (term "1,0,1")) + (rule "times_zero_1" (formula "65") (term "0,1")) + (rule "leq_literals" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_leqRight" (formula "65")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch "Null Reference (x_arr_4 = null)" + (rule "false_right" (formula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_4 != null, but x_8 Out of Bounds!)" + (rule "false_right" (formula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62"))) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "3")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "22") (ifseqformula "2")) + (rule "greater_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (rule "false_right" (formula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_7 Out of Bounds!)" + (rule "false_right" (formula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62"))) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "3")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "24")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "21") (ifseqformula "2")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_literals" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "close" (formula "44") (ifseqformula "43")) + ) + (branch "Pre (align_to_next_block)" + (builtin "One Step Simplification" (formula "47")) + (rule "wellFormedAnon" (formula "47") (term "0")) + (rule "expand_inInt" (formula "47") (term "1")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1")) + (rule "replace_known_left" (formula "47") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "40"))) + (rule "wellFormedStorePrimitive" (formula "42") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0,0")) + (rule "wellFormedCreate" (formula "42") (term "0,0")) + (rule "replace_known_left" (formula "42") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "42")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0")) + (rule "pullOutSelect" (formula "42") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "41"))) + (rule "applyEqReverse" (formula "43") (term "0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "23")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "44") (term "0") (ifseqformula "33")) + (rule "leq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "1")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "16")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "33") (ifseqformula "32")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "closeFalse" (formula "33")) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (builtin "One Step Simplification" (formula "48")) + (rule "false_right" (formula "48")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "3")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "17") (ifseqformula "3")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0")) + (rule "add_zero_right" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + ) + ) + (branch "Exceptional Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "44")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "close" (formula "40") (ifseqformula "39")) + ) + (branch "Pre (align_to_next_block)" + (builtin "One Step Simplification" (formula "43")) + (rule "wellFormedAnon" (formula "43") (term "0")) + (rule "expand_inInt" (formula "43") (term "1")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1")) + (rule "replace_known_left" (formula "43") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "40") (term "1,1") (ifseqformula "32")) + (rule "leq_literals" (formula "40") (term "0,1,1")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "wellFormedStoreObject" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "36"))) + (rule "wellFormedStorePrimitive" (formula "38") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "38") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "38") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "38") (term "0,0")) + (rule "wellFormedCreate" (formula "38") (term "0,0")) + (rule "replace_known_left" (formula "38") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "38")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "pullOutSelect" (formula "38") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "applyEqReverse" (formula "39") (term "0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "38") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_leqRight" (formula "38")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "1")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "17")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "25")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "1")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + (branch "Null Reference (var = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (var != null, but bucket Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (builtin "One Step Simplification" (formula "44")) + (rule "false_right" (formula "44")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "3")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "22")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "24")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "1")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "14") (ifseqformula "2")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0")) + (rule "add_zero_right" (formula "14") (term "0")) + (rule "leq_literals" (formula "14")) + (rule "closeFalse" (formula "14")) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "39") (term "1")) + (rule "lsBreak" (formula "39") (term "1")) + (rule "assignment" (formula "39") (term "1")) + (builtin "One Step Simplification" (formula "39")) + (rule "methodCallEmpty" (formula "39") (term "1")) + (rule "blockEmpty" (formula "39") (term "1")) + (rule "assignment_write_attribute" (formula "39")) + (branch "Normal Execution (self_25 != null)" + (builtin "One Step Simplification" (formula "39")) + (rule "tryEmpty" (formula "39") (term "1")) + (rule "emptyModality" (formula "39") (term "1")) + (rule "andRight" (formula "39")) + (branch "Case 1" + (rule "impRight" (formula "39")) + (rule "andRight" (formula "40")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "25")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=num_buckets") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "28") (term "1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "4") (term "0,1,2,1,0,0,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "27") (term "1,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "4") (term "3,0,0,0,0,0,1,0,0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "applyEq" (formula "22") (term "0,1") (ifseqformula "2")) + (rule "applyEq" (formula "17") (term "0,2,0") (ifseqformula "2")) + (rule "applyEq" (formula "4") (term "0,1,2,1,0,0,1,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "35") (term "3,0,0,0,0,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "35") (term "0,1,2,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "4") (term "3,0,0,0,0,0,0,1,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "22") (term "0,2,0") (ifseqformula "2")) + (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0")) + (rule "applyEq" (formula "3") (term "0,1,2,1,0,1,0,0,1,0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0")) + (rule "applyEq" (formula "3") (term "0,1,2,1,0,1,0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0")) + (rule "applyEq" (formula "25") (term "3,0,0,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,1,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,1,0,0,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,1,0,0,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,0,1,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0,1,2,1,0,0,0,0,0,0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,1,0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "20")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "20")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "22")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_and_subsumption2" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_and_subsumption3" (formula "3") (term "0,0,0")) + (rule "leq_literals" (formula "3") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "27")) + (rule "expand_inInt" (formula "27") (term "1,0,0")) + (rule "expand_inInt" (formula "27") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "27") (term "1,1,0,1,0")) + (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "27") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "27") (term "0,1,0,1,0")) + (rule "lenOfSeqDefEQ" (formula "27") (term "1,1,0,0,0,1,0") (ifseqformula "26")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,0,1,0")) + (rule "lenOfSeqDefEQ" (formula "27") (term "1,1,0,0,0") (ifseqformula "26")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,0,0,1,0,0,0")) + (rule "times_zero_2" (formula "27") (term "1,0,0,0,1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "leq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "27") (term "0,0,1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0,0,0")) + (rule "getOfSeqDefEQ" (formula "27") (term "1,1,0,1,0") (ifseqformula "26")) + (rule "add_zero_right" (formula "27") (term "0,2,0,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,1,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDefEQ" (formula "27") (term "0,1,0,1,0") (ifseqformula "26")) + (rule "add_zero_right" (formula "27") (term "0,2,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0,1,0,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaMod" (formula "23") (term "0")) + (rule "jmod_axiom" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "newSym_eq" (formula "23") (inst "l=l_0") (inst "newSymDef=mul(first_empty_position, Z(0(#)))")) + (rule "times_zero_1" (formula "23") (term "1,1")) + (rule "add_zero_right" (formula "23") (term "1")) + (rule "applyEq" (formula "24") (term "0,0") (ifseqformula "23")) + (rule "eqSymm" (formula "24")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "24")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "24")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,1,1,1,1,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "34") (term "3,0,0,0,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "3,0,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,1,0,0,1,0,0,1,1,0") (ifseqformula "24")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,1,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,1,0,0,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "3") (term "3,0,0,0,0,0,0,0,0,0,1,1,0") (ifseqformula "24")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,1,0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "14")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "inEqSimp_subsumption4" (formula "22") (ifseqformula "21")) + (rule "greater_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_imp2or" (formula "28") (term "0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "2,0,0,0,0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,1,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "26") (term "1,1,0")) + (rule "translateJavaCastInt" (formula "26") (term "0,1,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "castedGetAny" (formula "26") (term "0,0,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "pullOutSelect" (formula "26") (term "0,0,1,1,0") (inst "selectSK=de_wiesler_BucketPointers_bucket_starts_1")) + (rule "simplifySelectOfStore" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "castDel" (formula "26") (term "0")) + (rule "applyEqReverse" (formula "27") (term "0,0,1,1,0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "getOfSeqDefEQ" (formula "26") (term "0,1,1,0") (ifseqformula "27")) + (rule "add_zero_right" (formula "26") (term "0,2,0,1,0,1,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "times_zero_2" (formula "26") (term "1,1,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "34")) + (rule "notRight" (formula "34")) + (rule "dismissNonSelectedField" (formula "1") (term "0")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=de_wiesler_BucketPointers_buffer_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "applyEq" (formula "1") (term "1") (ifseqformula "2")) + (rule "ifEqualsNull" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0,1") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "2") (term "0,0,1") (ifseqformula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "2") (term "0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=de_wiesler_BucketPointers_buffer_2")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1")) + (rule "close" (formula "35") (ifseqformula "2")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "closeTrue" (formula "40")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "39")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (self_25 = null)" + (rule "false_right" (formula "40")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..c3c96ba --- /dev/null +++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__decrement_read(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,4294 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:36:20 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:36:20 CEST 2022 +contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:decrement_read(int)].JML normal_behavior operation contract.0 +name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:decrement_read(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "13469") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) +(rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_decrement_read,savedHeapBefore_decrement_read")) + (builtin "One Step Simplification" (formula "13")) +(rule "variableDeclarationFinalAssign" (formula "13") (term "1")) +(rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "read_pos")) +(rule "assignmentMultiplicationInt" (formula "13") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13")) + (rule "replace_int_MAX" (formula "13") (term "1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7")) + (rule "times_zero_1" (formula "12") (term "1,1,0,1")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "translateJavaAddInt" (formula "15") (term "1")) + (rule "translateJavaCastInt" (formula "16") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "0")) + (rule "translateJavaMulInt" (formula "9") (term "1")) + (rule "translateJavaCastInt" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "13") (term "0")) + (rule "castedGetAny" (formula "12") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "10")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "23") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "23")) (ifInst "" (formula "8"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "26")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "1")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaMod" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "newSym_eq" (formula "19") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "eqSymm" (formula "20")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20")) + (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "neg_literal" (formula "16") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0,0")) + (rule "translateJavaSubInt" (formula "2") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "3") (inst "b=b")) + (builtin "One Step Simplification" (formula "3")) + (rule "expand_inInt" (formula "3") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "translateJavaAddInt" (formula "9") (term "1")) + (rule "translateJavaCastInt" (formula "10") (term "0")) + (rule "translateJavaMulInt" (formula "3") (term "1")) + (rule "translateJavaMulInt" (formula "4") (term "0")) + (rule "translateJavaCastInt" (formula "7") (term "0")) + (rule "translateJavaCastInt" (formula "6") (term "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_mulComm0" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "1")) + (rule "castedGetAny" (formula "8") (term "0")) + (rule "castedGetAny" (formula "6") (term "0")) + (rule "castedGetAny" (formula "5") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "18")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "1") (ifseqformula "24")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "18")) + (rule "times_zero_1" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "5") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "1") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "28"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0")) + (rule "translateJavaSubInt" (formula "2") (term "1,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,1,1,0,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,0,1,0,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,0,0,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0,0")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "3") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "9")) (ifInst "" (formula "29"))) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1")) + (rule "applyEq" (formula "3") (term "0,0,0,1,1,1") (ifseqformula "23")) + (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1,1,1")) + (rule "applyEq" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "23")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "7")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "4") (term "1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "4") (term "0,2,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,2,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "6")) + (rule "expand_inInt" (formula "6") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "6") (term "1,0,0")) + (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0")) + (rule "translateJavaCastInt" (formula "6") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "6") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "6") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "6") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,0")) + (rule "applyEq" (formula "6") (term "0,1,0,0,1,0,0,0") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "6") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "nnf_imp2or" (formula "6") (term "0,1,0")) + (rule "nnf_notAnd" (formula "6") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "6") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,1,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "commute_or_2" (formula "26") (term "0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "translateJavaMod" (formula "5") (term "0")) + (rule "jmod_axiom" (formula "5") (term "0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "21")) + (rule "polySimp_pullOutFactor0" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "commute_or_2" (formula "24") (term "0,0,1,0")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "1") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "28"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "2") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "translateJavaMod" (formula "2") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "2") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "2") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,1")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,1,1,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,0,1,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "3") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,0,2,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "3") (term "1,1,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,2,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,2,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0")) + (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "11")) + (rule "replace_known_left" (formula "1") (term "0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "12"))) + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "13"))) + (rule "newSym_eq" (formula "3") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::toReadCountOfBucket(heap, + self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "3") (term "1,1")) + (rule "add_zero_right" (formula "3") (term "1")) + (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "3")) + (rule "eqSymm" (formula "4")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "applyEq" (formula "3") (term "0,0") (ifseqformula "4")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1")) + (rule "polySimp_elimOne" (formula "8") (term "1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "l=l_2") (inst "newSymDef=mul(\\if (leq(int::select(heap, + int[]::final(self, + de.wiesler.BucketPointers::$buffer), + arr(add(Z(1(#)), + mul(bucket, Z(2(#)))))), + add(Z(neglit(1(#))), + int::select(heap, + int[]::final(self, + de.wiesler.BucketPointers::$buffer), + arr(mul(bucket, Z(2(#)))))))) + \\then (add(int::select(heap, + int[]::final(self, + de.wiesler.BucketPointers::$buffer), + arr(mul(bucket, Z(2(#))))), + mul(int::select(heap, + int[]::final(self, + de.wiesler.BucketPointers::$buffer), + arr(add(Z(1(#)), + mul(bucket, + Z(2(#)))))), + Z(neglit(1(#)))))) + \\else (Z(0(#))), + Z(0(#)))")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "elimGcdGeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "jdiv_axiom" (formula "33") (term "0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,2,1")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "34")) + (rule "inEqSimp_subsumption6" (formula "33") (term "0,0") (ifseqformula "29")) + (rule "greater_literals" (formula "33") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "polyDiv_pullOut" (formula "33") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_pullOutFactor0" (formula "33") (term "0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "33") (term "0,0,0,1,0")) + (rule "div_literals" (formula "33") (term "0,0,1,0")) + (rule "add_zero_left" (formula "33") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,0")) + (rule "times_zero_1" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "10") (term "0,0")) + (rule "castedGetAny" (formula "10") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1")) + (rule "translateJavaCastInt" (formula "10") (term "0,1")) + (rule "castedGetAny" (formula "10") (term "0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "1,1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "40"))) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1")) + (rule "replace_known_left" (formula "11") (term "0,0,0,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1")) + (rule "replace_known_left" (formula "11") (term "1,0,1,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0,0") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "qeq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "12") (term "0,0")) + (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "12") (term "0,1,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "15")) (ifInst "" (formula "16"))) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "applyEq" (formula "12") (term "0,0,0,1,1,1") (ifseqformula "35")) + (rule "inEqSimp_commuteGeq" (formula "12") (term "0,0,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,1,1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEq" (formula "12") (term "1,1,1,1") (ifseqformula "35")) + (rule "replace_known_left" (formula "12") (term "1,1,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "13") (term "0,0")) + (rule "translateJavaMulInt" (formula "13") (term "0,2,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,2,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,1")) + (rule "translateJavaCastInt" (formula "13") (term "0,1,1")) + (rule "eqSymm" (formula "13") (term "1")) + (rule "castedGetAny" (formula "13") (term "0,0,1")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "9") (term "0")) + (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "9") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,1,1,1,1,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "21")) (ifInst "" (formula "22")) (ifInst "" (formula "42")) (ifInst "" (formula "16"))) + (rule "polySimp_addComm0" (formula "9") (term "1,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "0,0,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEq" (formula "9") (term "1,1,1,1,1") (ifseqformula "36")) + (rule "replace_known_left" (formula "9") (term "1,1,1,1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEq" (formula "9") (term "0,0,1,1,1") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "9") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "20")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1")) + (rule "translateJavaCastInt" (formula "10") (term "0,1")) + (rule "castedGetAny" (formula "10") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0,0")) + (rule "castedGetAny" (formula "15") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "6") (term "0")) + (rule "translateJavaCastInt" (formula "6") (term "0,0")) + (rule "castedGetAny" (formula "6") (term "0,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "8") (term "0")) + (rule "translateJavaMulInt" (formula "8") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,2,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "1")) + (rule "translateJavaCastInt" (formula "8") (term "0,1")) + (rule "castedGetAny" (formula "8") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8")) + (rule "times_zero_1" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaMod" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "newSym_eq" (formula "17") (inst "l=l_3") (inst "newSymDef=mul(de.wiesler.BucketPointers::lastReadOf(heap, + self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17")) + (rule "eqSymm" (formula "18")) + (rule "applyEq" (formula "11") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "10") (term "0,0,1,1,1") (ifseqformula "18")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,1,1,1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18")) + (rule "applyEq" (formula "10") (term "0,1,1,1,1") (ifseqformula "18")) + (rule "eqSymm" (formula "10") (term "1,1,1,1")) + (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "18")) + (rule "elimGcdGeq" (formula "10") (term "0,1,1,1") (inst "elimGcdRightDiv=l_3") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0,0,1,1,1")) + (rule "sub_literals" (formula "10") (term "0,0,0,0,0,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,0,1,1,1")) + (rule "mul_literals" (formula "10") (term "0,0,0,0,0,1,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,1,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,1,0,0,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,1,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0" (formula "10") (term "0,1,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "1,0,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "10") (term "0,1,0,0,1,1,1")) + (rule "leq_literals" (formula "10") (term "1,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "19") (inst "b=b")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "translateJavaCastInt" (formula "26") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "1")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "translateJavaMulInt" (formula "20") (term "0")) + (rule "translateJavaCastInt" (formula "23") (term "0")) + (rule "translateJavaCastInt" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "1")) + (rule "castedGetAny" (formula "24") (term "0")) + (rule "castedGetAny" (formula "22") (term "0")) + (rule "castedGetAny" (formula "21") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "43")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "42")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "42")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "35")) + (rule "greater_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "36")) + (rule "greater_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "4") (term "0")) + (rule "replace_known_right" (formula "4") (term "0,1,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "26")) (ifInst "" (formula "27"))) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0")) + (rule "applyEq" (formula "4") (term "0,0,0,1,1,1") (ifseqformula "5")) + (rule "replace_known_left" (formula "4") (term "0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "4") (term "0,0,1,1") (ifseqformula "5")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "25")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption6" (formula "4") (term "0,1,1") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "1,1,0,0,1,1")) + (rule "greater_literals" (formula "4") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "5") (term "0")) + (rule "translateJavaSubInt" (formula "5") (term "1,0")) + (rule "polySimp_elimSub" (formula "5") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "5") (term "0,1,0,0,0,0") (ifseqformula "19")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "translateJavaMod" (formula "2") (term "0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "applyEqRigid" (formula "2") (term "0,1,0") (ifseqformula "3")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "shift_paren_or" (formula "43") (term "0,0,0")) + (rule "commute_or" (formula "44") (term "1,0,0,0")) + (rule "seqGetAlphaCast" (formula "37") (term "0")) + (rule "castedGetAny" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "30") (ifseqformula "24")) + (rule "greater_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "mul_literals" (formula "30") (term "1,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "closeFalse" (formula "30")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaMulInt" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "read")) + (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_array2" (formula "13")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "compound_assignment_op_minus" (formula "13") (term "1")) + (rule "compound_int_cast_expression" (formula "13") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x")) + (rule "remove_parentheses_right" (formula "13") (term "1")) + (rule "compound_subtraction_2" (formula "13") (term "1") (inst "#v0=x_1") (inst "#v1=x_2")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_2")) + (rule "remove_parentheses_right" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignmentSubtractionInt" (formula "13") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0")) + (rule "polySimp_elimSub" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,1")) + (rule "add_literals" (formula "13") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "11") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3")) (ifInst "" (formula "11")) (ifInst "" (formula "9"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "translateJavaCastInt" (formula "16") (term "0")) + (rule "translateJavaAddInt" (formula "15") (term "1")) + (rule "translateJavaMulInt" (formula "9") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "13") (term "0")) + (rule "castedGetAny" (formula "12") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "orRight" (formula "24")) + (rule "notRight" (formula "24")) + (rule "translateJavaSubInt" (formula "25") (term "0")) + (rule "polySimp_elimSub" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "25") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "false_right" (formula "25")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "2") (term "0,0,1,1,1")) + (rule "replace_known_left" (formula "2") (term "1,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "5")) (ifInst "" (formula "25"))) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "2")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "3") (term "0,1")) + (rule "replace_known_right" (formula "3") (term "0,0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaMod" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "newSym_eq" (formula "19") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "eqSymm" (formula "20")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20")) + (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "16") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "commute_and" (formula "27")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "0,0,0,1,1,1")) + (rule "translateJavaSubInt" (formula "2") (term "1,0,0,0,1,1,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0,0,1,1,1")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0,0,1,1,1")) + (rule "replace_known_left" (formula "2") (term "0,0,0,0,1,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "3") (term "0,0,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "6")) (ifInst "" (formula "27"))) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "3")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0")) + (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "replace_known_left" (formula "2") (term "0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_left" (formula "3") (term "0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5"))) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "1") (term "1,1")) + (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "1") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "29"))) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,1,1,1")) + (rule "applyEq" (formula "1") (term "1,0,1,1,1,1") (ifseqformula "23")) + (rule "applyEq" (formula "1") (term "0,0,0,1,1,1") (ifseqformula "23")) + (rule "inEqSimp_commuteGeq" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "2") (term "1,1")) + (rule "translateJavaMulInt" (formula "2") (term "0,2,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,2,1,1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "5") (term "0")) + (rule "replace_known_left" (formula "5") (term "1,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "9")) (ifInst "" (formula "30")) (ifInst "" (formula "6")) (ifInst "" (formula "7"))) + (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "4"))) + (rule "true_left" (formula "5")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "5") (term "0")) + (rule "translateJavaSubInt" (formula "5") (term "1,0")) + (rule "polySimp_elimSub" (formula "5") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaMod" (formula "6") (term "0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "newSym_eq" (formula "6") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::toReadCountOfBucket(heap, + self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "6") (term "1,1")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6")) + (rule "eqSymm" (formula "7")) + (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "7")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "3") (term "0,1,0,0,0,1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "3") (term "0,1,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "9")) (ifInst "" (formula "10"))) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,0,1,1")) + (rule "translateJavaMulInt" (formula "4") (term "0,2,0,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,2,0,0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "4") (term "0")) + (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "5")) + (rule "replace_known_left" (formula "7") (term "0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "4")) (ifInst "" (formula "6"))) + (rule "true_left" (formula "7")) + (rule "replace_known_left" (formula "3") (term "0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "4")) (ifInst "" (formula "6"))) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "replace_known_left" (formula "1") (term "1,1,1,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "6"))) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1")) + (rule "polySimp_elimOne" (formula "9") (term "1")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "7") (term "1,1")) + (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "7") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "14")) (ifInst "" (formula "21")) (ifInst "" (formula "42")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "16"))) + (rule "polySimp_addComm0" (formula "7") (term "1,0,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "1,1,1,0,1")) + (rule "replace_known_left" (formula "7") (term "1,0,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0")) + (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,1")) + (rule "replace_known_left" (formula "7") (term "0,0,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,1")) + (rule "replace_known_left" (formula "7") (term "0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1")) + (rule "replace_known_left" (formula "7") (term "1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "7") (term "1,1")) + (rule "translateJavaAddInt" (formula "7") (term "0,2,1,1")) + (rule "translateJavaMulInt" (formula "7") (term "0,0,2,1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,2,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "0,2,1,1")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "commute_or_2" (formula "38") (term "0,0,1,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "16") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "16") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "16") (term "1,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "13")) (ifInst "" (formula "20")) (ifInst "" (formula "42")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1")) + (rule "replace_known_left" (formula "16") (term "1,0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1")) + (rule "replace_known_left" (formula "16") (term "0,0,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1")) + (rule "replace_known_left" (formula "16") (term "1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1")) + (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "16") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "16") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "16") (term "1,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "20")) (ifInst "" (formula "21")) (ifInst "" (formula "42")) (ifInst "" (formula "13")) (ifInst "" (formula "6")) (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "16") (term "1,0,0,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_addComm0" (formula "16") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1")) + (rule "replace_known_left" (formula "16") (term "0,0,0,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1")) + (rule "replace_known_left" (formula "16") (term "1,0,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0")) + (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1")) + (rule "replace_known_left" (formula "16") (term "0,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "16") (term "1,1,1") (ifseqformula "36")) + (rule "replace_known_left" (formula "16") (term "1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "16") (term "0,0,1") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "16") (term "0,1")) + (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,1,1,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,1,1,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,1,1,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,2,0,1,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,0,0,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "16") (term "1,1,0,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,2,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,2,1,1,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "0")) + (rule "translateJavaSubInt" (formula "17") (term "1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "13") (term "0,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "13") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "13") (term "1,1,1,1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "40")) (ifInst "" (formula "12"))) + (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1")) + (rule "replace_known_left" (formula "13") (term "1,0,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,1")) + (rule "replace_known_left" (formula "13") (term "1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,1,1")) + (rule "replace_known_left" (formula "13") (term "0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1")) + (rule "replace_known_left" (formula "13") (term "1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaMod" (formula "13") (term "0")) + (rule "jmod_axiom" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "newSym_eq" (formula "13") (inst "l=l_2") (inst "newSymDef=add(mul(de.wiesler.BucketPointers::nextWriteOf(heap, + self, + bucket), + Z(0(#))), + mul(int::select(heap, + int[]::final(self, + de.wiesler.BucketPointers::$buffer), + arr(mul(bucket, Z(2(#))))), + Z(0(#))))")) + (rule "times_zero_1" (formula "13") (term "1,1,1")) + (rule "times_zero_1" (formula "13") (term "0,1,1")) + (rule "add_zero_left" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1")) + (rule "applyEq" (formula "13") (term "1,0,0") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "7") (term "1")) + (rule "applyEq" (formula "41") (term "0,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "41") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1")) + (rule "polySimp_elimOne" (formula "41") (term "0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "15") (inst "b=b")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "translateJavaAddInt" (formula "21") (term "1")) + (rule "translateJavaCastInt" (formula "22") (term "0")) + (rule "translateJavaMulInt" (formula "15") (term "1")) + (rule "translateJavaMulInt" (formula "16") (term "0")) + (rule "translateJavaCastInt" (formula "19") (term "0")) + (rule "translateJavaCastInt" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_mulComm0" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "1")) + (rule "castedGetAny" (formula "20") (term "0")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "17") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "39")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "16") (ifseqformula "33")) + (rule "times_zero_1" (formula "16") (term "1,1,0")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption6" (formula "15") (ifseqformula "30")) + (rule "times_zero_1" (formula "15") (term "1,1,0")) + (rule "greater_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "12") (term "0,0")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "12") (term "0,1,1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "21")) (ifInst "" (formula "22")) (ifInst "" (formula "43"))) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,0,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1,1")) + (rule "replace_known_left" (formula "12") (term "0,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaMod" (formula "13") (term "0")) + (rule "jmod_axiom" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "newSym_eq" (formula "13") (inst "l=l_3") (inst "newSymDef=mul(de.wiesler.BucketPointers::nextWriteOf(heap, + self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "21") (term "0,0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "applyEq" (formula "45") (term "0,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,1")) + (rule "applyEq" (formula "21") (term "0,1,1,0") (ifseqformula "14")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "14")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "14")) + (rule "polySimp_addComm1" (formula "7") (term "1")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "14")) + (rule "inEqSimp_commuteGeq" (formula "9")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "14")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0")) + (rule "elimGcdGeq" (formula "45") (term "0") (inst "elimGcdRightDiv=add(Z(neglit(7(0(6(8(8(3(8(#))))))))), + mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "sub_literals" (formula "45") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,0,0,0,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "45") (term "0,1,0,0")) + (rule "add_literals" (formula "45") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "45") (term "0,1,0,0")) + (rule "leq_literals" (formula "45") (term "1,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0")) + (rule "qeq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "elimGcdLeq" (formula "45") (term "1") (inst "elimGcdRightDiv=add(Z(8(0(6(8(8(3(8(#)))))))), + mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,1")) + (rule "sub_literals" (formula "45") (term "0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "45") (term "0,0,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,1")) + (rule "add_literals" (formula "45") (term "1,1,0,1,0,1")) + (rule "times_zero_1" (formula "45") (term "1,0,1,0,1")) + (rule "add_zero_right" (formula "45") (term "0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0,0,1")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "45") (term "0,0,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "45") (term "0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,1")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,1")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,1,0,1")) + (rule "add_literals" (formula "45") (term "1,1,0,1,0,1")) + (rule "times_zero_1" (formula "45") (term "1,0,1,0,1")) + (rule "add_zero_right" (formula "45") (term "0,1,0,1")) + (rule "qeq_literals" (formula "45") (term "1,0,1")) + (builtin "One Step Simplification" (formula "45")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,0,1")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1")) + (rule "add_zero_left" (formula "45") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,1")) + (rule "add_literals" (formula "45") (term "1,0,0,1")) + (rule "times_zero_1" (formula "45") (term "0,0,1")) + (rule "leq_literals" (formula "45") (term "0,1")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "0,0")) + (rule "castedGetAny" (formula "12") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "46"))) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "12") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,1,1,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0")) + (rule "times_zero_2" (formula "12") (term "1,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "29")) + (rule "leq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1")) + (rule "translateJavaCastInt" (formula "13") (term "0,1")) + (rule "castedGetAny" (formula "13") (term "0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "47"))) + (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1")) + (rule "replace_known_left" (formula "9") (term "0,0,0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "replace_known_left" (formula "9") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,1,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,1,1,1") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,1,1,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,1,1,1")) + (rule "qeq_literals" (formula "9") (term "0,1,0,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "qeq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "10") (term "0,0")) + (rule "castedGetAny" (formula "10") (term "0,0")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "3") (term "0")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "3") (term "0,1,1,1,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "26")) (ifInst "" (formula "27")) (ifInst "" (formula "48"))) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "42")) + (rule "replace_known_left" (formula "3") (term "0,1,1,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "0,0,0,1,1,1") (ifseqformula "42")) + (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1,1,1")) + (rule "replace_known_left" (formula "3") (term "0,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "2") (term "0")) + (rule "translateJavaMulInt" (formula "2") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,2,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "20")) + (rule "inEqSimp_commuteGeq" (formula "2")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "4") (term "1")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "49"))) + (rule "translateJavaAddInt" (formula "4") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "4") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "4") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "4") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "4") (term "1,1,1,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "times_zero_2" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "32")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "15"))) + (rule "true_left" (formula "4")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "1")) + (rule "translateJavaCastInt" (formula "4") (term "0,1")) + (rule "castedGetAny" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "4")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "5") (term "0,1")) + (rule "translateJavaMulInt" (formula "5") (term "0,2,0,1")) + (rule "polySimp_mulComm0" (formula "5") (term "0,2,0,1")) + (rule "applyEq" (formula "5") (term "0,1") (ifseqformula "20")) + (rule "eqSymm" (formula "5") (term "1")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "5") (term "0,0")) + (rule "translateJavaAddInt" (formula "5") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "5") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "5") (term "0,1,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "27")) (ifInst "" (formula "28")) (ifInst "" (formula "8"))) + (rule "polySimp_addComm0" (formula "5") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "5") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1")) + (rule "applyEq" (formula "5") (term "1,0,1,1,1,1") (ifseqformula "43")) + (rule "replace_known_left" (formula "5") (term "0,1,1,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEq" (formula "5") (term "0,0,0,1,1,1") (ifseqformula "43")) + (rule "inEqSimp_commuteGeq" (formula "5") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "5")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "6") (term "0,0")) + (rule "translateJavaMulInt" (formula "6") (term "0,2,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,2,0,0")) + (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0")) + (rule "elimGcdGeq" (formula "6") (term "0") (inst "elimGcdRightDiv=add(l_3, l_2)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "sub_literals" (formula "6") (term "0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,1,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "6") (term "0,1,0,0")) + (rule "add_literals" (formula "6") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "6") (term "0,1,0,0")) + (rule "leq_literals" (formula "6") (term "1,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "50"))) + (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "7") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "7") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0")) + (rule "replace_known_left" (formula "7") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0,1,0,0,1")) + (rule "add_literals" (formula "7") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "7") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "7") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "1,0,0,0")) + (rule "times_zero_1" (formula "7") (term "0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "7") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "7") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "7") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,1,1,1")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "9") (term "0,0")) + (rule "translateJavaAddInt" (formula "9") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "29")) (ifInst "" (formula "30")) (ifInst "" (formula "10"))) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "replace_known_left" (formula "9") (term "0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1")) + (rule "applyEq" (formula "9") (term "0,0,0,1,1,1") (ifseqformula "45")) + (rule "inEqSimp_commuteGeq" (formula "9") (term "0,0,1,1,1")) + (rule "applyEq" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "45")) + (rule "replace_known_left" (formula "9") (term "0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0")) + (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "5"))) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaMod" (formula "9") (term "0")) + (rule "jmod_axiom" (formula "9") (term "0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "newSym_eq" (formula "9") (inst "l=l_4") (inst "newSymDef=mul(de.wiesler.BucketPointers::lastReadOf(heap, + self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "9") (term "1,1")) + (rule "add_zero_right" (formula "9") (term "1")) + (rule "applyEq" (formula "10") (term "0,0") (ifseqformula "9")) + (rule "eqSymm" (formula "10")) + (rule "applyEq" (formula "28") (term "0,0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "applyEq" (formula "5") (term "0,0,0,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,1,1,1")) + (rule "applyEq" (formula "4") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "5") (term "0,1,0,0,0,1,1") (ifseqformula "10")) + (rule "inEqSimp_commuteGeq" (formula "5") (term "1,0,0,0,1,1")) + (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "10")) + (rule "applyEq" (formula "28") (term "1,1,0") (ifseqformula "10")) + (rule "polySimp_addComm0" (formula "28") (term "1,0")) + (rule "applyEq" (formula "5") (term "0,1,0,1,1,1") (ifseqformula "10")) + (rule "eqSymm" (formula "5") (term "1,0,1,1,1")) + (rule "applyEq" (formula "5") (term "0,1,0,0,1,1") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "elimGcdLeq" (formula "28") (term "0,0") (inst "elimGcdRightDiv=add(Z(neglit(1(#))), l_4)") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "28") (term "0,0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,0")) + (rule "sub_literals" (formula "28") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,1,0,0,0")) + (rule "qeq_literals" (formula "28") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "elimGcdGeq" (formula "5") (term "0,0,1,1,1") (inst "elimGcdRightDiv=l_4") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0,1,1,1")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0,0,0,1,1,1")) + (rule "sub_literals" (formula "5") (term "0,0,0,0,0,0,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "5") (term "0,0,0,0,0,1,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,1,0,0,0,1,1,1")) + (rule "add_literals" (formula "5") (term "1,1,0,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "5") (term "1,0,1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "5") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "qeq_literals" (formula "5") (term "0,0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0" (formula "5") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "5") (term "1,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "5") (term "0,0,0,0,1,1,1")) + (rule "leq_literals" (formula "5") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "0")) + (rule "translateJavaCastInt" (formula "8") (term "0,0")) + (rule "castedGetAny" (formula "8") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "1") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,1,1,1,1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "1") (term "1,1,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "35")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "0")) + (rule "translateJavaCastInt" (formula "1") (term "0,0")) + (rule "castedGetAny" (formula "1") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "1")) + (rule "translateJavaCastInt" (formula "1") (term "0,1")) + (rule "castedGetAny" (formula "1") (term "0,1")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "commute_or" (formula "49") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "48") (term "0,0,0")) + (rule "jdiv_axiom" (formula "44") (term "0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,2,1")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "45")) + (rule "inEqSimp_subsumption6" (formula "44") (term "0,0") (ifseqformula "40")) + (rule "greater_literals" (formula "44") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "mul_literals" (formula "44") (term "1,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "polyDiv_pullOut" (formula "44") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "1,0,0,0")) + (rule "times_zero_1" (formula "44") (term "0,0,0")) + (rule "div_literals" (formula "44") (term "0,0")) + (rule "add_zero_left" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "commute_or" (formula "48") (term "0,0,0,1,0")) + (rule "lenNonNegative" (formula "46") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "47")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "38")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "39")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "elimGcdLeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "36") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "36")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "arrayLengthNotNegative" (formula "38") (term "0")) + (rule "seqGetAlphaCast" (formula "43") (term "0")) + (rule "castedGetAny" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "seqGetAlphaCast" (formula "48") (term "0")) + (rule "castedGetAny" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "jdiv_axiom" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1")) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "28")) + (rule "polyDiv_pullOut" (formula "27") (term "1,0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,2,1,0")) + (rule "equal_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,0,1,0")) + (rule "div_literals" (formula "27") (term "0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "1")) + (rule "polyDiv_pullOut" (formula "27") (term "0,1") (inst "polyDivCoeff=mul(l_1, Z(neglit(1(#))))")) + (rule "equal_literals" (formula "27") (term "0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "0,0,0,1")) + (rule "div_literals" (formula "27") (term "0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "25") (term "1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0")) + (rule "translateJavaCastInt" (formula "25") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "25") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "25") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "25") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaMod" (formula "24") (term "0")) + (rule "jmod_axiom" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0")) + (rule "applyEqRigid" (formula "24") (term "0,1,0") (ifseqformula "45")) + (rule "polySimp_pullOutFactor0" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "19") (term "0")) + (rule "replace_known_right" (formula "19") (term "0,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "19")) (ifInst "" (formula "20"))) + (rule "andLeft" (formula "3")) + (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "replace_known_left" (formula "6") (term "0,0,0,0,1,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "23")) (ifInst "" (formula "23")) (ifInst "" (formula "4")) (ifInst "" (formula "24"))) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "4")) (ifInst "" (formula "17"))) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "24")) + (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "17"))) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=mul(l_3, Z(neglit(1(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "64") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0")) + (rule "qeq_literals" (formula "64") (term "0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "19")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "7")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_4") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "6")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_3") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "6")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_4") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "38") (term "0")) + (rule "translateJavaAddInt" (formula "38") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "38") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "36")) (ifInst "" (formula "69")) (ifInst "" (formula "33")) (ifInst "" (formula "24"))) + (rule "translateJavaAddInt" (formula "30") (term "1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "30") (term "1,0,1,1,1,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "30") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,1,0,1,1")) + (rule "add_literals" (formula "30") (term "0,1,1,1,0,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "1,0,1,1,1,1")) + (rule "add_literals" (formula "30") (term "0,1,0,1,1,1,1")) + (rule "add_zero_left" (formula "30") (term "1,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "30") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1")) + (rule "replace_known_left" (formula "30") (term "1,0,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0")) + (rule "replace_known_left" (formula "30") (term "1,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1")) + (rule "replace_known_left" (formula "30") (term "0,1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,1")) + (rule "replace_known_left" (formula "30") (term "1,0,1,1") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "times_zero_2" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "inEqSimp_invertInEq0" (formula "30") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1")) + (rule "mul_literals" (formula "30") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1")) + (rule "replace_known_left" (formula "30") (term "0,1,1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1")) + (rule "replace_known_left" (formula "30") (term "0,1") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0")) + (rule "mul_literals" (formula "30") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0") (ifseqformula "50")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "31") (term "0")) + (rule "translateJavaCastInt" (formula "31") (term "0,0")) + (rule "castedGetAny" (formula "31") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37")) (ifInst "" (formula "70")) (ifInst "" (formula "25")) (ifInst "" (formula "24"))) + (rule "translateJavaAddInt" (formula "28") (term "1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "28") (term "1,0,1,1,1,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1")) + (rule "replace_known_left" (formula "28") (term "1,0,1,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1")) + (rule "replace_known_left" (formula "28") (term "1,0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "1,0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0")) + (rule "qeq_literals" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26"))) + (rule "true_left" (formula "28")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "28") (term "0")) + (rule "translateJavaCastInt" (formula "28") (term "0,0")) + (rule "castedGetAny" (formula "28") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "28")) + (rule "times_zero_1" (formula "27") (term "0,0")) + (rule "add_zero_left" (formula "27") (term "0")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "21")) + (rule "times_zero_1" (formula "27") (term "1,1,0")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "jdiv_axiom" (formula "40") (term "0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,2,1")) + (rule "eqSymm" (formula "40")) + (rule "applyEqRigid" (formula "40") (term "1") (ifseqformula "41")) + (rule "inEqSimp_subsumption6" (formula "40") (term "0,0") (ifseqformula "20")) + (rule "mul_literals" (formula "40") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "40") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "leq_literals" (formula "40") (term "0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polyDiv_pullOut" (formula "40") (term "0") (inst "polyDivCoeff=l_2")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_pullOutFactor0" (formula "40") (term "0,0,0,1,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "40") (term "0,0,0,1,0")) + (rule "div_literals" (formula "40") (term "0,0,1,0")) + (rule "add_zero_left" (formula "40") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,0")) + (rule "times_zero_1" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "translateJavaSubInt" (formula "35") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "35") (term "1,0")) + (rule "neg_literal" (formula "35") (term "1,0")) + (rule "translateJavaAddInt" (formula "35") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaSubInt" (formula "27") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaUnaryMinusInt" (formula "28") (term "1,0")) + (rule "neg_literal" (formula "28") (term "1,0")) + (rule "translateJavaAddInt" (formula "28") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "28") (term "0,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "38")) (ifInst "" (formula "71")) (ifInst "" (formula "26")) (ifInst "" (formula "25"))) + (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1")) + (rule "replace_known_left" (formula "3") (term "1,0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,1")) + (rule "replace_known_left" (formula "3") (term "0,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1")) + (rule "replace_known_left" (formula "3") (term "1,0,1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "1,0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0")) + (rule "qeq_literals" (formula "3") (term "0,1,0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "27"))) + (rule "true_left" (formula "3")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "3") (term "0")) + (rule "translateJavaCastInt" (formula "3") (term "0,0")) + (rule "castedGetAny" (formula "3") (term "0,0")) + (rule "jdiv_axiom" (formula "39") (term "0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,2,1")) + (rule "eqSymm" (formula "39")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption6" (formula "39") (term "0,0") (ifseqformula "21")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "39") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "leq_literals" (formula "39") (term "0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "polyDiv_pullOut" (formula "39") (term "0") (inst "polyDivCoeff=l_3")) + (rule "equal_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "39")) + (rule "polySimp_pullOutFactor0" (formula "39") (term "0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "39") (term "0,0,0,1,0")) + (rule "div_literals" (formula "39") (term "0,0,1,0")) + (rule "add_zero_left" (formula "39") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "39") (term "0")) + (rule "add_literals" (formula "39") (term "1,0")) + (rule "times_zero_1" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaSubInt" (formula "8") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "8") (term "1,0")) + (rule "neg_literal" (formula "8") (term "1,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,1")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "38")) (ifInst "" (formula "71")) (ifInst "" (formula "26")) (ifInst "" (formula "25"))) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0")) + (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,1")) + (rule "replace_known_left" (formula "13") (term "0,0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,1")) + (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1")) + (rule "replace_known_left" (formula "13") (term "1,0,1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "13") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0")) + (rule "qeq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (term "1,0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0")) + (rule "qeq_literals" (formula "13") (term "0,1,0")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "27"))) + (rule "true_left" (formula "13")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0,1")) + (rule "translateJavaCastInt" (formula "13") (term "0,0,1")) + (rule "castedGetAny" (formula "13") (term "0,0,1")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "19") (term "0")) + (rule "translateJavaAddInt" (formula "19") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "19") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "19") (term "1,0,0,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "38")) (ifInst "" (formula "49")) (ifInst "" (formula "71")) (ifInst "" (formula "38")) (ifInst "" (formula "39"))) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "19") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "19") (term "0,0,0,0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0")) + (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1")) + (rule "replace_known_left" (formula "19") (term "1,0,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1")) + (rule "applyEq" (formula "19") (term "0,0,1,1,1,1") (ifseqformula "20")) + (rule "applyEq" (formula "19") (term "0,1,0,1,1") (ifseqformula "20")) + (rule "eqSymm" (formula "19") (term "1,0,1,1")) + (rule "applyEq" (formula "19") (term "1,0,0,1,1") (ifseqformula "20")) + (rule "applyEq" (formula "19") (term "0,0,0,1") (ifseqformula "20")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "0,0,1")) + (rule "replace_known_left" (formula "19") (term "0,0,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEq" (formula "19") (term "1,0,1,1,1") (ifseqformula "65")) + (rule "applyEq" (formula "19") (term "0,0,0,1,1") (ifseqformula "65")) + (rule "applyEq" (formula "19") (term "0,0,1") (ifseqformula "20")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1")) + (rule "replace_known_left" (formula "19") (term "0,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "elimGcdGeq" (formula "19") (term "0") (inst "elimGcdRightDiv=l_4") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0")) + (rule "sub_literals" (formula "19") (term "0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "12"))) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "26")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "inEqSimp_subsumption4" (formula "19") (ifseqformula "63")) + (rule "greater_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "21") (term "0")) + (rule "translateJavaMulInt" (formula "21") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,2,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "44")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "3") (term "1,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "polySimp_addComm0" (formula "3") (term "0,1")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "1,1,1")) + (rule "times_zero_1" (formula "3") (term "1,1")) + (rule "add_zero_right" (formula "3") (term "1")) + (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "44") (term "1")) + (rule "polySimp_addComm0" (formula "44") (term "0,1")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "1")) + (rule "add_literals" (formula "44") (term "1,1,1")) + (rule "times_zero_1" (formula "44") (term "1,1")) + (rule "add_zero_right" (formula "44") (term "1")) + (rule "applyEq" (formula "13") (term "1,1,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "1,1")) + (rule "add_literals" (formula "13") (term "1,1,1,1")) + (rule "times_zero_1" (formula "13") (term "1,1,1")) + (rule "add_zero_right" (formula "13") (term "1,1")) + (rule "elimGcdEq" (formula "21") (inst "elimGcdRightDiv=add(l_4, mul(l_3, Z(neglit(1(#)))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,1,0")) + (rule "add_literals" (formula "21") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0")) + (rule "polySimp_pullOutFactor0" (formula "21") (term "0,1,0")) + (rule "add_literals" (formula "21") (term "1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "0,1,0")) + (rule "qeq_literals" (formula "21") (term "1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor0" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_zero_right" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor0" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEqRigid" (formula "13") (term "1,1,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "13") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "1,0")) + (rule "add_literals" (formula "13") (term "1,1,1,0")) + (rule "times_zero_1" (formula "13") (term "1,1,0")) + (rule "add_zero_right" (formula "13") (term "1,0")) + (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "applyEqRigid" (formula "43") (term "1") (ifseqformula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "48")) + (rule "eqSymm" (formula "48")) + (rule "applyEqRigid" (formula "47") (term "0,0") (ifseqformula "48")) + (rule "applyEqRigid" (formula "47") (term "0") (ifseqformula "43")) + (rule "eqSymm" (formula "47")) + (rule "applyEqRigid" (formula "48") (term "0,0") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "48") (term "0")) + (rule "polySimp_rightDist" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "polySimp_pullOutFactor0" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,0")) + (rule "times_zero_1" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "1")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaSubInt" (formula "13") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "eval_order_array_access1" (formula "13") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this_final" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_to_primitive_array_component" (formula "13")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallReturn" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "tryEmpty" (formula "13") (term "1")) + (rule "emptyModality" (formula "13") (term "1")) + (rule "andRight" (formula "13")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "11") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7")) (ifInst "" (formula "3")) (ifInst "" (formula "11")) (ifInst "" (formula "7")) (ifInst "" (formula "10"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "13")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "13") (ifseqformula "1")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "false_right" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13")) + (rule "greater_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,0,0")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "25")) + (rule "notRight" (formula "25")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_exactShadow2" (formula "14") (ifseqformula "15")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1")) + (rule "greater_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "15")) + (rule "greater_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "24") (ifseqformula "1")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "13")) + (rule "closeTrue" (formula "13")) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "12") (term "0")) + (rule "replace_known_left" (formula "1") (term "0,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "12")) (ifInst "" (formula "11"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "14")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "14") (ifseqformula "1")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "false_right" (formula "14")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "12") (ifseqformula "3")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but read_pos Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "1") (term "1,1,0,1")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "13") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "8")) (ifInst "" (formula "11"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "15")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "15") (ifseqformula "1")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "false_right" (formula "15")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "10")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "22") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but read_pos Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "1") (term "1,1,0,1")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "13") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "8")) (ifInst "" (formula "11"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "15")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "15") (ifseqformula "1")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "false_right" (formula "15")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "12")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "3")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_literals" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) +) +) +} diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..d6ee9cb --- /dev/null +++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__hasRemainingRead(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1746 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:38:40 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:38:40 CEST 2022 +contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:hasRemainingRead(int)].JML normal_behavior operation contract.0 +name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:hasRemainingRead(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "1419") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) +(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_hasRemainingRead,savedHeapBefore_hasRemainingRead")) + (builtin "One Step Simplification" (formula "12")) +(rule "variableDeclarationFinalAssign" (formula "12") (term "1")) +(rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "read_pos")) +(rule "assignmentMultiplicationInt" (formula "12") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12")) + (rule "replace_int_MIN" (formula "12") (term "0,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b")) + (builtin "One Step Simplification" (formula "8")) + (rule "expand_inInt" (formula "8") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "translateJavaAddInt" (formula "14") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaMulInt" (formula "8") (term "1")) + (rule "translateJavaMulInt" (formula "9") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "1")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "12") (term "0")) + (rule "castedGetAny" (formula "11") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "9")) + (rule "greater_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "17")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "21") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "lenNonNegative" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "11") (term "1")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "mul_literals" (formula "7") (term "1,1,0")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "12") (term "1")) + (rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write_pos")) + (rule "compound_addition_1" (formula "12") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x")) + (rule "assignmentMultiplicationInt" (formula "12") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12")) + (rule "replace_int_MAX" (formula "12") (term "1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "12") (term "1,1,0,1")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "translateJavaAddInt" (formula "15") (term "1")) + (rule "translateJavaCastInt" (formula "16") (term "0")) + (rule "translateJavaMulInt" (formula "9") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "13") (term "0")) + (rule "castedGetAny" (formula "12") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "lenNonNegative" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "11") (term "1")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "mul_literals" (formula "7") (term "1,1,0")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "12") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12")) + (rule "replace_int_MIN" (formula "12") (term "0,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,1")) + (rule "add_literals" (formula "12") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "12") (term "1,1,0,1")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "translateJavaAddInt" (formula "15") (term "1")) + (rule "translateJavaCastInt" (formula "16") (term "0")) + (rule "translateJavaMulInt" (formula "9") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "13") (term "0")) + (rule "castedGetAny" (formula "12") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "17")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or" (formula "20") (term "1,0,0,0")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "lenNonNegative" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "10")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "arrayLengthIsAShort" (formula "11") (term "1")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "mul_literals" (formula "7") (term "1,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaAddInt" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "read")) + (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "12")) + (builtin "One Step Simplification" (formula "12")) + (rule "assignment_array2" (formula "12")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "12")) + (rule "variableDeclarationFinalAssign" (formula "12") (term "1")) + (rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write")) + (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this_final" (formula "12")) + (builtin "One Step Simplification" (formula "12")) + (rule "assignment_array2" (formula "12")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "12")) + (rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_1")) + (rule "greater_than_comparison_simple" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallReturn" (formula "12") (term "1")) + (rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallEmpty" (formula "12") (term "1")) + (rule "tryEmpty" (formula "12") (term "1")) + (rule "emptyModality" (formula "12") (term "1")) + (rule "andRight" (formula "12")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "12")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "12")) + (rule "closeTrue" (formula "12")) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "11")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12")) + (rule "greater_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "22") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but write_pos Out of Bounds!)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "times_zero_1" (formula "1") (term "1,1,0,1")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "translateJavaCastInt" (formula "16") (term "0")) + (rule "translateJavaAddInt" (formula "15") (term "1")) + (rule "translateJavaMulInt" (formula "9") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "13") (term "0")) + (rule "castedGetAny" (formula "12") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "10")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "8") (ifseqformula "1")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_literals" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "22") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but read_pos Out of Bounds!)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "8")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_literals" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..1d56f95 --- /dev/null +++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__increment_write(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,8181 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:40:22 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:40:22 CEST 2022 +contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:increment_write(int)].JML normal_behavior operation contract.0 +name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:increment_write(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "107625") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "translateJavaAddInt" (formula "10") (term "1")) +(rule "polySimp_addComm0" (formula "10") (term "1")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) +(rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_increment_write,savedHeapBefore_increment_write")) + (builtin "One Step Simplification" (formula "13")) +(rule "variableDeclarationFinalAssign" (formula "13") (term "1")) +(rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "read_pos")) +(rule "assignmentMultiplicationInt" (formula "13") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13")) + (rule "replace_int_MAX" (formula "13") (term "1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "translateJavaSubInt" (formula "9") (term "0")) + (rule "polySimp_elimSub" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "20") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "20") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "20") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "20") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaMod" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "newSym_eq" (formula "17") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17")) + (rule "eqSymm" (formula "18")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18")) + (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_subsumption4" (formula "15") (ifseqformula "14")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "greater_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "1,0,1")) + (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26"))) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,1,1")) + (rule "castedGetAny" (formula "11") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "polySimp_rightDist" (formula "11") (term "0,1")) + (rule "mul_literals" (formula "11") (term "0,0,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaMod" (formula "9") (term "0,1,1")) + (rule "jmod_axiom" (formula "9") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "9") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,1")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27"))) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "qeq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11"))) + (rule "true_left" (formula "10")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "10") (term "0,1,1,1,1,1")) + (rule "castedGetAny" (formula "10") (term "0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "17") (term "1,0")) + (rule "neg_literal" (formula "17") (term "1,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "0,0,1")) + (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "replace_known_left" (formula "9") (term "0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "newSym_eq" (formula "11") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "11") (term "1,1")) + (rule "add_zero_right" (formula "11") (term "1")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "11")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "12")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "9") (term "0,0,1") (ifseqformula "12")) + (rule "applyEq" (formula "20") (term "0,1,0,1") (ifseqformula "12")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "commute_or_2" (formula "32") (term "0,0,1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "36")) (ifInst "" (formula "17"))) + (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "16") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "16") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "16") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "16") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "16") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1")) + (rule "add_literals" (formula "16") (term "1,0,1,0,1")) + (rule "times_zero_1" (formula "16") (term "0,1,0,1")) + (rule "qeq_literals" (formula "16") (term "1,0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "17") (term "0")) + (rule "translateJavaCastInt" (formula "17") (term "0,0")) + (rule "castedGetAny" (formula "17") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "18") (term "0,0")) + (rule "translateJavaCastInt" (formula "18") (term "0,0,0")) + (rule "castedGetAny" (formula "18") (term "0,0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "37"))) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1")) + (rule "replace_known_left" (formula "15") (term "1,0,0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1")) + (rule "replace_known_left" (formula "15") (term "1,0,1,1,1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,1")) + (rule "replace_known_left" (formula "15") (term "0,0,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "15") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "15") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "0,0")) + (rule "castedGetAny" (formula "13") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "0")) + (rule "translateJavaCastInt" (formula "16") (term "0,0")) + (rule "castedGetAny" (formula "16") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "16") (term "0,1")) + (rule "castedGetAny" (formula "16") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "20"))) + (rule "translateJavaSubInt" (formula "23") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1")) + (rule "add_literals" (formula "23") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "1")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "41"))) + (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,1,1")) + (rule "replace_known_left" (formula "21") (term "1,0,1,1,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "21") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "42"))) + (rule "translateJavaAddInt" (formula "22") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "22") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "22") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "22") (term "1,0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "22") (term "1,1,1,1,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "times_zero_2" (formula "22") (term "1,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "23") (term "0")) + (rule "translateJavaCastInt" (formula "23") (term "0,0")) + (rule "castedGetAny" (formula "23") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "23") (term "1")) + (rule "translateJavaCastInt" (formula "23") (term "0,1")) + (rule "castedGetAny" (formula "23") (term "0,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaSubInt" (formula "26") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "26") (term "1,0")) + (rule "neg_literal" (formula "26") (term "1,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "43"))) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "14") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "14") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "14") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "14") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0,0")) + (rule "castedGetAny" (formula "15") (term "0,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "27") (term "1,1")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "27") (term "1,0,1,0,1,1")) + (rule "replace_known_right" (formula "27") (term "0,1,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "28") (term "1,1")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1")) + (rule "translateJavaMulInt" (formula "28") (term "0,0,2,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,2,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1")) + (rule "shift_paren_or" (formula "41") (term "0,0,0")) + (rule "shift_paren_or" (formula "40") (term "0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "9")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "12") (term "0")) + (rule "replace_known_right" (formula "12") (term "0,1,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "applyEq" (formula "12") (term "0,0,1") (ifseqformula "13")) + (rule "applyEq" (formula "12") (term "0,0,1,1") (ifseqformula "13")) + (rule "replace_known_left" (formula "12") (term "1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "10")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "12") (term "0")) + (rule "translateJavaSubInt" (formula "12") (term "0")) + (rule "translateJavaAddInt" (formula "12") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "12") (term "0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "applyEq" (formula "22") (term "0,0,0,1,1") (ifseqformula "12")) + (rule "applyEq" (formula "14") (term "0,0,1,1,1") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,1,1,1")) + (rule "applyEq" (formula "27") (term "1,1,0,0,1,1") (ifseqformula "12")) + (rule "applyEq" (formula "22") (term "1,1,1,1,1") (ifseqformula "12")) + (rule "applyEq" (formula "27") (term "1,1,0,1,1") (ifseqformula "12")) + (rule "applyEq" (formula "22") (term "1,1,0,0,1") (ifseqformula "12")) + (rule "applyEq" (formula "22") (term "0,0,0,0,1") (ifseqformula "12")) + (rule "inEqSimp_invertInEq0" (formula "14") (term "0,1,1,1")) + (rule "times_zero_2" (formula "14") (term "1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1")) + (rule "inEqSimp_subsumption6" (formula "14") (term "0,1,1,1") (ifseqformula "10")) + (rule "greater_literals" (formula "14") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1")) + (rule "leq_literals" (formula "14") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "21"))) + (rule "true_left" (formula "14")) + (rule "jdiv_axiom" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,2,1")) + (rule "eqSymm" (formula "35")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "36")) + (rule "inEqSimp_subsumption6" (formula "35") (term "0,0") (ifseqformula "31")) + (rule "greater_literals" (formula "35") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polyDiv_pullOut" (formula "35") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "0,0,0")) + (rule "div_literals" (formula "35") (term "0,0")) + (rule "add_zero_left" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "17") (term "1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "17") (term "0,1,1,1,1,1")) + (rule "castedGetAny" (formula "17") (term "0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "17") (term "0,0,1")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "43"))) + (rule "translateJavaAddInt" (formula "17") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "17") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "17") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "17") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "17") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0,1,0,0,1")) + (rule "add_literals" (formula "17") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "17") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "17") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "17") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "17") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "17") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "18") (term "0,0,1")) + (rule "translateJavaCastInt" (formula "18") (term "0,0,0,1")) + (rule "castedGetAny" (formula "18") (term "0,0,0,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaMod" (formula "18") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "18") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "18") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaSubInt" (formula "19") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "19") (term "1,0")) + (rule "neg_literal" (formula "19") (term "1,0")) + (rule "translateJavaAddInt" (formula "19") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaMod" (formula "20") (term "0")) + (rule "jmod_axiom" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "newSym_eq" (formula "20") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(int::seqGet(Seq::final(self, + de.wiesler.BucketPointers::$bucket_starts), + bucket)), + Z(0(#)))")) + (rule "times_zero_1" (formula "20") (term "1,1")) + (rule "add_zero_right" (formula "20") (term "1")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "20")) + (rule "eqSymm" (formula "21")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "0,0,1") (ifseqformula "21")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "0,1")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "0,1,1") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,1")) + (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "commute_or" (formula "41") (term "0,0,0,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,1,1")) + (rule "castedGetAny" (formula "14") (term "0,0,0,0,1,1")) + (rule "applyEq" (formula "14") (term "0,0,0,1,1") (ifseqformula "21")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "1,1,1,1")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "45"))) + (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1")) + (rule "applyEq" (formula "14") (term "0,1,0,1,1,1") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,1,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "14") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_invertInEq0" (formula "14") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1")) + (rule "times_zero_2" (formula "14") (term "1,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "14") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "14") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption6" (formula "14") (term "0,1,1,1") (ifseqformula "10")) + (rule "greater_literals" (formula "14") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1")) + (rule "leq_literals" (formula "14") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "14") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "23"))) + (rule "true_left" (formula "14")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,0,1")) + (rule "castedGetAny" (formula "14") (term "0,0,0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,1,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,1,1,1")) + (rule "castedGetAny" (formula "14") (term "0,0,1,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0")) + (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "14")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "17")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "greater_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "18") (term "1,0")) + (rule "neg_literal" (formula "18") (term "1,0")) + (rule "translateJavaAddInt" (formula "18") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "21")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "17")) + (rule "greater_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "0")) + (rule "translateJavaCastInt" (formula "27") (term "0,0")) + (rule "castedGetAny" (formula "27") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "34") (term "1")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "32")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "mul_literals" (formula "7") (term "1,1,0")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaMulInt" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "13") (term "1")) + (rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "write_pos")) + (rule "compound_addition_1" (formula "13") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x")) + (rule "assignmentMultiplicationInt" (formula "13") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13")) + (rule "replace_int_MAX" (formula "13") (term "1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "7")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "translateJavaSubInt" (formula "9") (term "0")) + (rule "polySimp_elimSub" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "20") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "20") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "20") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "20") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaMod" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "newSym_eq" (formula "17") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17")) + (rule "eqSymm" (formula "18")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "18")) + (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_subsumption4" (formula "15") (ifseqformula "14")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "greater_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "9") (term "1,1")) + (rule "translateJavaCastInt" (formula "9") (term "0,1,1")) + (rule "castedGetAny" (formula "9") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "0,1")) + (rule "mul_literals" (formula "9") (term "0,0,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaSubInt" (formula "9") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "9") (term "1,0")) + (rule "neg_literal" (formula "9") (term "1,0")) + (rule "translateJavaAddInt" (formula "9") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "9") (term "0,1,0,1")) + (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "10") (term "1,1")) + (rule "translateJavaMulInt" (formula "10") (term "0,0,2,1,1")) + (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,2,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0,1")) + (rule "translateJavaSubInt" (formula "10") (term "0,1,0,1")) + (rule "translateJavaAddInt" (formula "10") (term "1,0,0,1,0,1")) + (rule "polySimp_elimSub" (formula "10") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,0,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,1,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "27"))) + (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "11") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "qeq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "28"))) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "12") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0")) + (rule "times_zero_2" (formula "12") (term "1,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0")) + (rule "inEqSimp_invertInEq0" (formula "12") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,0,0,1")) + (rule "translateJavaCastInt" (formula "13") (term "0,1,0,0,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,1")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "castedGetAny" (formula "13") (term "0,1,1")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "translateJavaAddInt" (formula "9") (term "1,0,0")) + (rule "translateJavaSubInt" (formula "9") (term "0")) + (rule "polySimp_elimSub" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1")) + (rule "polySimp_elimOne" (formula "9") (term "1")) + (rule "replace_known_left" (formula "11") (term "0,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "11")) + (rule "replace_known_left" (formula "12") (term "1,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "12")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "10") (term "0,0")) + (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11"))) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0")) + (rule "replace_known_left" (formula "10") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaMod" (formula "11") (term "0")) + (rule "jmod_axiom" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "newSym_eq" (formula "11") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "11") (term "1,1")) + (rule "add_zero_right" (formula "11") (term "1")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "11")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "10") (term "0,1") (ifseqformula "12")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "12")) + (rule "elimGcdGeq" (formula "10") (term "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1")) + (rule "sub_literals" (formula "10") (term "0,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "10") (term "0,0,0,1,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,1")) + (rule "add_zero_left" (formula "10") (term "0,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_pullOutFactor0" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "commute_or_2" (formula "27") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "27") (term "0,0,0")) + (rule "commute_or" (formula "28") (term "1,0,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,1,0,0,1")) + (rule "translateJavaCastInt" (formula "15") (term "0,0,1,0,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,1")) + (rule "polySimp_addComm1" (formula "15") (term "1")) + (rule "castedGetAny" (formula "15") (term "0,0,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "31"))) + (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "9") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "9") (term "1,1,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "15"))) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "9") (term "0")) + (rule "translateJavaCastInt" (formula "9") (term "0,0")) + (rule "castedGetAny" (formula "9") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "9") (term "1")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "31"))) + (rule "translateJavaAddInt" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "9") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "9") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "qeq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "1")) + (rule "translateJavaCastInt" (formula "10") (term "0,1")) + (rule "castedGetAny" (formula "10") (term "0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,0,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,1,0,1")) + (rule "castedGetAny" (formula "14") (term "0,0,1,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "0,1,0,0,1")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "32"))) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "14") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "14") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "14") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "14") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "14") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,1,0,0,1")) + (rule "add_literals" (formula "14") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "14") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "14") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,1,0,0,1")) + (rule "translateJavaCastInt" (formula "15") (term "0,0,1,0,0,1")) + (rule "castedGetAny" (formula "15") (term "0,0,1,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0,0,0,0,1")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33"))) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "15") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "15") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "9"))) + (rule "true_left" (formula "15")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "0,0,0,0,1")) + (rule "translateJavaCastInt" (formula "15") (term "0,0,0,0,0,1")) + (rule "castedGetAny" (formula "15") (term "0,0,0,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33"))) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "15") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "15") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "9"))) + (rule "true_left" (formula "15")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaMod" (formula "15") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "15") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "16") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "33"))) + (rule "translateJavaAddInt" (formula "16") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "16") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "16") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,0,1")) + (rule "add_literals" (formula "16") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "16") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "16") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "16") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "16") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "16") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "16") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "13") (term "0")) + (rule "replace_known_right" (formula "13") (term "0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "applyEq" (formula "13") (term "0,0,1,1") (ifseqformula "14")) + (rule "applyEq" (formula "13") (term "0,0,1") (ifseqformula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0")) + (rule "replace_known_left" (formula "13") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "elimGcdGeq" (formula "13") (term "0,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0,0,1")) + (rule "sub_literals" (formula "13") (term "0,0,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "13") (term "0,0,0,1,0,0,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,0,1")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,1")) + (rule "qeq_literals" (formula "13") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_pullOutFactor0" (formula "13") (term "0,0,0,1")) + (rule "add_literals" (formula "13") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "13") (term "0,0,0,1")) + (rule "leq_literals" (formula "13") (term "0,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "14") (term "0")) + (rule "translateJavaSubInt" (formula "14") (term "0")) + (rule "translateJavaAddInt" (formula "14") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "applyEq" (formula "17") (term "0,0,0,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "17") (term "1,1,1,1,1") (ifseqformula "14")) + (rule "applyEq" (formula "9") (term "0,0,1,1,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1,1,1")) + (rule "applyEq" (formula "17") (term "0,0,0,0,1,1") (ifseqformula "14")) + (rule "eqSymm" (formula "17") (term "0,1,1")) + (rule "applyEq" (formula "17") (term "1,1,0,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "17") (term "0,0,1,1") (ifseqformula "14")) + (rule "eqSymm" (formula "17") (term "0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1")) + (rule "inEqSimp_invertInEq0" (formula "9") (term "0,1,1,1")) + (rule "times_zero_2" (formula "9") (term "1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,1,1")) + (rule "elimGcdGeq" (formula "9") (term "0,1,1,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "0,0,0,1,0,0,1,1,1")) + (rule "sub_literals" (formula "9") (term "0,0,0,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor0" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "1,0,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "leq_literals" (formula "9") (term "1,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "9") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "0")) + (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "11")) + (rule "replace_known_left" (formula "9") (term "0,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "13")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "18") (term "1,0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaUnaryMinusInt" (formula "18") (term "1,1,0,1")) + (rule "neg_literal" (formula "18") (term "1,1,0,1")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,0,1")) + (rule "translateJavaAddInt" (formula "18") (term "0,0,1,0,1")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,0,1")) + (rule "mul_literals" (formula "18") (term "1,0,1,0,1")) + (rule "polySimp_addLiterals" (formula "18") (term "0,1,0,1")) + (rule "polySimp_addComm1" (formula "18") (term "1")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,1")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0")) + (rule "add_zero_right" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "jdiv_axiom" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1")) + (rule "eqSymm" (formula "26")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption6" (formula "26") (term "0,0") (ifseqformula "22")) + (rule "greater_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polyDiv_pullOut" (formula "26") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_pullOutFactor0" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0")) + (rule "div_literals" (formula "26") (term "0,0")) + (rule "add_zero_left" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0")) + (rule "neg_literal" (formula "10") (term "1,0")) + (rule "translateJavaAddInt" (formula "10") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "10") (term "0,0")) + (rule "polySimp_elimSub" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "commute_or_2" (formula "30") (term "0,0,0")) + (rule "shift_paren_or" (formula "31") (term "0,0,0")) + (rule "commute_or" (formula "30") (term "0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "21") (term "1")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "19")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "mul_literals" (formula "7") (term "1,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaMulInt" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "13") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,1")) + (rule "add_literals" (formula "13") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "13") (term "1") (ifseqformula "8")) + (rule "greater_literals" (formula "13") (term "0,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,1")) + (rule "leq_literals" (formula "13") (term "0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_leqRight" (formula "13")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "9") (term "0")) + (rule "replace_known_left" (formula "9") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "3")) (ifInst "" (formula "24"))) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaSubInt" (formula "10") (term "0")) + (rule "polySimp_elimSub" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaMod" (formula "18") (term "0")) + (rule "jmod_axiom" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "newSym_eq" (formula "18") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "18") (term "1,1")) + (rule "add_zero_right" (formula "18") (term "1")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18")) + (rule "eqSymm" (formula "19")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "19")) + (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "1,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1,1,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,1,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,1,1")) + (rule "translateJavaAddInt" (formula "9") (term "1,1,0,0,1,1")) + (rule "translateJavaCastInt" (formula "9") (term "0,1,0,1,0,0,0,1,1")) + (rule "translateJavaMulInt" (formula "9") (term "0,1,0,0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "9") (term "0,0,1,0,1,1")) + (rule "translateJavaMulInt" (formula "9") (term "1,0,0,0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "9") (term "1,1,0,0,1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0,0,0,1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,0,1,1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "9")) + (rule "castedGetAny" (formula "9") (term "0,1,0,1,0,0,1,1")) + (rule "replace_known_left" (formula "9") (term "1,0,1,0,0,1,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "9")) + (rule "castedGetAny" (formula "9") (term "0,0,1,0,1,1")) + (rule "replace_known_left" (formula "9") (term "0,1,0,1,1") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "9")) + (rule "castedGetAny" (formula "9") (term "1,1,0,1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,0,0,1,1")) + (rule "applyEq" (formula "9") (term "0,0,1,1,0,0,1,1") (ifseqformula "19")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,0,1,1") (ifseqformula "19")) + (rule "applyEq" (formula "9") (term "1,1,0,1,0,0,1,1") (ifseqformula "19")) + (rule "replace_known_left" (formula "9") (term "1,0,1,0,0,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0,0,1,1,1")) + (rule "inEqSimp_subsumption6" (formula "9") (term "0,1,0,0,1,1") (ifseqformula "14")) + (rule "times_zero_1" (formula "9") (term "1,1,0,0,1,0,0,1,1")) + (rule "greater_literals" (formula "9") (term "0,0,0,1,0,0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "leq_literals" (formula "9") (term "0,0,1,0,0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption6" (formula "9") (term "0,0,0,1,1") (ifseqformula "12")) + (rule "times_zero_1" (formula "9") (term "1,1,0,0,0,0,1,1")) + (rule "greater_literals" (formula "9") (term "0,0,0,0,0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "leq_literals" (formula "9") (term "0,0,0,0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "nnf_imp2or" (formula "9") (term "0,1,1,1")) + (rule "nnf_notAnd" (formula "9") (term "0,0,1,1,1")) + (rule "nnf_notAnd" (formula "9") (term "1,0,0,1,1,1")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,1,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,1,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,1,1,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,1,1,0,0,1,1,1")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,1,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,0,1,0,0,1,1,1")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,1,1,1")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,1,1")) + (rule "inEqSimp_notGeq" (formula "9") (term "0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,1,1,1")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0,1,1,1")) + (rule "replace_known_left" (formula "9") (term "1,1,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "9")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26"))) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,1,1")) + (rule "castedGetAny" (formula "11") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "polySimp_rightDist" (formula "11") (term "0,1")) + (rule "mul_literals" (formula "11") (term "0,0,1")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "23") (term "0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "0,0,1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "9")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27"))) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "qeq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11"))) + (rule "true_left" (formula "10")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27"))) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "11"))) + (rule "true_left" (formula "10")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "27"))) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "10") (term "0,1,1,1,0,1,1,1")) + (rule "add_zero_left" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "10") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0")) + (rule "times_zero_2" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,1,1,1,1,1")) + (rule "castedGetAny" (formula "11") (term "0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "28"))) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "11") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "11") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "11") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0")) + (rule "replace_known_left" (formula "11") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0")) + (rule "times_zero_2" (formula "11") (term "1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "11") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,1,1,1")) + (rule "times_zero_2" (formula "11") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,0,0,0,1,1")) + (rule "castedGetAny" (formula "12") (term "0,0,0,0,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,1,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,0,0,1,1,1")) + (rule "castedGetAny" (formula "12") (term "0,0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,0,1,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,1,1")) + (rule "castedGetAny" (formula "12") (term "0,1,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,1,0,0,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,1,0,0,1")) + (rule "castedGetAny" (formula "12") (term "0,1,1,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "12") (term "1,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,0,0,0,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "29"))) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "12") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "30"))) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "13") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "1,0,0,0")) + (rule "times_zero_1" (formula "13") (term "0,0,0")) + (rule "qeq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "13") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "13") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "13") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "13") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "13") (term "0,1,0,0,1")) + (rule "add_literals" (formula "13") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "13") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "13") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,1,0,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,1,0,1")) + (rule "castedGetAny" (formula "14") (term "0,0,1,0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,0,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,0,1")) + (rule "castedGetAny" (formula "14") (term "0,0,0,0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0")) + (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "replace_known_left" (formula "13") (term "0,0,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "polySimp_rightDist" (formula "21") (term "0,1")) + (rule "mul_literals" (formula "21") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1")) + (rule "polySimp_elimOne" (formula "20") (term "1")) + (rule "replace_known_left" (formula "10") (term "1,0,0,1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "10")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "18"))) + (rule "translateJavaSubInt" (formula "23") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1")) + (rule "add_literals" (formula "23") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,0,0")) + (rule "translateJavaUnaryMinusInt" (formula "24") (term "1,0")) + (rule "neg_literal" (formula "24") (term "1,0")) + (rule "translateJavaSubInt" (formula "24") (term "0,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "9") (term "0,1,1") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1,1")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1,0,1,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1,0,1,1")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1,0,1,1")) + (rule "translateJavaCastInt" (formula "9") (term "0,1,0,1,0,1,1")) + (rule "translateJavaCastInt" (formula "9") (term "1,1,0,1,0,1,1")) + (rule "castedGetAny" (formula "9") (term "0,1,0,1,0,1,1")) + (rule "castedGetAny" (formula "9") (term "1,1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0,1,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0,1,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,0,1,0,1,1")) + (rule "applyEq" (formula "9") (term "0,1,0,0,1,0,0,0,1,0,1,1") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,0,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,0,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,0,1,1")) + (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,0,1,1")) + (rule "applyEq" (formula "9") (term "0,1,0,0,1,0,0,0,1,1") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0,0,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0,0,1,1")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0,0,1,1")) + (rule "add_zero_left" (formula "9") (term "0,0,1,0,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,1,1")) + (rule "commute_or" (formula "36") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "37") (term "0,0,0")) + (rule "commute_or" (formula "36") (term "0,0,0,1,0")) + (rule "jdiv_axiom" (formula "32") (term "0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,2,1")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "33")) + (rule "inEqSimp_subsumption6" (formula "32") (term "0,0") (ifseqformula "28")) + (rule "greater_literals" (formula "32") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_pullOutFactor0" (formula "32") (term "0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "32") (term "0,0,0,1,0")) + (rule "div_literals" (formula "32") (term "0,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "1,0")) + (rule "times_zero_1" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "lenNonNegative" (formula "34") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "26")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "7") (term "0")) + (rule "expand_inShort" (formula "7")) + (rule "replace_short_MAX" (formula "7") (term "1,0")) + (rule "replace_short_MIN" (formula "7") (term "0,1")) + (rule "andLeft" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "27")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "8") (ifseqformula "1")) + (rule "mul_literals" (formula "8") (term "1,1,0")) + (rule "greater_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "13") (term "1")) + (rule "variableDeclarationFinal" (formula "13") (term "1") (newnames "write")) + (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_array2" (formula "13")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "compound_assignment_op_plus_array" (formula "13") (term "1") (inst "#v0=x_arr") (inst "#v1=x")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this_final" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "eval_order_array_access3" (formula "13") (term "1") (inst "#v0=x_arr_2") (inst "#v2=x_2") (inst "#v1=x_3")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_2")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_3")) + (rule "compound_int_cast_expression" (formula "13") (term "1") (inst "#v=x_4")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_4")) + (rule "remove_parentheses_right" (formula "13") (term "1")) + (rule "compound_addition_1" (formula "13") (term "1") (inst "#v=x_5")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_5")) + (rule "assignment_array2" (formula "13")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "assignmentAdditionInt" (formula "13") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (userinteraction)) + (rule "andRight" (formula "13") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "13") (term "1")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_leqRight" (formula "13")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1")) + (rule "greater_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaSubInt" (formula "10") (term "0")) + (rule "polySimp_elimSub" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaMod" (formula "18") (term "0")) + (rule "jmod_axiom" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "newSym_eq" (formula "18") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "18") (term "1,1")) + (rule "add_zero_right" (formula "18") (term "1")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18")) + (rule "eqSymm" (formula "19")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "19")) + (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "10") (term "1,1")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "26"))) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "10") (term "0,0,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "qeq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (term "1,0,1,1,1,1") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "10") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "11") (term "1,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "1,0,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1")) + (rule "polySimp_addComm1" (formula "11") (term "1")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,1")) + (rule "add_literals" (formula "11") (term "1,1,0,1")) + (rule "times_zero_1" (formula "11") (term "1,0,1")) + (rule "add_zero_right" (formula "11") (term "0,1")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "11") (term "0")) + (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "11") (term "0,1,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "11") (term "1,0,0,1,1") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,1,1")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,1,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,0,1,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,0,1,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,1,1")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,0,0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "12") (term "0")) + (rule "translateJavaAddInt" (formula "12") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "12") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "12")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "commute_or_2" (formula "26") (term "0,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "commute_or_2" (formula "25") (term "0,0,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "11") (term "0,1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,0,1,1,1,1,1")) + (rule "castedGetAny" (formula "11") (term "0,0,1,1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "11") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "29"))) + (rule "translateJavaSubInt" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "11") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "11") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "qeq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,1,1,1,1,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30"))) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "11"))) + (rule "true_left" (formula "12")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "0,0,0,0,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,0,0,0,0,1")) + (rule "castedGetAny" (formula "12") (term "0,0,0,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30"))) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "11"))) + (rule "true_left" (formula "12")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "0,1,0,0,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "30"))) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "12") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "12") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "12") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "12") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "12") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "12") (term "0,1,0,0,1")) + (rule "add_literals" (formula "12") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "12") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "12") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "1,0,0,0")) + (rule "times_zero_1" (formula "12") (term "0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "1,1,0,0,1")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "31"))) + (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "13") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "13") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "13") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "qeq_literals" (formula "13") (term "0,0,0")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11"))) + (rule "true_left" (formula "13")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "0,1,0,0,1")) + (rule "translateJavaCastInt" (formula "13") (term "0,0,1,0,0,1")) + (rule "castedGetAny" (formula "13") (term "0,0,1,0,0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "13") (term "1,1,0,0,1")) + (rule "translateJavaCastInt" (formula "13") (term "0,1,1,0,0,1")) + (rule "castedGetAny" (formula "13") (term "0,1,1,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "13") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "31"))) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "13") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "13") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "13") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "13") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "13") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "13") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "13") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "13") (term "1,0,1,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0")) + (rule "replace_known_left" (formula "13") (term "1,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0,0")) + (rule "times_zero_2" (formula "13") (term "1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "13") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,1,1,1,1")) + (rule "times_zero_2" (formula "13") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "13") (term "0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "13") (term "0,0") (ifseqformula "8")) + (rule "leq_literals" (formula "13") (term "0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (term "0,0,0,1") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0,0,0,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14") (term "0")) + (rule "replace_known_right" (formula "14") (term "0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "18")) + (rule "replace_known_left" (formula "11") (term "0,1,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "16")) (ifInst "" (formula "18"))) + (rule "replace_known_left" (formula "13") (term "1,0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "18"))) + (rule "replace_known_left" (formula "12") (term "1,0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "21") (term "1,1")) + (rule "translateJavaCastInt" (formula "21") (term "0,1,1")) + (rule "castedGetAny" (formula "21") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "lenNonNegative" (formula "31") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "23")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthNotNegative" (formula "24") (term "1")) + (rule "arrayLengthIsAShort" (formula "24") (term "1")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "22")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "elimGcdLeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "9") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "20") (term "0")) + (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "21"))) + (rule "andLeft" (formula "11")) + (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "24"))) + (rule "andLeft" (formula "14")) + (rule "replace_known_left" (formula "13") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "1")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "1")) + (rule "inEqSimp_leqRight" (formula "13")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "10") (ifseqformula "11")) + (rule "greater_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "12")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "10") (term "0")) + (rule "replace_known_left" (formula "10") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "3")) (ifInst "" (formula "25"))) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "11") (term "0")) + (rule "translateJavaSubInt" (formula "11") (term "0")) + (rule "polySimp_elimSub" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "22") (term "1,1,0,1,0")) + (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "22") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaMod" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "newSym_eq" (formula "19") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "eqSymm" (formula "20")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "20")) + (rule "elimGcdGeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elimGcdLeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "16")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "replace_known_right" (formula "10") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "12") (term "1,1")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "10")) (ifInst "" (formula "28"))) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,0,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (term "1,0,1,1,1,1") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "19") (term "1,0,1")) + (rule "replace_known_right" (formula "19") (term "0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "10"))) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0")) + (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "21") (term "1,0,1")) + (rule "translateJavaSubInt" (formula "21") (term "1,0,1")) + (rule "translateJavaAddInt" (formula "21") (term "1,0,1,0,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1")) + (rule "polySimp_addComm1" (formula "21") (term "1")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,1")) + (rule "add_literals" (formula "21") (term "1,1,0,1")) + (rule "times_zero_1" (formula "21") (term "1,0,1")) + (rule "add_zero_right" (formula "21") (term "0,1")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "21") (term "0")) + (rule "translateJavaAddInt" (formula "21") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,0,1,1")) + (rule "replace_known_left" (formula "21") (term "1,0,0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "37")) (ifInst "" (formula "10")) (ifInst "" (formula "11"))) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "21") (term "0,0,0,0,1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0")) + (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "25") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "commute_or_2" (formula "37") (term "0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "16") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "31")) + (rule "times_zero_1" (formula "11") (term "1,1,0")) + (rule "greater_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "32")) + (rule "greater_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "38") (term "0,0,1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "42")) (ifInst "" (formula "16"))) + (rule "translateJavaSubInt" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "15") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "15") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "15") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "replace_known_left" (formula "15") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,1")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,1,0,1")) + (rule "add_literals" (formula "15") (term "1,0,1,0,1")) + (rule "times_zero_1" (formula "15") (term "0,1,0,1")) + (rule "qeq_literals" (formula "15") (term "1,0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "15") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "15") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "15") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "16") (term "0")) + (rule "translateJavaCastInt" (formula "16") (term "0,0")) + (rule "castedGetAny" (formula "16") (term "0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaMod" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "newSym_eq" (formula "17") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self, + bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "17")) + (rule "eqSymm" (formula "18")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "18")) + (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "18")) + (rule "elimGcdGeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(6(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "22")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "greater_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0,0")) + (rule "castedGetAny" (formula "14") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "23")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "19") (term "0,1")) + (rule "translateJavaCastInt" (formula "19") (term "0,0,1")) + (rule "castedGetAny" (formula "19") (term "0,0,1")) + (rule "lenNonNegative" (formula "38") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "30")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "arrayLengthNotNegative" (formula "31") (term "1")) + (rule "arrayLengthIsAShort" (formula "31") (term "1")) + (rule "expand_inShort" (formula "31")) + (rule "replace_short_MAX" (formula "31") (term "1,0")) + (rule "replace_short_MIN" (formula "31") (term "0,1")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "29")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "elimGcdLeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "8") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaMod" (formula "21") (term "0")) + (rule "jmod_axiom" (formula "21") (term "0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "newSym_eq" (formula "21") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketSize(self, bucket), + Z(0(#)))")) + (rule "times_zero_1" (formula "21") (term "1,1")) + (rule "add_zero_right" (formula "21") (term "1")) + (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "21")) + (rule "eqSymm" (formula "22")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "22")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "elimGcdGeq_antec" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "29") (term "1,1")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "46"))) + (rule "translateJavaSubInt" (formula "29") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "29") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "29") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "29") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "29") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,0,1")) + (rule "replace_known_left" (formula "29") (term "1,0,0,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "29") (term "1,0,1,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,0")) + (rule "replace_known_left" (formula "29") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0")) + (rule "times_zero_2" (formula "29") (term "1,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0")) + (rule "applyEq" (formula "29") (term "1,1,1,1,1,1") (ifseqformula "18")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "29") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,1,1,1")) + (rule "times_zero_2" (formula "29") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "29") (term "0,1,1,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0") (ifseqformula "6")) + (rule "leq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "1,1,1,1") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,1,1,1,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,1,1")) + (rule "qeq_literals" (formula "29") (term "0,1,1,1,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "30") (term "1,1")) + (rule "translateJavaCastInt" (formula "30") (term "0,1,1")) + (rule "castedGetAny" (formula "30") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "seqGetAlphaCast" (formula "42") (term "0")) + (rule "castedGetAny" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "seqGetAlphaCast" (formula "38") (term "0")) + (rule "castedGetAny" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "28") (term "0,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "28") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "28") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "3")) (ifInst "" (formula "47")) (ifInst "" (formula "29"))) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,1")) + (rule "replace_known_left" (formula "28") (term "1,0,1,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEq" (formula "28") (term "1,1,0,0,1,1") (ifseqformula "18")) + (rule "replace_known_left" (formula "28") (term "1,0,0,1,1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEq" (formula "28") (term "0,0,0,1,1") (ifseqformula "18")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption6" (formula "28") (term "0,0,1,1") (ifseqformula "13")) + (rule "greater_literals" (formula "28") (term "0,0,0,0,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1")) + (rule "leq_literals" (formula "28") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "29") (term "0,0")) + (rule "translateJavaAddInt" (formula "29") (term "0,2,0,0")) + (rule "translateJavaMulInt" (formula "29") (term "0,0,2,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,2,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "0")) + (rule "translateJavaCastInt" (formula "27") (term "0,0")) + (rule "castedGetAny" (formula "27") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "27") (term "1")) + (rule "translateJavaCastInt" (formula "27") (term "0,1")) + (rule "castedGetAny" (formula "27") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "1")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "25") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "25") (ifseqformula "13")) + (rule "times_zero_1" (formula "25") (term "1,1,0")) + (rule "greater_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "closeFalse" (formula "25")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_to_primitive_array_component" (formula "13")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "returnUnfold" (formula "13") (term "1") (inst "#v0=i")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "i")) + (rule "instanceCreationAssignmentUnfoldArguments" (formula "13") (term "1")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "var")) + (rule "compound_greater_than_comparison_1" (formula "13") (term "1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_6")) + (rule "eval_order_array_access4" (formula "13") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "13") (term "1")) + (rule "variableDeclaration" (formula "13") (term "1") (newnames "x_arr_3")) + (rule "assignment_read_attribute_this_final" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_array2" (formula "13")) + (branch "Normal Execution (x_arr_3 != null)" + (builtin "One Step Simplification" (formula "13")) + (rule "pullOutSelect" (formula "13") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "greater_than_comparison_simple" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "variableDeclarationAssign" (formula "14") (term "1")) + (rule "variableDeclaration" (formula "14") (term "1") (newnames "var_1")) + (rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (builtin "Use Operation Contract" (formula "14") (newnames "heapBefore_Increment,self_51,exc_51,heapAfter_Increment,anon_heap_Increment") (contract "de.wiesler.Increment[de.wiesler.Increment::Increment(boolean,int)].JML normal_behavior operation contract.0")) + (branch "Post (Increment)" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,1,0,0,1,0") (ifseqformula "14")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "17")) + (rule "eqSymm" (formula "18")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "15")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "blockEmpty" (formula "25") (term "1")) + (rule "applyEq" (formula "1") (term "1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "17") (term "1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "14") (term "1,3,0,0") (ifseqformula "18")) + (rule "methodCallReturn" (formula "25") (term "1")) + (rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "methodCallEmpty" (formula "25") (term "1")) + (rule "tryEmpty" (formula "25") (term "1")) + (rule "emptyModality" (formula "25") (term "1")) + (rule "andRight" (formula "25")) + (branch "Case 1" + (rule "andRight" (formula "25")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "17") (term "0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Increment" (formula "17")) + (rule "true_left" (formula "17")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Increment" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21")) + (rule "notRight" (formula "21")) + (rule "close" (formula "18") (ifseqformula "1")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "25")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) + ) + ) + (branch "Exceptional Post (Increment)" + (builtin "One Step Simplification" (formula "14")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,0,0") (ifseqformula "14")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "15") (term "1,1,0,0,1,0") (ifseqformula "14")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "15")) + (rule "close" (formula "20") (ifseqformula "19")) + ) + (branch "Pre (Increment)" + (builtin "One Step Simplification" (formula "14")) + (rule "andRight" (formula "14") (userinteraction)) + (branch "Case 1" + (rule "wellFormedStorePrimitiveArray" (formula "14")) + (rule "close" (formula "14") (ifseqformula "2")) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "14") (userinteraction)) + (rule "andRight" (formula "14") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "14") (term "1")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "13")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "12") (ifseqformula "13")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1")) + (rule "greater_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaSubInt" (formula "10") (term "0")) + (rule "polySimp_elimSub" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "21") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "21") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaMod" (formula "18") (term "0")) + (rule "jmod_axiom" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "newSym_eq" (formula "18") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "18") (term "1,1")) + (rule "add_zero_right" (formula "18") (term "1")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "18")) + (rule "eqSymm" (formula "19")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "19")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "19")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_subsumption4" (formula "16") (ifseqformula "15")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaAddInt" (formula "10") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "10") (term "1,1,1,0,0,1,1")) + (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "11") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "11") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "12") (term "1,0,1")) + (rule "translateJavaSubInt" (formula "12") (term "1,0,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,0,1,0,1")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1")) + (rule "polySimp_addComm1" (formula "12") (term "1")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,1")) + (rule "add_literals" (formula "12") (term "1,1,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,1")) + (rule "add_zero_right" (formula "12") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "12") (term "1,1,0,0,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,1,0,0,1,1")) + (rule "castedGetAny" (formula "12") (term "0,1,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,1,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12") (term "1,1,1,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,1,1,1,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,1,1,1,1")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "translateJavaMulInt" (formula "12") (term "1,0,0,0,0,0,1,1,1,1")) + (rule "translateJavaMulInt" (formula "12") (term "0,1,0,0,0,0,1,1,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "1,1,0,0,1,0,0,0,1,1,1,1")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,0,0,1,1,1,1")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,0,0,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,0,0,0,1,1,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,0,1,1,1,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "12")) + (rule "castedGetAny" (formula "12") (term "1,1,0,0,1,0,0,1,1,1,1")) + (rule "castedGetAny" (formula "12") (term "0,0,1,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "0,1,0,1,1,1,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "12")) + (rule "castedGetAny" (formula "12") (term "0,1,0,1,0,0,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,0,1,0,0,1,1,1,1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,1,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0,0,1,1,1,1")) + (rule "applyEq" (formula "12") (term "0,0,0,1,0,0,1,1,1,1") (ifseqformula "22")) + (rule "applyEq" (formula "12") (term "0,0,1,1,0,0,1,1,1,1") (ifseqformula "22")) + (rule "applyEq" (formula "12") (term "1,1,0,1,0,0,1,1,1,1") (ifseqformula "22")) + (rule "replace_known_left" (formula "12") (term "1,0,1,0,0,1,1,1,1") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_subsumption6" (formula "12") (term "0,1,0,0,1,1,1,1") (ifseqformula "17")) + (rule "greater_literals" (formula "12") (term "0,0,0,1,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,1,1,1,1")) + (rule "leq_literals" (formula "12") (term "0,0,1,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_subsumption6" (formula "12") (term "0,0,0,1,1,1,1") (ifseqformula "15")) + (rule "greater_literals" (formula "12") (term "0,0,0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,1,1,1")) + (rule "leq_literals" (formula "12") (term "0,0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,1,1,1")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,1,1,1")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,1,1,1,1")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,1,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,1,1,1,1,1")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,1,1,1,1")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,1,1,1,1")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,1,1,1,1")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,1,1,1,1")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,1,1,1,1")) + (rule "replace_known_left" (formula "12") (term "1,1,1,1,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "1") (term "0")) + (rule "translateJavaCastInt" (formula "1") (term "0,0")) + (rule "castedGetAny" (formula "1") (term "0,0")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "1") (term "0,1,1")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "2") (term "0,1,1")) + (rule "translateJavaAddInt" (formula "2") (term "1,0,0,1,1")) + (rule "translateJavaSubInt" (formula "2") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "2") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "2") (term "1")) + (rule "commute_or_2" (formula "27") (term "0,0")) + (rule "commute_or_2" (formula "26") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,1,1")) + (rule "castedGetAny" (formula "14") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "30"))) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "3") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "3") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "times_zero_2" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "3") (term "0,1,1,1,1")) + (rule "times_zero_2" (formula "3") (term "1,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "3") (term "0,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0,1") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0,0,0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0")) + (rule "translateJavaCastInt" (formula "4") (term "0,0")) + (rule "castedGetAny" (formula "4") (term "0,0")) + (rule "commute_or_2" (formula "27") (term "0,0,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,1,1,0,0,0,1,1")) + (rule "castedGetAny" (formula "14") (term "0,1,1,0,0,0,1,1")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0,0,0,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,0,0,1,1")) + (rule "translateJavaCastInt" (formula "14") (term "0,0,0,0,0,0,1,1")) + (rule "castedGetAny" (formula "14") (term "0,0,0,0,0,0,1,1")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0,0,1,1")) + (rule "translateJavaMulInt" (formula "14") (term "0,0,2,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,2,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (term "1,0,0,1,1") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,1,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,1,0,0,1,1")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,0,0,1,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,1,1")) + (rule "qeq_literals" (formula "14") (term "0,1,0,0,1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "translateJavaSubInt" (formula "2") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "2") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,1,1")) + (rule "mul_literals" (formula "2") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "2") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "2") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "translateJavaSubInt" (formula "3") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "3") (term "1,0")) + (rule "neg_literal" (formula "3") (term "1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "1") (term "0,0,1,1")) + (rule "translateJavaAddInt" (formula "1") (term "1,0,0,0,1,1")) + (rule "translateJavaSubInt" (formula "1") (term "0,0,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "1") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "17") (term "1,0")) + (rule "neg_literal" (formula "17") (term "1,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "5") (term "0,1,0,1,1,1")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "33"))) + (rule "translateJavaAddInt" (formula "5") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "5") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "5") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "5") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "5") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "5") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "5") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "5") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "times_zero_2" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0,1,1,1,1") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0,0") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "6") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaMod" (formula "6") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "6") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "6") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "translateJavaSubInt" (formula "7") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "7") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "1,1,1")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "7") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "7") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaSubInt" (formula "8") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "8") (term "1,0")) + (rule "neg_literal" (formula "8") (term "1,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "jdiv_axiom" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1")) + (rule "eqSymm" (formula "27")) + (rule "applyEqRigid" (formula "27") (term "1") (ifseqformula "28")) + (rule "inEqSimp_subsumption6" (formula "27") (term "0,0") (ifseqformula "23")) + (rule "greater_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polyDiv_pullOut" (formula "27") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0")) + (rule "div_literals" (formula "27") (term "0,0")) + (rule "add_zero_left" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "shift_paren_or" (formula "32") (term "0,0,0")) + (rule "shift_paren_or" (formula "31") (term "0,0,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "18") (term "0,0,0,1,1,1")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,0,0,0,1,1,1")) + (rule "translateJavaMulInt" (formula "18") (term "0,0,2,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,2,0,0,0,1,1,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,0,0,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "18") (term "0,1,0,1,1")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "35"))) + (rule "translateJavaAddInt" (formula "18") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "18") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "18") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "18") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "18") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "18") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "18") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0,1,0,0,1")) + (rule "add_literals" (formula "18") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "18") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "18") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "18") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "18") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "18") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "19") (term "0,1,0,1,1")) + (rule "translateJavaCastInt" (formula "19") (term "0,0,1,0,1,1")) + (rule "castedGetAny" (formula "19") (term "0,0,1,0,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "19") (term "0,1,0,0,1,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaSubInt" (formula "19") (term "0,0,1,0,0,1,1")) + (rule "translateJavaUnaryMinusInt" (formula "19") (term "1,0,1,0,0,1,1")) + (rule "neg_literal" (formula "19") (term "1,0,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "19") (term "0,0,0,1,0,0,1,1")) + (rule "polySimp_elimSub" (formula "19") (term "0,0,1,0,0,1,1")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,0,0,1,1")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,1,0,0,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "3") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "translateJavaSubInt" (formula "3") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "3") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,1,1")) + (rule "mul_literals" (formula "3") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "3") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "3") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "3") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "translateJavaSubInt" (formula "3") (term "0,0,0,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "3") (term "1,0,0,0,1")) + (rule "neg_literal" (formula "3") (term "1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "3") (term "0,0,0,0,0,1")) + (rule "polySimp_elimSub" (formula "3") (term "0,0,0,0,1")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0,1")) + (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "4") (term "0,1,1")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "36"))) + (rule "translateJavaAddInt" (formula "4") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "4") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "4") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "4") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "4") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "4") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,1,1,1,1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "inEqSimp_invertInEq0" (formula "4") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,1,1,1")) + (rule "times_zero_2" (formula "4") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "4") (term "0,1,1,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "16")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "5") (term "1,0,1")) + (rule "translateJavaCastInt" (formula "5") (term "0,1,0,1")) + (rule "polySimp_addComm1" (formula "5") (term "1")) + (rule "castedGetAny" (formula "5") (term "0,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "2") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "37"))) + (rule "translateJavaAddInt" (formula "2") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "2") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "2") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "2") (term "0,0,1,1,1") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,1,1,1,1") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "2") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "3") (term "1,0,0")) + (rule "translateJavaCastInt" (formula "3") (term "0,1,0,0")) + (rule "castedGetAny" (formula "3") (term "0,1,0,0")) + (rule "Contract_axiom_for_bucketSize_in_BucketPointers" (formula "1") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,0")) + (rule "translateJavaCastInt" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "castedGetAny" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "2") (term "0")) + (rule "translateJavaAddInt" (formula "2") (term "1,0,0")) + (rule "translateJavaSubInt" (formula "2") (term "0")) + (rule "polySimp_elimSub" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "replace_known_left" (formula "9") (term "1,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_left" (formula "6") (term "1,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_left" (formula "3") (term "0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "commute_or" (formula "35") (term "0,0,0,1,0")) + (rule "seqGetAlphaCast" (formula "29") (term "0")) + (rule "castedGetAny" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "lenNonNegative" (formula "33") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "25")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "seqGetAlphaCast" (formula "34") (term "0")) + (rule "castedGetAny" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "19")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "8") (term "1,1,0,1,1,1")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "40"))) + (rule "translateJavaAddInt" (formula "8") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "8") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "8") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "8") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "8") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "times_zero_2" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0,1,1,1,1") (ifseqformula "18")) + (rule "leq_literals" (formula "8") (term "0,0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0,0") (ifseqformula "18")) + (rule "leq_literals" (formula "8") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "9"))) + (rule "true_left" (formula "8")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "1,1,0,1,1,1")) + (rule "translateJavaCastInt" (formula "8") (term "0,1,1,0,1,1,1")) + (rule "castedGetAny" (formula "8") (term "0,1,1,0,1,1,1")) + (rule "inEqSimp_commuteGeq" (formula "8") (term "1,0,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "8") (term "0,1,0,0,1")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "40"))) + (rule "translateJavaAddInt" (formula "8") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "8") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "8") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "8") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "8") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "8") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0")) + (rule "replace_known_left" (formula "8") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "8") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "8") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "8") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,1,0,0,1")) + (rule "add_literals" (formula "8") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "8") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "8") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "8") (term "0,1,0,0,1")) + (rule "translateJavaCastInt" (formula "8") (term "0,0,1,0,0,1")) + (rule "castedGetAny" (formula "8") (term "0,0,1,0,0,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "8") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaMod" (formula "8") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "8") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "8") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "10") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaSubInt" (formula "10") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,1,1")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "10") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaSubInt" (formula "10") (term "0,0,0,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0,0,0,1")) + (rule "neg_literal" (formula "10") (term "1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "10") (term "0,0,0,0,0,1")) + (rule "polySimp_elimSub" (formula "10") (term "0,0,0,0,1")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,1")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1")) + (rule "commute_or_2" (formula "37") (term "0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "40"))) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "21") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "21") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "21") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "21") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,1,0,0,1")) + (rule "add_literals" (formula "21") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "21") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "21") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "21") (term "0,1,1,1,1")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "40"))) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "21") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "21") (term "0,1,1,1,0,1,1,1")) + (rule "add_zero_left" (formula "21") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "21") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2" (formula "21") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "21") (term "1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "21") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "21") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "times_zero_2" (formula "21") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,1,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0,0")) + (rule "qeq_literals" (formula "21") (term "1,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,1,1,1,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "21") (term "1,1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "21") (term "1,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "21") (term "0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "21") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "22") (term "1,1,1,1,1")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "41"))) + (rule "translateJavaAddInt" (formula "22") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "22") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "22") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "22") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "22") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "22") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "22") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,1,0,0,1")) + (rule "add_literals" (formula "22") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "22") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "22") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "22") (term "1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "22") (term "0,1,1,1,1,1")) + (rule "castedGetAny" (formula "22") (term "0,1,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "22") (term "0,1,0,1")) + (rule "translateJavaCastInt" (formula "22") (term "0,0,1,0,1")) + (rule "castedGetAny" (formula "22") (term "0,0,1,0,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "22") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaMod" (formula "22") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "22") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "22") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23") (term "0")) + (rule "replace_known_right" (formula "23") (term "0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "28")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "3")) + (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "5"))) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "replace_known_left" (formula "16") (term "0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "11")) (ifInst "" (formula "5")) (ifInst "" (formula "13"))) + (rule "replace_known_left" (formula "28") (term "1,0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33"))) + (rule "replace_known_left" (formula "15") (term "1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "5")) (ifInst "" (formula "13"))) + (rule "newSym_eq" (formula "31") (inst "l=l_1") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self, + int::final(self, + de.wiesler.BucketPointers::$num_buckets)), + Z(0(#)))")) + (rule "times_zero_1" (formula "31") (term "1,1")) + (rule "add_zero_right" (formula "31") (term "1")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "32")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "32")) + (rule "inEqSimp_commuteGeq" (formula "4")) + (rule "applyEq" (formula "28") (term "1,1,0,1") (ifseqformula "32")) + (rule "applyEq" (formula "28") (term "1,0,1,1,1") (ifseqformula "32")) + (rule "elimGcdLeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "5") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "5") (term "0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "elimGcdGeq_antec" (formula "29") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "newSym_eq" (formula "16") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(self, + add(Z(1(#)), + bucket)), + Z(0(#)))")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "38") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "17")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "17")) + (rule "inEqSimp_commuteGeq" (formula "2")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "13") (term "1,1") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "0,1,0,1") (ifseqformula "17")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=l_2") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "37")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "32")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0")) + (rule "neg_literal" (formula "39") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "11")) + (rule "times_zero_1" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "32")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "14")) + (rule "times_zero_1" (formula "37") (term "0,0")) + (rule "add_zero_left" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "commute_or_2" (formula "58") (term "0,0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "9") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaSubInt" (formula "9") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "9") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "9") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,1,1")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "9") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "10") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaSubInt" (formula "10") (term "0,0,1,1,1")) + (rule "translateJavaUnaryMinusInt" (formula "10") (term "1,0,1,1,1")) + (rule "neg_literal" (formula "10") (term "1,0,1,1,1")) + (rule "translateJavaAddInt" (formula "10") (term "0,0,0,1,1,1")) + (rule "polySimp_elimSub" (formula "10") (term "0,0,1,1,1")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,1,1")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "16") (term "1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,1,1")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "16") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1")) + (rule "mul_literals" (formula "16") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "16") (term "1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaUnaryMinusInt" (formula "16") (term "1,1,1")) + (rule "neg_literal" (formula "16") (term "1,1,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1")) + (rule "translateJavaAddInt" (formula "16") (term "0,0,1,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1")) + (rule "mul_literals" (formula "16") (term "1,0,1,1")) + (rule "polySimp_addLiterals" (formula "16") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,1")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0")) + (rule "add_zero_right" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_contradInEq3" (formula "16") (ifseqformula "41")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + (branch "Case 2" + (rule "pullOutSelect" (formula "14") (term "1") (inst "selectSK=arr_1") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(Z(0(#)), arr_1<>)<>") (userinteraction)) + (branch "CUT: 0 <= arr_1<> TRUE" + (rule "replace_int_MIN" (formula "16") (term "0")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "14")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: 0 <= arr_1<> FALSE" + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "12") (term "1,1") (userinteraction)) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "12") (term "0,1,1") (userinteraction)) + (rule "replace_int_MIN" (formula "17") (term "0")) + (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "translateJavaSubInt" (formula "12") (term "1,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "10")) (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "15")) (ifInst "" (formula "13"))) + (rule "polySimp_elimSub" (formula "12") (term "1,1")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "15")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "14")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0")) + (rule "replace_known_left" (formula "12") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "polySimp_rightDist" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1")) + (rule "mul_literals" (formula "17") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1")) + (rule "polySimp_elimOne" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18") (inst "b=b")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "translateJavaCastInt" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "24") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "translateJavaMulInt" (formula "19") (term "0")) + (rule "translateJavaCastInt" (formula "22") (term "0")) + (rule "translateJavaCastInt" (formula "21") (term "1")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "1")) + (rule "castedGetAny" (formula "25") (term "0")) + (rule "castedGetAny" (formula "22") (term "0")) + (rule "castedGetAny" (formula "21") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "19")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "19") (ifseqformula "20")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1")) + (rule "greater_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "30") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "16") (term "0,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,0,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,2,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "32"))) + (rule "translateJavaSubInt" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "14") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "14") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "14") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "14") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "14") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "14") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "14") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0,1")) + (rule "replace_known_left" (formula "14") (term "1,0,0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "14") (term "1,0,1,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,1,1,1")) + (rule "replace_known_left" (formula "14") (term "1,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,0")) + (rule "replace_known_left" (formula "14") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "times_zero_2" (formula "14") (term "1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "7")) + (rule "leq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "15") (term "0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "15") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "15") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0,1")) + (rule "castedGetAny" (formula "15") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "10") (term "0")) + (rule "translateJavaCastInt" (formula "10") (term "0,0")) + (rule "castedGetAny" (formula "10") (term "0,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "13") (term "0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "13") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "14") (term "1")) + (rule "translateJavaCastInt" (formula "14") (term "0,1")) + (rule "castedGetAny" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "10")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr_3 = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "11") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_3 != null, but read_pos Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "times_zero_1" (formula "1") (term "1,1,0,1")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12")) + (rule "greater_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12")) + (rule "greater_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "23") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_2 Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "12")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12")) + (rule "greater_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "23") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_1 Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "11")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "11") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but write_pos Out of Bounds!)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaAddInt" (formula "17") (term "1")) + (rule "translateJavaCastInt" (formula "18") (term "0")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "castedGetAny" (formula "18") (term "0")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "14") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow2" (formula "11") (ifseqformula "12")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1")) + (rule "greater_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "13")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_literals" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..46a832b --- /dev/null +++ b/src/main/key-overflow/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__write(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1054 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:41:09 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:41:09 CEST 2022 +contract=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:write(int)].JML normal_behavior operation contract.0 +name=de.wiesler.BucketPointers[de.wiesler.BucketPointers\\:\\:write(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "1546") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) +(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_write,savedHeapBefore_write")) + (builtin "One Step Simplification" (formula "12")) +(rule "variableDeclarationFinalAssign" (formula "12") (term "1")) +(rule "variableDeclarationFinal" (formula "12") (term "1") (newnames "write_pos")) +(rule "compound_addition_1" (formula "12") (term "1") (inst "#v=x")) +(rule "variableDeclarationAssign" (formula "12") (term "1")) +(rule "variableDeclaration" (formula "12") (term "1") (newnames "x")) +(rule "assignmentMultiplicationInt" (formula "12") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12")) + (rule "replace_int_MAX" (formula "12") (term "1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption6" (formula "12") (term "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "12") (term "1,1,0,1")) + (rule "greater_literals" (formula "12") (term "0,0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_leqRight" (formula "12")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b")) + (builtin "One Step Simplification" (formula "8")) + (rule "expand_inInt" (formula "8") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "translateJavaAddInt" (formula "14") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaMulInt" (formula "8") (term "1")) + (rule "translateJavaMulInt" (formula "9") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "1")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "12") (term "0")) + (rule "castedGetAny" (formula "11") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "9")) + (rule "greater_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "10")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "mul_literals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "17")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "21") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "commute_or" (formula "20") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "applyEqRigid" (formula "16") (term "1") (ifseqformula "17")) + (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "12")) + (rule "greater_literals" (formula "16") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polyDiv_pullOut" (formula "16") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,0,1,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0,1,0")) + (rule "div_literals" (formula "16") (term "0,0,1,0")) + (rule "add_zero_left" (formula "16") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,0")) + (rule "times_zero_1" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0")) + (rule "arrayLengthIsAShort" (formula "9") (term "0")) + (rule "expand_inShort" (formula "9")) + (rule "replace_short_MAX" (formula "9") (term "1,0")) + (rule "replace_short_MIN" (formula "9") (term "0,1")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "mul_literals" (formula "7") (term "1,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "12") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12")) + (rule "replace_int_MIN" (formula "12") (term "0,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "12") (term "0,1")) + (rule "add_literals" (formula "12") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption6" (formula "11") (term "1") (ifseqformula "7")) + (rule "greater_literals" (formula "11") (term "0,0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,1")) + (rule "leq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_leqRight" (formula "11")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "8") (inst "b=b")) + (builtin "One Step Simplification" (formula "8")) + (rule "expand_inInt" (formula "8") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "translateJavaAddInt" (formula "14") (term "1")) + (rule "translateJavaCastInt" (formula "15") (term "0")) + (rule "translateJavaMulInt" (formula "8") (term "1")) + (rule "translateJavaMulInt" (formula "9") (term "0")) + (rule "translateJavaCastInt" (formula "12") (term "0")) + (rule "translateJavaCastInt" (formula "11") (term "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "1")) + (rule "castedGetAny" (formula "15") (term "0")) + (rule "castedGetAny" (formula "12") (term "0")) + (rule "castedGetAny" (formula "11") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "8") (ifseqformula "9")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1")) + (rule "greater_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "10")) + (rule "greater_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "19") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "19") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMod" (formula "16") (term "0")) + (rule "jmod_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "newSym_eq" (formula "16") (inst "newSymDef=mul(int::final(self, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "16")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "17")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption4" (formula "14") (ifseqformula "13")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or_2" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "21") (term "1,0,0,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption1" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "commute_or" (formula "20") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "applyEqRigid" (formula "16") (term "1") (ifseqformula "17")) + (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "12")) + (rule "times_zero_1" (formula "16") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "16") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polyDiv_pullOut" (formula "16") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0")) + (rule "div_literals" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0")) + (rule "arrayLengthIsAShort" (formula "9") (term "0")) + (rule "expand_inShort" (formula "9")) + (rule "replace_short_MIN" (formula "9") (term "0,1")) + (rule "replace_short_MAX" (formula "9") (term "1,0")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "1")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "mul_literals" (formula "7") (term "1,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaAddInt" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,1,0")) + (rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_1")) + (rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "12") (term "1")) + (rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "12")) + (builtin "One Step Simplification" (formula "12")) + (rule "assignment_array2" (formula "12")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallReturn" (formula "12") (term "1")) + (rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallEmpty" (formula "12") (term "1")) + (rule "tryEmpty" (formula "12") (term "1")) + (rule "emptyModality" (formula "12") (term "1")) + (rule "andRight" (formula "12")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "12")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "12")) + (rule "closeTrue" (formula "12")) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "10") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but write_pos Out of Bounds!)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq5" (formula "1") (term "1") (ifseqformula "9")) + (rule "times_zero_1" (formula "1") (term "1,1,0,1")) + (rule "greater_literals" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "translateJavaCastInt" (formula "17") (term "0")) + (rule "translateJavaAddInt" (formula "16") (term "1")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaMulInt" (formula "11") (term "0")) + (rule "translateJavaCastInt" (formula "14") (term "0")) + (rule "translateJavaCastInt" (formula "13") (term "1")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "castedGetAny" (formula "17") (term "0")) + (rule "castedGetAny" (formula "14") (term "0")) + (rule "castedGetAny" (formula "13") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=int::final(self, + de.wiesler.BucketPointers::$num_buckets)") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "9") (ifseqformula "11")) + (rule "greater_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..fb5b905 --- /dev/null +++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,108 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:07:55 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:07:55 CEST 2022 +contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:Buffers([I,[I,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:Buffers([I,[I,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "16") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "9")) +(rule "eqSymm" (formula "11")) +(rule "translateJavaMulInt" (formula "7") (term "1")) +(rule "mul_literals" (formula "7") (term "1")) +(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "3")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) +(rule "variableDeclarationAssign" (formula "14") (term "1")) +(rule "variableDeclaration" (formula "14") (term "1") (newnames "self_25")) +(rule "arrayLengthIsAShort" (formula "7") (term "0")) +(rule "expand_inShort" (formula "7")) +(rule "replace_short_MIN" (formula "7") (term "0,1")) +(rule "replace_short_MAX" (formula "7") (term "1,0")) +(rule "andLeft" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "applyEq" (formula "7") (term "0") (ifseqformula "9")) +(rule "leq_literals" (formula "7")) +(rule "closeFalse" (formula "7")) +) +} diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..e92e06e --- /dev/null +++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__distribute(int,(I,int,int,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,2191 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:21:54 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:21:54 CEST 2022 +contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "2411") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "7")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "4")) +(rule "translateJavaAddInt" (formula "24") (term "0")) +(rule "translateJavaAddInt" (formula "23") (term "1")) +(rule "eqSymm" (formula "28")) +(rule "translateJavaAddInt" (formula "27") (term "0")) +(rule "translateJavaAddInt" (formula "29") (term "0,2,0")) +(rule "translateJavaSubInt" (formula "29") (term "2,1")) +(rule "translateJavaAddInt" (formula "26") (term "1")) +(rule "translateJavaAddInt" (formula "28") (term "1")) +(rule "translateJavaSubInt" (formula "29") (term "2,0")) +(rule "translateJavaAddInt" (formula "29") (term "0,2,1")) +(rule "replace_known_right" (formula "6") (term "0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "6")) +(rule "polySimp_elimSub" (formula "29") (term "2,0")) +(rule "mul_literals" (formula "29") (term "1,2,0")) +(rule "polySimp_elimSub" (formula "29") (term "2,1")) +(rule "mul_literals" (formula "29") (term "1,2,1")) +(rule "polySimp_addComm0" (formula "24") (term "0")) +(rule "polySimp_addComm0" (formula "23") (term "1")) +(rule "polySimp_addComm0" (formula "27") (term "0")) +(rule "polySimp_addComm0" (formula "26") (term "1")) +(rule "polySimp_addComm0" (formula "29") (term "0,2,0")) +(rule "polySimp_addComm0" (formula "29") (term "0,2,1")) +(rule "polySimp_addComm1" (formula "29") (term "2,0")) +(rule "polySimp_addComm1" (formula "29") (term "2,1")) +(rule "polySimp_addComm0" (formula "29") (term "0,2,0")) +(rule "polySimp_addComm0" (formula "29") (term "0,2,1")) +(rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21")) +(rule "notLeft" (formula "21")) +(rule "eqSymm" (formula "30")) +(rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19")) +(rule "notLeft" (formula "19")) +(rule "eqSymm" (formula "29")) +(rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19")) +(rule "notLeft" (formula "19")) +(rule "eqSymm" (formula "28")) +(rule "disjointDefinition" (formula "26")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "disjointArrayRanges" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "19")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "24")) +(rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1")) +(rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) +(rule "commute_and" (formula "27") (term "1,1")) +(rule "cnf_rightDist" (formula "27") (term "1")) +(rule "commute_or" (formula "27") (term "0,1")) +(rule "cnf_rightDist" (formula "27") (term "1,1")) +(rule "commute_or" (formula "27") (term "1,1,1")) +(rule "cnf_rightDist" (formula "27") (term "0,1")) +(rule "commute_or" (formula "27") (term "1,0,1")) +(rule "shift_paren_and" (formula "27") (term "1")) +(rule "shift_paren_and" (formula "27")) +(rule "shift_paren_and" (formula "27") (term "0")) +(rule "shift_paren_and" (formula "27") (term "0,0")) +(rule "methodBodyExpand" (formula "33") (term "1") (newnames "heapBefore_distribute,savedHeapBefore_distribute")) + (builtin "One Step Simplification" (formula "33")) + (builtin "Block Contract (Internal)" (formula "33") (newnames "exc_103,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "34")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "32")) (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "true_left" (formula "27")) + (rule "eqSymm" (formula "33") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "exc_103_1")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "emptyStatement" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "emptyStatement" (formula "33") (term "1")) + (rule "tryEmpty" (formula "33") (term "1")) + (rule "blockEmptyLabel" (formula "33") (term "1")) + (rule "blockEmpty" (formula "33") (term "1")) + (rule "methodCallEmpty" (formula "33") (term "1")) + (rule "emptyModality" (formula "33") (term "1")) + (rule "andRight" (formula "33")) + (branch + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + (branch + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "33")) + ) + (branch + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "33")) + ) + ) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "33")) + ) + (branch + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "2"))) + (rule "closeTrue" (formula "33")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "33")) + ) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "34")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "translateJavaAddInt" (formula "29") (term "0")) + (rule "eqSymm" (formula "29")) + (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "elim_double_block_2" (formula "35") (term "1")) + (rule "ifUnfold" (formula "35") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "replace_known_left" (formula "35") (term "0,0,1,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "35")) + (rule "ifSplit" (formula "35")) + (branch "if x true" + (builtin "One Step Simplification" (formula "36")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "36")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "35") (term "1")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "offset")) + (rule "assignmentMultiplicationInt" (formula "35") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35")) + (rule "replace_int_MIN" (formula "35") (term "0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "add_zero_right" (formula "23") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption6" (formula "30") (term "1") (ifseqformula "12")) + (rule "times_zero_1" (formula "30") (term "1,1,0,1")) + (rule "greater_literals" (formula "30") (term "0,0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "leq_literals" (formula "30") (term "0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_or_tautInEq0" (formula "24") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,1,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,1,0")) + (rule "leq_literals" (formula "24") (term "1,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "20") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "19") (inst "b=b")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "eqSymm" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "35")) + (builtin "Block Contract (Internal)" (formula "35") (newnames "exc_104,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "34")) (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "29")) + (rule "eqSymm" (formula "35") (term "0,0,1,0,1")) + (rule "translateJavaMulInt" (formula "35") (term "0,1,0,0")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_104_1")) + (rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "emptyStatement" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "emptyStatement" (formula "35") (term "1")) + (rule "tryEmpty" (formula "35") (term "1")) + (rule "blockEmptyLabel" (formula "35") (term "1")) + (rule "blockEmpty" (formula "35") (term "1")) + (rule "methodCallEmpty" (formula "35") (term "1")) + (rule "emptyModality" (formula "35") (term "1")) + (rule "andRight" (formula "35")) + (branch + (builtin "One Step Simplification" (formula "35")) + (rule "closeTrue" (formula "35")) + ) + (branch + (builtin "One Step Simplification" (formula "35")) + (rule "closeTrue" (formula "35")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "35")) + (branch + (rule "andRight" (formula "35")) + (branch + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "35")) + ) + (branch + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "35")) + ) + ) + (branch + (rule "andRight" (formula "35")) + (branch + (rule "andRight" (formula "35")) + (branch + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "35")) + ) + (branch + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "2"))) + (rule "closeTrue" (formula "35")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "35")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "36")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "translateJavaMulInt" (formula "38") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "31") (term "0,4,0")) + (rule "translateJavaAddInt" (formula "31") (term "3,0")) + (rule "translateJavaMulInt" (formula "31") (term "2,0")) + (rule "translateJavaAddInt" (formula "31") (term "4,0")) + (rule "translateJavaMulInt" (formula "31") (term "0,3,0")) + (rule "translateJavaMulInt" (formula "31") (term "0,0,4,0")) + (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "elim_double_block_2" (formula "37") (term "1")) + (rule "ifUnfold" (formula "37") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "37") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "37") (term "1")) + (builtin "One Step Simplification" (formula "37")) + (rule "replace_known_left" (formula "37") (term "0,0,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "37")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "ifSplit" (formula "40")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "40") (term "1")) + (rule "methodCallUnfoldArguments" (formula "40") (term "1")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "var")) + (rule "assignment_read_attribute_this_final" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_1")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_2")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_3")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "var_4")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (builtin "Use Operation Contract" (formula "40") (newnames "heapBefore_copy_nonoverlapping,exc_105,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "35") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "35") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "translateJavaAddInt" (formula "35") (term "0,2,1,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0")) + (rule "eqSymm" (formula "37") (term "1,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "37") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "37") (term "3,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "2,1,0")) + (rule "mul_literals" (formula "35") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "3,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "blockEmpty" (formula "45") (term "1")) + (rule "commute_and" (formula "37") (term "0,0")) + (rule "commute_and" (formula "36") (term "0,0,0")) + (rule "commute_and" (formula "36") (term "1,0,0")) + (rule "shift_paren_and" (formula "36") (term "0,0")) + (rule "commute_and_2" (formula "36") (term "0,0,0")) + (rule "methodCallUnfoldArguments" (formula "45") (term "1")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_5")) + (rule "assignment_read_attribute_this_final" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_6")) + (rule "assignmentAdditionInt" (formula "45") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45")) + (rule "replace_int_MAX" (formula "45") (term "1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1")) + (rule "mul_literals" (formula "45") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,1")) + (rule "mul_literals" (formula "45") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "times_zero_1" (formula "20") (term "0,0")) + (rule "add_zero_left" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "20")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "17")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "13")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_or_tautInEq0" (formula "35") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,1,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "35") (term "0,1,1,0")) + (rule "leq_literals" (formula "35") (term "1,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "24") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "translateJavaMulInt" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "eqSymm" (formula "38")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "32") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "0,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,0,0")) + (rule "eqSymm" (formula "32") (term "1,0")) + (rule "translateJavaAddInt" (formula "32") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0")) + (rule "commute_and" (formula "45")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "0,1,0") (inst "i=i")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,0") (inst "i=i")) + (rule "commute_or" (formula "39") (term "1,0")) + (rule "commute_or" (formula "39") (term "1,0,0")) + (rule "commute_or" (formula "34") (term "0,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,0,1,1,0") (inst "i=i")) + (rule "commute_or_2" (formula "27") (term "0,0")) + (rule "commute_or" (formula "31") (term "0,0")) + (rule "commute_or_2" (formula "34") (term "0,0")) + (rule "commute_or" (formula "27") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "27") (term "0,0,0")) + (rule "cnf_rightDist" (formula "27") (term "0")) + (rule "distr_forallAnd" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "commute_or" (formula "28") (term "0")) + (rule "commute_or" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "commute_or" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "commute_and_2" (formula "40")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "26")) + (rule "qeq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "45")) + (rule "translateJavaAddInt" (formula "45") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_7")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_8")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_9")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "1") (ifseqformula "2")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "2") (ifseqformula "3")) + (builtin "Use Operation Contract" (formula "47") (newnames "heapBefore_copy_nonoverlapping_0,exc_106,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "49")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "42") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "42") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "42") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "42") (term "2,1,0")) + (rule "eqSymm" (formula "44") (term "1,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "3,1,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "2,1,0")) + (rule "mul_literals" (formula "42") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "3,1,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "commute_and" (formula "44") (term "0,0")) + (rule "commute_and" (formula "43") (term "0,0,0")) + (rule "commute_and" (formula "43") (term "1,0,0")) + (rule "methodCallEmpty" (formula "52") (term "1")) + (rule "shift_paren_and" (formula "43") (term "0,0")) + (rule "commute_and_2" (formula "43") (term "0,0,0")) + (rule "tryEmpty" (formula "52") (term "1")) + (rule "emptyModality" (formula "52") (term "1")) + (rule "andRight" (formula "52")) + (branch + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_zero_right" (formula "22") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "19")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "21")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "22")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24")) + (rule "times_zero_1" (formula "22") (term "0,0")) + (rule "add_zero_left" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "22")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "19")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_or_tautInEq0" (formula "42") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,1,1,0")) + (rule "leq_literals" (formula "42") (term "1,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_and_subsumption3" (formula "39") (term "0,0,0")) + (rule "leq_literals" (formula "39") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "30") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30") (term "0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,0,0")) + (rule "eqSymm" (formula "30") (term "1,0")) + (rule "translateJavaAddInt" (formula "30") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "25") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "48")) + (rule "replace_known_right" (formula "48") (term "0,1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "40"))) + (rule "closeTrue" (formula "48")) + ) + (branch + (builtin "One Step Simplification" (formula "52")) + (rule "closeTrue" (formula "52")) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "49")) + (rule "andLeft" (formula "42")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0") (ifseqformula "42")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,1,0") (ifseqformula "37")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "close" (formula "45") (ifseqformula "44")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "46")) (ifInst "" (formula "46"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "1,0,0,1") (ifseqformula "37")) + (rule "wellFormedAnonEQ" (formula "47") (term "0,0,0,0,0,1") (ifseqformula "37")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "1,1,0,0,0,0,1") (ifseqformula "37")) + (rule "expand_inInt" (formula "47") (term "1,0,1")) + (rule "expand_inInt" (formula "47") (term "1,1")) + (rule "expand_inInt" (formula "47") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,0,1")) + (rule "replace_known_left" (formula "47") (term "0,1,0,0,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "3")) (ifInst "" (formula "36")) (ifInst "" (formula "13")) (ifInst "" (formula "15"))) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1")) + (rule "replace_known_left" (formula "47") (term "1,0,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1")) + (rule "replace_known_left" (formula "47") (term "1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_zero_right" (formula "22") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,1")) + (rule "mul_literals" (formula "47") (term "1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,1,1")) + (rule "mul_literals" (formula "47") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "28")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "16")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "23")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "20")) + (rule "times_zero_1" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "16")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24")) + (rule "times_zero_1" (formula "22") (term "0,0")) + (rule "add_zero_left" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "22")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_or_tautInEq0" (formula "37") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "37") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,1,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,1,1,0")) + (rule "add_literals" (formula "37") (term "0,1,1,0")) + (rule "leq_literals" (formula "37") (term "1,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "42")) (ifInst "" (formula "11")) (ifInst "" (formula "28"))) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEq" (formula "26") (term "0,0,1") (ifseqformula "27")) + (rule "applyEq" (formula "26") (term "0,1,1") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0")) + (rule "replace_known_left" (formula "26") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "27")) + (rule "times_zero_1" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "20")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "15")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "29") (inst "b=b")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "translateJavaMulInt" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "eqSymm" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "13")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "37") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,0,0")) + (rule "translateJavaAddInt" (formula "37") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "37") (term "1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "37") (term "1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_right" (formula "50") (term "0,0,1") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "42")) (ifInst "" (formula "1"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "39") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "39") (term "1,0")) + (rule "commute_or" (formula "43") (term "1,0")) + (rule "commute_or" (formula "43") (term "1,0,0")) + (rule "commute_or" (formula "38") (term "0,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "35") (term "1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,1,0")) + (rule "commute_and" (formula "49")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "39") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "39") (term "1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "35") (term "1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0")) + (rule "commute_or" (formula "35") (term "0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "35") (term "0,0,1,1,0") (inst "i=i")) + (rule "commute_or_2" (formula "31") (term "0,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "commute_or" (formula "31") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "31") (term "0,0,0")) + (rule "cnf_rightDist" (formula "31") (term "0")) + (rule "distr_forallAnd" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "commute_or" (formula "32") (term "0")) + (rule "commute_or" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "commute_or" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "cut_direct" (formula "44") (term "1,0,0,0")) + (branch "CUT: tail_len >= 1 TRUE" + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "26")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "1")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "commute_and_2" (formula "44")) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + (branch "CUT: tail_len >= 1 FALSE" + (builtin "One Step Simplification" (formula "45")) + (rule "false_right" (formula "45")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "22") (term "0,1,1") (ifseqformula "21")) + (rule "times_zero_2" (formula "22") (term "1,1")) + (rule "add_zero_right" (formula "22") (term "1")) + (rule "applyEq" (formula "35") (term "1,1,0,1,0") (ifseqformula "21")) + (rule "add_zero_right" (formula "35") (term "1,0,1,0")) + (rule "bsum_lower_equals_upper" (formula "35") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "35") (term "1,0")) + (rule "times_zero_2" (formula "35") (term "1,0,1,0")) + (rule "add_zero_right" (formula "35") (term "0,1,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "21")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "times_zero_2" (formula "25") (term "1,0")) + (rule "add_zero_right" (formula "25") (term "0")) + (rule "applyEq" (formula "35") (term "1,1,1,0,1,0") (ifseqformula "21")) + (rule "add_zero_right" (formula "35") (term "1,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "35") (term "0,1,0")) + (rule "add_literals" (formula "35") (term "1,0,1,0")) + (rule "times_zero_1" (formula "35") (term "0,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "23") (term "0,1") (ifseqformula "21")) + (rule "add_zero_left" (formula "23") (term "1")) + (rule "applyEq" (formula "33") (term "1,1") (ifseqformula "21")) + (rule "add_zero_right" (formula "33") (term "1")) + (rule "inEqSimp_invertInEq0" (formula "24")) + (rule "times_zero_2" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "22")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "26")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0") (ifseqformula "35")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "close" (formula "38") (ifseqformula "37")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "39")) (ifInst "" (formula "1")) (ifInst "" (formula "39")) (ifInst "" (formula "6"))) + (rule "expand_inInt" (formula "40") (term "1,0,0,1")) + (rule "expand_inInt" (formula "40") (term "1,1")) + (rule "expand_inInt" (formula "40") (term "1,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "40") (term "0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "7"))) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1")) + (rule "replace_known_left" (formula "40") (term "1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1")) + (rule "replace_known_left" (formula "40") (term "1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "24")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption6" (formula "34") (term "1,1,1") (ifseqformula "12")) + (rule "greater_literals" (formula "34") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "times_zero_1" (formula "34") (term "1,0,1,1,1")) + (rule "leq_literals" (formula "34") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "elimGcdLeq" (formula "34") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0,0,0,1,1")) + (rule "sub_literals" (formula "34") (term "0,0,0,0,0,0,0,1,1")) + (rule "mul_literals" (formula "34") (term "0,0,0,0,1,0,1,1")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,1,1")) + (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0,0,1,1")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,1")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,1,0,1,1")) + (rule "add_literals" (formula "34") (term "1,1,0,1,0,1,1")) + (rule "times_zero_1" (formula "34") (term "1,0,1,0,1,1")) + (rule "add_zero_right" (formula "34") (term "0,1,0,1,1")) + (rule "qeq_literals" (formula "34") (term "1,0,1,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_pullOutFactor0" (formula "34") (term "0,0,1,1")) + (rule "add_literals" (formula "34") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "34") (term "0,0,1,1")) + (rule "leq_literals" (formula "34") (term "0,1,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "times_zero_1" (formula "20") (term "0,0")) + (rule "add_zero_left" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "20")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "17")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "13")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_or_tautInEq0" (formula "30") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "30") (term "0,1,1,0")) + (rule "leq_literals" (formula "30") (term "1,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "24") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "24") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "translateJavaMulInt" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "eqSymm" (formula "33")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "40") (term "1,1") (ifseqformula "11")) + (rule "leq_literals" (formula "40") (term "0,1,1")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "replace_known_right" (formula "40") (term "0,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "33"))) + (rule "Contract_axiom_for_countElementSplit_in_Functions" (formula "31") (term "0")) + (rule "replace_known_left" (formula "31") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "34")) (ifInst "" (formula "32"))) + (rule "true_left" (formula "31")) + (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "31") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "0,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,0,0")) + (rule "eqSymm" (formula "31") (term "1,0")) + (rule "translateJavaAddInt" (formula "31") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0")) + (rule "commute_or" (formula "34") (term "1,0")) + (rule "commute_or" (formula "34") (term "1,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "commute_or_2" (formula "27") (term "0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "31") (term "0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "31") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0")) + (rule "commute_or" (formula "31") (term "0,0")) + (rule "shift_paren_or" (formula "27") (term "0,0,0")) + (rule "commute_or_2" (formula "27") (term "0,0,0")) + (rule "cnf_rightDist" (formula "27") (term "0")) + (rule "distr_forallAnd" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "commute_or" (formula "28") (term "0")) + (rule "commute_or" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "commute_or" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "commute_and_2" (formula "35")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "26")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..0d4e608 --- /dev/null +++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__flush(int,(I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1229 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:22:14 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:22:14 CEST 2022 +contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:flush(int,[I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:flush(int,[I,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "846") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "19")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "19")) +(rule "translateJavaSubInt" (formula "22") (term "0")) +(rule "replace_known_right" (formula "6") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "6")) +(rule "polySimp_elimSub" (formula "22") (term "0")) +(rule "disjointDefinition" (formula "17")) + (builtin "One Step Simplification" (formula "17")) +(rule "notLeft" (formula "17")) +(rule "eqSymm" (formula "23")) +(rule "disjointDefinition" (formula "15")) + (builtin "One Step Simplification" (formula "15")) +(rule "notLeft" (formula "15")) +(rule "eqSymm" (formula "22")) +(rule "disjointDefinition" (formula "15")) + (builtin "One Step Simplification" (formula "15")) +(rule "notLeft" (formula "15")) +(rule "eqSymm" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "18")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_flush,savedHeapBefore_flush")) + (builtin "One Step Simplification" (formula "26")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "buffer_offset")) +(rule "assignmentMultiplicationInt" (formula "26") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26")) + (rule "replace_int_MIN" (formula "26") (term "0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "26") (term "1") (ifseqformula "13")) + (rule "times_zero_1" (formula "26") (term "1,1,0,1")) + (rule "greater_literals" (formula "26") (term "0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "leq_literals" (formula "26") (term "0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "14")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "10")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "22")) (ifInst "" (formula "10")) (ifInst "" (formula "18"))) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1")) + (rule "applyEq" (formula "12") (term "0,0,1") (ifseqformula "13")) + (rule "qeq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "translateJavaMulInt" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "eqSymm" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaMulInt" (formula "26") (term "0,1,0")) + (rule "methodCallUnfoldArguments" (formula "26") (term "1")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "var")) + (rule "assignment_read_attribute_this_final" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_1")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_2")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_3")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "var_4")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (builtin "Use Operation Contract" (formula "26") (newnames "heapBefore_copy_nonoverlapping,exc_129,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "expand_inInt" (formula "22") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "22") (term "0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaSubInt" (formula "22") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,0")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "22") (term "2,1,0")) + (rule "mul_literals" (formula "22") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "22") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "3,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "blockEmpty" (formula "31") (term "1")) + (rule "eval_order_array_access1" (formula "31") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "31") (term "1")) + (rule "variableDeclaration" (formula "31") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "assignment_to_primitive_array_component" (formula "31")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "31")) + (builtin "Block Contract (Internal)" (formula "31") (newnames "exc_130,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "32")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "30"))) + (rule "andLeft" (formula "26")) + (rule "eqSymm" (formula "33") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "27") (ifseqformula "22")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "exc_130_1")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "emptyStatement" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "emptyStatement" (formula "32") (term "1")) + (rule "commute_and" (formula "24") (term "0,0")) + (rule "commute_and" (formula "23") (term "0,0,0")) + (rule "commute_and" (formula "23") (term "1,0,0")) + (rule "shift_paren_and" (formula "23") (term "0,0")) + (rule "commute_and_2" (formula "23") (term "0,0,0")) + (rule "tryEmpty" (formula "32") (term "1")) + (rule "blockEmptyLabel" (formula "32") (term "1")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "methodCallEmpty" (formula "32") (term "1")) + (rule "emptyModality" (formula "32") (term "1")) + (rule "andRight" (formula "32")) + (branch + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + (branch + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "31")) + (branch + (rule "andRight" (formula "31")) + (branch + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "31")) + ) + (branch + (builtin "One Step Simplification" (formula "31")) + (rule "wellFormedStorePrimitiveArray" (formula "31")) + (rule "wellFormedAnonEQ" (formula "31") (ifseqformula "22")) + (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "31")) + ) + ) + (branch + (rule "andRight" (formula "31")) + (branch + (rule "andRight" (formula "31")) + (branch + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "31")) + ) + (branch + (builtin "One Step Simplification" (formula "31")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "31") (ifseqformula "22")) + (rule "orRight" (formula "31")) + (rule "close" (formula "31") (ifseqformula "2")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "31")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "32")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "0,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,0,0,1")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "eqSymm" (formula "28") (term "1,0")) + (rule "translateJavaAddInt" (formula "28") (term "3,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "3,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "commute_and" (formula "24") (term "0,0")) + (rule "commute_and" (formula "23") (term "0,0,0")) + (rule "commute_and" (formula "23") (term "1,0,0")) + (rule "commute_and" (formula "27") (term "0,0")) + (rule "shift_paren_and" (formula "23") (term "0,0")) + (rule "commute_and_2" (formula "23") (term "0,0,0")) + (rule "elim_double_block_2" (formula "33") (term "1")) + (rule "ifUnfold" (formula "33") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "replace_known_left" (formula "33") (term "0,0,1,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "33")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "ifSplit" (formula "36")) + (branch "if x true" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "emptyStatement" (formula "36") (term "1")) + (rule "methodCallEmpty" (formula "36") (term "1")) + (rule "tryEmpty" (formula "36") (term "1")) + (rule "emptyModality" (formula "36") (term "1")) + (rule "andRight" (formula "36")) + (branch + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "17")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "18")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "32")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "8")) (ifInst "" (formula "1")) (ifInst "" (formula "2")) (ifInst "" (formula "31")) (ifInst "" (formula "8")) (ifInst "" (formula "20"))) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "11") (term "0,0,1") (ifseqformula "12")) + (rule "qeq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "12")) + (rule "leq_literals" (formula "11") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8")) + (rule "close" (formula "32") (ifseqformula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "36")) + (rule "closeTrue" (formula "36")) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "18") (inst "b=b")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "eqSymm" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "22") (term "1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "28")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "9")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "31")) (ifInst "" (formula "9"))) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0")) + (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,1")) + (rule "applyEq" (formula "13") (term "0,1,0,1") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "1,0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "applyEq" (formula "13") (term "0,0,1") (ifseqformula "14")) + (rule "qeq_literals" (formula "13") (term "0,1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0")) + (rule "replace_known_left" (formula "13") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "13")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "close" (formula "29") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)" + (builtin "One Step Simplification" (formula "1")) + (rule "false_right" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "13")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "13")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "18") (inst "b=b")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "eqSymm" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "19")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "22")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1,0") (ifseqformula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "close" (formula "25") (ifseqformula "24")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "25")) (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "6"))) + (rule "expand_inInt" (formula "26") (term "1,0,1")) + (rule "expand_inInt" (formula "26") (term "1,1")) + (rule "expand_inInt" (formula "26") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1")) + (rule "leq_literals" (formula "26") (term "1,1,1")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "7"))) + (rule "leq_literals" (formula "26") (term "1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1")) + (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "26") (term "1,1,1") (ifseqformula "13")) + (rule "greater_literals" (formula "26") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,1,1,1")) + (rule "leq_literals" (formula "26") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "elimGcdLeq" (formula "23") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0,1,1")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,1,1")) + (rule "mul_literals" (formula "23") (term "0,0,0,0,1,0,1,1")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,1")) + (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0,0,1,1")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,1,0,1,1")) + (rule "add_literals" (formula "23") (term "1,1,0,1,0,1,1")) + (rule "times_zero_1" (formula "23") (term "1,0,1,0,1,1")) + (rule "add_zero_right" (formula "23") (term "0,1,0,1,1")) + (rule "qeq_literals" (formula "23") (term "1,0,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,1,1")) + (rule "add_literals" (formula "23") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "23") (term "0,0,1,1")) + (rule "leq_literals" (formula "23") (term "0,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "16")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "14")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "9")) (ifInst "" (formula "1")) (ifInst "" (formula "2")) (ifInst "" (formula "22")) (ifInst "" (formula "9")) (ifInst "" (formula "18"))) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,1")) + (rule "applyEq" (formula "12") (term "0,1,1") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "13")) + (rule "qeq_literals" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "17") (inst "b=b")) + (builtin "One Step Simplification" (formula "17")) + (rule "expand_inInt" (formula "17") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "17")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "eqSymm" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "27") (term "1,1") (ifseqformula "10")) + (rule "leq_literals" (formula "27") (term "0,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "replace_known_right" (formula "28") (term "0,1") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "11") (term "0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or" (formula "20") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "cnf_rightDist" (formula "20") (term "0")) + (rule "distr_forallAnd" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "commute_or" (formula "21") (term "0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "16")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "18")) + (rule "closeFalse" (formula "18")) + ) +) +) +} diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..a3d71ee --- /dev/null +++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__len(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,276 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:22:34 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:22:34 CEST 2022 +contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:len(int)].JML normal_behavior operation contract.0 +name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:len(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "100") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) +(rule "methodBodyExpand" (formula "12") (term "1") (newnames "heapBefore_len,savedHeapBefore_len")) + (builtin "One Step Simplification" (formula "12")) +(rule "returnUnfold" (formula "12") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "12") (term "1")) +(rule "variableDeclaration" (formula "12") (term "1") (newnames "x")) +(rule "eval_order_array_access4" (formula "12") (term "1") (inst "#v0=x_arr")) +(rule "variableDeclarationAssign" (formula "12") (term "1")) +(rule "variableDeclaration" (formula "12") (term "1") (newnames "x_arr")) +(rule "assignment_read_attribute_this_final" (formula "12")) + (builtin "One Step Simplification" (formula "12")) +(rule "assignment_array2" (formula "12")) +(branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallReturn" (formula "12") (term "1")) + (rule "assignment" (formula "12") (term "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "methodCallEmpty" (formula "12") (term "1")) + (rule "tryEmpty" (formula "12") (term "1")) + (rule "emptyModality" (formula "12") (term "1")) + (rule "andRight" (formula "12")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "12")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "12")) + (rule "closeTrue" (formula "12")) + ) +) +(branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "eqSymm" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEq" (formula "14") (term "1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "15")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "1,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "15") (ifseqformula "1")) +) +(branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)" + (rule "false_right" (formula "13")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "9")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "eqSymm" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) +) +) +} diff --git a/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..bc1c832 --- /dev/null +++ b/src/main/key-overflow/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__push(int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1590 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:42:03 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:42:03 CEST 2022 +contract=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:push(int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Buffers[de.wiesler.Buffers\\:\\:push(int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "2299") + +(branch "dummy ID" +(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1")) +(rule "assignment" (formula "1") (term "1,1")) +(rule "methodBodyExpand" (formula "1") (term "1,1,1") (newnames "heapBefore_push,savedHeapBefore_push,_valueBefore_push,_valueBefore_push_0")) +(rule "assignment" (formula "1") (term "1,1,1,1")) +(rule "blockEmpty" (formula "1") (term "1,1,1,1,1")) +(rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1")) +(rule "variableDeclaration" (formula "1") (term "1,1,1,1,1") (newnames "buffer_offset")) +(rule "assignmentMultiplicationInt" (formula "1") (term "1,1,1,1,1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "1")) + (rule "expand_inInt" (formula "1") (term "1")) + (rule "expand_inInt" (formula "1") (term "0,1,0,0,0")) + (rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) + (rule "replace_int_MAX" (formula "1") (term "1,0,1")) + (rule "replace_int_MIN" (formula "1") (term "0,1,1")) + (rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) + (rule "impRight" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "2")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption6" (formula "15") (term "1") (ifseqformula "10")) + (rule "times_zero_1" (formula "15") (term "1,1,0,1")) + (rule "greater_literals" (formula "15") (term "0,0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_leqRight" (formula "15")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "eqSymm" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) +) +(branch "Usage" + (rule "translateJavaMulInt" (formula "1") (term "0,0,1,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,1,1,1")) + (rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1,1")) + (rule "variableDeclaration" (formula "1") (term "1,1,1,1,1,1") (newnames "index_1")) + (builtin "One Step Simplification" (formula "1")) + (rule "expand_inInt" (formula "1") (term "0,1,0,0,0")) + (rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) + (rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) + (rule "impRight" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "2")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "7")) + (rule "eval_order_array_access4" (formula "15") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "assignment_array2" (formula "15")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "15")) + (rule "eval_order_array_access1" (formula "15") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this_final" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "eval_order_array_access2" (formula "15") (term "1") (inst "#v0=x") (inst "#ar1=x_arr_2")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x")) + (rule "assignmentAdditionInt" (formula "15") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15")) + (rule "replace_int_MAX" (formula "15") (term "1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,1")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1")) + (rule "mul_literals" (formula "15") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "9")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "13")) (ifInst "" (formula "9")) (ifInst "" (formula "12"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "15")) + (rule "add_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradEq3" (formula "15") (ifseqformula "2")) + (rule "mul_literals" (formula "15") (term "1,0,0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "false_right" (formula "15")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "13") (inst "b=b")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "translateJavaMulInt" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "eqSymm" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "5")) (ifInst "" (formula "21"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1")) + (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0,1,1") (ifseqformula "3")) + (rule "leq_literals" (formula "1") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "6")) (ifInst "" (formula "22"))) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption0" (formula "3") (term "1,0,1,1") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0,1,0,1,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "4") (term "0")) + (rule "commute_and" (formula "23")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "1") (term "1,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "15")) (ifInst "" (formula "17"))) + (rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1")) + (rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1")) + (rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1")) + (rule "translateJavaMulInt" (formula "1") (term "1,1,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,1,1")) + (rule "eqSymm" (formula "1") (term "0,0,0,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,0,1,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,1")) + (rule "replace_known_left" (formula "1") (term "0,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,1,1")) + (rule "nnf_imp2or" (formula "1") (term "0,1,1")) + (rule "nnf_notAnd" (formula "1") (term "0,0,1,1")) + (rule "nnf_notAnd" (formula "1") (term "1,0,0,1,1")) + (rule "inEqSimp_notLeq" (formula "1") (term "0,1,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,1,0,0,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,1,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,1,0,0,1,1")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,1,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,0,1,1,0,0,1,1")) + (rule "add_literals" (formula "1") (term "0,0,1,1,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,1,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,1,0,0,1,1")) + (rule "nnf_notAnd" (formula "1") (term "0,0,0,1,1")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0,0,1,1")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0,1,1")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0,0,1,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "2") (term "0")) + (rule "replace_known_right" (formula "2") (term "0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "18"))) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "3")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "3") (inst "b=b")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "15")) (ifInst "" (formula "17"))) + (rule "expand_inInt" (formula "3") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "notLeft" (formula "3")) + (rule "translateJavaMulInt" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "eqSymm" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "3") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0")) + (rule "commute_or" (formula "17") (term "1,0,0,0")) + (rule "commute_or_2" (formula "2") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "cnf_rightDist" (formula "17") (term "0")) + (rule "distr_forallAnd" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "commute_or" (formula "18") (term "0")) + (rule "shift_paren_or" (formula "2") (term "0,0,0")) + (rule "commute_or_2" (formula "2") (term "0,0,0")) + (rule "cnf_rightDist" (formula "2") (term "0")) + (rule "distr_forallAnd" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "commute_or" (formula "2") (term "0")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "commute_or" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "arrayLengthNotNegative" (formula "13") (term "0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "leq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "12") (term "0")) + (rule "expand_inShort" (formula "12")) + (rule "replace_short_MAX" (formula "12") (term "1,0")) + (rule "replace_short_MIN" (formula "12") (term "0,1")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaAddInt" (formula "15") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "15")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "15")) + (rule "eval_order_array_access1" (formula "15") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_3")) + (rule "assignment_read_attribute_this_final" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "eval_order_array_access3" (formula "15") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr_4")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_arr_4")) + (rule "assignment" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_2")) + (rule "assignment" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "x_1")) + (rule "assignmentAdditionInt" (formula "15") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15")) + (rule "replace_int_MIN" (formula "15") (term "0,1")) + (rule "replace_int_MAX" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,1")) + (rule "add_literals" (formula "15") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "eqSymm" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "18")) (ifInst "" (formula "8"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "21")) + (rule "add_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradEq3" (formula "21") (ifseqformula "2")) + (rule "mul_literals" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "false_right" (formula "21")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "commute_and" (formula "22")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "3") (inst "b=b")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "14")) (ifInst "" (formula "16"))) + (rule "expand_inInt" (formula "3") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "3") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "3") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "notLeft" (formula "3")) + (rule "translateJavaMulInt" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "eqSymm" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "3") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "4")) (ifInst "" (formula "5")) (ifInst "" (formula "21"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1,1")) + (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0,1,1") (ifseqformula "3")) + (rule "leq_literals" (formula "1") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "2") (term "0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0") (ifseqformula "2")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "6")) (ifInst "" (formula "22"))) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption0" (formula "3") (term "1,0,1,1") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0,1,0,1,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaAddInt" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "15")) + (branch "Normal Execution (x_arr_4 != null)" + (builtin "One Step Simplification" (formula "15")) + (builtin "Block Contract (Internal)" (formula "15") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "8")) (ifInst "" (formula "3")) (ifInst "" (formula "14"))) + (rule "andLeft" (formula "13")) + (rule "eqSymm" (formula "17") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "14") (term "0")) + (rule "dismissNonSelectedField" (formula "14") (term "0")) + (rule "variableDeclarationAssign" (formula "16") (term "1")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "emptyStatement" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "emptyStatement" (formula "16") (term "1")) + (rule "tryEmpty" (formula "16") (term "1")) + (rule "blockEmptyLabel" (formula "16") (term "1")) + (rule "blockEmpty" (formula "16") (term "1")) + (rule "methodCallEmpty" (formula "16") (term "1")) + (rule "emptyModality" (formula "16") (term "1")) + (rule "andRight" (formula "16")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "15")) + (branch "Case 1" + (rule "andRight" (formula "15")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "15")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "15")) + (rule "wellFormedStorePrimitiveArray" (formula "15")) + (rule "wellFormedStorePrimitiveArray" (formula "15")) + (rule "close" (formula "15") (ifseqformula "1")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "15")) + (branch "Case 1" + (rule "andRight" (formula "15")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "15")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "15")) + (rule "dismissNonSelectedField" (formula "15") (term "0")) + (rule "dismissNonSelectedField" (formula "15") (term "0")) + (rule "close" (formula "15") (ifseqformula "2")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "15")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "16")) + (builtin "One Step Simplification" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "translateJavaMulInt" (formula "15") (term "2,0")) + (rule "translateJavaAddInt" (formula "15") (term "3,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,4,0")) + (rule "translateJavaMulInt" (formula "15") (term "0,3,0")) + (rule "translateJavaMulInt" (formula "15") (term "0,0,4,0")) + (rule "translateJavaAddInt" (formula "15") (term "4,0")) + (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "polySimp_addComm1" (formula "14") (term "4,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,4,0")) + (rule "elim_double_block_2" (formula "17") (term "1")) + (rule "ifUnfold" (formula "17") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "replace_known_left" (formula "17") (term "0,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "17")) + (rule "ifSplit" (formula "17")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "17") (term "1")) + (rule "emptyStatement" (formula "17") (term "1")) + (rule "methodCallEmpty" (formula "17") (term "1")) + (rule "tryEmpty" (formula "17") (term "1")) + (rule "emptyModality" (formula "17") (term "1")) + (rule "andRight" (formula "17")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0")) + (rule "Definition_axiom_for_countElementSplit_in_de_wiesler_Functions" (formula "13") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,0,0")) + (rule "eqSymm" (formula "13") (term "1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "eqSymm" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "21")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "7")) + (rule "close" (formula "21") (ifseqformula "7")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "17")) + (rule "closeTrue" (formula "17")) + ) + ) + ) + ) + (branch "Null Reference (x_arr_4 = null)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "12") (inst "b=b")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "eqSymm" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "17")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "17") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_4 != null, but x_2 Out of Bounds!)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "11")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "eqSymm" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "1")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "14") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "13") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x Out of Bounds!)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "12") (inst "b=b")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "eqSymm" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "1") (term "1,1,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "commute_or" (formula "1")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,0")) + (rule "cnf_rightDist" (formula "15") (term "0")) + (rule "distr_forallAnd" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "commute_or" (formula "16") (term "0")) + (rule "commute_or" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "allLeft" (formula "15") (inst "t=bucket")) + (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "1,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "9")) + (rule "qeq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "allLeft" (formula "17") (inst "t=bucket")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "1,0,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "17") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_strengthen0" (formula "17") (ifseqformula "23")) + (rule "add_literals" (formula "17") (term "1")) + (rule "inEqSimp_contradEq3" (formula "23") (ifseqformula "17")) + (rule "mul_literals" (formula "23") (term "1,0,0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "false_right" (formula "23")) + (rule "arrayLengthIsAShort" (formula "12") (term "0")) + (rule "expand_inShort" (formula "12")) + (rule "replace_short_MIN" (formula "12") (term "0,1")) + (rule "replace_short_MAX" (formula "12") (term "1,0")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "13")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "14")) (ifInst "" (formula "10")) (ifInst "" (formula "13"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "16")) + (rule "add_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradEq3" (formula "16") (ifseqformula "2")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "false_right" (formula "16")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "close" (formula "14") (ifseqformula "3")) + ) + (branch "Index Out of Bounds (x_arr != null, but _bucket Out of Bounds!)" + (rule "false_right" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "10")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10")) (ifInst "" (formula "3")) (ifInst "" (formula "4")) (ifInst "" (formula "15")) (ifInst "" (formula "10")) (ifInst "" (formula "13"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "1") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_strengthen0" (formula "2") (ifseqformula "17")) + (rule "add_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradEq3" (formula "17") (ifseqformula "2")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "false_right" (formula "17")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "13") (inst "b=b")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "translateJavaMulInt" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "eqSymm" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "14")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "3")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "3")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..564a83e --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,4783 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 13:09:06 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:onHeap +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 13:09:06 CEST 2023 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "59596") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "12")) +(rule "translateJavaSubInt" (formula "13") (term "0,2,1")) +(rule "translateJavaSubInt" (formula "13") (term "0,2,0")) +(rule "eqSymm" (formula "13")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "2")) +(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "3")) +(rule "polySimp_elimSub" (formula "13") (term "0,2,1")) +(rule "mul_literals" (formula "13") (term "1,0,2,1")) +(rule "polySimp_elimSub" (formula "13") (term "0,2,0")) +(rule "mul_literals" (formula "13") (term "1,0,2,0")) +(rule "polySimp_addComm0" (formula "13") (term "0,2,1")) +(rule "polySimp_addComm0" (formula "13") (term "0,2,0")) +(rule "inEqSimp_commuteLeq" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "assignment" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) +(rule "variableDeclarationAssign" (formula "17") (term "1")) +(rule "variableDeclaration" (formula "17") (term "1") (newnames "self_51")) +(rule "arrayLengthIsAShort" (formula "10") (term "0")) +(rule "expand_inShort" (formula "10")) +(rule "replace_short_MIN" (formula "10") (term "0,1")) +(rule "replace_short_MAX" (formula "10") (term "1,0")) +(rule "andLeft" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "arrayLengthNotNegative" (formula "12") (term "0")) +(rule "arrayLengthNotNegative" (formula "15") (term "0")) +(rule "arrayLengthIsAShort" (formula "16") (term "0")) +(rule "expand_inShort" (formula "16")) +(rule "replace_short_MAX" (formula "16") (term "1,0")) +(rule "replace_short_MIN" (formula "16") (term "0,1")) +(rule "andLeft" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "23") (term "1") (inst "#v0=c")) +(rule "variableDeclaration" (formula "23") (term "1") (newnames "c_1")) +(rule "methodBodyExpand" (formula "23") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "23")) +(rule "variableDeclaration" (formula "23") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "23") (term "1") (inst "#v0=c_2")) +(rule "variableDeclaration" (formula "23") (term "1") (newnames "c_2")) +(rule "allocateInstance" (formula "23")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) + (builtin "One Step Simplification" (formula "24")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "26")) +(rule "assignment_write_attribute_this" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallWithinClass" (formula "26") (term "1")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallSuper" (formula "26") (term "1")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallEmpty" (formula "26") (term "1")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "assignment_write_attribute_this" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "assignment_write_attribute_this" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "assignment_write_attribute_this" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "assignment_write_attribute_this" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallEmpty" (formula "26") (term "1")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "26") (term "1")) +(rule "methodCallReturn" (formula "26") (term "1")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallEmpty" (formula "26") (term "1")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "var")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_1")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_2")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "var_3")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_,savedHeapBefore_,num_bucketsBefore_,var_3Before_")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallSuper" (formula "26") (term "1")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallEmpty" (formula "26") (term "1")) +(rule "blockEmpty" (formula "26") (term "1")) +(rule "variableDeclarationAssign" (formula "26") (term "1")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "num_buckets")) +(rule "assignmentShiftLeftInt" (formula "26") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "26")) + (rule "mod_lessDenom" (formula "26") (term "1,1,0") (userinteraction)) + (rule "ifthenelse_split" (formula "1") (term "1,1") (userinteraction)) + (branch "32 >= 0 TRUE" + (rule "impLeft" (formula "2") (userinteraction)) + (branch "Case 1" + (rule "expand_inInt" (formula "28")) + (rule "equal_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeTrue" (formula "22")) + ) + (branch "Case 2" + (rule "eqTermCut" (formula "28") (term "0,1,1,0") (inst "s=mod(log_buckets, Z(2(3(#))))") (userinteraction)) + (branch "Assume log_buckets = log_buckets % 32" + (rule "applyEqReverse" (formula "29") (term "1,1,0") (ifseqformula "1") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), log_buckets), pow(Z(2(#)), Z(8(#))))<>") (userinteraction)) + (branch "CUT: pow(2, log_buckets) <= pow(2, 8) TRUE" + (rule "powPositive" (formula "1") (term "0") (userinteraction)) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "pow_literals" (formula "2") (term "1")) + (rule "greater_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "expand_inInt" (formula "30")) + (rule "replace_int_MAX" (formula "30") (term "1,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "23") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "0")) + (rule "eqSymm" (formula "3")) + (rule "translateJavaShiftLeftInt" (formula "18") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "24") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "24") (term "1,0,2,1")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "0,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1")) + (rule "applyEq" (formula "4") (term "1,0") (ifseqformula "3")) + (rule "mod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption0" (formula "30") (term "0") (ifseqformula "2")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "5")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "12")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: pow(2, log_buckets) <= pow(2, 8) FALSE" + (rule "powMonoConcrete" (formula "24") (userinteraction)) + (rule "expand_inInt" (formula "30")) + (rule "greater_literals" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "replace_int_MAX" (formula "29") (term "1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1")) + (rule "eqSymm" (formula "1")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "21") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "22") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "22") (term "1,0,2,1")) + (rule "polySimp_elimOneLeft0" (formula "29") (term "1,1")) + (rule "polySimp_elimOneLeft0" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "replace_known_left" (formula "23") (term "1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1")) + (rule "applyEq" (formula "3") (term "1,0") (ifseqformula "2")) + (rule "mod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + (branch "Assume log_buckets != log_buckets % 32" + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "expand_inInt" (formula "28")) + (rule "replace_int_MIN" (formula "28") (term "0,1")) + (rule "replace_int_MAX" (formula "28") (term "1,0")) + (rule "notLeft" (formula "1")) + (rule "translateJavaShiftLeftInt" (formula "21") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "21") (term "1,0,2,1")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "11") (term "0")) + (rule "eqSymm" (formula "22")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "1,1")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1")) + (rule "mod_axiom" (formula "22") (term "0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0")) + (rule "add_zero_left" (formula "22") (term "0")) + (rule "mod_axiom" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0")) + (rule "mod_axiom" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "mod_axiom" (formula "28") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "elimGcdEq" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(log_buckets, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "18")) + (rule "add_zero_left" (formula "18") (term "0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1")) + (rule "add_zero_left" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,0,0")) + (rule "times_zero_1" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "0,0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "mod_axiom" (formula "17") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "3,0")) + (rule "mod_axiom" (formula "13") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1")) + (rule "mod_axiom" (formula "12") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1")) + (rule "mod_axiom" (formula "16") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "9") (term "0")) + (rule "mod_axiom" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,0,2,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "shiftLeftDef" (formula "13") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,3,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,3,0")) + (rule "shiftLeftDef" (formula "12") (term "0,1")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "9") (term "0,0")) + (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,1,0,2,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,0,2,0")) + (rule "shiftLeftDef" (formula "17") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "17")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "expand_moduloInteger" (formula "13") (term "3,0")) + (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,3,0")) + (rule "replace_int_RANGE" (formula "13") (term "1,1,3,0")) + (rule "replace_int_MIN" (formula "13") (term "0,3,0")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "expand_moduloInteger" (formula "16") (term "0")) + (rule "replace_int_MIN" (formula "16") (term "0,0")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "expand_moduloInteger" (formula "9") (term "0")) + (rule "replace_int_RANGE" (formula "9") (term "1,1,0")) + (rule "replace_int_MIN" (formula "9") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "expand_moduloInteger" (formula "17") (term "1,0,2,0")) + (rule "replace_int_RANGE" (formula "17") (term "1,1,1,0,2,0")) + (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,1,0,2,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0")) + (rule "add_literals" (formula "17") (term "0,0,2,0")) + (rule "expand_moduloInteger" (formula "17") (term "1,0,2,1")) + (rule "replace_int_MIN" (formula "17") (term "0,1,0,2,1")) + (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,1,0,2,1")) + (rule "replace_int_RANGE" (formula "17") (term "1,1,1,0,2,1")) + (rule "eqSymm" (formula "17")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0")) + (rule "add_literals" (formula "17") (term "0,0,2,0")) + (rule "commute_and" (formula "24")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "div_axiom" (formula "1") (term "0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "1") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,1,0,2,0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0")) + (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "20") (term "0,0,0,1,0,1,0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,1,0,2,0")) + (rule "applyEq" (formula "27") (term "0,1,1,0,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,1,0,2,0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "11") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0,0")) + (rule "applyEq" (formula "11") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "11") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "11") (term "1,2,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,1,0,2,1")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,1,0,2,1")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,1,0,2,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,1,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,1,0,2,1")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,1,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,1,1,1,0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,1,1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "11") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "11") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mod_axiom" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1")) + (rule "polySimp_elimOne" (formula "11") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "18") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "mod_axiom" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,1,0,2,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "leq_literals" (formula "19") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "eqSymm" (formula "19")) + (rule "mod_axiom" (formula "19") (term "1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,2,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,2,1")) + (rule "add_literals" (formula "19") (term "0,0,0,2,1")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "mod_axiom" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,1,0,2,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0,2,0")) + (rule "leq_literals" (formula "19") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mod_axiom" (formula "19") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,2,0")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_addAssoc" (formula "19") (term "0,2,1")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,2,0")) + (rule "add_literals" (formula "19") (term "0,0,0,2,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "3")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_strengthen1" (formula "9") (ifseqformula "21")) + (rule "add_zero_right" (formula "9") (term "1")) + (rule "inEqSimp_contradEq7" (formula "21") (ifseqformula "9")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "false_right" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "10")) + (rule "mul_literals" (formula "2") (term "1,1,0")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "32 >= 0 FALSE" + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "22")) + (rule "closeTrue" (formula "22")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "26")) + (builtin "Block Contract (Internal)" (formula "26") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "7")) (ifInst "" (formula "23")) (ifInst "" (formula "1"))) + (rule "andLeft" (formula "21")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "10") (term "0")) + (rule "eqSymm" (formula "28") (term "0,0,1,0,1")) + (rule "translateJavaShiftLeftInt" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,1")) + (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "12") (term "3,0")) + (rule "mod_axiom" (formula "12") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "1")) + (rule "mod_axiom" (formula "11") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "8") (term "0")) + (rule "mod_axiom" (formula "8") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,3,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,3,0")) + (rule "shiftLeftDef" (formula "11") (term "0,1")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "11") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "8") (term "0,0")) + (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "21"))) + (rule "castDel" (formula "18") (term "0")) + (rule "applyEqReverse" (formula "19") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "expand_moduloInteger" (formula "12") (term "3,0")) + (rule "replace_int_MIN" (formula "12") (term "0,3,0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,3,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,3,0")) + (rule "expand_moduloInteger" (formula "11") (term "0")) + (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,0")) + (rule "replace_int_RANGE" (formula "11") (term "1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "expand_moduloInteger" (formula "8") (term "0")) + (rule "replace_int_RANGE" (formula "8") (term "1,1,0")) + (rule "replace_int_MIN" (formula "8") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "8") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "expand_moduloInteger" (formula "16") (term "1,0,2,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,0,2,1")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1,0,2,1")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,1,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_addAssoc" (formula "16") (term "0,2,0")) + (rule "add_literals" (formula "16") (term "0,0,2,0")) + (rule "expand_moduloInteger" (formula "16") (term "1,0,2,1")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,1,0,2,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,0,2,1")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,2,1")) + (rule "add_literals" (formula "16") (term "0,0,2,1")) + (rule "tryEmpty" (formula "23") (term "1")) + (rule "blockEmptyLabel" (formula "23") (term "1")) + (rule "blockEmpty" (formula "23") (term "1")) + (rule "arrayLengthNotNegative" (formula "10") (term "0")) + (rule "arrayLengthIsAShort" (formula "10") (term "0")) + (rule "expand_inShort" (formula "10")) + (rule "replace_short_MIN" (formula "10") (term "0,1")) + (rule "replace_short_MAX" (formula "10") (term "1,0")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "methodCallEmpty" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "emptyModality" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "closeTrue" (formula "23")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "7")) (ifInst "" (formula "22")) (ifInst "" (formula "1"))) + (rule "wellFormedStorePrimitive" (formula "26") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1")) + (rule "dismissNonSelectedField" (formula "26") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "wellFormedStoreObject" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "wellFormedStorePrimitive" (formula "22") (term "0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,1")) + (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,0,2,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "12") (term "3,0")) + (rule "mod_axiom" (formula "12") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "1")) + (rule "mod_axiom" (formula "11") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "8") (term "0")) + (rule "mod_axiom" (formula "8") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "wellFormedStoreObject" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "wellFormedStorePrimitive" (formula "22") (term "0")) + (rule "wellFormedCreate" (formula "22") (term "0")) + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "22")) + (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,3,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,3,0")) + (rule "shiftLeftDef" (formula "11") (term "0,1")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "8") (term "0,0")) + (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "closeTrue" (formula "23")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,1")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,0,2,0")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "10") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "30") (term "0,1,0")) + (rule "translateJavaShiftLeftInt" (formula "23") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "24") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "24") (term "1")) + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "20")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,0,2,1")) + (rule "mod_axiom" (formula "15") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,0,2,0")) + (rule "mod_axiom" (formula "15") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "mod_axiom" (formula "14") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "11") (term "3,0")) + (rule "mod_axiom" (formula "11") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "10") (term "1")) + (rule "mod_axiom" (formula "10") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "24") (term "0,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "mod_axiom" (formula "18") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "0")) + (rule "mod_axiom" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,2,0")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "11") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,3,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,3,0")) + (rule "shiftLeftDef" (formula "10") (term "0,1")) + (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "10")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "24") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0")) + (rule "javaShiftLeftIntConstantDef" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "div_literals" (formula "18") (term "0,1,1,0,0")) + (rule "times_zero_2" (formula "18") (term "1,1,0,0")) + (rule "add_zero_right" (formula "18") (term "1,0,0")) + (rule "shiftleft_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "shiftLeftDef" (formula "17") (term "0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,2,0")) + (rule "shiftLeftDef" (formula "18") (term "0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "13")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "expand_moduloInteger" (formula "10") (term "3,0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,3,0")) + (rule "replace_int_MIN" (formula "10") (term "0,3,0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,3,0")) + (rule "expand_moduloInteger" (formula "9") (term "0")) + (rule "replace_int_MIN" (formula "9") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "9") (term "1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "expand_moduloInteger" (formula "25") (term "0,1,0")) + (rule "replace_int_MIN" (formula "25") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "25") (term "1,1,0,1,0")) + (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,0,1,0")) + (rule "expand_moduloInteger" (formula "19") (term "1")) + (rule "replace_int_RANGE" (formula "19") (term "1,1,1")) + (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "add_literals" (formula "19") (term "0,1,1")) + (rule "mod_axiom" (formula "19") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1")) + (rule "div_literals" (formula "19") (term "0,1,1,1")) + (rule "times_zero_2" (formula "19") (term "1,1,1")) + (rule "add_zero_right" (formula "19") (term "1,1")) + (rule "add_literals" (formula "19") (term "1")) + (rule "expand_moduloInteger" (formula "18") (term "0")) + (rule "replace_int_RANGE" (formula "18") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "12")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "9")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "expand_moduloInteger" (formula "13") (term "1,0,2,1")) + (rule "replace_int_RANGE" (formula "13") (term "1,1,1,0,2,1")) + (rule "replace_int_MIN" (formula "13") (term "0,1,0,2,1")) + (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,0,2,1")) + (rule "eqSymm" (formula "13")) + (rule "polySimp_addAssoc" (formula "13") (term "0,2,0")) + (rule "add_literals" (formula "13") (term "0,0,2,0")) + (rule "expand_moduloInteger" (formula "19") (term "0")) + (rule "replace_int_MIN" (formula "19") (term "0,0")) + (rule "replace_int_RANGE" (formula "19") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "add_literals" (formula "15") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,0")) + (rule "div_literals" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "times_zero_2" (formula "15") (term "1,0,1,0")) + (rule "add_zero_right" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0")) + (rule "add_literals" (formula "15") (term "0")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "expand_moduloInteger" (formula "13") (term "1,0,2,1")) + (rule "replace_int_MIN" (formula "13") (term "0,1,0,2,1")) + (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,0,2,1")) + (rule "replace_int_RANGE" (formula "13") (term "1,1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,2,1")) + (rule "add_literals" (formula "13") (term "0,0,2,1")) + (rule "elim_double_block_2" (formula "24") (term "1")) + (rule "arrayLengthIsAShort" (formula "8") (term "0")) + (rule "expand_inShort" (formula "8")) + (rule "replace_short_MAX" (formula "8") (term "1,0")) + (rule "replace_short_MIN" (formula "8") (term "0,1")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "8") (term "0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "12") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "10") (term "0,1,1,2,1,0,1,3,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "10") (term "1,2,1,0,1,3,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,0,2,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,0,2,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,0,2,0")) + (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "9") (term "1,2,1,0,0")) + (rule "applyEq" (formula "21") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "21") (term "1,2,1,0,0")) + (rule "applyEq" (formula "10") (term "0,0,0,1,0,1,3,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,1,0,1,3,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "21") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,0,2,0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "applyEq" (formula "10") (term "0,1,1,1,1,1,0,1,3,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,1,1,0,1,3,0")) + (rule "applyEq" (formula "21") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,1,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,0,2,1")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,0,2,1")) + (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,0,2,1") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1,0,2,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1,0,1,3,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,1,0,1,3,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mod_axiom" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "21") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mod_axiom" (formula "21") (term "0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "mod_axiom" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "0,1,0,1,3,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,0,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,1,0,1,3,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,0,1,3,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1,0,1,3,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0,0,1,0,1,3,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,1,0,1,3,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,3,0")) + (rule "leq_literals" (formula "10") (term "0,0,1,0,1,3,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mod_axiom" (formula "10") (term "1,3,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,3,0")) + (rule "polySimp_addAssoc" (formula "10") (term "3,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,3,0")) + (rule "add_literals" (formula "10") (term "0,0,3,0")) + (rule "add_zero_left" (formula "10") (term "0,3,0")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,1,0,2,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "leq_literals" (formula "16") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "eqSymm" (formula "16")) + (rule "mod_axiom" (formula "16") (term "1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,2,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,1")) + (rule "add_literals" (formula "16") (term "0,0,0,2,1")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "9") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "mod_axiom" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,1,0,2,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0,1,0,1,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0,2,0")) + (rule "leq_literals" (formula "16") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mod_axiom" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,0")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_addAssoc" (formula "16") (term "0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,0")) + (rule "add_literals" (formula "16") (term "0,0,0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "14")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_subsumption5" (formula "16") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "16")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "8")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "neg_literal" (formula "14") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "14")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "6")) + (rule "times_zero_2" (formula "16") (term "1,1")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "applyEqRigid" (formula "15") (term "0,1") (ifseqformula "6")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "applyEqRigid" (formula "14") (term "0") (ifseqformula "6")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "10") (term "0,0,1,1,0,0,1,1") (ifseqformula "6")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "10") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1")) + (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "6")) + (rule "applyEqRigid" (formula "16") (term "0,0,1,1,0,0,1,1") (ifseqformula "6")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "16") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "applyEq" (formula "22") (term "0,0,1,1,1") (ifseqformula "6")) + (rule "times_zero_2" (formula "22") (term "0,1,1,1")) + (rule "add_zero_left" (formula "22") (term "1,1,1")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "6")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0,2,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0,2,1")) + (rule "applyEqRigid" (formula "11") (term "0,0,1,1,0,0,1,3,0") (ifseqformula "6")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,1,3,0")) + (rule "add_zero_left" (formula "11") (term "1,1,0,0,1,3,0")) + (rule "polySimp_addComm0" (formula "11") (term "3,0")) + (rule "applyEqRigid" (formula "21") (term "0,0,1,1,0,0,0") (ifseqformula "6")) + (rule "times_zero_2" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "applyEqRigid" (formula "22") (term "0,0,1,1,0,0,0") (ifseqformula "6")) + (rule "times_zero_2" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "6")) + (rule "times_zero_2" (formula "17") (term "0,1,1,0,0,1,0,2,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "applyEqRigid" (formula "10") (term "0,0,1,1,1") (ifseqformula "6")) + (rule "times_zero_2" (formula "10") (term "0,1,1,1")) + (rule "add_zero_left" (formula "10") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "10") (term "1")) + (rule "applyEq" (formula "11") (term "0,0,1,1,3,0") (ifseqformula "6")) + (rule "times_zero_2" (formula "11") (term "0,1,1,3,0")) + (rule "add_zero_left" (formula "11") (term "1,1,3,0")) + (rule "polySimp_addComm0" (formula "11") (term "3,0")) + (rule "applyEqRigid" (formula "21") (term "0,0,1,1,0") (ifseqformula "6")) + (rule "mul_literals" (formula "21") (term "0,1,1,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "applyEq" (formula "16") (term "0,0,1,1,1") (ifseqformula "6")) + (rule "times_zero_2" (formula "16") (term "0,1,1,1")) + (rule "add_zero_left" (formula "16") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1")) + (rule "applyEq" (formula "17") (term "0,0,1,1,0,2,0") (ifseqformula "6")) + (rule "times_zero_2" (formula "17") (term "0,1,1,0,2,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0,2,1")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,1,0,2,0") (ifseqformula "6")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,2,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "8")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "7")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "26")) + (rule "div_axiom" (formula "20") (term "0,0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "20") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "20") (term "0,1,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "equal_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1")) + (rule "add_literals" (formula "22") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "1")) + (rule "add_literals" (formula "22") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "applyEq" (formula "14") (term "0,1,1") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,1,0,2,0") (ifseqformula "20")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_addComm1" (formula "15") (term "0,2,1")) + (rule "applyEq" (formula "10") (term "0,1,1") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "10") (term "1")) + (rule "applyEq" (formula "11") (term "0,1,3,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "11") (term "3,0")) + (rule "applyEq" (formula "15") (term "0,1,0,2,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "15") (term "0,2,0")) + (rule "eqSymm" (formula "15")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "ifSplit" (formula "27")) + (branch "if x true" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "27") (term "1")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "num_splitters")) + (rule "assignmentSubtractionInt" (formula "27") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "27")) + (rule "expand_inInt" (formula "27")) + (rule "replace_int_MIN" (formula "27") (term "0,1")) + (rule "replace_int_MAX" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1")) + (rule "add_literals" (formula "27") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "add_literals" (formula "27") (term "0,0,1")) + (rule "mod_axiom" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,1,0,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "27") (term "1,0,0,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "applyEq" (formula "27") (term "0,1,1,1,1,1,0,0,1,0,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,0,1,0,0")) + (rule "applyEq" (formula "27") (term "0,1,1,2,1,0,0,1,0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "27") (term "1,1,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "1,2,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "27") (term "0,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1,0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,1,0,1") (ifseqformula "13")) + (rule "times_zero_2" (formula "27") (term "1,0,0,1,0,1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,0,1")) + (rule "applyEq" (formula "27") (term "0,1,1,2,1,0,1,0,1") (ifseqformula "13")) + (rule "mul_literals" (formula "27") (term "1,1,2,1,0,1,0,1")) + (rule "add_zero_right" (formula "27") (term "1,2,1,0,1,0,1")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,0,1")) + (rule "applyEq" (formula "27") (term "0,1,1,1,1,1,0,1,0,1") (ifseqformula "13")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,1,0,1,0,1")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0,1,0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "27") (term "0,0,1,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "mod_axiom" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "applyEq" (formula "27") (term "0,1,0,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0,1,0,0,1") (ifseqformula "7")) + (rule "qeq_literals" (formula "27") (term "0,0,1,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "mod_axiom" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "applyEq" (formula "27") (term "0,1,0,1") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "27") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "27")) + (builtin "Block Contract (Internal)" (formula "27") (newnames "exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "5")) (ifInst "" (formula "24")) (ifInst "" (formula "1"))) + (rule "andLeft" (formula "22")) + (rule "eqSymm" (formula "29") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "29") (term "0,1,0,0")) + (rule "polySimp_elimSub" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "exc_1_1")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "emptyStatement" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "emptyStatement" (formula "29") (term "1")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "26"))) + (rule "castDel" (formula "23") (term "0")) + (rule "applyEqReverse" (formula "24") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "tryEmpty" (formula "28") (term "1")) + (rule "blockEmptyLabel" (formula "28") (term "1")) + (rule "blockEmpty" (formula "28") (term "1")) + (rule "methodCallEmpty" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyModality" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "5")) (ifInst "" (formula "23")) (ifInst "" (formula "1"))) + (rule "wellFormedStorePrimitive" (formula "27") (term "0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "wellFormedStoreObject" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "wellFormedStorePrimitive" (formula "27") (term "0")) + (rule "wellFormedStoreObject" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "wellFormedStorePrimitive" (formula "27") (term "0")) + (rule "wellFormedCreate" (formula "27") (term "0")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaSubInt" (formula "30") (term "0,1,0")) + (rule "eqSymm" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "24") (term "0,0,2,0")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "polySimp_elimSub" (formula "29") (term "0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,1")) + (rule "mul_literals" (formula "23") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0")) + (rule "mul_literals" (formula "23") (term "1,0,2,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,0,2,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,2,0")) + (rule "polySimp_addLiterals" (formula "23") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,1")) + (rule "add_literals" (formula "23") (term "0,0,2,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "1")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "1")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "1")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "1")) + (rule "dismissNonSelectedField" (formula "23") (term "0")) + (rule "dismissNonSelectedField" (formula "23") (term "1")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "applyEq" (formula "23") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "13")) + (rule "times_zero_2" (formula "23") (term "1,1,2,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "23") (term "1,2,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,0,2,1")) + (rule "applyEq" (formula "23") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "13")) + (rule "times_zero_2" (formula "23") (term "1,1,1,1,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "23") (term "1,1,1,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "23") (term "0,0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,1,0,1,0,2,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,0,2,1")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,1,0,2,1") (ifseqformula "13")) + (rule "times_zero_2" (formula "23") (term "1,0,0,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "23") (term "0,0,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "applyEq" (formula "23") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "23") (term "1,1,1,1,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "23") (term "1,1,1,1,0,1,0,2,0")) + (rule "mod_axiom" (formula "23") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,1,0,1,0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,0,2,0")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,1,0,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "23") (term "0,0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,0,2,0")) + (rule "applyEq" (formula "23") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "23") (term "1,1,2,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "23") (term "1,2,1,0,1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,0,2,1")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,0,2,1")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,1,0,2,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,1,0,1,0,2,1") (ifseqformula "7")) + (rule "qeq_literals" (formula "23") (term "0,0,1,0,1,0,2,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "mod_axiom" (formula "23") (term "1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,1")) + (rule "add_literals" (formula "23") (term "0,0,0,2,1")) + (rule "applyEq" (formula "23") (term "0,1,0,2,1") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,1")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,1,0,1,0,2,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "23") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "mod_axiom" (formula "23") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,0,2,0")) + (rule "applyEq" (formula "23") (term "0,1,0,2,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfCreate" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "26"))) + (rule "simplifySelectOfCreate" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "26"))) + (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "eqSymm" (formula "23")) + (rule "elim_double_block_2" (formula "28") (term "1")) + (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "ifSplit" (formula "28")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "28") (term "1")) + (rule "eval_order_access4_this" (formula "28") (term "1") (inst "#v1=t")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "t")) + (builtin "Use Operation Contract" (formula "28") (newnames "heapBefore_Tree,self_0,exc_2,heapAfter_Tree,anon_heap_Tree") (contract "de.wiesler.Tree[de.wiesler.Tree::Tree([I,[I,int)].JML normal_behavior operation contract.0")) + (branch "Post (Tree)" + (builtin "One Step Simplification" (formula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "24")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,1,0,0,1,0") (ifseqformula "24")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "25")) + (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "25")) + (rule "dismissNonSelectedField" (formula "33") (term "0")) + (rule "dismissNonSelectedField" (formula "33") (term "0")) + (rule "dismissNonSelectedField" (formula "33") (term "0")) + (rule "dismissNonSelectedField" (formula "33") (term "0")) + (rule "dismissNonSelectedField" (formula "33") (term "0")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "assignment_write_attribute_this" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (builtin "Block Contract (Internal)" (formula "40") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "41")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "5")) (ifInst "" (formula "37")) (ifInst "" (formula "1"))) + (rule "andLeft" (formula "33")) + (rule "eqSymm" (formula "42") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "exc_3_1")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyStatement" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyStatement" (formula "42") (term "1")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "28")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "40"))) + (rule "ifthenelse_negated" (formula "27") (term "0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "29")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "40"))) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0")) + (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "30")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "40"))) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "29")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "34") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "39"))) + (rule "castDel" (formula "34") (term "0")) + (rule "applyEqReverse" (formula "35") (term "0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "tryEmpty" (formula "41") (term "1")) + (rule "blockEmptyLabel" (formula "41") (term "1")) + (rule "blockEmpty" (formula "41") (term "1")) + (rule "methodCallEmpty" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyModality" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "5")) (ifInst "" (formula "36")) (ifInst "" (formula "1"))) + (rule "dismissNonSelectedField" (formula "40") (term "0,1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "40") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "40") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "40") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "40") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "40") (term "0,0,1")) + (rule "wellFormedStoreObject" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "34"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0") (ifseqformula "24")) + (rule "wellFormedAnonEQ" (formula "40") (term "0,0") (ifseqformula "24")) + (rule "wellFormedStorePrimitive" (formula "40") (term "0,0,0")) + (rule "replace_known_left" (formula "40") (term "1,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "23"))) + (rule "wellFormedStoreObject" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "wellFormedStorePrimitive" (formula "40") (term "0")) + (rule "wellFormedStoreObject" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "wellFormedStorePrimitive" (formula "40") (term "0")) + (rule "wellFormedCreate" (formula "40") (term "0")) + (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "40")) + (rule "orRight" (formula "40")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "35"))) + (rule "eqSymm" (formula "28")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "38"))) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "35"))) + (rule "eqSymm" (formula "29")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "38"))) + (rule "ifthenelse_negated" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0")) + (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "35"))) + (rule "eqSymm" (formula "30")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "38"))) + (rule "ifthenelse_negated" (formula "29") (term "0")) + (rule "dismissNonSelectedField" (formula "29") (term "1,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "1,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "1,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "1,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "29")) + (rule "pullOutSelect" (formula "33") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "28")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "40"))) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfAnonEQ" (formula "28") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "29")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "28") (term "0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "40"))) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "2,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0,0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0")) + (rule "simplifySelectOfAnonEQ" (formula "29") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "37"))) + (rule "eqSymm" (formula "30")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "sortsDisjointModuloNull" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "1,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "36"))) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "29") (term "2,0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "29")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "34") (term "1,0") (inst "selectSK=de_wiesler_Classifier_tree_0")) + (rule "simplifySelectOfStore" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "castDel" (formula "34") (term "0")) + (rule "applyEqReverse" (formula "35") (term "1,0") (ifseqformula "34")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "35") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "elim_double_block_2" (formula "41") (term "1")) + (rule "ifUnfold" (formula "41") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "41") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "replace_known_left" (formula "41") (term "0,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "41")) + (rule "ifSplit" (formula "41")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "41") (term "1")) + (builtin "Block Contract (Internal)" (formula "41") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "5")) (ifInst "" (formula "38")) (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "34")) + (rule "eqSymm" (formula "43") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "35") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0")) + (rule "variableDeclarationAssign" (formula "43") (term "1")) + (rule "variableDeclaration" (formula "43") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "43") (term "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "emptyStatement" (formula "43") (term "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "emptyStatement" (formula "43") (term "1")) + (rule "pullOutSelect" (formula "35") (term "0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "40"))) + (rule "castDel" (formula "35") (term "0")) + (rule "applyEqReverse" (formula "36") (term "0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "tryEmpty" (formula "42") (term "1")) + (rule "blockEmptyLabel" (formula "42") (term "1")) + (rule "blockEmpty" (formula "42") (term "1")) + (rule "methodCallEmpty" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyModality" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "closeTrue" (formula "42")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "5")) (ifInst "" (formula "37")) (ifInst "" (formula "1"))) + (rule "dismissNonSelectedField" (formula "41") (term "0,1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "1") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "41") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "41") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "41") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "41") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "41") (term "0,0,1")) + (rule "wellFormedStoreObject" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "35"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "1,0") (ifseqformula "24")) + (rule "wellFormedAnonEQ" (formula "41") (term "0,0") (ifseqformula "24")) + (rule "wellFormedStorePrimitive" (formula "41") (term "0,0,0")) + (rule "replace_known_left" (formula "41") (term "1,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "23"))) + (rule "wellFormedStoreObject" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "wellFormedStorePrimitive" (formula "41") (term "0")) + (rule "wellFormedStoreObject" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "wellFormedStorePrimitive" (formula "41") (term "0")) + (rule "wellFormedCreate" (formula "41") (term "0")) + (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "41")) + (rule "orRight" (formula "41")) + (rule "pullOutSelect" (formula "41") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "closeTrue" (formula "42")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "eqSymm" (formula "36")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,0")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,2,0")) + (rule "add_literals" (formula "35") (term "0,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "dismissNonSelectedField" (formula "35") (term "0")) + (rule "dismissNonSelectedField" (formula "35") (term "1")) + (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,0,2,1")) + (rule "applyEq" (formula "35") (term "0,1,1,1,1,1,0,1,0,2,1") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,1,1,1,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "35") (term "1,1,1,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,0,2,1")) + (rule "applyEq" (formula "35") (term "0,1,1,2,1,0,1,0,2,1") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,1,2,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "35") (term "1,2,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,0,2,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,0,2,1")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,1,0,2,1") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,1,0,2,1")) + (rule "add_zero_right" (formula "35") (term "0,0,1,0,1,0,2,1")) + (rule "mod_axiom" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,1,0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,1,0,2,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "35") (term "1,0,0,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,0,2,0")) + (rule "applyEq" (formula "35") (term "0,1,1,1,1,1,0,1,0,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,1,1,1,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "35") (term "1,1,1,1,0,1,0,2,0")) + (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,0,2,0")) + (rule "applyEq" (formula "35") (term "0,1,1,2,1,0,1,0,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,1,2,1,0,1,0,2,0")) + (rule "add_zero_right" (formula "35") (term "1,2,1,0,1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,0,1,0,2,1")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,0,1,0,2,1")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,1,0,2,0")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0,1,0,1,0,2,1") (ifseqformula "7")) + (rule "qeq_literals" (formula "35") (term "0,0,1,0,1,0,2,1")) + (builtin "One Step Simplification" (formula "35")) + (rule "mod_axiom" (formula "35") (term "1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1")) + (rule "add_literals" (formula "35") (term "0,0,0,2,1")) + (rule "applyEq" (formula "35") (term "0,1,0,2,1") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "35") (term "0,2,1")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0,1,0,1,0,2,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "35") (term "0,0,1,0,1,0,2,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "mod_axiom" (formula "35") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0")) + (rule "add_literals" (formula "35") (term "0,0,0,2,0")) + (rule "applyEq" (formula "35") (term "0,1,0,2,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "pullOutSelect" (formula "35") (term "1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "43"))) + (rule "simplifySelectOfAnonEQ" (formula "36") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "43"))) + (rule "eqSymm" (formula "35") (term "0,0,0")) + (rule "eqSymm" (formula "36") (term "0,0,0")) + (rule "replace_known_right" (formula "36") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "36")) + (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "35")) + (rule "dismissNonSelectedField" (formula "36") (term "2,0")) + (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "36") (term "2,0")) + (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "36") (term "2,0")) + (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "36") (term "2,0")) + (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "36") (term "2,0")) + (rule "replaceKnownSelect_taclet21121_0" (formula "36") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21121_2" (formula "36") (term "2,0")) + (rule "dismissNonSelectedField" (formula "36") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "35") (term "2,0")) + (rule "replaceKnownSelect_taclet21121_1" (formula "35") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21121_2" (formula "35") (term "2,0")) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "36") (term "0")) + (rule "ifthenelse_negated" (formula "35") (term "0")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "15")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "15")) + (rule "pullOutSelect" (formula "36") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "applyEq" (formula "35") (term "0,0,0") (ifseqformula "36")) + (rule "simplifySelectOfCreate" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "41"))) + (rule "castDel" (formula "36") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "36") (term "0,0")) + (rule "replace_known_right" (formula "36") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "44"))) + (rule "applyEqReverse" (formula "37") (term "0,0,0") (ifseqformula "36")) + (rule "applyEqReverse" (formula "35") (term "0,0,0") (ifseqformula "36")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "3"))) + (rule "true_left" (formula "36")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "elim_double_block_2" (formula "42") (term "1")) + (rule "ifUnfold" (formula "42") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "replace_known_left" (formula "42") (term "0,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "42")) + (rule "ifSplit" (formula "42")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "43")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "43")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "42") (term "1")) + (rule "assignment_write_attribute_this" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (builtin "Block Contract (Internal)" (formula "42") (newnames "anonOut_heap,exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "43")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "5")) (ifInst "" (formula "39")) (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "35") (term "1,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "36")) + (rule "dismissNonSelectedField" (formula "38") (term "0")) + (rule "dismissNonSelectedField" (formula "38") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "38") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "dismissNonSelectedField" (formula "38") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "add_zero_left" (formula "37") (term "0")) + (rule "variableDeclarationAssign" (formula "46") (term "1")) + (rule "variableDeclaration" (formula "46") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "eval_order_access4_this" (formula "46") (term "1") (inst "#v1=x")) + (rule "variableDeclarationAssign" (formula "46") (term "1")) + (rule "variableDeclaration" (formula "46") (term "1") (newnames "x_4")) + (rule "mod_axiom" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,1,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0,1,1,1,1,1,0,0,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "36") (term "1,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0,1,1,2,1,0,0,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "36") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "36") (term "1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "37") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,0")) + (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,0")) + (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0")) + (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,2,1,0,0")) + (rule "add_zero_right" (formula "37") (term "1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mod_axiom" (formula "37") (term "0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0")) + (rule "applyEq" (formula "37") (term "0,1,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "36") (term "0,1,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "36") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "mod_axiom" (formula "36") (term "0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "0,0,0")) + (rule "applyEq" (formula "36") (term "0,1,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption0" (formula "36") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "pullOutSelect" (formula "36") (term "0,0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "41"))) + (rule "castDel" (formula "36") (term "0")) + (rule "applyEqReverse" (formula "37") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "condition" (formula "43") (term "1")) + (rule "onlyCreatedObjectsAreReferenced" (formula "28") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "1,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29")) + (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "28")) + (rule "onlyCreatedObjectsAreReferenced" (formula "30") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "30") (term "1,0,1") (ifseqformula "31")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "31")) + (rule "replace_known_right" (formula "30") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "30")) + (rule "ifElseSplit" (formula "45")) + (branch "if var_3 true" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "assignmentMultiplicationInt" (formula "46") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46")) + (rule "replace_int_MIN" (formula "46") (term "0,1")) + (rule "replace_int_MAX" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1")) + (rule "mul_literals" (formula "46") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,0")) + (rule "mul_literals" (formula "46") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1")) + (rule "mul_literals" (formula "46") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "46") (term "0,1")) + (rule "add_literals" (formula "46") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "0,0,0")) + (rule "mod_axiom" (formula "46") (term "0,0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,1,0,1")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,1,0,1") (ifseqformula "14")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,1,0,1")) + (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,1,0,1")) + (rule "mod_axiom" (formula "46") (term "0,1,1,1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,1,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,1,1,0,0,1,0,1")) + (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0,1,0,1") (ifseqformula "14")) + (rule "times_zero_2" (formula "46") (term "1,1,1,1,1,0,0,1,0,1")) + (rule "add_zero_right" (formula "46") (term "1,1,1,1,0,0,1,0,1")) + (rule "mod_axiom" (formula "46") (term "1,2,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,2,1,0,0,1,0,1")) + (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0,1,0,1") (ifseqformula "14")) + (rule "times_zero_2" (formula "46") (term "1,1,2,1,0,0,1,0,1")) + (rule "add_zero_right" (formula "46") (term "1,2,1,0,0,1,0,1")) + (rule "mod_axiom" (formula "46") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,2,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0,1,0,0") (ifseqformula "14")) + (rule "mul_literals" (formula "46") (term "1,1,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "46") (term "1,2,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "46") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0,1,0,0") (ifseqformula "14")) + (rule "mul_literals" (formula "46") (term "1,1,1,1,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "46") (term "1,1,1,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "46") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,1,0,0") (ifseqformula "14")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1")) + (rule "mul_literals" (formula "46") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0,0,1") (ifseqformula "8")) + (rule "qeq_literals" (formula "46") (term "0,0,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "mod_axiom" (formula "46") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,0,1")) + (rule "mul_literals" (formula "46") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "46") (term "1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1")) + (rule "add_literals" (formula "46") (term "0,0,0,1")) + (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "21")) + (rule "polySimp_addComm1" (formula "46") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0,0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "46") (term "0,0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "mod_axiom" (formula "46") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0")) + (rule "applyEq" (formula "46") (term "0,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm1" (formula "46") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0")) + (rule "inEqSimp_subsumption6" (formula "46") (term "1") (ifseqformula "20")) + (rule "greater_literals" (formula "46") (term "0,0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1")) + (rule "mul_literals" (formula "46") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0,1")) + (rule "add_literals" (formula "46") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,1")) + (rule "add_literals" (formula "46") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1")) + (rule "add_literals" (formula "46") (term "0,0,1")) + (rule "qeq_literals" (formula "46") (term "0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_leqRight" (formula "46")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "23")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "46")) + (rule "translateJavaMulInt" (formula "46") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0")) + (rule "blockEmpty" (formula "46") (term "1")) + (rule "assignment_write_attribute_this" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "tryEmpty" (formula "46") (term "1")) + (rule "blockEmptyLabel" (formula "46") (term "1")) + (rule "blockEmpty" (formula "46") (term "1")) + (rule "methodCallEmpty" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "emptyModality" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "closeTrue" (formula "46")) + ) + ) + (branch "if var_3 false" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "assignment" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "blockEmpty" (formula "46") (term "1")) + (rule "assignment_write_attribute_this" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "tryEmpty" (formula "46") (term "1")) + (rule "blockEmptyLabel" (formula "46") (term "1")) + (rule "blockEmpty" (formula "46") (term "1")) + (rule "methodCallEmpty" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "emptyModality" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "closeTrue" (formula "46")) + ) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "5")) (ifInst "" (formula "38")) (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "42") (term "1,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,1")) + (rule "dismissNonSelectedField" (formula "42") (term "0,1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0")) + (rule "add_zero_left" (formula "42") (term "0,1,1,0")) + (rule "mod_axiom" (formula "42") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,1,0,0,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "42") (term "0,1,1,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,1,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,1,1,1,0,0,1,0,0,1,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "42") (term "1,1,1,1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,1,1,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "42") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,2,1,0,0,1,0,0,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "42") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "42") (term "1,2,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,2,1,0,0,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "42") (term "1,1,2,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "1,2,1,0,0,1,1,0")) + (rule "mod_axiom" (formula "42") (term "0,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,1,1,0,0,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,1,1,1,0,0,1,1,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "42") (term "1,1,1,1,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,1,1,0,0,1,1,0")) + (rule "mod_axiom" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0")) + (rule "inEqSimp_contradInEq1" (formula "42") (term "0,1,0,0,1,1,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "42") (term "0,0,1,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "mod_axiom" (formula "42") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,0,1,1,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "42") (term "1,1,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0,1,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,1,0")) + (rule "qeq_literals" (formula "42") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_contradInEq1" (formula "42") (term "0,1,0,0,1,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "42") (term "0,0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "mod_axiom" (formula "42") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,1,0,1,0") (ifseqformula "20")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "inEqSimp_subsumption0" (formula "42") (term "1,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,0")) + (rule "qeq_literals" (formula "42") (term "0,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "wellFormedStoreObject" (formula "42") (term "0")) + (rule "typeEqDerived2" (formula "42") (term "0,1,1,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "41"))) + (rule "dismissNonSelectedField" (formula "42") (term "0,1,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0") (ifseqformula "24")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "42") (term "0,0,1,0")) + (rule "replaceKnownSelect_taclet2120121121_15" (formula "42") (term "0,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2120121121_16" (formula "42") (term "0,0,1,0")) + (rule "replace_known_left" (formula "42") (term "0,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "42")) + (rule "wellFormedStoreObject" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "36"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0") (ifseqformula "24")) + (rule "wellFormedAnonEQ" (formula "42") (term "0,0") (ifseqformula "24")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0,0,0")) + (rule "replace_known_left" (formula "42") (term "1,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23"))) + (rule "wellFormedStoreObject" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0")) + (rule "wellFormedStoreObject" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "wellFormedStorePrimitive" (formula "42") (term "0")) + (rule "wellFormedCreate" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "42")) + (rule "orRight" (formula "42")) + (rule "pullOutSelect" (formula "42") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "closeTrue" (formula "43")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "43")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaMulInt" (formula "38") (term "1,1")) + (rule "eqSymm" (formula "38")) + (rule "replace_known_left" (formula "37") (term "0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,1,2,0")) + (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,1,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,2,1,0,1,2,0")) + (rule "add_zero_right" (formula "37") (term "1,2,1,0,1,2,0")) + (rule "mod_axiom" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,1,2,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,1,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,0,1,2,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,1,2,0")) + (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,1,2,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,1,2,0")) + (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,1,2,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,1,1,0,0,1,1,0")) + (rule "applyEq" (formula "37") (term "0,1,1,1,1,1,0,0,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,1,1,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,0,1,1,0")) + (rule "mod_axiom" (formula "37") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,1,0")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,1,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,1,0")) + (rule "applyEq" (formula "37") (term "0,1,1,2,1,0,0,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,2,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "37") (term "1,2,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,1,2,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0,0,1,0,1,2,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mod_axiom" (formula "37") (term "1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,0")) + (rule "polySimp_addAssoc" (formula "37") (term "2,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,0")) + (rule "add_literals" (formula "37") (term "0,0,2,0")) + (rule "add_zero_left" (formula "37") (term "0,2,0")) + (rule "applyEq" (formula "37") (term "0,1,2,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "37") (term "2,0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,1,0,0,1,1,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0,0,1,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mod_axiom" (formula "37") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,1,0")) + (rule "add_zero_left" (formula "37") (term "0,1,0")) + (rule "applyEq" (formula "37") (term "0,1,1,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "37") (term "1,0")) + (rule "pullOutSelect" (formula "37") (term "1") (inst "selectSK=de_wiesler_Classifier_num_buckets_0")) + (rule "simplifySelectOfAnon" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "42"))) + (rule "dismissNonSelectedField" (formula "37") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "37") (term "2,0")) + (rule "elementOfSingleton" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "applyEqReverse" (formula "38") (term "1") (ifseqformula "37")) + (rule "hideAuxiliaryEq" (formula "37")) + (rule "ifUnfold" (formula "45") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "replace_known_left" (formula "45") (term "0,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "45")) + (rule "onlyCreatedObjectsAreReferenced" (formula "28") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "1,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29")) + (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "28")) + (rule "onlyCreatedObjectsAreReferenced" (formula "30") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "31")) + (rule "replace_known_right" (formula "30") (term "0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "31")) + (rule "ifSplit" (formula "47")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "48")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "48")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "47") (term "1")) + (rule "assignment_write_attribute_this" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "methodCallEmpty" (formula "47") (term "1")) + (rule "blockEmpty" (formula "47") (term "1")) + (rule "assignment_write_attribute" (formula "47")) + (branch "Normal Execution (self_51 != null)" + (builtin "One Step Simplification" (formula "47")) + (rule "tryEmpty" (formula "47") (term "1")) + (rule "emptyModality" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "32")) + (rule "true_left" (formula "32")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "32")) + (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "1,0,1,0,1")) + (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "1,1,1,0,1")) + (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "1,0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "1,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "1,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "1,0,1,0,0")) + (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "0,1,1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "0,1,1,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,1,1,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,0,2,1,1,0,1")) + (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "0,1,1,1,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,1,1,0,1,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,1,1,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "0,1,1,0,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_3" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,0,2,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "0,1,1,1,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,1,1,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_7" (formula "32") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_5" (formula "32") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "0,1,1,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_4" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_8" (formula "32") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_6" (formula "32") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "39") (term "1,0")) + (rule "translateJavaSubInt" (formula "37") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "33") (term "1")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "3,0")) + (rule "mul_literals" (formula "37") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "3,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "apply_eq_monomials" (formula "38") (term "1,0,0,1,0,0,0") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "apply_eq_monomials" (formula "37") (term "1,0,0,1,1,0") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "1,0,0,1,1,0")) + (rule "add_literals" (formula "37") (term "1,1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "37") (term "1,1,0,0,1,1,0")) + (rule "add_zero_right" (formula "37") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,1,0")) + (rule "apply_eq_monomials" (formula "37") (term "1,0,0,1,0,0,0") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "1,1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "32") (term "1")) + (rule "mod_axiom" (formula "32") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1")) + (rule "applyEq" (formula "32") (term "0,1,1,0,1") (ifseqformula "13")) + (rule "mul_literals" (formula "32") (term "1,1,0,1")) + (rule "add_zero_right" (formula "32") (term "1,0,1")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,1,1,0,0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,1,1,0")) + (rule "applyEq" (formula "37") (term "0,1,1,0,1,1,1,1,0") (ifseqformula "13")) + (rule "mul_literals" (formula "37") (term "1,1,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "37") (term "1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "37") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "37") (term "0,1,1,0,1,1,1,0,0,0") (ifseqformula "13")) + (rule "times_zero_2" (formula "37") (term "1,1,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "37") (term "1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "32") (term "0,1")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "32") (term "0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "32") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "eqSymm" (formula "32")) + (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "38") (term "0,0,1,1,1,0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "38") (term "0,0,0,1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "shiftLeftDef" (formula "37") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,0,1,1,1,1,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0,0,0,1,1,1,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=de_wiesler_Tree_num_buckets_0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "47"))) + (rule "eqSymm" (formula "32")) + (rule "applyEqReverse" (formula "33") (term "0") (ifseqformula "32")) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "32")) + (rule "applyEqReverse" (formula "37") (term "1,3,0") (ifseqformula "32")) + (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "32")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "32")) + (rule "hideAuxiliaryEq" (formula "32")) + (rule "dismissNonSelectedField" (formula "34") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "34") (term "0,0,0")) + (rule "replace_known_right" (formula "34") (term "0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "50"))) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "2,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "2,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "2,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "2,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet20121121_9" (formula "34") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_10" (formula "34") (term "0,0,0,0")) + (rule "replace_known_right" (formula "34") (term "0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "shiftLeftDef" (formula "37") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,0,1,1,1,0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0,0,0,1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "53")) + (rule "dismissNonSelectedField" (formula "53") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "53") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "53") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "53") (term "0,0,0")) + (rule "pullOutSelect" (formula "53") (term "0,0,1") (inst "selectSK=de_wiesler_Classifier_sorted_splitters_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "50"))) + (rule "elementOfSingleton" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0") (ifseqformula "25")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "54") (term "0,0,0") (inst "selectSK=de_wiesler_Classifier_tree_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "51"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "replaceKnownSelect_taclet20121121_11" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet20121121_12" (formula "1") (term "2,0")) + (rule "elementOfSingleton" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0") (ifseqformula "26")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "2") (term "1,0") (inst "selectSK=de_wiesler_Classifier_sorted_splitters_1")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "0")) + (rule "applyEqReverse" (formula "3") (term "1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "pullOutSelect" (formula "2") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__2")) + (rule "applyEq" (formula "1") (term "0,0,0,0") (ifseqformula "2")) + (rule "simplifySelectOfCreate" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52"))) + (rule "castDel" (formula "2") (term "0")) + (rule "applyEqReverse" (formula "3") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "56") (term "0,0,1") (ifseqformula "3")) + (rule "applyEqReverse" (formula "56") (term "0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_right" (formula "53") (term "0,1") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "47"))) + (rule "closeTrue" (formula "53")) + ) + (branch "Null Reference (self_51 = null)" + (rule "false_right" (formula "48")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (Tree)" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,0,0") (ifseqformula "24")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "25") (term "1,1,0,0,1,0") (ifseqformula "24")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "25")) + (rule "close" (formula "30") (ifseqformula "29")) + ) + (branch "Pre (Tree)" + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27")) (ifInst "" (formula "26")) (ifInst "" (formula "27")) (ifInst "" (formula "26"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0,0")) + (rule "expand_inInt" (formula "28") (term "1")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "28") (term "0,1") (ifseqformula "8")) + (rule "leq_literals" (formula "28") (term "0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "1") (ifseqformula "7")) + (rule "leq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "wellFormedStoreObject" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedStoreObject" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedCreate" (formula "28") (term "0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28"))) + (rule "applyEqReverse" (formula "29") (term "0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1")) + (rule "close" (formula "29") (ifseqformula "5")) + ) + ) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..df3469a --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__calculate_bucket_starts((I,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,11518 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Sep 05 21:17:13 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Sep 05 21:17:13 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "47502") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "notLeft" (formula "12")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "13")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "25")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "26")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "translateJavaAddInt" (formula "16") (term "1")) +(rule "eqSymm" (formula "35")) +(rule "translateJavaSubInt" (formula "39") (term "0,0")) +(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "12")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "11")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "4")) +(rule "polySimp_elimSub" (formula "39") (term "0,0")) +(rule "polySimp_addComm0" (formula "16") (term "1")) +(rule "polySimp_addComm0" (formula "39") (term "0,0")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "40")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "39")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "eqSymm" (formula "31")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "30")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "eqSymm" (formula "29")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "eqSymm" (formula "28")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "eqSymm" (formula "26")) +(rule "inEqSimp_commuteLeq" (formula "19")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "18")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "22")) +(rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) +(rule "applyEq" (formula "16") (term "1,1") (ifseqformula "20")) +(rule "methodBodyExpand" (formula "45") (term "1") (newnames "heapBefore_calculate_bucket_starts,savedHeapBefore_calculate_bucket_starts,_beginBefore_calculate_bucket_starts,_bucket_startsBefore_calculate_bucket_starts,_buffersBefore_calculate_bucket_starts,_endBefore_calculate_bucket_starts,_valuesBefore_calculate_bucket_starts,_writeBefore_calculate_bucket_starts")) + (builtin "One Step Simplification" (formula "45")) +(rule "variableDeclarationAssign" (formula "45") (term "1")) +(rule "variableDeclaration" (formula "45") (term "1") (newnames "sum_1")) +(rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) +(rule "for_to_while" (formula "45") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1")) +(rule "variableDeclarationAssign" (formula "45") (term "1")) +(rule "variableDeclaration" (formula "45") (term "1") (newnames "j")) +(rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) +(rule "elim_double_block_3" (formula "45") (term "1")) +(rule "arrayLengthIsAShort" (formula "16") (term "0")) +(rule "expand_inShort" (formula "16")) +(rule "replace_short_MAX" (formula "16") (term "1,0")) +(rule "replace_short_MIN" (formula "16") (term "0,1")) +(rule "andLeft" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "arrayLengthNotNegative" (formula "18") (term "0")) +(rule "loopScopeInvDia" (formula "48") (term "1") (newnames "j_0,sum_1_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) +(branch "Invariant Initially Valid" + (rule "closeTrue" (formula "48")) +) +(branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0,0")) + (rule "impRight" (formula "49")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "56") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "56") (term "0,1,1,0,1")) + (rule "translateJavaAddInt" (formula "7") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "0,1,0")) + (rule "eqSymm" (formula "4")) + (rule "translateJavaSubInt" (formula "3") (term "0,2,0,0,1")) + (rule "translateJavaAddInt" (formula "7") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "7") (term "0,2,2,0,0,1,0")) + (rule "translateJavaCastInt" (formula "4") (term "0")) + (rule "translateJavaAddInt" (formula "4") (term "2,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "3") (term "0,2,0,0,1")) + (rule "mul_literals" (formula "3") (term "1,0,2,0,0,1")) + (rule "polySimp_elimSub" (formula "7") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,0,0,1")) + (rule "polySimp_addComm0" (formula "7") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,2,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "6") (term "1,1,0,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "2,1,0,1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "6") (term "2,1,0,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "1,0,1,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "5") (term "2,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "7") (term "2,1,0,2,1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "3") (term "2,1,0,0,0,1") (ifseqformula "31")) + (rule "applyEq" (formula "3") (term "2,1,0,0,1,1") (ifseqformula "31")) + (rule "applyEq" (formula "7") (term "2,1,0,0,0,0,1,0") (ifseqformula "31")) + (rule "pullOutSelect" (formula "3") (term "0,0,1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "54")) (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0")) + (rule "pullOutSelect" (formula "4") (term "0,1,1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "55")) (ifInst "" (formula "21"))) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0")) + (rule "commute_and" (formula "5") (term "1")) + (rule "commute_and" (formula "9") (term "0,0,0")) + (rule "commute_and" (formula "9") (term "1,0,0")) + (rule "commute_and" (formula "8") (term "1,0,0")) + (rule "commute_and" (formula "8") (term "0,0,0")) + (rule "commute_and_2" (formula "8") (term "0,0")) + (rule "shift_paren_and" (formula "9") (term "0,0")) + (rule "commute_and_2" (formula "9") (term "0,0,0")) + (rule "shift_paren_and" (formula "8") (term "0,0,0")) + (rule "ifElseUnfold" (formula "58") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_2")) + (rule "compound_less_than_comparison_2" (formula "58") (term "1") (inst "#v0=x_3") (inst "#v1=x_4")) + (rule "variableDeclarationAssign" (formula "58") (term "1")) + (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_3")) + (rule "assignment" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "variableDeclarationAssign" (formula "58") (term "1")) + (rule "variableDeclaration" (formula "58") (term "1") (newnames "x_4")) + (rule "assignment_read_attribute_this_final" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "33")) + (rule "less_than_comparison_simple" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "ifElseSplit" (formula "61")) + (branch "if x_2 true" + (builtin "Block Contract (Internal)" (formula "62") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "24")) (ifInst "" (formula "14")) (ifInst "" (formula "59")) (ifInst "" (formula "13"))) + (builtin "One Step Simplification" (formula "63")) + (rule "eqSymm" (formula "63") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "emptyStatement" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "emptyStatement" (formula "63") (term "1")) + (rule "tryEmpty" (formula "63") (term "1")) + (rule "blockEmptyLabel" (formula "63") (term "1")) + (rule "blockEmpty" (formula "63") (term "1")) + (rule "methodCallEmpty" (formula "63") (term "1")) + (rule "emptyModality" (formula "63") (term "1")) + (rule "andRight" (formula "63")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "63")) + (rule "closeTrue" (formula "63")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "63")) + (rule "closeTrue" (formula "63")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "62")) + (branch "Case 1" + (rule "andRight" (formula "62")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "24"))) + (rule "closeTrue" (formula "62")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "62")) + (rule "wellFormedAnon" (formula "62")) + (rule "replace_known_left" (formula "62") (term "1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "62")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "62")) + (branch "Case 1" + (rule "andRight" (formula "62")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "62")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "62")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "62")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "43")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "replace_known_left" (formula "44") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "elim_double_block_2" (formula "64") (term "1")) + (rule "ifUnfold" (formula "64") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "replace_known_left" (formula "64") (term "0,0,1,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "64")) + (rule "ifSplit" (formula "64")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "64") (term "1")) + (builtin "Block Contract (Internal)" (formula "64") (newnames "exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "24")) (ifInst "" (formula "14")) (ifInst "" (formula "61")) (ifInst "" (formula "13"))) + (builtin "One Step Simplification" (formula "65")) + (rule "eqSymm" (formula "65") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "emptyStatement" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "emptyStatement" (formula "65") (term "1")) + (rule "tryEmpty" (formula "65") (term "1")) + (rule "blockEmptyLabel" (formula "65") (term "1")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "methodCallEmpty" (formula "65") (term "1")) + (rule "emptyModality" (formula "65") (term "1")) + (rule "andRight" (formula "65")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "65")) + (rule "closeTrue" (formula "65")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "65")) + (rule "closeTrue" (formula "65")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "64")) + (branch "Case 1" + (rule "andRight" (formula "64")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "24"))) + (rule "closeTrue" (formula "64")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "64")) + (rule "wellFormedAnon" (formula "64")) + (rule "replace_known_left" (formula "64") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "64")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "64")) + (branch "Case 1" + (rule "andRight" (formula "64")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "60"))) + (rule "closeTrue" (formula "64")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "64")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "64")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "65")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "47")) + (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "pullOutSelect" (formula "46") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "65")) (ifInst "" (formula "22"))) + (rule "eqSymm" (formula "47")) + (rule "applyEqReverse" (formula "46") (term "1") (ifseqformula "47")) + (rule "hideAuxiliaryEq" (formula "47")) + (rule "elementOfArrayRangeConcrete" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0")) + (rule "replace_known_left" (formula "46") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0")) + (rule "replace_known_left" (formula "46") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "46")) + (rule "elim_double_block_2" (formula "67") (term "1")) + (rule "ifUnfold" (formula "67") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "67") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "67") (term "1")) + (builtin "One Step Simplification" (formula "67")) + (rule "replace_known_left" (formula "67") (term "0,0,1,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "67")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "1") (ifseqformula "12") (ifseqformula "13")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "0,0") (ifseqformula "13") (ifseqformula "14")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "62") (term "1") (ifseqformula "14") (ifseqformula "25")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "15") (ifseqformula "26")) + (rule "ifSplit" (formula "71")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "72")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "72")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "71") (term "1")) + (rule "variableDeclarationAssign" (formula "71") (term "1")) + (rule "variableDeclaration" (formula "71") (term "1") (newnames "size")) + (rule "compound_addition_2" (formula "71") (term "1") (inst "#v0=x_2") (inst "#v1=x_3")) + (rule "variableDeclarationAssign" (formula "71") (term "1")) + (rule "variableDeclaration" (formula "71") (term "1") (newnames "x_7")) + (rule "assignment_array2" (formula "71")) + (branch "Normal Execution (_bucket_starts != null)" + (builtin "One Step Simplification" (formula "71")) + (rule "replaceKnownSelect_taclet21201_2" (formula "71") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21201_3" (formula "71") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "71") (term "1")) + (rule "variableDeclaration" (formula "71") (term "1") (newnames "x_8")) + (builtin "Use Operation Contract" (formula "71") (newnames "heapBefore_len,result_21,exc_27") (contract "de.wiesler.Buffers[de.wiesler.Buffers::len(int)].JML normal_behavior operation contract.0")) + (branch "Post (len)" + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "48"))) + (builtin "One Step Simplification" (formula "72")) + (rule "expand_inInt" (formula "52") (term "0,1,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "52") (term "1,0,0,1,0")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "52")) + (rule "eqSymm" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "assignment" (formula "76") (term "1")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "51")) + (rule "applyEq" (formula "51") (term "1") (ifseqformula "54")) + (rule "assignmentAdditionInt" (formula "76") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "76")) + (rule "expand_inInt" (formula "76") (userinteraction)) + (rule "andRight" (formula "76") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "76") (term "1")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "76") (term "0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "inEqSimp_leqRight" (formula "76")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "9") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "34")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "52") (term "0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "48") (term "1")) + (rule "replace_known_right" (formula "48") (term "0,1,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "28")) (ifInst "" (formula "76")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "28")) (ifInst "" (formula "45"))) + (rule "true_left" (formula "48")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "13") (term "1,2,0") (inst "i=i")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "29") (inst "b=b")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "translateJavaMulInt" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "35")) + (rule "times_zero_1" (formula "30") (term "0,0")) + (rule "add_zero_left" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "30")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "56") (inst "b=b")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "29")) (ifInst "" (formula "32"))) + (rule "expand_inInt" (formula "56") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "translateJavaMulInt" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "52") (term "0")) + (rule "pullOutSelect" (formula "52") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "52")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "59")) (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "53")) + (rule "applyEqReverse" (formula "52") (term "1") (ifseqformula "53")) + (rule "hideAuxiliaryEq" (formula "53")) + (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0")) + (rule "replace_known_right" (formula "52") (term "0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "55"))) + (rule "true_left" (formula "52")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "51") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "51")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "44") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "translateJavaSubInt" (formula "48") (term "1")) + (rule "polySimp_elimSub" (formula "48") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "27")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "translateJavaMod" (formula "50") (term "0")) + (rule "jmod_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "newSym_eq" (formula "50") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "50") (term "1,1,1")) + (rule "times_zero_1" (formula "50") (term "0,1,1")) + (rule "add_zero_right" (formula "50") (term "1,1")) + (rule "add_zero_right" (formula "50") (term "1")) + (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "50")) + (rule "polySimp_homoEq" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "51")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "12") (term "1,1,2,0") (ifseqformula "51")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "51")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "applyEq" (formula "43") (term "4,0") (ifseqformula "51")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "51")) + (rule "inEqSimp_homoInEq1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "51")) + (rule "applyEq" (formula "44") (term "4,0") (ifseqformula "51")) + (rule "applyEq" (formula "50") (term "1,0,0") (ifseqformula "51")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0")) + (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "51")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "51")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "51")) + (rule "applyEq" (formula "47") (term "0,1,1") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "47") (term "1")) + (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "51")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "times_zero_2" (formula "48") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "elimGcdGeq_antec" (formula "48") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "21")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "add_zero_left" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0")) + (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "50")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "49")) + (rule "mul_literals" (formula "21") (term "1,1,0")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "49")) + (rule "times_zero_1" (formula "35") (term "0,0")) + (rule "add_zero_left" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0")) + (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "translateJavaSubInt" (formula "58") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "58") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "55") (term "1,1")) + (rule "eqSymm" (formula "58")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimSub" (formula "58") (term "0,2,1")) + (rule "mul_literals" (formula "58") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "58") (term "0,2,0")) + (rule "mul_literals" (formula "58") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "54") (term "1") (ifseqformula "42")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "32")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "52")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_imp2or" (formula "64") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "12") (term "0,0,2,1,2,0")) + (rule "commute_or" (formula "15") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "commute_and" (formula "11") (term "1")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "60") (term "0,0,2,0")) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "45") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "45") (term "0")) + (rule "ifthenelse_split" (formula "10") (term "0")) + (branch "j_0 >= 1 TRUE" + (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_notAnd" (formula "64") (term "0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "b_0=b_0") (inst "b=b")) + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,0")) + (rule "andLeft" (formula "41")) + (rule "translateJavaSubInt" (formula "42") (term "1")) + (rule "translateJavaCastInt" (formula "42") (term "0")) + (rule "polySimp_elimSub" (formula "42") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "1")) + (rule "add_literals" (formula "42") (term "1,1,1")) + (rule "times_zero_1" (formula "42") (term "1,1")) + (rule "add_zero_right" (formula "42") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "65") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "65") (term "0,0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "65") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "65") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "65") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "65") (term "1,1,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "65") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,1,0,0")) + (rule "mul_literals" (formula "65") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "65") (term "0,1,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "0,1,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "90")) (ifInst "" (formula "18")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "2") (term "0") (inst "i=i")) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "44") (term "0")) + (rule "translateJavaSubInt" (formula "44") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "91")) (ifInst "" (formula "19")) (ifInst "" (formula "88"))) + (rule "polySimp_elimSub" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "45") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0")) + (rule "translateJavaDivInt" (formula "45") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "45") (term "4,0,1,0")) + (rule "translateJavaAddInt" (formula "45") (term "3,0,1,0")) + (rule "translateJavaSubInt" (formula "45") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "45") (term "1,4,0,1,0")) + (rule "translateJavaMulInt" (formula "45") (term "1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "45") (term "0,1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "52")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "1,1,0")) + (rule "replace_known_left" (formula "15") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "92")) (ifInst "" (formula "20")) (ifInst "" (formula "89")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "15")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "15") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "15") (term "1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "expand_inInt" (formula "61") (term "1,0,0")) + (rule "expand_inInt" (formula "60") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "68") (term "1,0")) + (rule "translateJavaSubInt" (formula "66") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "62") (term "1")) + (rule "translateJavaSubInt" (formula "68") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "66") (term "3,0")) + (rule "mul_literals" (formula "66") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "3,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "57")) + (rule "inEqSimp_commuteGeq" (formula "65")) + (rule "applyEq" (formula "68") (term "1,0,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "62")) + (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "62")) + (rule "applyEq" (formula "78") (term "0") (ifseqformula "57")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62")) + (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "67") (term "0,1,0,0,1,1,0") (ifseqformula "62")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "62")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0")) + (rule "mul_literals" (formula "67") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1")) + (rule "mod_axiom" (formula "62") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "58") (term "3,0")) + (rule "mod_axiom" (formula "58") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1")) + (rule "mod_axiom" (formula "64") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "66") (term "1,3,0")) + (rule "mod_axiom" (formula "66") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "0")) + (rule "mod_axiom" (formula "63") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "2,0")) + (rule "mod_axiom" (formula "56") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,0")) + (rule "mod_axiom" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "65") (term "0")) + (rule "mod_axiom" (formula "65") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0")) + (rule "eqSymm" (formula "59")) + (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "62") (term "0,1")) + (rule "eqSymm" (formula "62")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "58") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,3,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,3,0")) + (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "64") (term "0,1")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1")) + (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "64") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "64")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,0")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "62")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "shiftLeftDef" (formula "66") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "63") (term "0,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "56") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,2,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,2,0")) + (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "65") (term "0,0")) + (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "62")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0")) + (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "59")) + (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "67") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "67") (term "1,1,1,0,0,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "68") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "67") (term "1,1,1,1,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "42") (term "0,0")) + (rule "expand_moduloInteger" (formula "62") (term "0")) + (rule "replace_int_HALFRANGE" (formula "62") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "62") (term "0,0")) + (rule "replace_int_RANGE" (formula "62") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "mul_literals" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "44") (term "1,0")) + (rule "replace_known_right" (formula "44") (term "0,0,1,0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "80"))) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "46") (term "0,1,0")) + (rule "replace_known_right" (formula "46") (term "0,1,0,0,0,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "99")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "46")) + (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "47") (term "0,1,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,1,1,0")) + (rule "add_zero_right" (formula "47") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "1") (term "1,1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")) (ifInst "" (formula "58"))) + (rule "translateJavaSubInt" (formula "1") (term "0,2,0,1,0,1,1")) + (rule "translateJavaMulInt" (formula "1") (term "1,1,1,0,0,1,1")) + (rule "translateJavaSubInt" (formula "1") (term "0,2,1,1,0,1,1")) + (rule "eqSymm" (formula "1") (term "1,0,0,1,1")) + (rule "eqSymm" (formula "1") (term "1,0,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "0,2,0,1,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,2,0,1,0,1,1")) + (rule "eqSymm" (formula "1") (term "1,0,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "0,2,0,1,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,2,0,1,0,1,1")) + (rule "eqSymm" (formula "1") (term "1,0,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,1,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,1,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,1,1")) + (rule "applyEq" (formula "1") (term "0,1,0,1,1") (ifseqformula "56")) + (rule "eqSymm" (formula "1") (term "1,0,1,1")) + (rule "replace_known_left" (formula "1") (term "1,0,1,1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "1") (term "0,0,0,1,1") (ifseqformula "41")) + (rule "replace_known_left" (formula "1") (term "0,0,1,1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "1") (term "0,0,1,1") (ifseqformula "41")) + (rule "replace_known_left" (formula "1") (term "0,1,1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "48") (term "2,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "42") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "42") (term "1,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "46") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "15") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "2") (term "0,0,2,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "72")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "69") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "69") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "68") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "68") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "commute_or_2" (formula "30") (term "0,0")) + (rule "commute_or_2" (formula "76") (term "0,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "68") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "nnf_notAnd" (formula "42") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0")) + (rule "commute_and" (formula "69") (term "1,0,0")) + (rule "commute_and" (formula "68") (term "1,0,0")) + (rule "nnf_imp2or" (formula "47") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,1,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,1,0")) + (rule "add_zero_left" (formula "47") (term "0,0,1,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "58") (term "0")) + (rule "replace_known_left" (formula "58") (term "0,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "81")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "59")) + (rule "expand_inInt" (formula "59") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "59") (term "1,0,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "68") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "68")) + (rule "expand_inInt" (formula "68") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "68") (term "1,0,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "68") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "46") (term "0,1,0")) + (rule "jdiv_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,2,1")) + (rule "eqSymm" (formula "52")) + (rule "applyEqRigid" (formula "52") (term "1") (ifseqformula "53")) + (rule "inEqSimp_subsumption6" (formula "52") (term "0,0") (ifseqformula "49")) + (rule "mul_literals" (formula "52") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "52") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "leq_literals" (formula "52") (term "0,0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polyDiv_pullOut" (formula "52") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_pullOutFactor0" (formula "52") (term "0,0,0")) + (rule "add_literals" (formula "52") (term "1,0,0,0")) + (rule "times_zero_1" (formula "52") (term "0,0,0")) + (rule "div_literals" (formula "52") (term "0,0")) + (rule "add_zero_left" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "nnf_notAnd" (formula "45") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "70") (term "0")) + (rule "nnf_imp2or" (formula "69") (term "0")) + (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "45") (term "0,1,0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "41")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "55")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthIsAShort" (formula "54") (term "0")) + (rule "expand_inShort" (formula "54")) + (rule "replace_short_MIN" (formula "54") (term "0,1")) + (rule "replace_short_MAX" (formula "54") (term "1,0")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "55")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "38")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + (branch "j_0 >= 1 FALSE" + (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_geqRight" (formula "64")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1")) + (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "9")) + (rule "true_left" (formula "9")) + (rule "applyEqRigid" (formula "7") (term "1,1") (ifseqformula "8")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEqRigid" (formula "9") (term "1,0") (ifseqformula "8")) + (rule "bsum_lower_equals_upper" (formula "9") (term "0")) + (rule "eqSymm" (formula "9")) + (rule "applyEq" (formula "1") (term "5,0") (ifseqformula "8")) + (rule "applyEqRigid" (formula "11") (term "1,1,1,0,0") (ifseqformula "8")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "12") (term "1,1,0,0,0") (ifseqformula "8")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "8")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "10") (term "1,1,1,0,0,0,0") (ifseqformula "8")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0,0")) + (rule "applyEqRigid" (formula "60") (term "0,2,0") (ifseqformula "8")) + (rule "applyEqRigid" (formula "12") (term "1,0,1,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8")) + (rule "add_zero_right" (formula "12") (term "1,0,0,1,0")) + (rule "applyEqRigid" (formula "57") (term "0,2,1") (ifseqformula "8")) + (rule "applyEq" (formula "57") (term "1,0,2,0") (ifseqformula "8")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0,0")) + (rule "add_zero_right" (formula "10") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "10") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "37") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0")) + (rule "translateJavaMulInt" (formula "37") (term "0,4,0,1,0")) + (rule "translateJavaMulInt" (formula "37") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "37") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "58") (term "0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "35") (term "0") (inst "b_0=b_0") (inst "b=b")) + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,0")) + (rule "andLeft" (formula "35")) + (rule "translateJavaSubInt" (formula "36") (term "1")) + (rule "translateJavaCastInt" (formula "36") (term "0")) + (rule "polySimp_elimSub" (formula "36") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "1")) + (rule "add_literals" (formula "36") (term "1,1,1")) + (rule "times_zero_1" (formula "36") (term "1,1")) + (rule "add_zero_right" (formula "36") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "34")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "37") (term "0")) + (rule "translateJavaSubInt" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "84")) (ifInst "" (formula "12")) (ifInst "" (formula "81"))) + (rule "polySimp_elimSub" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "38") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "38") (term "0,1,4,0,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "38") (term "1,3,0,1,0")) + (rule "translateJavaMulInt" (formula "38") (term "1,4,0,1,0")) + (rule "translateJavaDivInt" (formula "38") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "4,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "45")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0")) + (rule "replace_known_right" (formula "9") (term "0,1,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "85")) (ifInst "" (formula "12")) (ifInst "" (formula "13"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "10") (term "1,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "61") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "61") (term "0,0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "61") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "0,1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "61") (term "1,1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "8") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "54") (term "1,0,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "61") (term "1,0")) + (rule "translateJavaSubInt" (formula "59") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "55") (term "1")) + (rule "translateJavaSubInt" (formula "61") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "3,0")) + (rule "mul_literals" (formula "59") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "3,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "61") (term "1,0,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "51") (term "3,0") (ifseqformula "55")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "50")) + (rule "inEqSimp_commuteGeq" (formula "58")) + (rule "applyEq" (formula "57") (term "1") (ifseqformula "55")) + (rule "applyEq" (formula "49") (term "0,1,0") (ifseqformula "55")) + (rule "applyEq" (formula "49") (term "2,0") (ifseqformula "55")) + (rule "applyEq" (formula "59") (term "1,0") (ifseqformula "50")) + (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55")) + (rule "eqSymm" (formula "52")) + (rule "applyEq" (formula "59") (term "1,3,0") (ifseqformula "55")) + (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "55")) + (rule "applyEq" (formula "60") (term "0,1,0,0,1,0,0,0") (ifseqformula "55")) + (rule "applyEq" (formula "60") (term "0,1,0,0,1,1,0") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "55")) + (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55")) + (rule "eqSymm" (formula "52")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1")) + (rule "mod_axiom" (formula "55") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "3,0")) + (rule "mod_axiom" (formula "51") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0")) + (rule "mod_axiom" (formula "56") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "57") (term "1")) + (rule "mod_axiom" (formula "57") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "49") (term "0,1,0")) + (rule "mod_axiom" (formula "49") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "49") (term "2,0")) + (rule "mod_axiom" (formula "49") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1,3,0")) + (rule "mod_axiom" (formula "59") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "0")) + (rule "mod_axiom" (formula "58") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1,0,2,0")) + (rule "eqSymm" (formula "52")) + (rule "mod_axiom" (formula "52") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "61") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "61") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "60") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "60") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "60") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "60") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "55") (term "0,1")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "51") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,3,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,3,0")) + (rule "applyEq" (formula "51") (term "3,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "56") (term "0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "57") (term "0,1")) + (rule "polySimp_elimNeg" (formula "57") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "57") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "57") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "57") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "57") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "57")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,0")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "shiftLeftDef" (formula "49") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "49") (term "0,1,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "49") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,2,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,2,0")) + (rule "applyEq" (formula "49") (term "2,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "59") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "59") (term "1,3,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "58") (term "0,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "55")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1,0,2,0")) + (rule "mod_axiom" (formula "52") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "52")) + (rule "shiftLeftDef" (formula "61") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "61") (term "1,1,1,0,0,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "60") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "60") (term "1,1,1,0,0,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "60") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "60") (term "1,1,1,1,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "52") (term "0,1,0,2,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55")) + (rule "shiftLeftDef" (formula "52") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "52")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "52") (term "1,0,2,0") (ifseqformula "55")) + (rule "eqSymm" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "58")) + (rule "mul_literals" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0")) + (rule "expand_moduloInteger" (formula "55") (term "0")) + (rule "replace_int_MIN" (formula "55") (term "0,0")) + (rule "replace_int_RANGE" (formula "55") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "55") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8") (term "0,1")) + (rule "replace_known_right" (formula "8") (term "0,1,0,1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "72"))) + (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "38") (term "0,1,0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "34")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37") (term "0,1")) + (rule "replace_known_right" (formula "37") (term "0,1,0,1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "72"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "41") (term "2,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "40") (term "0,0,1,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "39") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "35") (term "1,1,0")) + (rule "replace_known_left" (formula "35") (term "1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "95")) (ifInst "" (formula "11")) (ifInst "" (formula "92"))) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "96")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "36"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "36") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "36") (term "1,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "63") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "62") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "62") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "62") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "62") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "41") (term "0,0")) + (rule "commute_or_2" (formula "70") (term "0,0")) + (rule "commute_or_2" (formula "9") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "62") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "62") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "62") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "62") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "62") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0")) + (rule "commute_and" (formula "62") (term "1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "75")) (ifInst "" (formula "11"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0")) + (rule "nnf_imp2or" (formula "40") (term "0,1,0")) + (rule "nnf_notAnd" (formula "64") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "62") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "62")) + (rule "expand_inInt" (formula "62") (term "1,0,0")) + (rule "expand_inInt" (formula "62") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "62") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,2,1")) + (rule "eqSymm" (formula "46")) + (rule "applyEqRigid" (formula "46") (term "1") (ifseqformula "47")) + (rule "inEqSimp_subsumption6" (formula "46") (term "0,0") (ifseqformula "43")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "46") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "leq_literals" (formula "46") (term "0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "polyDiv_pullOut" (formula "46") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "46") (term "0,0,0")) + (rule "add_literals" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "0,0,0")) + (rule "div_literals" (formula "46") (term "0,0")) + (rule "add_zero_left" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "nnf_imp2or" (formula "63") (term "0")) + (rule "nnf_imp2or" (formula "53") (term "0")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "76") (term "0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "inEqSimp_leqRight" (formula "76")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "9") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "38")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "49") (term "1")) + (rule "replace_known_left" (formula "49") (term "1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "28")) (ifInst "" (formula "75")) (ifInst "" (formula "18")) (ifInst "" (formula "72")) (ifInst "" (formula "28")) (ifInst "" (formula "45"))) + (rule "true_left" (formula "49")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "translateJavaSubInt" (formula "45") (term "1")) + (rule "polySimp_elimSub" (formula "45") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "51")) (ifInst "" (formula "78")) (ifInst "" (formula "51")) (ifInst "" (formula "59")) (ifInst "" (formula "26"))) + (rule "wellFormedAnon" (formula "54") (term "1,0")) + (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "18"))) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "54")) + (rule "applyEq" (formula "54") (term "0,0,1") (ifseqformula "55")) + (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "55")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "55")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "54")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "0")) + (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "eqSymm" (formula "57")) + (rule "applyEqReverse" (formula "56") (term "1") (ifseqformula "57")) + (rule "hideAuxiliaryEq" (formula "57")) + (rule "elementOfArrayRangeConcrete" (formula "56") (term "0,0,0")) + (rule "replace_known_right" (formula "56") (term "0,0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "56")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "translateJavaMod" (formula "48") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "newSym_eq" (formula "48") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "48") (term "0,1,1")) + (rule "times_zero_1" (formula "48") (term "1,1,1")) + (rule "add_zero_left" (formula "48") (term "1,1")) + (rule "add_zero_right" (formula "48") (term "1")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "48")) + (rule "polySimp_homoEq" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1")) + (rule "applyEq" (formula "41") (term "4,0") (ifseqformula "49")) + (rule "applyEq" (formula "42") (term "4,0") (ifseqformula "49")) + (rule "applyEq" (formula "48") (term "1,0,0") (ifseqformula "49")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "1,1,0")) + (rule "times_zero_1" (formula "46") (term "1,0")) + (rule "add_zero_right" (formula "46") (term "0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "49")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "49")) + (rule "applyEq" (formula "13") (term "4,1,2,0") (ifseqformula "49")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "49")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "45") (term "0,1,1") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "45") (term "1")) + (rule "applyEq" (formula "54") (term "4,1") (ifseqformula "49")) + (rule "applyEq" (formula "15") (term "4,1,1,0") (ifseqformula "49")) + (rule "applyEq" (formula "16") (term "4,1,0,1,1,0") (ifseqformula "49")) + (rule "inEqSimp_invertInEq0" (formula "46")) + (rule "times_zero_2" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "elimGcdGeq_antec" (formula "46") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption6" (formula "23") (ifseqformula "47")) + (rule "greater_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "47") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "46")) + (rule "times_zero_1" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "elimGcdLeq_antec" (formula "32") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "32") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "eqSymm" (formula "56")) + (rule "translateJavaMulInt" (formula "53") (term "1,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,2,0")) + (rule "mul_literals" (formula "56") (term "1,0,2,0")) + (rule "eqSymm" (formula "56")) + (rule "polySimp_elimSub" (formula "56") (term "0,2,0")) + (rule "mul_literals" (formula "56") (term "1,0,2,0")) + (rule "eqSymm" (formula "56")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0")) + (rule "eqSymm" (formula "56")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0")) + (rule "eqSymm" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "51")) + (rule "leq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "30")) + (rule "mul_literals" (formula "50") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "50")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "64") (term "0")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "63")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "5")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "58")) + (rule "notLeft" (formula "57")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "61") (term "0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "3"))) + (rule "true_left" (formula "61")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "12") (term "2,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "26") (inst "b=b")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "50"))) + (rule "expand_inInt" (formula "26") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "translateJavaMulInt" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "eqSymm" (formula "67")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "52")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "64") (inst "b=b")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "27")) (ifInst "" (formula "52"))) + (rule "expand_inInt" (formula "64") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "64") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "64") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "translateJavaMulInt" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "eqSymm" (formula "67")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "51")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0")) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "44") (term "0")) + (rule "Contract_axiom_for_isClassifiedWith_in_Buffers" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "0,1,0,0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "86")) (ifInst "" (formula "17")) (ifInst "" (formula "24")) (ifInst "" (formula "88"))) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "15") (term "0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b_0=b_0") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,0")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "41") (term "1")) + (rule "translateJavaCastInt" (formula "41") (term "0")) + (rule "polySimp_elimSub" (formula "41") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "1")) + (rule "add_literals" (formula "41") (term "1,1,1")) + (rule "times_zero_1" (formula "41") (term "1,1")) + (rule "add_zero_right" (formula "41") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "39")) + (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "42") (term "0")) + (rule "translateJavaSubInt" (formula "42") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "42") (term "1,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "91")) (ifInst "" (formula "17")) (ifInst "" (formula "88"))) + (rule "polySimp_elimSub" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "43") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "43") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,1,4,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "1,3,0,1,0")) + (rule "translateJavaDivInt" (formula "43") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0")) + (rule "translateJavaAddInt" (formula "43") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "43") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "51")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i")) + (rule "ifthenelse_split" (formula "10") (term "0")) + (branch "j_0 >= 1 TRUE" + (rule "applyEqReverse" (formula "12") (term "1,1,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteGeq" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "63") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "63")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "63")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "14") (term "1,0")) + (rule "nnf_imp2or" (formula "67") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "expand_inInt" (formula "61") (term "1,0,0")) + (rule "expand_inInt" (formula "60") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "68") (term "1,0")) + (rule "translateJavaSubInt" (formula "66") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "62") (term "1")) + (rule "translateJavaSubInt" (formula "68") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "66") (term "3,0")) + (rule "mul_literals" (formula "66") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "3,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "62")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "62")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "62")) + (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62")) + (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62")) + (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62")) + (rule "applyEq" (formula "68") (term "1,0,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "57")) + (rule "inEqSimp_commuteGeq" (formula "65")) + (rule "applyEq" (formula "78") (term "0") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62")) + (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "57")) + (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "67") (term "0,1,0,0,1,1,0") (ifseqformula "62")) + (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0")) + (rule "mul_literals" (formula "67") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1")) + (rule "mod_axiom" (formula "62") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "63") (term "0")) + (rule "mod_axiom" (formula "63") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1")) + (rule "mod_axiom" (formula "64") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "56") (term "2,0")) + (rule "mod_axiom" (formula "56") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "3,0")) + (rule "mod_axiom" (formula "58") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "66") (term "1,3,0")) + (rule "mod_axiom" (formula "66") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "65") (term "0")) + (rule "mod_axiom" (formula "65") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,0")) + (rule "mod_axiom" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,1")) + (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1,0,2,0")) + (rule "mod_axiom" (formula "59") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "67") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "67") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "62") (term "0,1")) + (rule "eqSymm" (formula "62")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "63") (term "0,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "64") (term "0,1")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1")) + (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "64") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "64")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,0")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "62")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "shiftLeftDef" (formula "56") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,2,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,2,0")) + (rule "applyEq" (formula "56") (term "2,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "58") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,3,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,3,0")) + (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "66") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "65") (term "0,0")) + (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "67") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "67") (term "1,1,1,0,0,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "67") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "67") (term "1,1,1,1,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "62")) + (rule "shiftLeftDef" (formula "59") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "nnf_notAnd" (formula "76") (term "0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "expand_moduloInteger" (formula "62") (term "0")) + (rule "replace_int_MIN" (formula "62") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "62") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "62") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "mul_literals" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "47") (term "2,0")) + (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "46") (term "0,1,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,1,1,0")) + (rule "add_zero_right" (formula "46") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "14") (term "0,0,2,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "44") (term "0,0")) + (rule "replace_known_right" (formula "44") (term "0,0,0,0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "82"))) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "42") (term "1,0")) + (rule "replace_known_right" (formula "42") (term "0,0,1,0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "82"))) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "45") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,0,1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "15") (term "1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "102")) (ifInst "" (formula "18")) (ifInst "" (formula "99"))) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "12") (term "0,2,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "103")) (ifInst "" (formula "20")) (ifInst "" (formula "100")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "12")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "0,2,0") (inst "i=i")) + (rule "polySimp_addComm0" (formula "12") (term "2,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "41") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "41") (term "1,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "73") (term "0,0,2,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "70") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "70") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "70") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "70") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "70") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "70") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "70") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "70") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "70") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "69") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "69") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "69") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "69") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "69") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "69") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "69") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "69") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "77") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "0,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "1,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "77") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "77") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "77") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0")) + (rule "commute_and" (formula "70") (term "1,0,0")) + (rule "commute_and" (formula "69") (term "1,0,0")) + (rule "nnf_imp2or" (formula "47") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,1,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,1,0")) + (rule "add_zero_left" (formula "47") (term "0,0,1,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "59") (term "0")) + (rule "replace_known_right" (formula "59") (term "0,0,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "18")) (ifInst "" (formula "60"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "60") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "60")) + (rule "expand_inInt" (formula "60") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "60") (term "1,0,0")) + (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "60") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "60") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "69") (term "0")) + (rule "replace_known_left" (formula "69") (term "0,1") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "85")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "70") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "1,0,0")) + (rule "expand_inInt" (formula "70") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "46") (term "0,1,0")) + (rule "jdiv_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,2,1")) + (rule "eqSymm" (formula "52")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "53")) + (rule "inEqSimp_subsumption6" (formula "52") (term "0,0") (ifseqformula "49")) + (rule "mul_literals" (formula "52") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "52") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "leq_literals" (formula "52") (term "0,0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polyDiv_pullOut" (formula "52") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_homoEq" (formula "52")) + (rule "polySimp_pullOutFactor0" (formula "52") (term "0,0,0,1,0")) + (rule "add_literals" (formula "52") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "52") (term "0,0,0,1,0")) + (rule "div_literals" (formula "52") (term "0,0,1,0")) + (rule "add_zero_left" (formula "52") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,0")) + (rule "times_zero_1" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "Contract_axiom_for_isClassifiedBlock_in_Classifier" (formula "44") (term "0,1,0")) + (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "105")) (ifInst "" (formula "19")) (ifInst "" (formula "102")) (ifInst "" (formula "15"))) + (rule "true_left" (formula "44")) + (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "44") (term "0,1,0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + (branch "j_0 >= 1 FALSE" + (rule "applyEqReverse" (formula "11") (term "1,1,1") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_geqRight" (formula "67")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEqRigid" (formula "61") (term "0,2,0") (ifseqformula "8")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "9")) + (rule "true_left" (formula "9")) + (rule "applyEq" (formula "9") (term "1,0") (ifseqformula "8")) + (rule "bsum_lower_equals_upper" (formula "9") (term "0")) + (rule "eqSymm" (formula "9")) + (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "8")) + (rule "add_zero_right" (formula "11") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "63") (term "0,2,0") (ifseqformula "8")) + (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "8")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "8")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEqRigid" (formula "10") (term "1,1,1,0,0,0,0") (ifseqformula "8")) + (rule "add_zero_right" (formula "10") (term "1,1,0,0,0,0")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "8")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEq" (formula "12") (term "1,0,1,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8")) + (rule "add_zero_right" (formula "12") (term "1,0,0,1,0")) + (rule "applyEq" (formula "60") (term "5,1") (ifseqformula "8")) + (rule "applyEq" (formula "1") (term "1,0,2,0") (ifseqformula "8")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "50")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "50")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_or_subsumption3" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0")) + (rule "add_zero_right" (formula "10") (term "1,1,0,0")) + (rule "qeq_literals" (formula "10") (term "1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "86")) (ifInst "" (formula "12")) (ifInst "" (formula "83"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "10") (term "1,0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "55") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "56") (term "1,0,0")) + (rule "expand_inInt" (formula "55") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "63") (term "1,0")) + (rule "translateJavaSubInt" (formula "61") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "57") (term "1")) + (rule "translateJavaSubInt" (formula "63") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "3,0")) + (rule "mul_literals" (formula "61") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "63") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "3,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57")) + (rule "eqSymm" (formula "54")) + (rule "applyEq" (formula "51") (term "2,0") (ifseqformula "57")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "57")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "60") (term "1") (ifseqformula "57")) + (rule "applyEq" (formula "59") (term "1") (ifseqformula "57")) + (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "52")) + (rule "inEqSimp_commuteGeq" (formula "60")) + (rule "applyEq" (formula "53") (term "3,0") (ifseqformula "57")) + (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "52")) + (rule "applyEq" (formula "63") (term "1,0,1,0") (ifseqformula "52")) + (rule "applyEq" (formula "61") (term "1,3,0") (ifseqformula "57")) + (rule "applyEq" (formula "62") (term "0,1,0,0,1,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "62") (term "0,1,0,0,1,0,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57")) + (rule "eqSymm" (formula "54")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "57") (term "1")) + (rule "mod_axiom" (formula "57") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "2,0")) + (rule "mod_axiom" (formula "51") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "0")) + (rule "mod_axiom" (formula "58") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "1")) + (rule "mod_axiom" (formula "59") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0,1,0")) + (rule "mod_axiom" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "60") (term "0")) + (rule "mod_axiom" (formula "60") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "3,0")) + (rule "mod_axiom" (formula "53") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "61") (term "1,3,0")) + (rule "mod_axiom" (formula "61") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1,0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "mod_axiom" (formula "54") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "57") (term "0,1")) + (rule "eqSymm" (formula "57")) + (rule "polySimp_elimNeg" (formula "57") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "57") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "57") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "57") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "51") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,2,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,2,0")) + (rule "applyEq" (formula "51") (term "2,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "58") (term "0,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "59") (term "0,1")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "59")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "57")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "shiftLeftDef" (formula "51") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "60") (term "0,0")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "53") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,3,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,3,0")) + (rule "applyEq" (formula "53") (term "3,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "61") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "61") (term "1,3,0") (ifseqformula "57")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1,0,2,0")) + (rule "mod_axiom" (formula "54") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "shiftLeftDef" (formula "62") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "62") (term "1,1,1,1,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "62") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "62") (term "1,1,1,0,0,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "54") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "54")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57")) + (rule "shiftLeftDef" (formula "54") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "54")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "54") (term "1,0,2,0") (ifseqformula "57")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "60")) + (rule "mul_literals" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "mul_literals" (formula "58") (term "1")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "nnf_notAnd" (formula "71") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "expand_moduloInteger" (formula "57") (term "0")) + (rule "replace_int_MIN" (formula "57") (term "0,0")) + (rule "replace_int_RANGE" (formula "57") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "57") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37") (term "0,1")) + (rule "replace_known_right" (formula "37") (term "0,0,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "77"))) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39") (term "0,0")) + (rule "replace_known_right" (formula "39") (term "0,1,0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "76"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "67") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "67")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "67")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "10") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "42") (term "2,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "40") (term "0,1,0")) + (rule "replace_known_left" (formula "40") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "75")) (ifInst "" (formula "12")) (ifInst "" (formula "94")) (ifInst "" (formula "9"))) + (rule "true_left" (formula "40")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "35") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "35") (term "1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "0,0,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "77"))) + (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "41") (term "0,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,1,1,0")) + (rule "add_zero_right" (formula "41") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "40") (term "1,4,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "64") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "64") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "64") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "64") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "64") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "64") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "64") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "64") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "63") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "63") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "63") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "63") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "10") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "63") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "63") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "63") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "63") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "40") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "8") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "nnf_notAnd" (formula "70") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "70") (term "1,1,0,0")) + (rule "mul_literals" (formula "70") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "70") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,1,0,0")) + (rule "mul_literals" (formula "70") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "70") (term "0,1,0,0")) + (rule "mul_literals" (formula "70") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70") (term "0,1,0,0")) + (rule "mul_literals" (formula "70") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "70") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "70") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "70") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "70") (term "0,0,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "0,0,0,0")) + (rule "mul_literals" (formula "70") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "commute_and" (formula "63") (term "1,0,0")) + (rule "commute_and" (formula "62") (term "1,0,0")) + (rule "nnf_imp2or" (formula "40") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,1,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "77")) (ifInst "" (formula "11"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "62") (term "0")) + (rule "replace_known_right" (formula "62") (term "0,0,0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "11")) (ifInst "" (formula "63"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "63") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "63") (term "1,0,0")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,2,1")) + (rule "eqSymm" (formula "45")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "46")) + (rule "inEqSimp_subsumption6" (formula "45") (term "0,0") (ifseqformula "42")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "45") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "leq_literals" (formula "45") (term "0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polyDiv_pullOut" (formula "45") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,0,1,0")) + (rule "add_literals" (formula "45") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "45") (term "0,0,0,1,0")) + (rule "div_literals" (formula "45") (term "0,0,1,0")) + (rule "add_zero_left" (formula "45") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,0")) + (rule "times_zero_1" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "37") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isClassifiedBlock_in_Classifier" (formula "37") (term "0,1,0")) + (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "98")) (ifInst "" (formula "12")) (ifInst "" (formula "95"))) + (rule "Definition_axiom_for_isClassifiedBlock_in_de_wiesler_Classifier" (formula "38") (term "0,1,0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "33")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "24") (term "1,1")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "49")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "arrayLengthNotNegative" (formula "48") (term "0")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "76")) + (rule "translateJavaAddInt" (formula "76") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "76")) + (branch "Normal Execution (_bucket_starts != null)" + (builtin "One Step Simplification" (formula "76")) + (rule "compound_assignment_op_plus" (formula "76") (term "1")) + (rule "compound_int_cast_expression" (formula "76") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "76") (term "1")) + (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_9")) + (rule "remove_parentheses_right" (formula "76") (term "1")) + (rule "compound_addition_2" (formula "76") (term "1") (inst "#v0=x_10") (inst "#v1=x_11")) + (rule "variableDeclarationAssign" (formula "76") (term "1")) + (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_10")) + (rule "assignment" (formula "76") (term "1")) + (builtin "One Step Simplification" (formula "76")) + (rule "variableDeclarationAssign" (formula "76") (term "1")) + (rule "variableDeclaration" (formula "76") (term "1") (newnames "x_11")) + (rule "remove_parentheses_right" (formula "76") (term "1")) + (rule "assignment" (formula "76") (term "1")) + (builtin "One Step Simplification" (formula "76")) + (rule "assignmentAdditionInt" (formula "76") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "76")) + (rule "expand_inInt" (formula "76") (userinteraction)) + (rule "andRight" (formula "76") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "76") (term "1")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_leqRight" (formula "76")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "9") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "34")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "13") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "13") (term "2,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "49") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "49")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "18")) (ifInst "" (formula "26")) (ifInst "" (formula "75")) (ifInst "" (formula "29"))) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0")) + (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,1")) + (rule "applyEq" (formula "52") (term "0,1,1,1") (ifseqformula "53")) + (rule "applyEq" (formula "52") (term "0,0,1,1") (ifseqformula "53")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0,0")) + (rule "replace_known_left" (formula "52") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "52")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "5")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "44") (term "1")) + (rule "polySimp_elimSub" (formula "44") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "50") (term "1,1")) + (rule "eqSymm" (formula "53")) + (rule "eqSymm" (formula "50")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption1" (formula "11") (term "0,0") (ifseqformula "48")) + (rule "leq_literals" (formula "11") (term "0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "30")) + (rule "mul_literals" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "mul_literals" (formula "47") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "47")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "86")) (ifInst "" (formula "63")) (ifInst "" (formula "25"))) + (rule "wellFormedAnon" (formula "57") (term "1,0")) + (rule "replace_known_left" (formula "57") (term "1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17"))) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0")) + (rule "replace_known_left" (formula "57") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,1")) + (rule "applyEq" (formula "57") (term "0,0,1,1") (ifseqformula "58")) + (rule "applyEq" (formula "57") (term "0,1,1,1") (ifseqformula "58")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "0,0,0")) + (rule "replace_known_left" (formula "57") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "57")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "63") (inst "b=b")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "48"))) + (rule "expand_inInt" (formula "63") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "translateJavaMulInt" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "eqSymm" (formula "68")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "47")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "27") (inst "b=b")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "64")) (ifInst "" (formula "48"))) + (rule "expand_inInt" (formula "27") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "translateJavaMulInt" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "eqSymm" (formula "68")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "48")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "translateJavaMod" (formula "45") (term "0")) + (rule "jmod_axiom" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "newSym_eq" (formula "45") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "45") (term "1,1,1")) + (rule "times_zero_1" (formula "45") (term "0,1,1")) + (rule "add_zero_right" (formula "45") (term "1,1")) + (rule "add_zero_right" (formula "45") (term "1")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "45")) + (rule "polySimp_homoEq" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "46")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "45") (term "1,0,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "46")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq1" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0")) + (rule "add_zero_right" (formula "43") (term "0")) + (rule "applyEq" (formula "38") (term "4,0") (ifseqformula "46")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "46")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "46")) + (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "1")) + (rule "applyEq" (formula "12") (term "4,0,2,0") (ifseqformula "46")) + (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "46")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "43") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption6" (formula "22") (ifseqformula "44")) + (rule "times_zero_1" (formula "22") (term "1,1,0")) + (rule "greater_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "44")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "43")) + (rule "times_zero_1" (formula "29") (term "0,0")) + (rule "add_zero_left" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0")) + (rule "neg_literal" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "64") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "60") (term "0")) + (rule "pullOutSelect" (formula "60") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "60")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "72")) (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "61")) + (rule "applyEqReverse" (formula "60") (term "1") (ifseqformula "61")) + (rule "hideAuxiliaryEq" (formula "61")) + (rule "elementOfArrayRangeConcrete" (formula "60") (term "0,0")) + (rule "replace_known_right" (formula "60") (term "0,0,0,0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "64"))) + (rule "true_left" (formula "60")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "66") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "58") (term "0,0,2,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "62") (term "0")) + (rule "replace_known_right" (formula "62") (term "0,1,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "71"))) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "63")) + (rule "replace_known_left" (formula "59") (term "0,1,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "64"))) + (rule "true_left" (formula "59")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "62")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_subsumption0" (formula "59") (ifseqformula "62")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "commute_or" (formula "15") (term "0,0,0")) + (rule "Contract_axiom_for_count_in_Buffers" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "1,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "60")) (ifInst "" (formula "17")) (ifInst "" (formula "89")) (ifInst "" (formula "60"))) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "43") (term "0")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "40") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "40") (term "0,4,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "40") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "56") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "64") (term "1,0")) + (rule "translateJavaSubInt" (formula "62") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "58") (term "1")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "3,0")) + (rule "mul_literals" (formula "62") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "64") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "64") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "3,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "60") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "61") (term "0,0") (ifseqformula "53")) + (rule "inEqSimp_commuteGeq" (formula "61")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "53")) + (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58")) + (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58")) + (rule "applyEq" (formula "77") (term "0") (ifseqformula "53")) + (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "64") (term "1,0,1,0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "eqSymm" (formula "55")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "64") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "eqSymm" (formula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "1")) + (rule "mod_axiom" (formula "58") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "60") (term "1")) + (rule "mod_axiom" (formula "60") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "54") (term "3,0")) + (rule "mod_axiom" (formula "54") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "0")) + (rule "mod_axiom" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "2,0")) + (rule "mod_axiom" (formula "52") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,3,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "0,1,0")) + (rule "mod_axiom" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "61") (term "0")) + (rule "mod_axiom" (formula "61") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0")) + (rule "eqSymm" (formula "55")) + (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "64") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "58") (term "0,1")) + (rule "eqSymm" (formula "58")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "60") (term "0,1")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "60")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "58")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "shiftLeftDef" (formula "54") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,3,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,3,0")) + (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "59") (term "0,0")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "52") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,2,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,2,0")) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "62") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "52") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "61") (term "0,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "58")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "55")) + (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "63") (term "1,1,1,1,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "64") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "64") (term "1,1,1,0,0,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "61")) + (rule "mul_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_notAnd" (formula "75") (term "0,0")) + (rule "expand_moduloInteger" (formula "58") (term "0")) + (rule "replace_int_RANGE" (formula "58") (term "1,1,0")) + (rule "replace_int_MIN" (formula "58") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "58") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "14") (term "1,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "15") (term "0,0,1,1,0")) + (rule "replace_known_right" (formula "15") (term "0,1,0,0,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "98"))) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "40") (term "0")) + (rule "translateJavaSubInt" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "40") (term "1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "102")) (ifInst "" (formula "18")) (ifInst "" (formula "99"))) + (rule "polySimp_elimSub" (formula "40") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "71")) + (rule "andLeft" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "102")) (ifInst "" (formula "20")) (ifInst "" (formula "99")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "41") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "41") (term "1,4,0,1,0")) + (rule "translateJavaAddInt" (formula "41") (term "3,0,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "41") (term "0,1,4,0,1,0")) + (rule "translateJavaMulInt" (formula "41") (term "1,3,0,1,0")) + (rule "translateJavaDivInt" (formula "41") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "41") (term "4,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "49")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "43") (term "0,1,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,1,1,0")) + (rule "add_zero_right" (formula "43") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,1,1,0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "12") (term "0,2,0")) + (rule "replace_known_left" (formula "12") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "102")) (ifInst "" (formula "20")) (ifInst "" (formula "99")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "12")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "0,2,0") (inst "i=i")) + (rule "polySimp_addComm0" (formula "12") (term "2,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "45") (term "2,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "b=b") (inst "b_0=b_0")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,0")) + (rule "andLeft" (formula "39")) + (rule "translateJavaSubInt" (formula "40") (term "1")) + (rule "translateJavaCastInt" (formula "40") (term "0")) + (rule "polySimp_elimSub" (formula "40") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "1")) + (rule "add_literals" (formula "40") (term "1,1,1")) + (rule "times_zero_1" (formula "40") (term "1,1")) + (rule "add_zero_right" (formula "40") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "45") (inst "b=b")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "76")) (ifInst "" (formula "54"))) + (rule "expand_inInt" (formula "45") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "translateJavaMulInt" (formula "45") (term "1")) + (rule "mul_literals" (formula "45") (term "1")) + (rule "eqSymm" (formula "80")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "54")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "67") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "67") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,0")) + (rule "commute_and" (formula "11") (term "1")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "67") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "77") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "77") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "77") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "0,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "1,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,1,1,0,0")) + (rule "commute_and" (formula "68") (term "1,0,0")) + (rule "commute_and" (formula "67") (term "1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "nnf_imp2or" (formula "44") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,1,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,1,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "66") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "66") (term "1,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "jdiv_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,2,1")) + (rule "eqSymm" (formula "50")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "51")) + (rule "inEqSimp_subsumption6" (formula "50") (term "0,0") (ifseqformula "47")) + (rule "mul_literals" (formula "50") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "50") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "leq_literals" (formula "50") (term "0,0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polyDiv_pullOut" (formula "50") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "50") (term "0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polySimp_pullOutFactor0" (formula "50") (term "0,0,0")) + (rule "add_literals" (formula "50") (term "1,0,0,0")) + (rule "times_zero_1" (formula "50") (term "0,0,0")) + (rule "div_literals" (formula "50") (term "0,0")) + (rule "add_zero_left" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "ifthenelse_split" (formula "10") (term "0")) + (branch "j_0 >= 1 TRUE" + (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "43") (term "1,4,0,1,0")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "arrayLengthIsAShort" (formula "29") (term "1,1")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthNotNegative" (formula "29") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "36")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthNotNegative" (formula "75") (term "0")) + (rule "applyEq" (formula "75") (term "0") (ifseqformula "76")) + (rule "qeq_literals" (formula "75")) + (rule "true_left" (formula "75")) + (rule "arrayLengthIsAShort" (formula "75") (term "0")) + (rule "expand_inShort" (formula "75")) + (rule "replace_short_MAX" (formula "75") (term "1,0")) + (rule "replace_short_MIN" (formula "75") (term "0,1")) + (rule "andLeft" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "76")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "77")) + (rule "qeq_literals" (formula "76")) + (rule "true_left" (formula "76")) + (rule "applyEq" (formula "75") (term "0") (ifseqformula "76")) + (rule "leq_literals" (formula "75")) + (rule "closeFalse" (formula "75")) + ) + (branch "j_0 >= 1 FALSE" + (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_geqRight" (formula "77")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "1,1,1,0,0,0") (ifseqformula "9")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0")) + (rule "applyEq" (formula "8") (term "1,1") (ifseqformula "9")) + (rule "add_zero_right" (formula "8") (term "1")) + (rule "applyEqRigid" (formula "7") (term "1,1") (ifseqformula "9")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "9")) + (rule "add_zero_right" (formula "13") (term "1,1,0,0")) + (rule "applyEq" (formula "15") (term "1,1,0,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "11") (term "1,0") (ifseqformula "9")) + (rule "bsum_lower_equals_upper" (formula "11") (term "0")) + (rule "eqSymm" (formula "11")) + (rule "applyEqRigid" (formula "73") (term "0,2,0") (ifseqformula "9")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "9")) + (rule "true_left" (formula "9")) + (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "9")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "applyEqRigid" (formula "13") (term "1,1,1,1,0") (ifseqformula "9")) + (rule "applyEq" (formula "1") (term "1,0,2,0") (ifseqformula "8")) + (rule "applyEq" (formula "68") (term "0,2,1") (ifseqformula "8")) + (rule "applyEqRigid" (formula "68") (term "1,0,2,0") (ifseqformula "8")) + (rule "applyEq" (formula "13") (term "1,1,0,1,1,1,0") (ifseqformula "8")) + (rule "add_literals" (formula "13") (term "1,0,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "50")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "48")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "8") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "37") (term "1,4,0,1,0")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "arrayLengthNotNegative" (formula "69") (term "0")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "70")) + (rule "qeq_literals" (formula "69")) + (rule "true_left" (formula "69")) + (rule "arrayLengthIsAShort" (formula "23") (term "1,1")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "47")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "23") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "47")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "30")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthIsAShort" (formula "70") (term "0")) + (rule "expand_inShort" (formula "70")) + (rule "replace_short_MIN" (formula "70") (term "0,1")) + (rule "replace_short_MAX" (formula "70") (term "1,0")) + (rule "andLeft" (formula "70")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "72")) + (rule "qeq_literals" (formula "71")) + (rule "true_left" (formula "71")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "71")) + (rule "leq_literals" (formula "70")) + (rule "true_left" (formula "70")) + (rule "arrayLengthIsAShort" (formula "69") (term "0")) + (rule "expand_inShort" (formula "69")) + (rule "replace_short_MIN" (formula "69") (term "0,1")) + (rule "replace_short_MAX" (formula "69") (term "1,0")) + (rule "andLeft" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "71")) + (rule "leq_literals" (formula "69")) + (rule "closeFalse" (formula "69")) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "76") (term "0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "1")) + (rule "polySimp_addComm0" (formula "76") (term "0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_leqRight" (formula "76")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "9") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "42")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "42")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "1")) + (rule "polySimp_elimOne" (formula "41") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_and_subsumption3" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "5")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "48") (term "1")) + (rule "replace_known_right" (formula "48") (term "0,1,0,0,0,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "73")) (ifInst "" (formula "44"))) + (rule "true_left" (formula "48")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "53") (inst "b=b")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "translateJavaMulInt" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "1")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "12") (term "0,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "30")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "54")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "44")) (ifInst "" (formula "78")) (ifInst "" (formula "44")) (ifInst "" (formula "25"))) + (rule "wellFormedAnon" (formula "47") (term "1,0")) + (rule "replace_known_left" (formula "47") (term "1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "17"))) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0")) + (rule "replace_known_left" (formula "47") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1")) + (rule "applyEq" (formula "47") (term "0,0,0,1") (ifseqformula "48")) + (rule "applyEq" (formula "47") (term "0,1,0,1") (ifseqformula "48")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0")) + (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "47")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "48")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "12") (term "1,2,0") (inst "i=i")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "50") (term "0")) + (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "eqSymm" (formula "51")) + (rule "applyEqReverse" (formula "50") (term "1") (ifseqformula "51")) + (rule "hideAuxiliaryEq" (formula "51")) + (rule "elementOfArrayRangeConcrete" (formula "50") (term "0,0,0")) + (rule "replace_known_right" (formula "50") (term "0,0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "50")) + (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "38") (term "0")) + (rule "translateJavaSubInt" (formula "38") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "eqSymm" (formula "38") (term "0,1,1,0,0,0,0")) + (rule "replace_known_right" (formula "38") (term "0,1,1,1,1,1,1,1,0,0,0,0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "37")) (ifInst "" (formula "80")) (ifInst "" (formula "78")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "77")) (ifInst "" (formula "43"))) + (rule "polySimp_elimSub" (formula "38") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,0,0,1,1,0")) + (rule "replace_known_left" (formula "38") (term "0,1,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_commuteGeq" (formula "38") (term "0,1,0")) + (rule "applyEq" (formula "38") (term "0,0,1,0") (ifseqformula "37")) + (rule "inEqSimp_subsumption0" (formula "38") (term "0,1,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "38") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "translateJavaMod" (formula "42") (term "0")) + (rule "jmod_axiom" (formula "42") (term "0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "newSym_eq" (formula "42") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "42") (term "0,1,1")) + (rule "times_zero_1" (formula "42") (term "1,1,1")) + (rule "add_literals" (formula "42") (term "1,1")) + (rule "add_zero_right" (formula "42") (term "1")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "42")) + (rule "polySimp_homoEq" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1")) + (rule "polySimp_rightDist" (formula "43") (term "1")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1")) + (rule "polySimp_elimOne" (formula "43") (term "1,1")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "12") (term "1,1,2,0") (ifseqformula "43")) + (rule "applyEq" (formula "1") (term "4,0") (ifseqformula "43")) + (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "43")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0")) + (rule "add_zero_right" (formula "40") (term "0")) + (rule "applyEq" (formula "42") (term "1,0,0") (ifseqformula "43")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0")) + (rule "applyEq" (formula "48") (term "4,1") (ifseqformula "43")) + (rule "applyEq" (formula "14") (term "4,1,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "15") (term "4,1,0,1,1,0") (ifseqformula "43")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "elimGcdGeq_antec" (formula "40") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "40")) + (rule "mul_literals" (formula "21") (term "1,1,0")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "40")) + (rule "times_zero_1" (formula "29") (term "0,0")) + (rule "add_zero_left" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "neg_literal" (formula "29") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "Contract_axiom_for_bufferLen_in_Buffers" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "17")) (ifInst "" (formula "24")) (ifInst "" (formula "82")) (ifInst "" (formula "26"))) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0")) + (rule "replace_known_left" (formula "54") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "54")) + (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55")) + (rule "replace_known_left" (formula "54") (term "0,1,1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "54")) + (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "55")) + (rule "replace_known_left" (formula "54") (term "1,1") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0,0")) + (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "12") (term "0,2,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "47")) + (rule "replace_known_right" (formula "52") (term "0,0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "52")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "52")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "2")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "translateJavaSubInt" (formula "50") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "50") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "47") (term "1,1")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimSub" (formula "50") (term "0,2,1")) + (rule "mul_literals" (formula "50") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "50") (term "0,2,0")) + (rule "mul_literals" (formula "50") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "46") (term "1") (ifseqformula "37")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "45")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "28")) + (rule "mul_literals" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45")) + (rule "mul_literals" (formula "45") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "45")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "26") (inst "b=b")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "61")) (ifInst "" (formula "62"))) + (rule "expand_inInt" (formula "26") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "translateJavaMulInt" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "eqSymm" (formula "66")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "47")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "59") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0")) + (rule "commute_or" (formula "15") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "commute_and" (formula "11") (term "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "57") (inst "b=b")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60")) (ifInst "" (formula "61"))) + (rule "expand_inInt" (formula "57") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "translateJavaMulInt" (formula "57") (term "1")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "eqSymm" (formula "65")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "46")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "12") (term "0,0,2,1,2,0")) + (rule "ifthenelse_split" (formula "10") (term "0")) + (branch "j_0 >= 1 TRUE" + (rule "applyEqReverse" (formula "12") (term "1,0,1") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteGeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "10")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "38") (term "1")) + (rule "replace_known_right" (formula "38") (term "0,1,1") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "67"))) + (rule "true_left" (formula "38")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "0") (inst "i=i")) + (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "38") (term "0")) + (rule "translateJavaSubInt" (formula "38") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "eqSymm" (formula "38") (term "0,1,1,0,0,0,0")) + (rule "replace_known_left" (formula "38") (term "1,0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "37")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85")) (ifInst "" (formula "18")) (ifInst "" (formula "83"))) + (rule "polySimp_elimSub" (formula "38") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,1,0")) + (rule "inEqSimp_commuteGeq" (formula "38") (term "0,1,0")) + (rule "applyEq" (formula "38") (term "0,0,1,0") (ifseqformula "37")) + (rule "inEqSimp_subsumption0" (formula "38") (term "0,1,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "38") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "translateJavaSubInt" (formula "43") (term "1")) + (rule "polySimp_elimSub" (formula "43") (term "1")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1")) + (rule "polySimp_rightDist" (formula "43") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "43") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "58") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "58")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "58")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "14") (term "1,1,0")) + (rule "replace_known_right" (formula "14") (term "0,1,0,0,0,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "88"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "15") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "15") (term "1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "nnf_notAnd" (formula "67") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "67") (term "0,1,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "67") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "0,1,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "67") (term "1,1,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "67") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,1,0,0")) + (rule "mul_literals" (formula "67") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "67") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "67") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "67") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "67") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "67") (term "0,0,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,0,0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "56") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "64") (term "1,0")) + (rule "translateJavaSubInt" (formula "62") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "58") (term "1")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "3,0")) + (rule "mul_literals" (formula "62") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "64") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "64") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "3,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "60") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "53")) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58")) + (rule "applyEq" (formula "64") (term "1,0,1,0") (ifseqformula "53")) + (rule "applyEq" (formula "61") (term "0,0") (ifseqformula "53")) + (rule "inEqSimp_commuteGeq" (formula "61")) + (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "77") (term "0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "eqSymm" (formula "55")) + (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58")) + (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58")) + (rule "applyEq" (formula "64") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "eqSymm" (formula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "1")) + (rule "mod_axiom" (formula "58") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "60") (term "1")) + (rule "mod_axiom" (formula "60") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "52") (term "2,0")) + (rule "mod_axiom" (formula "52") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "0,1,0")) + (rule "mod_axiom" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "0")) + (rule "mod_axiom" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "3,0")) + (rule "mod_axiom" (formula "54") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,3,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "61") (term "0")) + (rule "mod_axiom" (formula "61") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,1")) + (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,0,2,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "64") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "58") (term "0,1")) + (rule "eqSymm" (formula "58")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "60") (term "0,1")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,1")) + (rule "times_zero_1" (formula "60") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "60")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "58")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "shiftLeftDef" (formula "52") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,2,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,2,0")) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "52") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "52") (term "0,1,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "59") (term "0,0")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "54") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,3,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,3,0")) + (rule "applyEq" (formula "54") (term "3,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "62") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "62") (term "1,3,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "61") (term "0,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "64") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "64") (term "1,1,1,0,0,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "63") (term "1,1,1,1,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "63") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "63") (term "1,1,1,0,0,0") (ifseqformula "58")) + (rule "shiftLeftDef" (formula "55") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "55")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "55") (term "1,0,2,0") (ifseqformula "58")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "61")) + (rule "mul_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "nnf_notAnd" (formula "71") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "71") (term "0,1,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "0,1,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "71") (term "1,1,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "71") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,1,0,0")) + (rule "mul_literals" (formula "71") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "71") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "71") (term "0,0,0,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "71") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "71") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "71") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,0")) + (rule "expand_moduloInteger" (formula "58") (term "0")) + (rule "replace_int_HALFRANGE" (formula "58") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "58") (term "0,0")) + (rule "replace_int_RANGE" (formula "58") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "Contract_axiom_for_count_in_Buffers" (formula "44") (term "0")) + (rule "replace_known_right" (formula "44") (term "0,1,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "18")) (ifInst "" (formula "25"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "43") (term "0,0,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "69") (term "0,0,2,0")) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "41") (term "0")) + (rule "translateJavaSubInt" (formula "41") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "41") (term "1,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "102")) (ifInst "" (formula "19")) (ifInst "" (formula "99"))) + (rule "polySimp_elimSub" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "14") (term "0,1")) + (rule "replace_known_right" (formula "14") (term "0,1,0,1") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "83"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "16") (term "0,0,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "42") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "1,0,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "42") (term "4,0,1,0")) + (rule "translateJavaDivInt" (formula "42") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "42") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,1,4,0,1,0")) + (rule "translateJavaSubInt" (formula "42") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "42") (term "1,3,0,1,0")) + (rule "translateJavaMulInt" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39") (term "0,1")) + (rule "replace_known_right" (formula "39") (term "0,1,0,1") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "83"))) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "15") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "43") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "translateJavaMulInt" (formula "43") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "43") (term "0,4,0,1,0")) + (rule "translateJavaAddInt" (formula "43") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "46") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "46") (term "0")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b") (inst "b_0=b_0")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,0")) + (rule "andLeft" (formula "40")) + (rule "translateJavaCastInt" (formula "41") (term "0")) + (rule "translateJavaSubInt" (formula "41") (term "1")) + (rule "polySimp_elimSub" (formula "41") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "1")) + (rule "add_literals" (formula "41") (term "1,1,1")) + (rule "times_zero_1" (formula "41") (term "1,1")) + (rule "add_zero_right" (formula "41") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "68") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "68") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "67") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "67") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "78") (term "0,0")) + (rule "commute_or_2" (formula "27") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "67") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "67") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "67") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "67") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "67") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "45") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "commute_and" (formula "68") (term "1,0,0")) + (rule "commute_and" (formula "67") (term "1,0,0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "expand_inInt" (formula "57") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "66") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "66") (term "1,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "jdiv_axiom" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,2,1")) + (rule "eqSymm" (formula "51")) + (rule "applyEq" (formula "51") (term "1") (ifseqformula "52")) + (rule "inEqSimp_subsumption6" (formula "51") (term "0,0") (ifseqformula "48")) + (rule "times_zero_1" (formula "51") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "51") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "leq_literals" (formula "51") (term "0,0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polyDiv_pullOut" (formula "51") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "51") (term "0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0,0")) + (rule "add_literals" (formula "51") (term "1,0,0,0")) + (rule "times_zero_1" (formula "51") (term "0,0,0")) + (rule "div_literals" (formula "51") (term "0,0")) + (rule "add_zero_left" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "arrayLengthNotNegative" (formula "76") (term "0")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "77")) + (rule "qeq_literals" (formula "76")) + (rule "true_left" (formula "76")) + (rule "arrayLengthIsAShort" (formula "6") (term "0")) + (rule "expand_inShort" (formula "6")) + (rule "replace_short_MIN" (formula "6") (term "0,1")) + (rule "replace_short_MAX" (formula "6") (term "1,0")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "54")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "arrayLengthIsAShort" (formula "75") (term "0")) + (rule "expand_inShort" (formula "75")) + (rule "replace_short_MIN" (formula "75") (term "0,1")) + (rule "replace_short_MAX" (formula "75") (term "1,0")) + (rule "andLeft" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "76")) + (rule "applyEq" (formula "75") (term "0") (ifseqformula "77")) + (rule "leq_literals" (formula "75")) + (rule "closeFalse" (formula "75")) + ) + (branch "j_0 >= 1 FALSE" + (rule "applyEqReverse" (formula "11") (term "1,0,1") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_geqRight" (formula "62")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "1,1,1,0,0,0,0") (ifseqformula "9")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "9")) + (rule "qeq_literals" (formula "10")) + (rule "true_left" (formula "10")) + (rule "applyEqRigid" (formula "12") (term "1,1,1,0,0") (ifseqformula "9")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "2") (term "5,0") (ifseqformula "9")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "9")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEqRigid" (formula "56") (term "0,2,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "8") (term "1,1") (ifseqformula "9")) + (rule "add_zero_right" (formula "8") (term "1")) + (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "9")) + (rule "bsum_lower_equals_upper" (formula "10") (term "0")) + (rule "eqSymm" (formula "10")) + (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEqRigid" (formula "51") (term "0,2,0") (ifseqformula "8")) + (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "8")) + (rule "applyEq" (formula "12") (term "1,0,1,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "1") (term "0,1,1") (ifseqformula "9")) + (rule "times_zero_2" (formula "1") (term "1,1")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "applyEq" (formula "51") (term "5,1") (ifseqformula "8")) + (rule "applyEqRigid" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "8")) + (rule "add_literals" (formula "12") (term "1,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "43")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "41")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_or_subsumption3" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_or_tautInEq0" (formula "10") (term "0,0")) + (rule "add_zero_right" (formula "10") (term "1,1,0,0")) + (rule "qeq_literals" (formula "10") (term "1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "32") (term "1")) + (rule "replace_known_right" (formula "32") (term "0,1,1") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "61"))) + (rule "true_left" (formula "32")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "55") (term "0,0")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "32") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "translateJavaSubInt" (formula "36") (term "1")) + (rule "polySimp_elimSub" (formula "36") (term "1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "36") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "54") (term "0")) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "9") (term "1,1,0")) + (rule "replace_known_right" (formula "9") (term "0,1,0,0,0,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "81"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "10") (term "1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "10") (term "1,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "60") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "60") (term "1,1,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "60") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,0,0")) + (rule "mul_literals" (formula "60") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "60") (term "0,1,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "60") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,1,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "60") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "60") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "60") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "60") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "60") (term "0,0,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "60") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "nnf_notAnd" (formula "55") (term "0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_or_tautInEq0" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "8") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "expand_inInt" (formula "48") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "56") (term "1,0")) + (rule "translateJavaSubInt" (formula "54") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "50") (term "1")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "3,0")) + (rule "mul_literals" (formula "54") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "3,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45")) + (rule "inEqSimp_commuteGeq" (formula "53")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "45")) + (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "50") (term "1")) + (rule "mod_axiom" (formula "50") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1")) + (rule "mod_axiom" (formula "52") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0")) + (rule "mod_axiom" (formula "54") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0")) + (rule "mod_axiom" (formula "53") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "2,0")) + (rule "mod_axiom" (formula "44") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "46") (term "3,0")) + (rule "mod_axiom" (formula "46") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,1")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "50") (term "0,1")) + (rule "eqSymm" (formula "50")) + (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "52") (term "0,1")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "50")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "shiftLeftDef" (formula "54") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "53") (term "0,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "44") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "44") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "46") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53")) + (rule "mul_literals" (formula "51") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "mul_literals" (formula "51") (term "1")) + (rule "nnf_notAnd" (formula "63") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "63") (term "0,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "63") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "63") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "63") (term "1,1,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "63") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,1,0,0")) + (rule "mul_literals" (formula "63") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "63") (term "0,1,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,1,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0")) + (rule "expand_moduloInteger" (formula "50") (term "0")) + (rule "replace_int_RANGE" (formula "50") (term "1,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "33") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "33") (term "4,0,1,0")) + (rule "translateJavaSubInt" (formula "33") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "33") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "33") (term "0,1,4,0,1,0")) + (rule "translateJavaDivInt" (formula "33") (term "1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "33") (term "1,3,0,1,0")) + (rule "translateJavaMulInt" (formula "33") (term "1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "60") (term "1") (inst "i=i")) + (rule "eqSymm" (formula "60")) + (rule "Contract_axiom_for_allElementsCounted_in_Classifier" (formula "32") (term "0")) + (rule "replace_known_left" (formula "32") (term "1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "93")) (ifInst "" (formula "91")) (ifInst "" (formula "11")) (ifInst "" (formula "90"))) + (rule "inEqSimp_commuteGeq" (formula "32") (term "0,0")) + (rule "applyEq" (formula "32") (term "0,0,0") (ifseqformula "31")) + (rule "inEqSimp_subsumption0" (formula "32") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "8"))) + (rule "true_left" (formula "32")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "32") (term "0") (inst "b=b") (inst "b_0=b_0")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,0")) + (rule "andLeft" (formula "32")) + (rule "translateJavaSubInt" (formula "33") (term "1")) + (rule "translateJavaCastInt" (formula "33") (term "0")) + (rule "polySimp_elimSub" (formula "33") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "1")) + (rule "add_literals" (formula "33") (term "1,1,1")) + (rule "times_zero_1" (formula "33") (term "1,1")) + (rule "add_zero_right" (formula "33") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "32") (term "0,1,0,0,1,0,0,0") (ifseqformula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,0,2,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8") (term "0,1")) + (rule "replace_known_right" (formula "8") (term "0,1,0,1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "74"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "36") (term "0,0,1,0")) + (rule "Contract_axiom_for_count_in_Buffers" (formula "37") (term "0")) + (rule "replace_known_left" (formula "37") (term "1,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "18")) (ifInst "" (formula "93"))) + (rule "Contract_axiom_for_countClassOfSliceEq_in_Classifier" (formula "1") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1,0,0,0,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "92"))) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "2") (term "0") (inst "i=i")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "63")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "36") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "translateJavaMulInt" (formula "36") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "36") (term "0,4,0,1,0")) + (rule "translateJavaAddInt" (formula "36") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "39") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "39") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "59") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "59") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "70") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "commute_or_2" (formula "10") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "59") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "59") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "59") (term "0,0,0,1,1,1,0")) + (rule "commute_and" (formula "60") (term "1,0,0")) + (rule "commute_and" (formula "59") (term "1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "58") (term "0")) + (rule "replace_known_left" (formula "58") (term "1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "76")) (ifInst "" (formula "59"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "59")) + (rule "expand_inInt" (formula "59") (term "1,0,0")) + (rule "expand_inInt" (formula "59") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "49") (term "0")) + (rule "replace_known_left" (formula "49") (term "0,1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "77")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i") (inst "j=j_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "43") (term "0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,2,1")) + (rule "eqSymm" (formula "43")) + (rule "applyEqRigid" (formula "43") (term "1") (ifseqformula "44")) + (rule "inEqSimp_subsumption6" (formula "43") (term "0,0") (ifseqformula "40")) + (rule "greater_literals" (formula "43") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "mul_literals" (formula "43") (term "1,0,0,0")) + (rule "leq_literals" (formula "43") (term "0,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polyDiv_pullOut" (formula "43") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_pullOutFactor0" (formula "43") (term "0,0,0")) + (rule "add_literals" (formula "43") (term "1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "0,0,0")) + (rule "div_literals" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "arrayLengthNotNegative" (formula "45") (term "0")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "46")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "arrayLengthIsAShort" (formula "69") (term "0")) + (rule "expand_inShort" (formula "69")) + (rule "replace_short_MAX" (formula "69") (term "1,0")) + (rule "replace_short_MIN" (formula "69") (term "0,1")) + (rule "andLeft" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "71")) + (rule "leq_literals" (formula "69")) + (rule "closeFalse" (formula "69")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "76")) + (rule "translateJavaAddInt" (formula "76") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0,1,0")) + (rule "widening_identity_cast_5" (formula "76") (term "1")) + (rule "assignment" (formula "76") (term "1")) + (builtin "One Step Simplification" (formula "76")) + (builtin "Block Contract (Internal)" (formula "76") (newnames "exc_28,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "28")) (ifInst "" (formula "18")) (ifInst "" (formula "73"))) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "57")) + (rule "eqSymm" (formula "78") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "17"))) + (rule "true_left" (formula "58")) + (rule "variableDeclarationAssign" (formula "77") (term "1")) + (rule "variableDeclaration" (formula "77") (term "1") (newnames "exc_28_1")) + (rule "assignment" (formula "77") (term "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "emptyStatement" (formula "77") (term "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "emptyStatement" (formula "77") (term "1")) + (rule "tryEmpty" (formula "77") (term "1")) + (rule "blockEmptyLabel" (formula "77") (term "1")) + (rule "blockEmpty" (formula "77") (term "1")) + (rule "methodCallEmpty" (formula "77") (term "1")) + (rule "emptyModality" (formula "77") (term "1")) + (rule "andRight" (formula "77")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "77")) + (rule "closeTrue" (formula "77")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "77")) + (rule "closeTrue" (formula "77")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "76")) + (branch "Case 1" + (rule "andRight" (formula "76")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "76")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "76")) + (rule "wellFormedStorePrimitiveArray" (formula "76")) + (rule "wellFormedAnon" (formula "76")) + (rule "replace_known_left" (formula "76") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "76")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "76")) + (branch "Case 1" + (rule "andRight" (formula "76")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "72"))) + (rule "closeTrue" (formula "76")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "76")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "76")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "76")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "77")) + (builtin "One Step Simplification" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "elim_double_block_2" (formula "78") (term "1")) + (rule "ifUnfold" (formula "78") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "replace_known_left" (formula "78") (term "0,0,1,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "78")) + (rule "ifSplit" (formula "78")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "79")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "79")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "emptyStatement" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "preincrement" (formula "78") (term "1")) + (rule "compound_int_cast_expression" (formula "78") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_13")) + (rule "remove_parentheses_right" (formula "78") (term "1")) + (rule "assignmentAdditionInt" (formula "78") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "78")) + (rule "expand_inInt" (formula "78")) + (rule "replace_int_MIN" (formula "78") (term "0,1")) + (rule "replace_int_MAX" (formula "78") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "polySimp_addComm0" (formula "78") (term "1,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,1")) + (rule "add_literals" (formula "78") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "mul_literals" (formula "34") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "8") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "74") (term "1") (ifseqformula "6")) + (rule "leq_literals" (formula "74") (term "0,1")) + (builtin "One Step Simplification" (formula "74")) + (rule "inEqSimp_leqRight" (formula "74")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "10") (term "1,1,1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_commuteGeq" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "applyEqRigid" (formula "8") (term "1") (ifseqformula "9")) + (rule "ifEqualsInteger" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "1")) + (rule "polySimp_elimOne" (formula "39") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "40")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "33")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "1")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaAddInt" (formula "78") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "lsContinue" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "precOfInt" (formula "78")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0,0,1")) + (rule "add_literals" (formula "78") (term "0,0,0,0,0,1")) + (rule "add_zero_left" (formula "78") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "78") (term "0,0,0,1")) + (rule "add_literals" (formula "78") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "78") (term "0,0,0,1")) + (rule "add_zero_left" (formula "78") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "times_zero_2" (formula "78") (term "1,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0")) + (rule "applyEq" (formula "78") (term "1,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "78") (term "1,0,1") (ifseqformula "41")) + (rule "polySimp_pullOutFactor2" (formula "78") (term "0,1")) + (rule "add_literals" (formula "78") (term "1,0,1")) + (rule "times_zero_1" (formula "78") (term "0,1")) + (rule "leq_literals" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_geqRight" (formula "78")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "Null Reference (_bucket_starts = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_bucket_starts != null, but j Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "false_right" (formula "77")) + (rule "polySimp_homoEq" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_homoEq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "8") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Exceptional Post (len)" + (builtin "One Step Simplification" (formula "72")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "48"))) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "close" (formula "54") (ifseqformula "53")) + ) + (branch "Pre (len)" + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "48")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "71") (term "0")) + (rule "expand_inInt" (formula "71") (term "1")) + (rule "replace_int_MIN" (formula "71") (term "0,1,1")) + (rule "replace_int_MAX" (formula "71") (term "1,0,1")) + (rule "replace_known_left" (formula "71") (term "1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "16"))) + (rule "polySimp_homoEq" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "times_zero_2" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "mul_literals" (formula "34") (term "0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "8") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "70") (term "1") (ifseqformula "6")) + (rule "leq_literals" (formula "70") (term "0,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "inEqSimp_leqRight" (formula "70")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "10") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "applyEq" (formula "9") (term "1") (ifseqformula "10")) + (rule "ifEqualsInteger" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_commuteGeq" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "40")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "37")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "1")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "Null reference (_buffers = null)" + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "69"))) + (rule "closeTrue" (formula "71")) + ) + ) + (branch "Null Reference (_bucket_starts = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_bucket_starts != null, but j Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69"))) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "polySimp_homoEq" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_homoEq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "9") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "9") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "32")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "41")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "times_zero_1" (formula "31") (term "0,0")) + (rule "add_zero_left" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "62")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "62") (term "1")) + (rule "lsBreak" (formula "62") (term "1")) + (rule "assignment" (formula "62") (term "1")) + (builtin "One Step Simplification" (formula "62")) + (rule "eval_order_array_access2" (formula "62") (term "1") (inst "#ar1=x_arr") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "62") (term "1")) + (rule "variableDeclaration" (formula "62") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "62") (term "1")) + (builtin "One Step Simplification" (formula "62")) + (rule "variableDeclarationAssign" (formula "62") (term "1")) + (rule "variableDeclaration" (formula "62") (term "1") (newnames "x")) + (rule "assignment_read_attribute_this_final" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "assignment_to_primitive_array_component" (formula "62")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "62")) + (builtin "Block Contract (Internal)" (formula "62") (newnames "exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23")) (ifInst "" (formula "13")) (ifInst "" (formula "59"))) + (rule "andLeft" (formula "42")) + (rule "eqSymm" (formula "64") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "12"))) + (rule "true_left" (formula "43")) + (rule "variableDeclarationAssign" (formula "63") (term "1")) + (rule "variableDeclaration" (formula "63") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "emptyStatement" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63")) + (rule "emptyStatement" (formula "63") (term "1")) + (rule "applyEq" (formula "63") (term "0,2,0,1,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "42") (term "0,2,0") (ifseqformula "36")) + (rule "applyEq" (formula "63") (term "0,2,0,0,0,0") (ifseqformula "36")) + (rule "tryEmpty" (formula "63") (term "1")) + (rule "blockEmptyLabel" (formula "63") (term "1")) + (rule "blockEmpty" (formula "63") (term "1")) + (rule "methodCallEmpty" (formula "63") (term "1")) + (rule "emptyModality" (formula "63") (term "1")) + (rule "andRight" (formula "63")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "63")) + (rule "closeTrue" (formula "63")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "63")) + (rule "closeTrue" (formula "63")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "62")) + (branch "Case 1" + (rule "andRight" (formula "62")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "62")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "62")) + (rule "wellFormedStorePrimitiveArray" (formula "62")) + (rule "wellFormedAnon" (formula "62")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "10"))) + (rule "closeTrue" (formula "62")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "62")) + (branch "Case 1" + (rule "andRight" (formula "62")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "62")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_homoEq" (formula "9") (term "1,0")) + (rule "polySimp_homoEq" (formula "9") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "62")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "62")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "44")) + (rule "eqSymm" (formula "44")) + (rule "translateJavaAddInt" (formula "45") (term "3,0")) + (rule "translateJavaSubInt" (formula "44") (term "0")) + (rule "replace_known_left" (formula "43") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "polySimp_elimSub" (formula "43") (term "0")) + (rule "eqSymm" (formula "43")) + (rule "polySimp_addComm0" (formula "44") (term "3,0")) + (rule "polySimp_addComm0" (formula "43") (term "1")) + (rule "applyEq" (formula "9") (term "1,1,0,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "5") (term "0,1,1") (ifseqformula "43")) + (rule "applyEq" (formula "65") (term "3,0,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "65") (term "0,2,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "0,2,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "3,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "6") (term "1") (ifseqformula "43")) + (rule "elim_double_block_2" (formula "65") (term "1")) + (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "65")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "11") (ifseqformula "12")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0,0") (ifseqformula "12") (ifseqformula "13")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "13") (ifseqformula "24")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "1") (ifseqformula "14") (ifseqformula "25")) + (rule "ifSplit" (formula "69")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "70")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "70")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "69") (term "1")) + (rule "emptyStatement" (formula "69") (term "1")) + (rule "methodCallEmpty" (formula "69") (term "1")) + (rule "tryEmpty" (formula "69") (term "1")) + (rule "emptyModality" (formula "69") (term "1")) + (rule "andRight" (formula "69")) + (branch "Case 1" + (rule "impRight" (formula "69")) + (rule "andRight" (formula "70")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "70")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "polySimp_homoEq" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltRight" (formula "49")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,1")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "mul_literals" (formula "34") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (term "1,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "8") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "34")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_antiSymm" (formula "7") (ifseqformula "1")) + (rule "applyEq" (formula "67") (term "2,1,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "47") (term "2,1,0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "14") (term "2,1,0,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "applyEq" (formula "15") (term "2,1,0,2,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "7")) + (rule "applyEq" (formula "10") (term "0,0,0") (ifseqformula "7")) + (rule "replace_known_left" (formula "10") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "10")) + (rule "applyEqReverse" (formula "11") (term "0,0,1") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "applyEq" (formula "46") (term "0,2,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "13") (term "1,1,0,0,0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "11") (term "2,1,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "64") (term "0,2,0") (ifseqformula "6")) + (rule "applyEq" (formula "36") (term "1") (ifseqformula "6")) + (rule "applyEq" (formula "12") (term "2,1,0,1,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "39")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "1")) + (rule "polySimp_elimOne" (formula "38") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "31")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "25") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "eqSymm" (formula "50")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "6")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "6")) + (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "6")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "27")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "40") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "44") (term "1")) + (rule "polySimp_elimSub" (formula "44") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "9") (term "1,2,0") (inst "i=i")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,1")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "53")) + (rule "translateJavaMulInt" (formula "50") (term "1,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0")) + (rule "eqSymm" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "48")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0") (ifseqformula "47")) + (rule "leq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "48")) + (rule "leq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "8") (term "0,1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "polySimp_addComm0" (formula "7") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "translateJavaMod" (formula "46") (term "0")) + (rule "jmod_axiom" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "39") (term "4,0") (ifseqformula "47")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0")) + (rule "add_zero_right" (formula "44") (term "0")) + (rule "applyEq" (formula "40") (term "4,0") (ifseqformula "47")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "47")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "applyEq" (formula "8") (term "1,1,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "43") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1")) + (rule "polySimp_rightDist" (formula "43") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "43") (term "1")) + (rule "applyEq" (formula "11") (term "4,1,0,1,1,0") (ifseqformula "47")) + (rule "inEqSimp_invertInEq0" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "elimGcdGeq_antec" (formula "44") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0")) + (rule "leq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "45") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "44")) + (rule "times_zero_1" (formula "17") (term "1,1,0")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "44")) + (rule "times_zero_1" (formula "30") (term "0,0")) + (rule "add_zero_left" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "8") (term "0,2,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "3")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "56") (term "0")) + (rule "wellFormedStorePrimitiveArray" (formula "56") (term "1,0")) + (rule "wellFormedAnon" (formula "56") (term "1,0")) + (rule "replace_known_left" (formula "56") (term "0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "76")) (ifInst "" (formula "12")) (ifInst "" (formula "57"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "57") (term "1,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "57") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "9") (term "0")) + (rule "wellFormedAnon" (formula "9") (term "1,0")) + (rule "replace_known_right" (formula "9") (term "0,0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "10"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "80")) + (rule "replace_known_right" (formula "80") (term "0,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "60"))) + (rule "closeTrue" (formula "80")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "70")) + (rule "closeTrue" (formula "70")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "60"))) + (builtin "One Step Simplification" (formula "63")) + (rule "false_right" (formula "63")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "10") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "inEqSimp_ltRight" (formula "43")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "times_zero_2" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "38")) + (rule "applyEq" (formula "2") (term "1,0,1") (ifseqformula "38")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (term "1,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "2") (term "0") (ifseqformula "31")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "30")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "31")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "6") (term "0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "0,0,1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "2,1,0,2,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "10") (term "2,1,0,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "applyEq" (formula "8") (term "2,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "8") (term "1,1,0,0,0,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "3")) + (rule "applyEq" (formula "9") (term "2,1,0,1,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "4") (term "0,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "1,1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_commuteGeq" (formula "4") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..d18bd99 --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,16781 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:42:40 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:42:40 CEST 2023 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify(int)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "142098") + +(branch "dummy ID" +(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1") (newnames "heapAtPre,o,f")) +(rule "assignment" (formula "1") (term "1,1")) +(rule "methodBodyExpand" (formula "1") (term "1,1,1") (newnames "heapBefore_classify,savedHeapBefore_classify,_valueBefore_classify")) +(rule "assignment" (formula "1") (term "1,1,1,1")) +(rule "blockEmpty" (formula "1") (term "1,1,1,1,1")) +(rule "variableDeclarationAssign" (formula "1") (term "1,1,1,1,1")) +(rule "variableDeclaration" (formula "1") (term "1,1,1,1,1") (newnames "index_1")) + (builtin "One Step Simplification" (formula "1")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "0,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,1,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "methodCallWithAssignmentUnfoldTarget" (formula "10") (term "1") (inst "#v0=t")) +(rule "variableDeclaration" (formula "10") (term "1") (newnames "t")) +(rule "assignment_read_attribute_this_final" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (builtin "Use Operation Contract" (formula "10") (newnames "heapBefore_classify_0,result_0,exc_0") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0")) +(branch "Post (classify)" + (builtin "One Step Simplification" (formula "9")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "9") (term "0,1,0")) + (rule "replace_int_MAX" (formula "9") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "9") (term "0,1,0,1,0")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "15")) + (rule "translateJavaMulInt" (formula "13") (term "1")) + (rule "translateJavaSubInt" (formula "14") (term "3,0")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimSub" (formula "14") (term "3,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "variableDeclaration" (formula "19") (term "1") (newnames "bucket")) + (rule "ifElseUnfold" (formula "19") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "19") (term "1") (newnames "x")) + (rule "assignment_read_attribute_this_final" (formula "19")) + (builtin "One Step Simplification" (formula "19")) + (rule "ifElseSplit" (formula "19")) + (branch "if x true" + (builtin "One Step Simplification" (formula "20")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "bucket_index")) + (rule "compound_subtraction_2" (formula "20") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_2")) + (rule "assignment" (formula "20") (term "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_1")) + (rule "compound_division_1" (formula "20") (term "1") (inst "#v=x_3")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_3")) + (rule "assignment_read_attribute_this_final" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "assignmentDivisionInt" (formula "20")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaDivInt" (formula "20") (term "0,1,0")) + (rule "assignmentSubtractionInt" (formula "20") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20")) + (rule "replace_int_MIN" (formula "20") (term "0,1")) + (rule "replace_int_MAX" (formula "20") (term "1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "14") (ifseqformula "13")) + (rule "greater_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "15") (term "0")) + (rule "replace_known_left" (formula "15") (term "1,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "2")) (ifInst "" (formula "19")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "15")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "16")) + (rule "true_left" (formula "16")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "16") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "notLeft" (formula "16")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "18") (term "1")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "22") (term "3,0")) + (rule "mul_literals" (formula "22") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "3,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "18")) + (rule "applyEq" (formula "14") (term "0,1,3,0") (ifseqformula "18")) + (rule "applyEq" (formula "20") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "0,1,0,0,1,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,0,0") (ifseqformula "18")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1")) + (rule "mod_axiom" (formula "18") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1")) + (rule "mod_axiom" (formula "21") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1,3,0")) + (rule "mod_axiom" (formula "22") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0,1,3,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1")) + (rule "mod_axiom" (formula "20") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "11") (term "0")) + (rule "mod_axiom" (formula "11") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "0")) + (rule "mod_axiom" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "18") (term "0,1")) + (rule "eqSymm" (formula "18")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "21") (term "0,1")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "18")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "shiftLeftDef" (formula "22") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "14") (term "0,0,1,3,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,3,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,3,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,1,3,0")) + (rule "applyEq" (formula "14") (term "0,1,3,0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "20") (term "0,1")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "20") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "18")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "shiftLeftDef" (formula "11") (term "0,0")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "19") (term "0,0")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "13") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0,0")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "23") (term "1,1,1,1,0") (ifseqformula "18")) + (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "18")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow1" (formula "12") (ifseqformula "11")) + (rule "greater_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "expand_moduloInteger" (formula "17") (term "0")) + (rule "replace_int_RANGE" (formula "17") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "17") (term "0,0")) + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "1"))) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,0")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,1")) + (rule "mul_literals" (formula "13") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,0")) + (rule "mul_literals" (formula "13") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "eqSymm" (formula "10")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "30") (term "1,0,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "11")) + (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "11")) + (rule "inEqSimp_commuteGeq" (formula "27")) + (rule "newSym_eq" (formula "10") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "10") (term "1,1")) + (rule "add_zero_right" (formula "10") (term "1")) + (rule "applyEq" (formula "20") (term "0,1,3,0") (ifseqformula "10")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "29") (term "1,3,0") (ifseqformula "10")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "30") (term "1,1,1,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "10")) + (rule "eqSymm" (formula "11")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "13") (term "3,0") (ifseqformula "10")) + (rule "applyEq" (formula "14") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "30") (term "1,1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "14") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "36") (term "0,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0")) + (rule "applyEq" (formula "36") (term "0,0,1") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "1")) + (rule "polySimp_addComm1" (formula "36") (term "0,1")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "10")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "inEqSimp_subsumption6" (formula "8") (ifseqformula "26")) + (rule "mul_literals" (formula "8") (term "1,1,0")) + (rule "greater_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "elimGcdLeq_antec" (formula "8") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "8") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "18")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_subsumption6" (formula "24") (ifseqformula "26")) + (rule "greater_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_notAnd" (formula "30") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "translateJavaSubInt" (formula "19") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "20") (term "1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,2,0,1")) + (rule "mul_literals" (formula "19") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "20") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1")) + (rule "applyEq" (formula "19") (term "1,1,0,1") (ifseqformula "10")) + (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "10")) + (rule "applyEq" (formula "20") (term "0,1,0,0") (ifseqformula "8")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1")) + (rule "mul_literals" (formula "19") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "29") (term "0")) + (rule "replace_known_left" (formula "29") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34")) (ifInst "" (formula "30"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30") (term "1,0,0")) + (rule "expand_inInt" (formula "30") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "33")) (ifInst "" (formula "23"))) + (rule "expand_inInt" (formula "13") (term "1,0,0,1")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "translateJavaSubInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "1")) + (rule "eqSymm" (formula "20") (term "1,0")) + (rule "polySimp_elimSub" (formula "18") (term "3,0")) + (rule "mul_literals" (formula "18") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "3,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "13")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "8")) + (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "13")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "10")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "10")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "8")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "8")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "8")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "8")) + (rule "applyEq" (formula "15") (term "0,1,0,0,1,0,0,0") (ifseqformula "8")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "8")) + (rule "applyEq" (formula "15") (term "0,1,0,0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "8") (term "0")) + (rule "mod_axiom" (formula "8") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "8") (term "0,0")) + (rule "polySimp_elimNeg" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "8") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "8") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "commute_and" (formula "40")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "expand_moduloInteger" (formula "8") (term "0")) + (rule "replace_int_RANGE" (formula "8") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "8") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "8") (term "0,0")) + (rule "polySimp_homoEq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "applyEq" (formula "8") (term "0,1,0") (ifseqformula "27")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "commute_or_2" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_imp2or" (formula "32") (term "0,1,0")) + (rule "commute_or_2" (formula "10") (term "0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "31") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "div_axiom" (formula "26") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "26") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "qeq_literals" (formula "26") (term "0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "polySimp_addComm1" (formula "28") (term "1")) + (rule "add_literals" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "applyEq" (formula "29") (term "0,0,0,1,0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "applyEq" (formula "29") (term "0,1,1,2,1,0,0") (ifseqformula "26")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,0")) + (rule "applyEq" (formula "29") (term "0,1,1,1,1,1,0,0") (ifseqformula "26")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "0,1,0,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "29") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mod_axiom" (formula "29") (term "0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_homoEq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "newSym_eq" (formula "29") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "29") (term "1,1,1")) + (rule "times_zero_1" (formula "29") (term "0,1,1")) + (rule "add_zero_left" (formula "29") (term "1,1")) + (rule "add_zero_right" (formula "29") (term "1")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1")) + (rule "applyEq" (formula "29") (term "1,0,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polyDiv_pullOut" (formula "29") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_homoEq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,0,0")) + (rule "times_zero_1" (formula "29") (term "0,0")) + (rule "add_zero_left" (formula "29") (term "0")) + (rule "polySimp_invertEq" (formula "29")) + (rule "times_zero_2" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "28")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "elimGcdGeq_antec" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_antiSymm" (formula "24") (ifseqformula "28")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "24")) + (rule "leq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEqRigid" (formula "30") (term "0,1,1") (ifseqformula "24")) + (rule "times_zero_2" (formula "30") (term "1,1")) + (rule "add_zero_right" (formula "30") (term "1")) + (rule "applyEq" (formula "29") (term "0,1") (ifseqformula "24")) + (rule "times_zero_2" (formula "29") (term "1")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "24")) + (rule "applyEqRigid" (formula "31") (term "0,0,1,0") (ifseqformula "24")) + (rule "times_zero_2" (formula "31") (term "0,1,0")) + (rule "add_zero_left" (formula "31") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "25")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "commute_or_2" (formula "10") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "34")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "34")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "14") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "14") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "14") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,1,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,1,0")) + (rule "commute_or" (formula "41") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "shift_paren_or" (formula "40") (term "0,0,0")) + (rule "shift_paren_or" (formula "10") (term "0,0,0")) + (rule "cut_direct" (formula "20") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "33")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "cut_direct" (formula "21") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "20")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "31")) + (rule "mul_literals" (formula "29") (term "1,1,0")) + (rule "greater_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "18")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "jdiv_axiom" (formula "46") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "19")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "47") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "47") (term "1,1,1") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "47") (term "1,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,2,1,1,1")) + (rule "equal_literals" (formula "47") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "47")) + (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,1,1,1")) + (rule "add_literals" (formula "47") (term "1,0,0,1,1,1")) + (rule "times_zero_1" (formula "47") (term "0,0,1,1,1")) + (rule "div_literals" (formula "47") (term "0,1,1,1")) + (rule "add_zero_left" (formula "47") (term "1,1,1")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "polyDiv_pullOut" (formula "47") (term "1,1,0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "47") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,1,0")) + (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,1,1,0")) + (rule "add_literals" (formula "47") (term "1,0,0,1,1,0")) + (rule "times_zero_1" (formula "47") (term "0,0,1,1,0")) + (rule "div_literals" (formula "47") (term "0,1,1,0")) + (rule "add_zero_left" (formula "47") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "47") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "qeq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_leqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "1")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "19")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "47") (term "0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,2,0")) + (rule "add_literals" (formula "22") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,2,0")) + (rule "add_literals" (formula "22") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,2,0")) + (rule "applyEq" (formula "47") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1")) + (rule "mul_literals" (formula "47") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "47") (term "0,1")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1")) + (rule "add_literals" (formula "47") (term "0,0,0,1")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,0")) + (rule "times_zero_1" (formula "19") (term "0")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,1")) + (rule "mul_literals" (formula "45") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption4" (formula "18") (ifseqformula "30")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "greater_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption6" (formula "26") (ifseqformula "27")) + (rule "mul_literals" (formula "26") (term "1,1,0")) + (rule "greater_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or" (formula "11") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "24") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "24") (term "0,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "equal_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1")) + (rule "add_literals" (formula "26") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "1")) + (rule "add_literals" (formula "26") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "24") (term "1") (ifseqformula "27")) + (rule "applyEq" (formula "26") (term "0,1,0,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "31")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "28")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "commute_or_2" (formula "37") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0,0")) + (rule "commute_or" (formula "36") (term "1,0,0,1,0")) + (rule "shift_paren_or" (formula "38") (term "0,0,0")) + (rule "commute_or" (formula "36") (term "0,0,0,1,0")) + (rule "commute_and" (formula "43")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "10") (term "1") (ifseqformula "3") (ifseqformula "4")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "10")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "22") (term "0,0") (ifseqformula "3") (ifseqformula "4")) + (rule "replace_known_right" (formula "22") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or_2" (formula "37") (term "0,0")) + (rule "commute_or" (formula "38") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "commute_or" (formula "16") (term "1,0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "cnf_rightDist" (formula "39") (term "0")) + (rule "distr_forallAnd" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "commute_or" (formula "40") (term "0")) + (rule "commute_or_2" (formula "17") (term "0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,1,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "commute_or" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0")) + (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "commute_or_2" (formula "37") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "36") (term "0,0,0")) + (rule "shift_paren_or" (formula "37") (term "0,0,0")) + (rule "commute_or_2" (formula "36") (term "0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,0")) + (rule "commute_or" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "commute_or" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0")) + (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "cnf_rightDist" (formula "16") (term "0")) + (rule "distr_forallAnd" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "commute_or" (formula "17") (term "0")) + (rule "commute_or" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "commute_or" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0")) + (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "commute_or" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "39"))) + (rule "true_left" (formula "16")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "39"))) + (rule "true_left" (formula "16")) + (rule "commute_or" (formula "12") (term "0,0,0,0,1,0")) + (rule "commute_or" (formula "36") (term "0,0,0,1,0")) + (rule "commute_or" (formula "15") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "15") (term "0,0,1,0")) + (rule "commute_or" (formula "15") (term "0,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "43") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "27")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "44") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "44") (term "0,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0,1")) + (rule "equal_literals" (formula "44") (term "0,0,1")) + (builtin "One Step Simplification" (formula "44")) + (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0,1")) + (rule "add_literals" (formula "44") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "44") (term "0,0,0,1")) + (rule "div_literals" (formula "44") (term "0,0,1")) + (rule "add_zero_left" (formula "44") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "1")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,1")) + (rule "add_literals" (formula "44") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "44") (term "1") (ifseqformula "27")) + (rule "leq_literals" (formula "44") (term "0,1")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polyDiv_pullOut" (formula "2") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1")) + (rule "div_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "polyDiv_pullOut" (formula "1") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0")) + (rule "div_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "1")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "closeFalse" (formula "30")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_geqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "19") (ifseqformula "1")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "46") (term "0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0,0")) + (rule "applyEq" (formula "20") (term "1,0,2,0,1") (ifseqformula "18")) + (rule "polySimp_pullOutFactor2" (formula "20") (term "0,2,0,1")) + (rule "add_literals" (formula "20") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "20") (term "0,2,0,1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "1")) + (rule "polySimp_addComm1" (formula "44") (term "0,1")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "18")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0")) + (rule "mul_literals" (formula "20") (term "1,0")) + (rule "replace_known_left" (formula "20") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "mul_literals" (formula "44") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "30")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,1,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "commute_or" (formula "10") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,1,0")) + (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "24") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "qeq_literals" (formula "24") (term "0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1")) + (rule "add_literals" (formula "26") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "1")) + (rule "add_literals" (formula "26") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "27")) + (rule "eqSymm" (formula "24")) + (rule "applyEqRigid" (formula "25") (term "0,1,0,0") (ifseqformula "24")) + (rule "times_zero_2" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "0,1,0,0") (ifseqformula "24")) + (rule "times_zero_2" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "29")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "30")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "commute_or_2" (formula "37") (term "0,0,0")) + (rule "commute_or_2" (formula "10") (term "0,0,0")) + (rule "commute_or_2" (formula "36") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "38") (term "0,0,0")) + (rule "commute_and" (formula "43")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "22") (term "0,0") (ifseqformula "2") (ifseqformula "3")) + (rule "replace_known_right" (formula "22") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "22")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "9") (term "1") (ifseqformula "2") (ifseqformula "3")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "9")) + (rule "shift_paren_or" (formula "38") (term "0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0,1,0")) + (rule "commute_or" (formula "15") (term "1,0,0,0")) + (rule "cnf_rightDist" (formula "39") (term "0")) + (rule "distr_forallAnd" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "commute_or" (formula "40") (term "0")) + (rule "commute_or_2" (formula "38") (term "0,0,0")) + (rule "commute_or_2" (formula "16") (term "0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "commute_or" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "11") (term "0,0,0,0")) + (rule "qeq_literals" (formula "11") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "commute_or" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0")) + (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "commute_or" (formula "36") (term "1,0,0,0")) + (rule "commute_or" (formula "14") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "commute_or" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "commute_or" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0")) + (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "commute_or" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0")) + (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "cnf_rightDist" (formula "15") (term "0")) + (rule "distr_forallAnd" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "commute_or" (formula "16") (term "0")) + (rule "shift_paren_or" (formula "37") (term "0,0,0")) + (rule "shift_paren_or" (formula "14") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,1,0")) + (rule "commute_or" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "39"))) + (rule "true_left" (formula "15")) + (rule "commute_or" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "39"))) + (rule "true_left" (formula "15")) + (rule "commute_or" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "35") (term "0,0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "commute_or" (formula "36") (term "0,0,0,1,0")) + (rule "commute_or" (formula "11") (term "0,0,0,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0,1,0")) + (rule "jdiv_axiom" (formula "43") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "28")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "44") (term "0,1") (ifseqformula "1")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "44") (term "0,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,2,0,0")) + (rule "equal_literals" (formula "44") (term "0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "polySimp_pullOutFactor0" (formula "44") (term "0,0,0,0")) + (rule "add_literals" (formula "44") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "0,0,0,0")) + (rule "div_literals" (formula "44") (term "0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "44") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_leqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polyDiv_pullOut" (formula "2") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1")) + (rule "div_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "polyDiv_pullOut" (formula "1") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0")) + (rule "div_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "equal_to_splitter")) + (rule "compound_assignment_2" (formula "20") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_4")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "20") (term "1")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "var")) + (rule "assignment" (formula "20") (term "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "var_1")) + (rule "eval_order_array_access4" (formula "20") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_arr")) + (rule "assignment_read_attribute_this_final" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "assignment_array2" (formula "20")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "20")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "18") (term "1") (ifseqformula "2") (ifseqformula "3")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "21") (term "1,0,1,0") (ifseqformula "2") (ifseqformula "3")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=x_5")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_5")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "a")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "b")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp")) + (builtin "One Step Simplification" (formula "22")) + (rule "returnUnfold" (formula "22") (term "1") (inst "#v0=x_6")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_6")) + (rule "less_than_comparison_simple" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodCallReturn" (formula "22") (term "1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodCallEmpty" (formula "22") (term "1")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "compound_assignment_1_new" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "compound_subtraction_2" (formula "22") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_7")) + (rule "compound_addition_2" (formula "22") (term "1") (inst "#v1=x_9") (inst "#v0=x_8")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_8")) + (rule "assignmentMultiplicationInt" (formula "22") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22")) + (rule "replace_int_MIN" (formula "22") (term "0,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "elimGcdGeq" (formula "22") (term "1") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0,1,0,1")) + (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,1")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "22") (term "0,1,0,1")) + (rule "add_literals" (formula "22") (term "1,0,1,0,1")) + (rule "times_zero_1" (formula "22") (term "0,1,0,1")) + (rule "leq_literals" (formula "22") (term "1,0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1")) + (rule "add_zero_right" (formula "22") (term "0,0,1")) + (rule "qeq_literals" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "elimGcdLeq" (formula "22") (term "0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,1,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,1,0,0")) + (rule "qeq_literals" (formula "22") (term "1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "polySimp_pullOutFactor0" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (term "1") (ifseqformula "14")) + (rule "leq_literals" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "17") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,0,1")) + (rule "mul_literals" (formula "16") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "17") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1")) + (rule "mul_literals" (formula "16") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "21"))) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "eqSymm" (formula "16")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "13") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,1")) + (rule "mul_literals" (formula "16") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,0")) + (rule "mul_literals" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "21") (term "1,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "22") (term "1,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "13")) + (rule "newSym_eq" (formula "13") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "13")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "22") (term "0,1,0,2,0,1") (ifseqformula "13")) + (rule "polySimp_addComm1" (formula "22") (term "0,2,0,1")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "23") (term "0,1,0,2,0,1") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,0,1")) + (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "21")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "15") (term "0")) + (rule "replace_known_left" (formula "15") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "16"))) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "28") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "28")) + (rule "expand_inInt" (formula "28") (term "1,0,0,1")) + (rule "expand_inInt" (formula "28") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "28")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "30") (term "1")) + (rule "eqSymm" (formula "36") (term "1,0")) + (rule "polySimp_elimSub" (formula "34") (term "3,0")) + (rule "mul_literals" (formula "34") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "3,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "1,0,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "34") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "30")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_commuteGeq" (formula "33")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "14")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "14")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "1")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "javaShiftLeftIntDef" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "16") (term "1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "25")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "31") (term "0")) + (rule "replace_known_left" (formula "31") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "36")) (ifInst "" (formula "32"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "32") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "14") (term "0")) + (rule "replace_known_left" (formula "14") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "37")) (ifInst "" (formula "15"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "33") (term "0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "34") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "32") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "32") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "22")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "cut_direct" (formula "24") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption6" (formula "2") (ifseqformula "1")) + (rule "mul_literals" (formula "2") (term "1,1,0")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0,1,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "qeq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "32")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0")) + (rule "leq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_antiSymm" (formula "32") (ifseqformula "12")) + (rule "applyEqRigid" (formula "33") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "32")) + (rule "times_zero_2" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "32")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "12") (term "0,1") (ifseqformula "31")) + (rule "times_zero_2" (formula "12") (term "1")) + (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "31")) + (rule "times_zero_2" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "applyEq" (formula "11") (term "1") (ifseqformula "31")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "32")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "35")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_leqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,0")) + (rule "add_literals" (formula "25") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,2,0")) + (rule "add_literals" (formula "25") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,2,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,1,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "2")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "2")) + (rule "mul_literals" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "19")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0,1,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "28")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "14")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "12")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "28")) + (rule "times_zero_2" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "28")) + (rule "times_zero_2" (formula "13") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "27")) + (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "31")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "2")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "closeFalse" (formula "30")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1")) + (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "applyEq" (formula "23") (term "1,0,2,0,1") (ifseqformula "20")) + (rule "polySimp_pullOutFactor2" (formula "23") (term "0,2,0,1")) + (rule "add_literals" (formula "23") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "23") (term "0,2,0,1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "20")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0")) + (rule "div_axiom" (formula "10") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "10") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "equal_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "polySimp_addComm1" (formula "12") (term "1")) + (rule "add_literals" (formula "12") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "applyEq" (formula "13") (term "0,0,0,1,0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,0") (ifseqformula "10")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,0") (ifseqformula "10")) + (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "13") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1")) + (rule "newSym_eq" (formula "13") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "13") (term "0,1,1")) + (rule "times_zero_1" (formula "13") (term "1,1,1")) + (rule "add_zero_left" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1")) + (rule "applyEq" (formula "13") (term "1,0,0") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polyDiv_pullOut" (formula "13") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,0,0")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "polySimp_invertEq" (formula "13")) + (rule "times_zero_2" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "12")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "29")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "elimGcdLeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "neg_literal" (formula "11") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "11")) + (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "28")) + (rule "mul_literals" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEqRigid" (formula "12") (term "0,1") (ifseqformula "28")) + (rule "times_zero_2" (formula "12") (term "1")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "applyEq" (formula "14") (term "0,0,1,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "14") (term "0,1,0")) + (rule "add_zero_left" (formula "14") (term "1,0")) + (rule "applyEqRigid" (formula "10") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "28")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "28")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "29")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaMulInt" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_9")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=x_10")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_10")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "b_1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt")) + (builtin "One Step Simplification" (formula "22")) + (rule "returnUnfold" (formula "22") (term "1") (inst "#v0=x_11")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_11")) + (rule "condition_simple" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "ifthenelse_negated" (formula "22") (term "0,1,0")) + (rule "methodCallReturn" (formula "22") (term "1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodCallEmpty" (formula "22") (term "1")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "assignmentAdditionInt" (formula "22") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (userinteraction)) + (rule "andRight" (formula "22") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "22") (term "1")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15")) + (rule "greater_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "20"))) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "eqSymm" (formula "16")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "13") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,1")) + (rule "mul_literals" (formula "16") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,0")) + (rule "mul_literals" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "newSym_eq" (formula "13") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "13")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "11")) + (rule "mul_literals" (formula "21") (term "1,1,0")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1")) + (rule "mul_literals" (formula "23") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1")) + (rule "applyEq" (formula "24") (term "1,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "23") (term "1,1,0,1") (ifseqformula "14")) + (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "25")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "26") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0,1")) + (rule "expand_inInt" (formula "26") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "translateJavaSubInt" (formula "34") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "32") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "28") (term "1")) + (rule "eqSymm" (formula "34") (term "1,0")) + (rule "polySimp_elimSub" (formula "32") (term "3,0")) + (rule "mul_literals" (formula "32") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "3,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "34") (term "1,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "28")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "13")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "28")) + (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "13")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "28")) + (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "28")) + (rule "applyEq" (formula "33") (term "0,1,0,0,1,1,0") (ifseqformula "28")) + (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "28") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "33") (term "0,1,0,0,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "29")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "javaShiftLeftIntDef" (formula "10") (term "0")) + (rule "mod_axiom" (formula "10") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "10") (term "0,0")) + (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "expand_moduloInteger" (formula "10") (term "0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "29")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "32") (term "0")) + (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "37")) (ifInst "" (formula "5"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_imp2or" (formula "33") (term "0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "32") (term "0")) + (rule "replace_known_right" (formula "32") (term "0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "5")) (ifInst "" (formula "33"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "cut_direct" (formula "22") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "21")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "commute_or" (formula "14") (term "1,0,0,0")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "20")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "23")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption6" (formula "18") (ifseqformula "21")) + (rule "mul_literals" (formula "18") (term "1,1,0")) + (rule "greater_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or_2" (formula "34") (term "0,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "13")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "elimGcdGeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "33")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_antiSymm" (formula "32") (ifseqformula "12")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "32")) + (rule "times_zero_2" (formula "13") (term "1")) + (rule "applyEq" (formula "14") (term "0,1,1") (ifseqformula "32")) + (rule "mul_literals" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "32")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "31")) + (rule "times_zero_2" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "applyEq" (formula "11") (term "1") (ifseqformula "31")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "32")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "commute_or_2" (formula "37") (term "0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "35")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "commute_or" (formula "16") (term "0,0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "39") (term "0")) + (rule "replace_known_left" (formula "39") (term "1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "46")) (ifInst "" (formula "40"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "3")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "24")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "33")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "45")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "3")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,0")) + (rule "times_zero_1" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "2") (ifseqformula "33")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,0,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,2,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,2,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,2,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,2,0")) + (rule "add_literals" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,2,0")) + (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1")) + (rule "mul_literals" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "27")) + (rule "greater_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(4(#))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "3")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "18") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "18")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "commute_or_2" (formula "29") (term "0,0")) + (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "qeq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,1,1")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "15") (term "0,1,1")) + (rule "times_zero_1" (formula "15") (term "1,1,1")) + (rule "add_zero_left" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "polySimp_invertEq" (formula "15")) + (rule "times_zero_2" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "14")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "13")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEqRigid" (formula "14") (term "0,1") (ifseqformula "27")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "13") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "26")) + (rule "times_zero_2" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "16") (term "0,0,1,0") (ifseqformula "26")) + (rule "times_zero_2" (formula "16") (term "0,1,0")) + (rule "add_zero_left" (formula "16") (term "1,0")) + (rule "applyEqRigid" (formula "12") (term "1") (ifseqformula "26")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "28")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "26")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "commute_or_2" (formula "32") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "30")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "20") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "20")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "22") (term "1,0,2,0,1") (ifseqformula "19")) + (rule "polySimp_pullOutFactor2" (formula "22") (term "0,2,0,1")) + (rule "add_literals" (formula "22") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "22") (term "0,2,0,1")) + (rule "applyEq" (formula "22") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "18")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,2,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "18")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "26")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "commute_or" (formula "14") (term "1,0,0,0")) + (rule "commute_or_2" (formula "30") (term "0,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "13")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "28")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "12")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "13") (term "0,1") (ifseqformula "27")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "26")) + (rule "times_zero_2" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "15") (term "0,0,1,0") (ifseqformula "26")) + (rule "times_zero_2" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "applyEq" (formula "11") (term "1") (ifseqformula "26")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "commute_or" (formula "33") (term "1,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "31")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "commute_or" (formula "35") (term "0,0,0,1,0")) + (rule "commute_or" (formula "16") (term "0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "35") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "39") (term "1,0,0,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "shift_paren_or" (formula "38") (term "0,0,0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "nnf_imp2or" (formula "35") (term "0,1,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "commute_or" (formula "37") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "15") (term "0") (ifseqformula "5") (ifseqformula "22")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "16")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "16")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "30")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "self.sorted_splitters[0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "40")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "30")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "22") (term "0")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15")) + (rule "greater_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "21") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "22")) + (rule "notLeft" (formula "21")) + (rule "eqSymm" (formula "29") (term "1,0")) + (rule "translateJavaSubInt" (formula "27") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "23") (term "1")) + (rule "translateJavaSubInt" (formula "29") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "3,0")) + (rule "mul_literals" (formula "27") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "29") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "3,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "23")) + (rule "applyEq" (formula "17") (term "0,1,3,0") (ifseqformula "23")) + (rule "applyEq" (formula "27") (term "1,3,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1") (ifseqformula "23")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "23")) + (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "0,1,0,0,1,1,0") (ifseqformula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1")) + (rule "mod_axiom" (formula "23") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0")) + (rule "mod_axiom" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "0")) + (rule "mod_axiom" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1")) + (rule "mod_axiom" (formula "26") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "0,1,3,0")) + (rule "mod_axiom" (formula "17") (term "1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,3,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1")) + (rule "mod_axiom" (formula "25") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "29") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "29") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "23") (term "0,1")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "14") (term "0,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "24") (term "0,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "26") (term "0,1")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "23")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "shiftLeftDef" (formula "17") (term "0,0,1,3,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,3,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,3,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,3,0")) + (rule "applyEq" (formula "17") (term "0,1,3,0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "27") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "27") (term "1,3,0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "25") (term "0,1")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "25")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "23")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "shiftLeftDef" (formula "16") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,0")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "29") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "29") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "29") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "29") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "29") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "29") (term "1,1,1,0,0,0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "23")) + (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "28") (term "1,1,1,1,0") (ifseqformula "23")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "14")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "expand_moduloInteger" (formula "22") (term "0")) + (rule "replace_int_RANGE" (formula "22") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "22") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,0")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3"))) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "eqSymm" (formula "16")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "13") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,1")) + (rule "mul_literals" (formula "16") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,0")) + (rule "mul_literals" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "14")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "34") (term "1,0,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_commuteGeq" (formula "31")) + (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "14")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "newSym_eq" (formula "13") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "34") (term "1,1,1,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "13")) + (rule "applyEq" (formula "35") (term "1,1,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "13")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "13")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "applyEq" (formula "34") (term "1,1,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "28") (term "1,1") (ifseqformula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "30")) + (rule "greater_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "1,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "elimGcdLeq_antec" (formula "11") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "11") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "20")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "29")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "30")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "22") (term "0")) + (rule "replace_known_left" (formula "22") (term "1,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "16")) (ifInst "" (formula "16"))) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0,0")) + (rule "times_zero_2" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0")) + (rule "applyEq" (formula "22") (term "0,1,0,1,0,0,0") (ifseqformula "11")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "22") (term "0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "22")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "16") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "37")) (ifInst "" (formula "27"))) + (rule "expand_inInt" (formula "16") (term "1,0,0,1")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "eqSymm" (formula "23") (term "1,0")) + (rule "translateJavaSubInt" (formula "21") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "1")) + (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "3,0")) + (rule "mul_literals" (formula "21") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "3,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "13")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "0")) + (rule "mod_axiom" (formula "11") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "11") (term "0,0")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0")) + (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "4")) (ifInst "" (formula "36"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "expand_inInt" (formula "36") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "26") (term "0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "38"))) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "12")) + (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "12")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "15")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "38") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "38") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "38") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "37") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "37") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,1,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "expand_moduloInteger" (formula "10") (term "0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "applyEq" (formula "10") (term "0,1,0") (ifseqformula "30")) + (rule "polySimp_pullOutFactor1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,0")) + (rule "times_zero_1" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "commute_or_2" (formula "37") (term "0,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "div_axiom" (formula "29") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "qeq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,1,1")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "polySimp_addComm1" (formula "31") (term "1")) + (rule "add_literals" (formula "31") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "applyEq" (formula "32") (term "0,1,1,1,1,1,0,0") (ifseqformula "29")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "32") (term "0,1,1,2,1,0,0") (ifseqformula "29")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,0")) + (rule "applyEq" (formula "32") (term "0,0,0,1,0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "32") (term "0,1,0,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "mod_axiom" (formula "32") (term "0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "newSym_eq" (formula "32") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "32") (term "1,1,1")) + (rule "times_zero_1" (formula "32") (term "0,1,1")) + (rule "add_literals" (formula "32") (term "1,1")) + (rule "add_zero_right" (formula "32") (term "1")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1")) + (rule "applyEq" (formula "32") (term "1,0,0") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,0,0")) + (rule "times_zero_1" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "polySimp_invertEq" (formula "32")) + (rule "times_zero_2" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "31")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "elimGcdLeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "31")) + (rule "applyEq" (formula "33") (term "0,1") (ifseqformula "27")) + (rule "times_zero_2" (formula "33") (term "1")) + (rule "applyEqRigid" (formula "34") (term "0,1,1") (ifseqformula "27")) + (rule "times_zero_2" (formula "34") (term "1,1")) + (rule "add_zero_right" (formula "34") (term "1")) + (rule "applyEqRigid" (formula "28") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "applyEqRigid" (formula "30") (term "1") (ifseqformula "27")) + (rule "applyEqRigid" (formula "34") (term "0,0,1,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "34") (term "0,1,0")) + (rule "add_zero_left" (formula "34") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "28")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "29")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "35")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "nnf_imp2or" (formula "39") (term "0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "1,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "39")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "39") (term "0")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "39")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "22")) + (rule "true_left" (formula "22")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "shift_paren_or" (formula "44") (term "0,0,0")) + (rule "shift_paren_or" (formula "43") (term "0,0,0")) + (rule "commute_or" (formula "13") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "cut_direct" (formula "22") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "39")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "22")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "inEqSimp_subsumption6" (formula "32") (ifseqformula "34")) + (rule "mul_literals" (formula "32") (term "1,1,0")) + (rule "greater_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "20")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "42") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,0,1,0")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "commute_or" (formula "13") (term "0,0,0,1,0")) + (rule "div_axiom" (formula "31") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "31") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "31") (term "0,1,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "equal_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "polySimp_addAssoc" (formula "33") (term "0,1")) + (rule "add_literals" (formula "33") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "33") (term "1")) + (rule "add_literals" (formula "33") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "34")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "32") (term "0,1,0,0") (ifseqformula "31")) + (rule "times_zero_2" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "applyEq" (formula "33") (term "0,1,0,0") (ifseqformula "31")) + (rule "times_zero_2" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "20")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "40")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "34")) + (rule "mul_literals" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "46")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "35")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_leqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "23") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,2,0")) + (rule "add_literals" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,2,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1")) + (rule "mul_literals" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,2,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,2,0,0,0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "inEqSimp_subsumption4" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "greater_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "30")) + (rule "greater_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "29")) + (rule "mul_literals" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "21") (ifseqformula "1")) + (rule "applyEq" (formula "24") (term "1,0,2,0,1") (ifseqformula "21")) + (rule "polySimp_pullOutFactor2" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "24") (term "0,2,0,1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "21")) + (rule "polySimp_pullOutFactor2" (formula "3") (term "0,2,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,2,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,2,0,0,0")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "21")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "20")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "31")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "35")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "nnf_notAnd" (formula "37") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0,1,0")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "commute_or" (formula "13") (term "0,0,0,1,0")) + (rule "div_axiom" (formula "27") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "27") (term "0,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "equal_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1")) + (rule "add_literals" (formula "29") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "1")) + (rule "add_literals" (formula "29") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "applyEqRigid" (formula "27") (term "0") (ifseqformula "30")) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "applyEqRigid" (formula "28") (term "0,1,0,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "32")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "36")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "commute_or_2" (formula "41") (term "0,0,0")) + (rule "commute_or_2" (formula "40") (term "0,0,0")) + (rule "shift_paren_or" (formula "13") (term "0,0,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "44") (term "0") (ifseqformula "5") (ifseqformula "22")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "1")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "13") (term "0") (ifseqformula "6") (ifseqformula "23")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "14")) + (rule "replace_known_right" (formula "13") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "13")) + (rule "applyEq" (formula "13") (term "1,0") (ifseqformula "14")) + (rule "commute_or_2" (formula "40") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "18") (term "0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "41") (term "0")) + (rule "distr_forallAnd" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "commute_or" (formula "42") (term "0")) + (rule "commute_or_2" (formula "18") (term "0,0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "shift_paren_or" (formula "39") (term "0,0,0")) + (rule "commute_or" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0")) + (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "commute_or_2" (formula "17") (term "0,0,0")) + (rule "commute_or_2" (formula "39") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "commute_or" (formula "38") (term "1,0,0,0")) + (rule "cnf_rightDist" (formula "17") (term "0")) + (rule "distr_forallAnd" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "commute_or" (formula "17") (term "0")) + (rule "commute_or" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0")) + (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "commute_or" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0")) + (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "commute_or" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "shift_paren_or" (formula "37") (term "0,0,0")) + (rule "commute_or" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "37") (term "0,0,0,0")) + (rule "qeq_literals" (formula "37") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "self.sorted_splitters[0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "times_zero_2" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq5" (formula "4") (ifseqformula "29")) + (rule "mul_literals" (formula "4") (term "1,1,0")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "self.sorted_splitters[0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "42")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "4") (ifseqformula "30")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_12")) + (rule "assignment_read_attribute_this_final" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "assignmentSubtractionInt" (formula "22") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (userinteraction)) + (rule "andRight" (formula "22") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "22") (term "1")) + (rule "polySimp_elimSub" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15")) + (rule "greater_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "18")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "2")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "19") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "19")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "translateJavaSubInt" (formula "25") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "21") (term "1")) + (rule "translateJavaSubInt" (formula "27") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "3,0")) + (rule "mul_literals" (formula "25") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "27") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "3,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "25") (term "1,3,0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "21")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "0,1,0,0,1,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "0,1,0,0,1,0,0,0") (ifseqformula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1")) + (rule "mod_axiom" (formula "21") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1")) + (rule "mod_axiom" (formula "23") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1")) + (rule "mod_axiom" (formula "24") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1,3,0")) + (rule "mod_axiom" (formula "25") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "0")) + (rule "mod_axiom" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0")) + (rule "mod_axiom" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,3,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "21") (term "0,1")) + (rule "eqSymm" (formula "21")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "23") (term "0,1")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "21")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "shiftLeftDef" (formula "24") (term "0,1")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "21")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "shiftLeftDef" (formula "25") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "25") (term "1,3,0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "22") (term "0,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "15") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "13") (term "0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "16") (term "0,0,1,3,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,3,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "26") (term "1,1,1,1,0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "21")) + (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0,0") (ifseqformula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "13")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow1" (formula "14") (ifseqformula "13")) + (rule "greater_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "expand_moduloInteger" (formula "20") (term "0")) + (rule "replace_int_HALFRANGE" (formula "20") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "20") (term "0,0")) + (rule "replace_int_RANGE" (formula "20") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "3"))) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "eqSymm" (formula "15")) + (rule "eqSymm" (formula "12")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "12") (term "0")) + (rule "polySimp_elimSub" (formula "15") (term "0,2,1")) + (rule "mul_literals" (formula "15") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "15") (term "0,2,0")) + (rule "mul_literals" (formula "15") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_commuteGeq" (formula "30")) + (rule "applyEq" (formula "33") (term "1,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "31") (term "1,0") (ifseqformula "13")) + (rule "newSym_eq" (formula "12") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "12") (term "1,1")) + (rule "add_zero_right" (formula "12") (term "1")) + (rule "applyEq" (formula "15") (term "3,0") (ifseqformula "12")) + (rule "applyEq" (formula "22") (term "0,1,3,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "22") (term "3,0")) + (rule "applyEq" (formula "34") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12")) + (rule "eqSymm" (formula "16")) + (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "33") (term "1,1,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12")) + (rule "eqSymm" (formula "16")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "13")) + (rule "polySimp_addComm1" (formula "1") (term "1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "applyEq" (formula "27") (term "1,1") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "10") (ifseqformula "29")) + (rule "mul_literals" (formula "10") (term "1,1,0")) + (rule "greater_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "29")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "19")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_subsumption6" (formula "26") (ifseqformula "28")) + (rule "mul_literals" (formula "26") (term "1,1,0")) + (rule "greater_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "nnf_imp2or" (formula "31") (term "0,1,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "15") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "34")) (ifInst "" (formula "25"))) + (rule "expand_inInt" (formula "15") (term "1,0,0,1")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "22") (term "1,0")) + (rule "translateJavaSubInt" (formula "20") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "22") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "3,0")) + (rule "mul_literals" (formula "20") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "12")) + (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "1,3,0") (ifseqformula "15")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "10")) + (rule "eqSymm" (formula "15")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "15")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0")) + (rule "mod_axiom" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaSubInt" (formula "25") (term "1,0")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,2,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "10")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "12")) + (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "37") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "37") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "37") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,1,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "applyEq" (formula "15") (term "0,1,0") (ifseqformula "30")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,0")) + (rule "times_zero_1" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "div_axiom" (formula "29") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "29") (term "0,1,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "equal_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,1,1")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "polySimp_addComm1" (formula "31") (term "1")) + (rule "add_literals" (formula "31") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "applyEq" (formula "32") (term "0,1,1,2,1,0,0") (ifseqformula "29")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,0")) + (rule "applyEq" (formula "32") (term "0,1,1,1,1,1,0,0") (ifseqformula "29")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "32") (term "0,0,0,1,0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "32") (term "0,1,0,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "mod_axiom" (formula "32") (term "0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "newSym_eq" (formula "32") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "32") (term "0,1,1")) + (rule "times_zero_1" (formula "32") (term "1,1,1")) + (rule "add_zero_left" (formula "32") (term "1,1")) + (rule "add_zero_right" (formula "32") (term "1")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1")) + (rule "applyEq" (formula "32") (term "1,0,0") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polyDiv_pullOut" (formula "32") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,0,0")) + (rule "times_zero_1" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "polySimp_invertEq" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "times_zero_2" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "31")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "29")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "elimGcdLeq_antec" (formula "31") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "31") (term "0,0,0,0")) + (rule "neg_literal" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_antiSymm" (formula "27") (ifseqformula "31")) + (rule "applyEq" (formula "33") (term "0,1") (ifseqformula "27")) + (rule "times_zero_2" (formula "33") (term "1")) + (rule "applyEqRigid" (formula "34") (term "0,1,1") (ifseqformula "27")) + (rule "times_zero_2" (formula "34") (term "1,1")) + (rule "add_zero_right" (formula "34") (term "1")) + (rule "applyEqRigid" (formula "32") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "32")) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "34") (term "0,0,1,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "34") (term "0,1,0")) + (rule "add_zero_left" (formula "34") (term "1,0")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "28")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "29")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "35")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0")) + (rule "expand_inInt" (formula "16") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "38")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "38")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "18") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "18") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "18") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1,0,1,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "commute_or" (formula "42") (term "1,0,0,1,0")) + (rule "commute_or" (formula "44") (term "1,0,0,0")) + (rule "commute_or" (formula "43") (term "1,0,0,0")) + (rule "commute_or" (formula "42") (term "0,0,0,1,0")) + (rule "shift_paren_or" (formula "14") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,1,0")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "cut_direct" (formula "24") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "23")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "35")) + (rule "greater_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "mul_literals" (formula "33") (term "1,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "21")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "commute_or" (formula "42") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "div_axiom" (formula "32") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "32") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "qeq_literals" (formula "32") (term "0,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1")) + (rule "add_literals" (formula "34") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "1")) + (rule "add_literals" (formula "34") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "35")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "34") (term "0,1,0,0") (ifseqformula "32")) + (rule "times_zero_2" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "applyEq" (formula "33") (term "0,1,0,0") (ifseqformula "32")) + (rule "times_zero_2" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption0" (formula "34") (ifseqformula "39")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "21")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "commute_or_2" (formula "18") (term "0,0")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "37")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "36") (ifseqformula "3")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "closeFalse" (formula "36")) + ) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "46")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=result_0") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "1")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,0")) + (rule "times_zero_1" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "37")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "37")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_leqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "22")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,0,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,2,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,2,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,2,0,0,0")) + (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1")) + (rule "mul_literals" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "polySimp_addComm1" (formula "4") (term "0,1")) + (rule "add_literals" (formula "4") (term "0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "1,1,1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,0")) + (rule "times_zero_1" (formula "23") (term "0")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,0")) + (rule "add_literals" (formula "24") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,2,0")) + (rule "add_literals" (formula "24") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,2,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption4" (formula "21") (ifseqformula "34")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption6" (formula "30") (ifseqformula "31")) + (rule "mul_literals" (formula "30") (term "1,1,0")) + (rule "greater_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "32")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "22") (ifseqformula "1")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "21")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,2,0,0,0")) + (rule "applyEq" (formula "2") (term "0,1,1") (ifseqformula "21")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "1,1,1")) + (rule "times_zero_1" (formula "2") (term "1,1")) + (rule "add_zero_right" (formula "2") (term "1")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "23") (term "1,0,2,0,1") (ifseqformula "21")) + (rule "polySimp_pullOutFactor2" (formula "23") (term "0,2,0,1")) + (rule "add_literals" (formula "23") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "23") (term "0,2,0,1")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0")) + (rule "mul_literals" (formula "23") (term "1,0")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "34")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "31")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "38") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "div_axiom" (formula "28") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "28") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "equal_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1")) + (rule "add_literals" (formula "30") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "1")) + (rule "add_literals" (formula "30") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "31")) + (rule "eqSymm" (formula "28")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "28")) + (rule "times_zero_2" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "28")) + (rule "times_zero_2" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "33")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "34")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "commute_or_2" (formula "18") (term "0,0")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,0")) + (rule "shift_paren_or" (formula "41") (term "0,0,0")) + (rule "shift_paren_or" (formula "40") (term "0,0,0")) + (rule "commute_or_2" (formula "39") (term "0,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "42") (term "0") (ifseqformula "5") (ifseqformula "23")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "14") (term "0") (ifseqformula "6") (ifseqformula "24")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "15")) + (rule "replace_known_right" (formula "14") (term "0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEq" (formula "14") (term "1,0") (ifseqformula "15")) + (rule "shift_paren_or" (formula "40") (term "0,0,0")) + (rule "commute_or_2" (formula "17") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "41") (term "0")) + (rule "distr_forallAnd" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "commute_or" (formula "42") (term "0")) + (rule "commute_or" (formula "19") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "18") (term "0,0,0")) + (rule "commute_or" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "commute_or" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "43") (term "0,0,0,0")) + (rule "qeq_literals" (formula "43") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "commute_or_2" (formula "18") (term "0,0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "commute_or_2" (formula "17") (term "0,0,0")) + (rule "commute_or" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0")) + (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "commute_or" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "41") (term "0,0,0,0")) + (rule "qeq_literals" (formula "41") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "commute_or" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0")) + (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "cnf_rightDist" (formula "18") (term "0")) + (rule "distr_forallAnd" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "commute_or" (formula "19") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "commute_or" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42"))) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42"))) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "42"))) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "38") (term "0,0,0,1,0")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "self.sorted_splitters[0] >= 1 + value TRUE" + (rule "qeq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "self.sorted_splitters[0] >= 1 + value FALSE" + (rule "qeq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "22") (term "0")) + (rule "polySimp_elimSub" (formula "22") (term "1")) + (rule "polySimp_addComm1" (formula "22") (term "1")) + (rule "inEqSimp_leqRight" (formula "22")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulAssoc" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow1" (formula "16") (ifseqformula "15")) + (rule "greater_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "3")) (ifInst "" (formula "21"))) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "eqSymm" (formula "16")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "13") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,1")) + (rule "mul_literals" (formula "16") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "16") (term "0,2,0")) + (rule "mul_literals" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "newSym_eq" (formula "13") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "13")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "16") (term "3,0") (ifseqformula "13")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "13")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "23") (term "0,1,3,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "13")) + (rule "eqSymm" (formula "17")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "14")) + (rule "polySimp_addComm1" (formula "1") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "applyEq" (formula "1") (term "0,0,1,0,2,0,0,0") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "elimGcdGeq_antec" (formula "11") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "11") (term "0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "11")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "25") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "25")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "2")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "14") (term "0")) + (rule "replace_known_left" (formula "14") (term "1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "28")) (ifInst "" (formula "15"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0,1")) + (rule "mul_literals" (formula "23") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1")) + (rule "applyEq" (formula "23") (term "1,1,0,1") (ifseqformula "13")) + (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "applyEq" (formula "24") (term "1,0,1") (ifseqformula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "27") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "27")) + (rule "expand_inInt" (formula "27") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "27") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "33") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "29") (term "1")) + (rule "eqSymm" (formula "35") (term "1,0")) + (rule "polySimp_elimSub" (formula "33") (term "3,0")) + (rule "mul_literals" (formula "33") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "3,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_commuteGeq" (formula "32")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "1,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "29")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "13")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "33") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "34") (term "0,1,0,0,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "35") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "30")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "javaShiftLeftIntDef" (formula "10") (term "0")) + (rule "mod_axiom" (formula "10") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "10") (term "0,0")) + (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "expand_moduloInteger" (formula "10") (term "0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "commute_or_2" (formula "14") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "32") (term "0")) + (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "38")) (ifInst "" (formula "4"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_imp2or" (formula "33") (term "0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,1,0")) + (rule "jdiv_axiom" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "30")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "2") (term "0,0,0,2,0,0,0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "2") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,0,2,0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "2") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "commute_or" (formula "15") (term "1,0,0,0")) + (rule "commute_or" (formula "15") (term "0,0,0,1,0")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: result_0 >= 1 + l_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "22")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "commute_or_2" (formula "34") (term "0,0")) + (rule "cut_direct" (formula "24") (term "0")) + (branch "CUT: result_0 <= -2 + l_0 * 2 TRUE" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "21")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "24")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption6" (formula "19") (ifseqformula "22")) + (rule "mul_literals" (formula "19") (term "1,1,0")) + (rule "greater_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "qeq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "mul_literals" (formula "11") (term "1,1,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "33")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "14")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "elimGcdGeq_antec" (formula "33") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_antiSymm" (formula "33") (ifseqformula "12")) + (rule "applyEqRigid" (formula "14") (term "0,1,1") (ifseqformula "33")) + (rule "mul_literals" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "13") (term "0,1") (ifseqformula "33")) + (rule "times_zero_2" (formula "13") (term "1")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "33")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "33")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "32")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "32")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "34")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "32")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "arrayLengthNotNegative" (formula "39") (term "0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "commute_or_2" (formula "41") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "42") (term "0,0,0")) + (rule "commute_or_2" (formula "40") (term "0,0")) + (rule "commute_or" (formula "43") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value TRUE" + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "24")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "self.sorted_splitters[l_0 * -1 + result_0] >= 1 + value FALSE" + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "24")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 <= -2 + l_0 * 2 FALSE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "21")) + (rule "applyEq" (formula "25") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,2,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,0")) + (rule "add_literals" (formula "25") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,2,0")) + (rule "add_literals" (formula "25") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,2,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "polySimp_addComm1" (formula "3") (term "0,1")) + (rule "add_literals" (formula "3") (term "0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "1,1,1")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "applyEq" (formula "3") (term "1,0,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,2,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,2,0,0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption6" (formula "20") (ifseqformula "28")) + (rule "mul_literals" (formula "20") (term "1,1,0")) + (rule "greater_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "3")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "26")) + (rule "mul_literals" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: result_0 >= 1 + l_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "21") (ifseqformula "1")) + (rule "applyEq" (formula "25") (term "1,0,2,0,1") (ifseqformula "21")) + (rule "polySimp_pullOutFactor2" (formula "25") (term "0,2,0,1")) + (rule "add_literals" (formula "25") (term "1,0,2,0,1")) + (rule "times_zero_1" (formula "25") (term "0,2,0,1")) + (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "2") (term "0,1,1") (ifseqformula "20")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "1,1,1")) + (rule "times_zero_1" (formula "2") (term "1,1")) + (rule "add_zero_right" (formula "2") (term "1")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "2") (term "1,0,2,0,0,0") (ifseqformula "19")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,2,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,2,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "27")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "commute_or_2" (formula "30") (term "0,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "13")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "elimGcdGeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "29")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_antiSymm" (formula "28") (ifseqformula "12")) + (rule "applyEq" (formula "13") (term "0,1") (ifseqformula "28")) + (rule "times_zero_2" (formula "13") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "13") (term "0,1,1") (ifseqformula "27")) + (rule "mul_literals" (formula "13") (term "1,1")) + (rule "add_zero_right" (formula "13") (term "1")) + (rule "applyEqRigid" (formula "28") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEqRigid" (formula "15") (term "0,0,1,0") (ifseqformula "27")) + (rule "times_zero_2" (formula "15") (term "0,1,0")) + (rule "add_zero_left" (formula "15") (term "1,0")) + (rule "applyEqRigid" (formula "11") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "29")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "32")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "33") (term "0")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "commute_or_2" (formula "37") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "38") (term "0,0,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "shift_paren_or" (formula "39") (term "0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "commute_or_2" (formula "17") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "37") (term "0,0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "15") (term "0") (ifseqformula "5") (ifseqformula "23")) + (rule "applyEq" (formula "15") (term "1,0,1") (ifseqformula "16")) + (rule "replace_known_left" (formula "15") (term "1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "self.sorted_splitters[0] >= 1 + value TRUE" + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "self.sorted_splitters[0] >= 1 + value FALSE" + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "methodCallReturn" (formula "22") (term "1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "methodCallEmpty" (formula "22") (term "1")) + (rule "tryEmpty" (formula "22") (term "1")) + (rule "emptyModality" (formula "22") (term "1")) + (rule "andRight" (formula "22")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "22")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "22")) + (rule "closeTrue" (formula "22")) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (rule "false_right" (formula "21")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "16") (term "0")) + (rule "replace_known_left" (formula "16") (term "1,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "3")) (ifInst "" (formula "19"))) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0,0")) + (rule "times_zero_2" (formula "16") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,0")) + (rule "replace_known_left" (formula "16") (term "1,0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,2,0,1")) + (rule "mul_literals" (formula "17") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "18") (term "1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1")) + (rule "mul_literals" (formula "17") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "20") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "eqSymm" (formula "28") (term "1,0")) + (rule "translateJavaSubInt" (formula "26") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "22") (term "1")) + (rule "translateJavaSubInt" (formula "28") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "3,0")) + (rule "mul_literals" (formula "26") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "3,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "22")) + (rule "applyEq" (formula "17") (term "0,1,0,2,0,1") (ifseqformula "22")) + (rule "applyEq" (formula "18") (term "0,1,0,2,0,1") (ifseqformula "22")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "18") (term "0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "22")) + (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "25") (term "1") (ifseqformula "22")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,1,0") (ifseqformula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1")) + (rule "mod_axiom" (formula "22") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "0,1,0,2,0,1")) + (rule "mod_axiom" (formula "17") (term "1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0,2,0,1")) + (rule "javaShiftLeftIntDef" (formula "18") (term "0,1,0,2,0,1")) + (rule "mod_axiom" (formula "18") (term "1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0,2,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0")) + (rule "mod_axiom" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "0,0,0")) + (rule "mod_axiom" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1")) + (rule "mod_axiom" (formula "24") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1,3,0")) + (rule "mod_axiom" (formula "26") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "0")) + (rule "mod_axiom" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1")) + (rule "mod_axiom" (formula "25") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "22") (term "0,1")) + (rule "eqSymm" (formula "22")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,0")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "17") (term "0,0,1,0,2,0,1")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0,1,0,2,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0,1,0,2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0,1,0,2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,0,2,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,1,0,2,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,1,0,2,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,0,2,0,1")) + (rule "applyEq" (formula "17") (term "0,1,0,2,0,1") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "18") (term "0,0,1,0,2,0,1")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0,1,0,2,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0,1,0,2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0,1,0,2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,1,0,2,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0,1,0,2,0,1")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,1,0,2,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0,1,0,2,0,1")) + (rule "applyEq" (formula "18") (term "0,1,0,2,0,1") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "13") (term "0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "18") (term "0,0,0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0,0,0")) + (rule "applyEq" (formula "18") (term "0,0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "24") (term "0,1")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "22")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "shiftLeftDef" (formula "26") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "23") (term "0,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "25") (term "0,1")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "25")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "22")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "shiftLeftDef" (formula "15") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "27") (term "1,1,1,1,0") (ifseqformula "22")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "13")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "13")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "expand_moduloInteger" (formula "21") (term "0")) + (rule "replace_int_HALFRANGE" (formula "21") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "21") (term "1,1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,0")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "28") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but bucket_index Out of Bounds!)" + (rule "false_right" (formula "21")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "14")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "18") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "translateJavaSubInt" (formula "24") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1")) + (rule "translateJavaSubInt" (formula "26") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "3,0")) + (rule "mul_literals" (formula "24") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "26") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "3,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "20")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "20")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "20")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "26") (term "0,1,0,0,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,1,0") (ifseqformula "20")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1")) + (rule "mod_axiom" (formula "20") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,3,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1")) + (rule "mod_axiom" (formula "23") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "21") (term "0")) + (rule "mod_axiom" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1")) + (rule "mod_axiom" (formula "22") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0")) + (rule "mod_axiom" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1,3,0")) + (rule "mod_axiom" (formula "24") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "26") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "20") (term "0,1")) + (rule "eqSymm" (formula "20")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "16") (term "0,0,1,3,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,3,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "applyEq" (formula "16") (term "0,1,3,0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "23") (term "0,1")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "20")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "shiftLeftDef" (formula "21") (term "0,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "22") (term "0,1")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "22")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "20")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "shiftLeftDef" (formula "13") (term "0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "24") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "15") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "26") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0,0") (ifseqformula "20")) + (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "25") (term "1,1,1,1,0") (ifseqformula "20")) + (rule "inEqSimp_exactShadow1" (formula "15") (ifseqformula "13")) + (rule "greater_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "13")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "expand_moduloInteger" (formula "19") (term "0")) + (rule "replace_int_MIN" (formula "19") (term "0,0")) + (rule "replace_int_RANGE" (formula "19") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "2"))) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "12") (term "1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimSub" (formula "15") (term "0,2,1")) + (rule "mul_literals" (formula "15") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "15") (term "0,2,0")) + (rule "mul_literals" (formula "15") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "13")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_commuteGeq" (formula "29")) + (rule "applyEq" (formula "32") (term "1,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "13")) + (rule "newSym_eq" (formula "12") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "12") (term "1,1")) + (rule "add_zero_right" (formula "12") (term "1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "32") (term "1,1,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "31") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12")) + (rule "eqSymm" (formula "16")) + (rule "applyEq" (formula "32") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "3,0") (ifseqformula "12")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "22") (term "0,1,3,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "22") (term "3,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "applyEq" (formula "1") (term "0,0,1") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1")) + (rule "polySimp_addComm1" (formula "1") (term "0,1")) + (rule "applyEq" (formula "16") (term "1,0,2,0") (ifseqformula "12")) + (rule "eqSymm" (formula "16")) + (rule "applyEq" (formula "1") (term "0,0,1,1,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "13")) + (rule "applyEq" (formula "26") (term "1,1") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1")) + (rule "inEqSimp_subsumption6" (formula "10") (ifseqformula "28")) + (rule "greater_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "neg_literal" (formula "10") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption6" (formula "25") (ifseqformula "27")) + (rule "mul_literals" (formula "25") (term "1,1,0")) + (rule "greater_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30") (term "1,0,0")) + (rule "expand_inInt" (formula "30") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "nnf_imp2or" (formula "30") (term "0,1,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "30") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "15") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "33")) (ifInst "" (formula "24"))) + (rule "expand_inInt" (formula "15") (term "1,0,0,1")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "22") (term "1,0")) + (rule "translateJavaSubInt" (formula "20") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "22") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "3,0")) + (rule "mul_literals" (formula "20") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "10")) + (rule "eqSymm" (formula "15")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "12")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "15")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0")) + (rule "mod_axiom" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "9")) + (rule "commute_or" (formula "1")) + (rule "Contract_axiom_for_isClassifiedAs_in_Tree" (formula "23") (term "0")) + (rule "replace_known_left" (formula "23") (term "1,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "36"))) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "times_zero_2" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "applyEq" (formula "23") (term "0,1,0,1,0,0,0") (ifseqformula "9")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "23")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "9")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "applyEq" (formula "24") (term "1,1,0,1") (ifseqformula "11")) + (rule "applyEq" (formula "25") (term "1,0,1") (ifseqformula "11")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "nnf_notAnd" (formula "34") (term "0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "29")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,0")) + (rule "times_zero_1" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "34") (term "0,0")) + (rule "commute_or_2" (formula "35") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "div_axiom" (formula "28") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "28") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "equal_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "polySimp_addComm1" (formula "30") (term "1")) + (rule "add_literals" (formula "30") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "applyEq" (formula "31") (term "0,0,0,1,0,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0")) + (rule "applyEq" (formula "31") (term "0,1,1,2,1,0,0") (ifseqformula "28")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,0")) + (rule "applyEq" (formula "31") (term "0,1,1,1,1,1,0,0") (ifseqformula "28")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "31") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "mod_axiom" (formula "31") (term "0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "newSym_eq" (formula "31") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "31") (term "0,1,1")) + (rule "times_zero_1" (formula "31") (term "1,1,1")) + (rule "add_literals" (formula "31") (term "1,1")) + (rule "add_zero_right" (formula "31") (term "1")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1")) + (rule "applyEq" (formula "31") (term "1,0,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polyDiv_pullOut" (formula "31") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,0,0")) + (rule "times_zero_1" (formula "31") (term "0,0")) + (rule "add_zero_left" (formula "31") (term "0")) + (rule "polySimp_invertEq" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "times_zero_2" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "30")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "28")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_antiSymm" (formula "26") (ifseqformula "30")) + (rule "applyEqRigid" (formula "27") (term "0") (ifseqformula "26")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEqRigid" (formula "32") (term "0,1,1") (ifseqformula "26")) + (rule "times_zero_2" (formula "32") (term "1,1")) + (rule "add_literals" (formula "32") (term "1")) + (rule "applyEqRigid" (formula "30") (term "0") (ifseqformula "26")) + (rule "leq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "applyEq" (formula "30") (term "0,1") (ifseqformula "26")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "applyEqRigid" (formula "33") (term "0,0,1,0") (ifseqformula "26")) + (rule "times_zero_2" (formula "33") (term "0,1,0")) + (rule "add_zero_left" (formula "33") (term "1,0")) + (rule "applyEqRigid" (formula "29") (term "1") (ifseqformula "26")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "27")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "36")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "38") (term "0")) + (rule "expand_inShort" (formula "38")) + (rule "replace_short_MIN" (formula "38") (term "0,1")) + (rule "replace_short_MAX" (formula "38") (term "1,0")) + (rule "andLeft" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "21") (term "1,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "15") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "15") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "jdiv_axiom" (formula "1") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "33")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "2") (term "1,1,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,1,1") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "2") (term "0,0,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,0,0,1,1")) + (rule "equal_literals" (formula "2") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,1,1")) + (rule "div_literals" (formula "2") (term "0,0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,0,1,1")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "polyDiv_pullOut" (formula "2") (term "1,1,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,2,1,1,0")) + (rule "equal_literals" (formula "2") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,1,1,0")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1,0")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1,0")) + (rule "div_literals" (formula "2") (term "0,1,1,0")) + (rule "add_zero_left" (formula "2") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "2") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "2")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "1")) + (rule "polySimp_elimOne" (formula "38") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor0" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "40")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_zero_right" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "20")) + (rule "equal_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "closeTrue" (formula "20")) + ) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "20")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "compound_subtraction_2" (formula "20") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_2")) + (rule "assignment" (formula "20") (term "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "variableDeclarationAssign" (formula "20") (term "1")) + (rule "variableDeclaration" (formula "20") (term "1") (newnames "x_1")) + (rule "assignment_read_attribute_this_final" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "assignmentSubtractionInt" (formula "20") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20")) + (rule "replace_int_MIN" (formula "20") (term "0,1")) + (rule "replace_int_MAX" (formula "20") (term "1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1")) + (rule "polySimp_elimSub" (formula "20") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulAssoc" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "inEqSimp_exactShadow1" (formula "13") (ifseqformula "12")) + (rule "greater_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "translateJavaSubInt" (formula "14") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "15") (term "1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,2,0,1")) + (rule "mul_literals" (formula "14") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1")) + (rule "mul_literals" (formula "14") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "17")) + (rule "true_left" (formula "17")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "17") (inst "i_0=i_0") (inst "i=i")) + (builtin "One Step Simplification" (formula "17")) + (rule "expand_inInt" (formula "17") (term "1,0,0,1")) + (rule "expand_inInt" (formula "17") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "1")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "3,0")) + (rule "mul_literals" (formula "23") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "15") (term "0,1,0,2,0,1") (ifseqformula "19")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "15") (term "0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "1,3,0") (ifseqformula "19")) + (rule "applyEq" (formula "14") (term "0,1,0,2,0,1") (ifseqformula "19")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "19")) + (rule "applyEq" (formula "24") (term "0,1,0,0,1,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "24") (term "0,1,0,0,1,0,0,0") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1")) + (rule "mod_axiom" (formula "19") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1")) + (rule "mod_axiom" (formula "22") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0,1,0,2,0,1")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,2,0,1")) + (rule "javaShiftLeftIntDef" (formula "11") (term "0")) + (rule "mod_axiom" (formula "11") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0,0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1")) + (rule "mod_axiom" (formula "21") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "20") (term "0")) + (rule "mod_axiom" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1,3,0")) + (rule "mod_axiom" (formula "23") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0,1,0,2,0,1")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,2,0,1")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "25") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "24") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "19") (term "0,1")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "22") (term "0,1")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "22")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "19")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "shiftLeftDef" (formula "15") (term "0,0,1,0,2,0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,1,0,2,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,1,0,2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,1,0,2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0,2,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,1,0,2,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,1,0,2,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,1,0,2,0,1")) + (rule "applyEq" (formula "15") (term "0,1,0,2,0,1") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "11") (term "0,0")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "15") (term "0,0,0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "21") (term "0,1")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "21")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "19")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "shiftLeftDef" (formula "20") (term "0,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "13") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0,0")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "23") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "23") (term "1,3,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "14") (term "0,0,1,0,2,0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,1,0,2,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,1,0,2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,1,0,2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0,2,0,1")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,1,0,2,0,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,0,2,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,1,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,1,0,2,0,1")) + (rule "applyEq" (formula "14") (term "0,1,0,2,0,1") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "14") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0,0")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "24") (term "1,1,1,1,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "25") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "19")) + (rule "shiftLeftDef" (formula "24") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "19")) + (rule "inEqSimp_exactShadow1" (formula "13") (ifseqformula "11")) + (rule "greater_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "11")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "20")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "expand_moduloInteger" (formula "18") (term "0")) + (rule "replace_int_RANGE" (formula "18") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,0")) + (rule "polySimp_homoEq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "28"))) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "eqSymm" (formula "13")) + (rule "eqSymm" (formula "10")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,1")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,0")) + (rule "mul_literals" (formula "13") (term "1,0,2,0")) + (rule "eqSymm" (formula "13")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,0")) + (rule "mul_literals" (formula "13") (term "1,0,2,0")) + (rule "eqSymm" (formula "13")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "29") (term "1,3,0") (ifseqformula "10")) + (rule "applyEq" (formula "20") (term "0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "1,0,1") (ifseqformula "11")) + (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "11")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "applyEq" (formula "12") (term "3,0") (ifseqformula "10")) + (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "11")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "30") (term "1,1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "11")) + (rule "applyEq" (formula "20") (term "0,1,0,2,0,1") (ifseqformula "10")) + (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "0,1,0,2,0,1") (ifseqformula "10")) + (rule "applyEq" (formula "30") (term "1,1,1,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "10")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "10")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "30") (term "1,0,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "10")) + (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "35") (term "1") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,1")) + (rule "add_literals" (formula "35") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "35") (term "1,0,0,1")) + (rule "add_zero_right" (formula "35") (term "0,0,1")) + (rule "qeq_literals" (formula "35") (term "0,1")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "20") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow1" (formula "18") (ifseqformula "10")) + (rule "mul_literals" (formula "18") (term "1,0,1")) + (rule "greater_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "9")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "18")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,0")) + (rule "blockEmpty" (formula "20") (term "1")) + (rule "methodCallReturn" (formula "20") (term "1")) + (rule "assignment" (formula "20") (term "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "methodCallEmpty" (formula "20") (term "1")) + (rule "tryEmpty" (formula "20") (term "1")) + (rule "emptyModality" (formula "20") (term "1")) + (rule "andRight" (formula "20")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "20")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "20")) + (rule "closeTrue" (formula "20")) + ) + ) + ) +) +(branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "12") (ifseqformula "11")) +) +(branch "Pre (classify)" + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "10") (term "1,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,1")) + (rule "replace_known_left" (formula "10") (term "0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1")) + (rule "replace_known_left" (formula "10") (term "1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "8")) + (builtin "One Step Simplification" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "eqSymm" (formula "13")) + (rule "translateJavaMulInt" (formula "10") (term "1,1")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "13") (term "0,2,0")) + (rule "eqSymm" (formula "10")) + (rule "replace_known_left" (formula "16") (term "0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,1")) + (rule "mul_literals" (formula "13") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "13") (term "0,2,0")) + (rule "mul_literals" (formula "13") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "eqSymm" (formula "21") (term "1,0")) + (rule "translateJavaSubInt" (formula "19") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "1")) + (rule "translateJavaSubInt" (formula "21") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "3,0")) + (rule "mul_literals" (formula "19") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "3,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "9") (term "2,0") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "applyEq" (formula "9") (term "0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "10")) + (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "15")) + (rule "applyEq" (formula "21") (term "1,0,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15")) + (rule "eqSymm" (formula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1")) + (rule "mod_axiom" (formula "17") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "9") (term "2,0")) + (rule "mod_axiom" (formula "9") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "0")) + (rule "mod_axiom" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "9") (term "0,1,0")) + (rule "mod_axiom" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "3,0")) + (rule "mod_axiom" (formula "11") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1,3,0")) + (rule "mod_axiom" (formula "19") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0")) + (rule "mod_axiom" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1,0,2,0")) + (rule "eqSymm" (formula "12")) + (rule "mod_axiom" (formula "12") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,1")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "shiftLeftDef" (formula "9") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,2,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,2,0")) + (rule "applyEq" (formula "9") (term "2,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "18") (term "0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "9") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "9") (term "0,1,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "11") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,3,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,3,0")) + (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "19") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "16") (term "0,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1,0,2,0")) + (rule "mod_axiom" (formula "12") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "12")) + (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "20") (term "1,1,1,1,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "12") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "12") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "12") (term "1,0,2,0") (ifseqformula "15")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "18")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "commute_and" (formula "21") (term "1,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "11") (term "0")) + (rule "replace_known_left" (formula "11") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "26")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0")) + (rule "replace_known_left" (formula "21") (term "0,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "27")) (ifInst "" (formula "1"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "12") (term "0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "24") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "24") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,2,0,1,0")) + (rule "arrayLengthIsAShort" (formula "20") (term "1")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "17")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "17")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "ifthenelse_split" (formula "9") (term "0")) + (branch "self.equal_buckets = TRUE TRUE" + (rule "newSym_eq" (formula "10") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "10") (term "1,1")) + (rule "add_zero_right" (formula "10") (term "1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "10")) + (rule "applyEq" (formula "14") (term "1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "26") (term "1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "10")) + (rule "eqSymm" (formula "11")) + (rule "applyEq" (formula "13") (term "3,0") (ifseqformula "10")) + (rule "applyEq" (formula "27") (term "1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,0,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "10")) + (rule "applyEq" (formula "15") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "15")) + (rule "applyEq" (formula "14") (term "1,1,0,0,0,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "15") (term "1,0,2,0") (ifseqformula "10")) + (rule "eqSymm" (formula "15")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "10")) + (rule "applyEq" (formula "26") (term "0,1,0,0,1,1,1,0") (ifseqformula "10")) + (rule "inEqSimp_subsumption6" (formula "7") (ifseqformula "20")) + (rule "mul_literals" (formula "7") (term "1,1,0")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "elimGcdLeq_antec" (formula "7") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "neg_literal" (formula "7") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "11") (term "0")) + (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "30")) (ifInst "" (formula "1"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0")) + (rule "commute_or_2" (formula "26") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "commute_or_2" (formula "24") (term "0,0,1,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "11") (term "0,0")) + (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "16") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "16") (term "0,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "equal_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "polySimp_addComm1" (formula "18") (term "1")) + (rule "add_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "19") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1")) + (rule "newSym_eq" (formula "19") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "19") (term "0,1,1")) + (rule "times_zero_1" (formula "19") (term "1,1,1")) + (rule "add_zero_left" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,0,0")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "polySimp_invertEq" (formula "19")) + (rule "times_zero_2" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "neg_literal" (formula "17") (term "0,0,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "19")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18")) + (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "20") (term "0,1,1") (ifseqformula "14")) + (rule "times_zero_2" (formula "20") (term "1,1")) + (rule "add_zero_right" (formula "20") (term "1")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "14")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "18") (term "0,1") (ifseqformula "14")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "14")) + (rule "applyEq" (formula "21") (term "0,0,1,0") (ifseqformula "14")) + (rule "times_zero_2" (formula "21") (term "0,1,0")) + (rule "add_zero_left" (formula "21") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "29") (term "1,0,0,0")) + (rule "commute_or" (formula "27") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "12") (term "0,0,0")) + (rule "shift_paren_or" (formula "28") (term "0,0,0")) + (rule "commute_or" (formula "26") (term "1,0,0,0")) + (rule "commute_or" (formula "11") (term "1,0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0,1,0")) + (rule "commute_or" (formula "27") (term "0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "20")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "arrayLengthIsAShort" (formula "25") (term "0")) + (rule "expand_inShort" (formula "25")) + (rule "replace_short_MIN" (formula "25") (term "0,1")) + (rule "replace_short_MAX" (formula "25") (term "1,0")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "20")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "commute_or_2" (formula "12") (term "0,0,0")) + (rule "cnf_rightDist" (formula "30") (term "0")) + (rule "distr_forallAnd" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "commute_or" (formula "31") (term "0")) + (rule "shift_paren_or" (formula "32") (term "0,0,0")) + (rule "shift_paren_or" (formula "29") (term "0,0,0")) + (rule "shift_paren_or" (formula "28") (term "0,0,0")) + (rule "shift_paren_or" (formula "11") (term "0,0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "commute_or_2" (formula "29") (term "0,0,1,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "commute_or" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "commute_or" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "commute_or" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "commute_or" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "29") (term "0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "commute_or" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "commute_or" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "11") (term "0,0,0,0")) + (rule "qeq_literals" (formula "11") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "commute_or" (formula "12") (term "0,0,0,0,1,0")) + (rule "div_axiom" (formula "18") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "18") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "qeq_literals" (formula "18") (term "0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "add_literals" (formula "20") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "1")) + (rule "add_literals" (formula "20") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "21")) + (rule "eqSymm" (formula "18")) + (rule "applyEqRigid" (formula "19") (term "0,1,0,0") (ifseqformula "18")) + (rule "times_zero_2" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "applyEq" (formula "20") (term "0,1,0,0") (ifseqformula "18")) + (rule "times_zero_2" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "commute_or" (formula "30") (term "0,0,0,0,1,0")) + (rule "all_pull_out3" (formula "12") (term "0")) + (rule "shift_paren_or" (formula "12") (term "0,0")) + (rule "shift_paren_or" (formula "12") (term "0,0,0")) + (rule "shift_paren_or" (formula "12") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "12") (term "0,0,0,0,0")) + (rule "all_pull_out3" (formula "30") (term "0")) + (rule "shift_paren_or" (formula "30") (term "0,0")) + (rule "shift_paren_or" (formula "30") (term "0,0,0")) + (rule "shift_paren_or" (formula "30") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "30") (term "0,0,0,0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "28") (term "0,0") (ifseqformula "1") (ifseqformula "2")) + (rule "replace_known_right" (formula "28") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "28")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "8") (term "0,0") (ifseqformula "1") (ifseqformula "2")) + (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "37"))) + (rule "closeFalse" (formula "8")) + ) + (branch "self.equal_buckets = TRUE FALSE" + (rule "applyEq" (formula "23") (term "1,1,1,0,0,0,1,0") (ifseqformula "9")) + (rule "applyEq" (formula "19") (term "1") (ifseqformula "9")) + (rule "applyEq" (formula "22") (term "1,3,0") (ifseqformula "9")) + (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "9")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "11") (term "3,0") (ifseqformula "9")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "9")) + (rule "applyEq" (formula "12") (term "1,1,0,0,0") (ifseqformula "9")) + (rule "applyEq" (formula "12") (term "1,1,0,0,0,1,0") (ifseqformula "9")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "9")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "9")) + (rule "applyEq" (formula "23") (term "1,1,0,0,0") (ifseqformula "9")) + (rule "applyEq" (formula "24") (term "1,1,0,0,0") (ifseqformula "9")) + (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "9")) + (rule "eqSymm" (formula "13")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "9")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,1,1,0") (ifseqformula "9")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "8")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "commute_or" (formula "24") (term "1,0,0")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "8")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "16") (term "0,1,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,1,1,1")) + (rule "equal_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "polySimp_addComm1" (formula "18") (term "1")) + (rule "add_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "19") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1")) + (rule "newSym_eq" (formula "19") (inst "newSymDef=add(mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "19") (term "0,1,1")) + (rule "times_zero_1" (formula "19") (term "1,1,1")) + (rule "add_zero_right" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1,1,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,0,0")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "polySimp_invertEq" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "times_zero_2" (formula "19") (term "1")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0")) + (rule "neg_literal" (formula "17") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "19")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18")) + (rule "applyEqRigid" (formula "20") (term "0,1") (ifseqformula "14")) + (rule "times_zero_2" (formula "20") (term "1")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "14")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEqRigid" (formula "19") (term "0,1,1") (ifseqformula "14")) + (rule "mul_literals" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "14")) + (rule "applyEqRigid" (formula "21") (term "0,0,1,0") (ifseqformula "14")) + (rule "times_zero_2" (formula "21") (term "0,1,0")) + (rule "add_zero_left" (formula "21") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "12") (term "1,0,0")) + (rule "commute_or" (formula "27") (term "1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "11") (term "0")) + (rule "replace_known_left" (formula "11") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "29") (term "0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "commute_or" (formula "13") (term "1,0,0,1,0")) + (rule "commute_or_2" (formula "30") (term "0,0")) + (rule "commute_or_2" (formula "28") (term "0,0,1,0")) + (rule "commute_or" (formula "13") (term "0,0,0,1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "36") (term "1,0") (ifseqformula "1") (ifseqformula "2")) + (rule "replace_known_right" (formula "1") (term "1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "1")) + ) +) +(branch "Null reference (t = null)" + (builtin "One Step Simplification" (formula "10")) + (rule "notRight" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (builtin "One Step Simplification" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "eqSymm" (formula "14")) + (rule "eqSymm" (formula "11")) + (rule "translateJavaSubInt" (formula "14") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "14") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "11") (term "1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,2,0")) + (rule "mul_literals" (formula "14") (term "1,0,2,0")) + (rule "eqSymm" (formula "14")) + (rule "polySimp_elimSub" (formula "14") (term "0,2,0")) + (rule "mul_literals" (formula "14") (term "1,0,2,0")) + (rule "eqSymm" (formula "14")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,0")) + (rule "eqSymm" (formula "14")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,0")) + (rule "eqSymm" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "applyEq" (formula "14") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "11") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "13") (term "0,3,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "eqSymm" (formula "14")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "close" (formula "16") (ifseqformula "1")) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..3bcd54c --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_all((I,int,int,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,26539 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:44:37 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:44:37 CEST 2023 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_all([I,int,int,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_all([I,int,int,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "248440") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "8")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "6")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "16")) +(rule "eqSymm" (formula "15")) +(rule "translateJavaSubInt" (formula "15") (term "1")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "4")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "9")) +(rule "polySimp_elimSub" (formula "15") (term "1")) +(rule "polySimp_addComm0" (formula "15") (term "1")) +(rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21")) +(rule "notLeft" (formula "21")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "eqSymm" (formula "21")) +(rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19")) +(rule "notLeft" (formula "19")) +(rule "eqSymm" (formula "20")) +(rule "disjointDefinition" (formula "18")) + (builtin "One Step Simplification" (formula "18")) +(rule "notLeft" (formula "18")) +(rule "eqSymm" (formula "19")) +(rule "disjointDefinition" (formula "16")) + (builtin "One Step Simplification" (formula "16")) +(rule "notLeft" (formula "16")) +(rule "disjointDefinition" (formula "16")) + (builtin "One Step Simplification" (formula "16")) +(rule "notLeft" (formula "16")) +(rule "eqSymm" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodBodyExpand" (formula "26") (term "1") (newnames "heapBefore_classify_all,savedHeapBefore_classify_all,_beginBefore_classify_all,_endBefore_classify_all,_indicesBefore_classify_all,_valuesBefore_classify_all")) + (builtin "One Step Simplification" (formula "26")) +(rule "methodCallUnfoldTarget" (formula "26") (term "1") (inst "#v0=t")) +(rule "variableDeclaration" (formula "26") (term "1") (newnames "t")) +(rule "assignment_read_attribute_this_final" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (builtin "Use Operation Contract" (formula "26") (newnames "heapBefore_classify_all_0,exc_25,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Tree[de.wiesler.Tree::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0")) +(branch "Post (classify_all)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "18") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "translateJavaMulInt" (formula "19") (term "1,1,1,0")) + (rule "eqSymm" (formula "20") (term "1,0")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "applyEq" (formula "20") (term "1,1,0,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "19") (term "1,1,0,0,0") (ifseqformula "15")) + (rule "commute_and" (formula "19") (term "1,0")) + (rule "commute_and" (formula "19") (term "1,0,0")) + (rule "commute_and" (formula "20") (term "1,0,0")) + (rule "commute_and" (formula "20") (term "0,0,0")) + (rule "commute_and" (formula "19") (term "0,0,0")) + (rule "shift_paren_and" (formula "20") (term "0,0")) + (rule "commute_and_2" (formula "20") (term "0,0,0")) + (rule "shift_paren_and" (formula "19") (term "0,0")) + (rule "commute_and_2" (formula "19") (term "0,0,0")) + (rule "ifElseUnfold" (formula "33") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x")) + (rule "assignment_read_attribute_this_final" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "17")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "ifElseSplit" (formula "39")) + (branch "if x true" + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "for_to_while" (formula "40") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "i")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "loopScopeInvDia" (formula "40") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "40")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0")) + (rule "impRight" (formula "41")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,2,2,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "47") (term "1,0,1,1,0") (ifseqformula "29")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "29")) + (rule "inEqSimp_commuteGeq" (formula "2")) + (rule "commute_and" (formula "4") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "4") (term "0,0,0")) + (rule "commute_and_2" (formula "4") (term "0,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "shift_paren_and" (formula "4") (term "0,0,0")) + (rule "ifElseUnfold" (formula "47") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_2")) + (rule "compound_less_than_comparison_2" (formula "47") (term "1") (inst "#v1=x_4") (inst "#v0=x_3")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_3")) + (rule "assignment" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4")) + (rule "assignment_read_length" (formula "47")) + (branch "Normal Execution (_indices != null)" + (builtin "One Step Simplification" (formula "47")) + (rule "applyEq" (formula "47") (term "0,1,0") (ifseqformula "29")) + (rule "less_than_comparison_simple" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "38") (term "0,0") (ifseqformula "9") (ifseqformula "10")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "43") (term "0") (ifseqformula "10") (ifseqformula "11")) + (rule "ifElseSplit" (formula "49")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationFinalAssign" (formula "50") (term "1")) + (rule "variableDeclarationFinal" (formula "50") (term "1") (newnames "value")) + (rule "eval_order_array_access5" (formula "50") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr")) + (rule "variableDeclarationAssign" (formula "50") (term "1")) + (rule "variableDeclaration" (formula "50") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "50") (term "1")) + (builtin "One Step Simplification" (formula "50")) + (rule "variableDeclarationAssign" (formula "50") (term "1")) + (rule "variableDeclaration" (formula "50") (term "1") (newnames "x_5")) + (rule "assignmentAdditionInt" (formula "50") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50")) + (rule "replace_int_MAX" (formula "50") (term "1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "50") (term "0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "50") (term "1")) + (rule "mul_literals" (formula "50") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "50") (term "0,1")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,1")) + (rule "mul_literals" (formula "49") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "22")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "4")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0")) + (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "7") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "2")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "9") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "9")) + (builtin "One Step Simplification" (formula "9")) + (rule "expand_inInt" (formula "10") (term "1,0,0")) + (rule "expand_inInt" (formula "9") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "9") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "9") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "eqSymm" (formula "17") (term "1,0")) + (rule "translateJavaSubInt" (formula "15") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "11") (term "1")) + (rule "translateJavaSubInt" (formula "17") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "3,0")) + (rule "mul_literals" (formula "15") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "3,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "1")) + (rule "mod_axiom" (formula "11") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "1")) + (rule "mod_axiom" (formula "13") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "mod_axiom" (formula "14") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "11") (term "0,1")) + (rule "eqSymm" (formula "11")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "13") (term "0,1")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "13") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "14") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "shiftLeftDef" (formula "12") (term "0,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "38") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "15") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "7") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "7") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0")) + (rule "expand_moduloInteger" (formula "11") (term "0")) + (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,0")) + (rule "replace_int_RANGE" (formula "11") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "41") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "44")) (ifInst "" (formula "43")) (ifInst "" (formula "10"))) + (rule "expand_inInt" (formula "41") (term "1,0,0,1")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "46") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "42") (term "1")) + (rule "eqSymm" (formula "48") (term "1,0")) + (rule "polySimp_elimSub" (formula "46") (term "3,0")) + (rule "mul_literals" (formula "46") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "3,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "41")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "41")) + (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "41")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "41")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "11") (term "1,1") (ifseqformula "41")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "41")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "41") (term "1")) + (rule "mod_axiom" (formula "41") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "38") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "mod_axiom" (formula "14") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1,3,0")) + (rule "mod_axiom" (formula "42") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "13") (term "1")) + (rule "mod_axiom" (formula "13") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "11") (term "1,1")) + (rule "mod_axiom" (formula "11") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "43") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "43") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "41") (term "0,1")) + (rule "eqSymm" (formula "41")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "38") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "41")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "shiftLeftDef" (formula "12") (term "0,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "42") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "15") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "16") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "41")) + (rule "shiftLeftDef" (formula "13") (term "0,1")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "41")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "shiftLeftDef" (formula "11") (term "0,1,1")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,1,1")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "applyEq" (formula "11") (term "0,1,0,0") (ifseqformula "41")) + (rule "polySimp_sepPosMonomial" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "shiftLeftDef" (formula "43") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "43") (term "1,1,1,0,0,0") (ifseqformula "41")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "39")) + (rule "true_left" (formula "39")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "19"))) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "eqSymm" (formula "39")) + (rule "translateJavaMulInt" (formula "36") (term "0")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,1")) + (rule "mul_literals" (formula "39") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,0")) + (rule "mul_literals" (formula "39") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "17") (term "1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "14") (term "0,0") (ifseqformula "37")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "43") (term "1,1,0,1,0") (ifseqformula "36")) + (rule "newSym_eq" (formula "36") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "36") (term "1,1")) + (rule "add_zero_right" (formula "36") (term "1")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "16") (term "1,1,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "36")) + (rule "eqSymm" (formula "37")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "36")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "46") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "11") (term "1,1") (ifseqformula "36")) + (rule "inEqSimp_subsumption6" (formula "34") (ifseqformula "12")) + (rule "greater_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "mul_literals" (formula "34") (term "1,0")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "elimGcdLeq_antec" (formula "34") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "leq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "neg_literal" (formula "34") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "expand_moduloInteger" (formula "44") (term "0")) + (rule "replace_int_HALFRANGE" (formula "44") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "44") (term "1,1,0")) + (rule "replace_int_MIN" (formula "44") (term "0,0")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_pullOutFactor1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,0")) + (rule "times_zero_1" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "39") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "47")) (ifInst "" (formula "10"))) + (rule "expand_inInt" (formula "39") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "translateJavaSubInt" (formula "46") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "44") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "40") (term "1")) + (rule "eqSymm" (formula "46") (term "1,0")) + (rule "polySimp_elimSub" (formula "44") (term "3,0")) + (rule "mul_literals" (formula "44") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "46") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "3,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "42")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "1,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "34")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "34") (term "0")) + (rule "mod_axiom" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "34") (term "0,0")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "expand_moduloInteger" (formula "34") (term "0")) + (rule "replace_int_MIN" (formula "34") (term "0,0")) + (rule "replace_int_RANGE" (formula "34") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "1,0")) + (rule "times_zero_1" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "expand_inInt" (formula "36") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "40") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "40") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "46") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "46") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "46") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "46") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "16") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,1,0,1,0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "commute_and" (formula "60")) + (rule "commute_or" (formula "7") (term "0,0,0")) + (rule "commute_or" (formula "43") (term "0,0,0")) + (rule "commute_or" (formula "44") (term "0,0,0")) + (rule "commute_and" (formula "43") (term "1,0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "commute_or_2" (formula "17") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "commute_or" (formula "8") (term "0,0,0,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "commute_or_2" (formula "16") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "39") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "39") (term "1,0,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,2,0,1,0")) + (rule "div_axiom" (formula "11") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "11") (term "0,1,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "equal_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "polySimp_addComm1" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "applyEq" (formula "14") (term "0,0,0,1,0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,2,1,0,0") (ifseqformula "11")) + (rule "polySimp_addComm0" (formula "14") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "14") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mod_axiom" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "newSym_eq" (formula "14") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "14") (term "1,1,1")) + (rule "times_zero_1" (formula "14") (term "0,1,1")) + (rule "add_zero_left" (formula "14") (term "1,1")) + (rule "add_zero_right" (formula "14") (term "1")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "14")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polyDiv_pullOut" (formula "14") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,1,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "polySimp_invertEq" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "times_zero_2" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "10")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "elimGcdLeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "neg_literal" (formula "12") (term "0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "14")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "elimGcdGeq_antec" (formula "9") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_addLiterals" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_antiSymm" (formula "9") (ifseqformula "13")) + (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "9")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "9")) + (rule "times_zero_2" (formula "16") (term "1,1")) + (rule "add_literals" (formula "16") (term "1")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "9")) + (rule "qeq_literals" (formula "10")) + (rule "true_left" (formula "10")) + (rule "applyEqRigid" (formula "16") (term "0,0,1,0") (ifseqformula "9")) + (rule "times_zero_2" (formula "16") (term "0,1,0")) + (rule "add_zero_left" (formula "16") (term "1,0")) + (rule "applyEq" (formula "12") (term "1") (ifseqformula "9")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "10")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "nnf_notAnd" (formula "48") (term "0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "nnf_imp2or" (formula "39") (term "0,1,0")) + (rule "nnf_imp2or" (formula "48") (term "0,1,0")) + (rule "nnf_imp2or" (formula "18") (term "0,1,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "arrayLengthIsAShort" (formula "16") (term "0")) + (rule "expand_inShort" (formula "16")) + (rule "replace_short_MIN" (formula "16") (term "0,1")) + (rule "replace_short_MAX" (formula "16") (term "1,0")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthIsAShort" (formula "41") (term "0")) + (rule "expand_inShort" (formula "41")) + (rule "replace_short_MAX" (formula "41") (term "1,0")) + (rule "replace_short_MIN" (formula "41") (term "0,1")) + (rule "andLeft" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "1")) + (rule "polySimp_elimOne" (formula "41") (term "1")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthNotNegative" (formula "22") (term "0")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "commute_or_2" (formula "48") (term "0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "53") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "53") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "53") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "nnf_imp2or" (formula "47") (term "0,1,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "53") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "commute_or_2" (formula "7") (term "0,0")) + (rule "commute_or_2" (formula "51") (term "0,0")) + (rule "commute_or_2" (formula "52") (term "0,0")) + (rule "commute_or_2" (formula "8") (term "0,0,0")) + (rule "shift_paren_or" (formula "25") (term "0,0,0")) + (rule "commute_or" (formula "54") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "53") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "53") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "47") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,1,0")) + (rule "cut_direct" (formula "68") (term "1")) + (branch "CUT: i_0 <= 2147483647 + begin * -1 TRUE" + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_geqRight" (formula "69")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "1")) + (rule "times_zero_1" (formula "7") (term "0,0")) + (rule "add_zero_left" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "7")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + (branch "CUT: i_0 <= 2147483647 + begin * -1 FALSE" + (builtin "One Step Simplification" (formula "69")) + (rule "false_right" (formula "69")) + (rule "inEqSimp_leqRight" (formula "68")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "40")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "50")) + (rule "translateJavaAddInt" (formula "50") (term "0,1,0")) + (rule "assignment_array2" (formula "50")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "50")) + (rule "pullOutSelect" (formula "50") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")) (ifInst "" (formula "49"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "1") (term "0,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43")) (ifInst "" (formula "49")) (ifInst "" (formula "16"))) + (rule "applyEqReverse" (formula "51") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (builtin "Block Contract (Internal)" (formula "50") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "51")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "48"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,1") (ifseqformula "35")) + (rule "andLeft" (formula "41")) + (rule "eqSymm" (formula "52") (term "0,0,1,0,1")) + (rule "replace_known_left" (formula "42") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "emptyStatement" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "emptyStatement" (formula "51") (term "1")) + (rule "tryEmpty" (formula "51") (term "1")) + (rule "blockEmptyLabel" (formula "51") (term "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "methodCallEmpty" (formula "51") (term "1")) + (rule "emptyModality" (formula "51") (term "1")) + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "andRight" (formula "50")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "50")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50")) + (rule "wellFormedAnon" (formula "50")) + (rule "wellFormedAnonEQ" (formula "50") (term "0") (ifseqformula "35")) + (rule "replace_known_left" (formula "50") (term "1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "12")) (ifInst "" (formula "34"))) + (rule "closeTrue" (formula "50")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "andRight" (formula "50")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47"))) + (rule "closeTrue" (formula "50")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0") (ifseqformula "35")) + (rule "orRight" (formula "50")) + (rule "orRight" (formula "50")) + (rule "close" (formula "50") (ifseqformula "13")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "50")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "51")) + (builtin "One Step Simplification" (formula "41")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,1,1,0") (ifseqformula "35")) + (rule "expand_inInt" (formula "41") (term "1")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "43")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "elim_double_block_2" (formula "53") (term "1")) + (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "53")) + (rule "ifSplit" (formula "53")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "53") (term "1")) + (rule "variableDeclarationFinal" (formula "53") (term "1") (newnames "index_1")) + (rule "assignment_array2" (formula "53")) + (branch "Normal Execution (_indices != null)" + (builtin "One Step Simplification" (formula "53")) + (builtin "Block Contract (Internal)" (formula "53") (newnames "exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "51"))) + (builtin "One Step Simplification" (formula "54")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1") (ifseqformula "35")) + (rule "andLeft" (formula "44")) + (rule "eqSymm" (formula "55") (term "0,0,1,0,1")) + (rule "translateJavaMulInt" (formula "55") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "45") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "54") (term "1")) + (rule "variableDeclaration" (formula "54") (term "1") (newnames "exc_1_1")) + (rule "assignment" (formula "54") (term "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "emptyStatement" (formula "54") (term "1")) + (rule "emptyStatement" (formula "54") (term "1")) + (rule "tryEmpty" (formula "54") (term "1")) + (rule "blockEmptyLabel" (formula "54") (term "1")) + (rule "blockEmpty" (formula "54") (term "1")) + (rule "methodCallEmpty" (formula "54") (term "1")) + (rule "emptyModality" (formula "54") (term "1")) + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "54")) + (rule "closeTrue" (formula "54")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "54")) + (rule "instAll" (formula "5") (term "0") (ifseqformula "7") (userinteraction)) + (rule "impLeft" (formula "5") (userinteraction)) + (branch "Case 1" + (rule "replace_known_left" (formula "45") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1")) + (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "45") (term "0,1")) + (rule "add_literals" (formula "45") (term "1,0,1")) + (rule "times_zero_1" (formula "45") (term "0,1")) + (rule "leq_literals" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1")) + (rule "mul_literals" (formula "54") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "43") (term "0") (ifseqformula "4")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_leqRight" (formula "43")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "49") (term "0,0") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "50") (term "0,1") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "50") (term "0,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "50") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "21")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "1")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + (branch "Case 2" + (builtin "Evaluate Query" (formula "5") (term "0") (newnames "value_0,callee,queryResult,res_classify") (userinteraction)) + (rule "replaceKnownQuery11000120100100_3" (formula "6") (term "0")) + (rule "replaceKnownSelect_taclet0100100_0" (formula "1") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0100100_2" (formula "1") (term "0,1,0,0")) + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "5")) + (rule "eqSymm" (formula "46") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0")) + (rule "variableDeclaration" (formula "46") (term "1") (newnames "queryResult")) + (rule "pullOutSelect" (formula "56") (term "0,1") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "57") (term "0,1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "57") (term "0,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_commuteGeq" (formula "56") (term "0")) + (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "5")) + (rule "commute_and" (formula "56")) + (builtin "Use Operation Contract" (formula "46") (newnames "heapBefore_classify,result,exc_2") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0")) + (branch "Post (classify)" + (builtin "One Step Simplification" (formula "47")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10"))) + (rule "expand_inInt" (formula "46") (term "0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,0,1,0")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "51")) + (rule "translateJavaSubInt" (formula "50") (term "3,0")) + (rule "translateJavaMulInt" (formula "49") (term "1")) + (rule "eqSymm" (formula "51")) + (rule "polySimp_elimSub" (formula "50") (term "3,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "assignment" (formula "54") (term "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "methodCallEmpty" (formula "54") (term "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "emptyModality" (formula "54") (term "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "notRight" (formula "54")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0")) + (rule "polySimp_mulAssoc" (formula "64") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "50")) + (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "1")) + (rule "replace_known_left" (formula "64") (term "1") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEq" (formula "52") (term "0,3,0") (ifseqformula "2")) + (rule "applyEq" (formula "51") (term "1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_contradInEq4" (formula "1") (ifseqformula "47")) + (rule "greater_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10"))) + (builtin "One Step Simplification" (formula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "close" (formula "48") (ifseqformula "47")) + ) + (branch "Pre (classify)" + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "10")) (ifInst "" (formula "45"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0") (ifseqformula "36")) + (rule "expand_inInt" (formula "46") (term "1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1")) + (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0")) + (rule "polySimp_mulAssoc" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1")) + (rule "replace_known_left" (formula "46") (term "1") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "46")) + (rule "orRight" (formula "46")) + (rule "orRight" (formula "46")) + (rule "replace_known_right" (formula "3") (term "1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "applyEq" (formula "37") (term "0,0,1,0,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "58") (term "0,0,1") (ifseqformula "3")) + (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "58") (term "0,0,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "37") (term "0,1,1,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "40") (term "1") (ifseqformula "3")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "52") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "3")) + (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "48") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "10") (term "1") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "27")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "4")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "close" (formula "41") (ifseqformula "3")) + ) + (branch "Null reference (callee = null)" + (builtin "One Step Simplification" (formula "46")) + (rule "notRight" (formula "46")) + (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0")) + (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "applyEq" (formula "55") (term "0,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "37") (term "0,0,1,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "40") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "37") (term "0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "55") (term "0,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "27")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "4")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "close" (formula "41") (ifseqformula "1")) + ) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "54")) + (rule "closeTrue" (formula "54")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "53")) + (branch "Case 1" + (rule "andRight" (formula "53")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "53")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "53")) + (rule "wellFormedAnon" (formula "53")) + (rule "wellFormedAnonEQ" (formula "53") (term "0") (ifseqformula "35")) + (rule "replace_known_left" (formula "53") (term "1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "12")) (ifInst "" (formula "34"))) + (rule "closeTrue" (formula "53")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "53")) + (branch "Case 1" + (rule "andRight" (formula "53")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "50"))) + (rule "closeTrue" (formula "53")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "53") (term "0") (ifseqformula "35")) + (rule "orRight" (formula "53")) + (rule "orRight" (formula "53")) + (rule "close" (formula "53") (ifseqformula "13")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "53")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "44")) + (builtin "One Step Simplification" (formula "54")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,1") (ifseqformula "35")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "45")) + (rule "translateJavaMulInt" (formula "46") (term "1")) + (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "pullOutSelect" (formula "56") (term "0,1,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "57") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "elim_double_block_2" (formula "56") (term "1")) + (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "56")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "33")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "33")) + (rule "ifSplit" (formula "56")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "56") (term "1")) + (builtin "Block Contract (Internal)" (formula "56") (newnames "exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "21")) (ifInst "" (formula "14")) (ifInst "" (formula "54"))) + (builtin "One Step Simplification" (formula "57")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,1") (ifseqformula "35")) + (rule "andLeft" (formula "47")) + (rule "eqSymm" (formula "58") (term "0,0,1,0,1")) + (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "variableDeclarationAssign" (formula "57") (term "1")) + (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyStatement" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyStatement" (formula "57") (term "1")) + (rule "tryEmpty" (formula "57") (term "1")) + (rule "blockEmptyLabel" (formula "57") (term "1")) + (rule "blockEmpty" (formula "57") (term "1")) + (rule "methodCallEmpty" (formula "57") (term "1")) + (rule "emptyModality" (formula "57") (term "1")) + (rule "andRight" (formula "57")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "57")) + (rule "closeTrue" (formula "57")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "57")) + (rule "closeTrue" (formula "57")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "56")) + (branch "Case 1" + (rule "andRight" (formula "56")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "56")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedAnon" (formula "56")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "35")) + (rule "replace_known_left" (formula "56") (term "1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "12")) (ifInst "" (formula "34"))) + (rule "closeTrue" (formula "56")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "56")) + (branch "Case 1" + (rule "andRight" (formula "56")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53"))) + (rule "closeTrue" (formula "56")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "56")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "0") (ifseqformula "35")) + (rule "orRight" (formula "56")) + (rule "orRight" (formula "56")) + (rule "close" (formula "56") (ifseqformula "13")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "56")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "47")) + (builtin "One Step Simplification" (formula "57")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "46") (term "0")) + (rule "replaceKnownSelect_taclet20120100100_3" (formula "45") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "46") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet20120100100_4" (formula "45") (term "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,1,1,0") (ifseqformula "35")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "translateJavaSubInt" (formula "49") (term "1")) + (rule "translateJavaSubInt" (formula "50") (term "0")) + (rule "translateJavaDivInt" (formula "49") (term "1,1")) + (rule "translateJavaDivInt" (formula "50") (term "1,0")) + (rule "replace_known_left" (formula "48") (term "0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "polySimp_elimSub" (formula "48") (term "1")) + (rule "polySimp_elimSub" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "1")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "elim_double_block_2" (formula "59") (term "1")) + (rule "ifUnfold" (formula "59") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "replace_known_left" (formula "59") (term "0,0,1,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "59")) + (rule "ifSplit" (formula "59")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "59") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "59") (term "1")) + (rule "variableDeclarationFinal" (formula "59") (term "1") (newnames "bucket")) + (rule "compound_subtraction_2" (formula "59") (term "1") (inst "#v1=x_3") (inst "#v0=x_2")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_9")) + (rule "assignment" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_10")) + (rule "compound_division_1" (formula "59") (term "1") (inst "#v=x_11")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_11")) + (rule "assignment_read_attribute_this_final" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "assignmentDivisionInt" (formula "59")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "59")) + (rule "translateJavaDivInt" (formula "59") (term "0,1,0")) + (rule "assignmentSubtractionInt" (formula "59") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "59")) + (rule "expand_inInt" (formula "59")) + (rule "replace_int_MAX" (formula "59") (term "1,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1")) + (rule "polySimp_elimSub" (formula "59") (term "0,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,1")) + (rule "polySimp_addComm0" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46")) + (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "times_zero_2" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "1")) + (rule "mul_literals" (formula "59") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "59") (term "0,1")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "mul_literals" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1")) + (rule "polySimp_elimOne" (formula "47") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "58") (term "0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "1")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1")) + (rule "polySimp_rightDist" (formula "58") (term "1,1")) + (rule "mul_literals" (formula "58") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "58") (term "1") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "0,1")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "58") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,1")) + (rule "add_literals" (formula "58") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "58") (term "1,0,0,1")) + (rule "add_zero_right" (formula "58") (term "0,0,1")) + (rule "qeq_literals" (formula "58") (term "0,1")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_leqRight" (formula "58")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "42")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3")) + (rule "times_zero_1" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "43")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "44")) + (rule "mul_literals" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "mul_literals" (formula "45") (term "0,1")) + (rule "inEqSimp_and_subsumption3" (formula "11") (term "0,0,0")) + (rule "leq_literals" (formula "11") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_and_subsumption3" (formula "36") (term "0,0,0")) + (rule "leq_literals" (formula "36") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "14") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "translateJavaSubInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1")) + (rule "eqSymm" (formula "22") (term "1,0")) + (rule "polySimp_elimSub" (formula "20") (term "3,0")) + (rule "mul_literals" (formula "20") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "16")) + (rule "applyEq" (formula "19") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "43") (term "0,1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "16")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "43") (term "1,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "16")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,1,0") (ifseqformula "16")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1")) + (rule "mod_axiom" (formula "16") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "0")) + (rule "mod_axiom" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1,3,0")) + (rule "mod_axiom" (formula "20") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1")) + (rule "mod_axiom" (formula "19") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1")) + (rule "mod_axiom" (formula "18") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "43") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "43") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "2") (term "0,0")) + (rule "mod_axiom" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1")) + (rule "mod_axiom" (formula "54") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "43") (term "1,1,1,0")) + (rule "mod_axiom" (formula "43") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1")) + (rule "mod_axiom" (formula "55") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "52") (term "0")) + (rule "mod_axiom" (formula "52") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "20") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "19") (term "0,1")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "19") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "16")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "shiftLeftDef" (formula "18") (term "0,1")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "18") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "16")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "shiftLeftDef" (formula "43") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "43") (term "0,1,1,0,1,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "2") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "2") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "2") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "2") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0,0")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "54") (term "0,1")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "16")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "shiftLeftDef" (formula "43") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "43") (term "1,1,1,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "55") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "55")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,0")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "shiftLeftDef" (formula "52") (term "0,0")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "16")) + (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "21") (term "1,1,1,1,0") (ifseqformula "16")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "52")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "18")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow1" (formula "2") (ifseqformula "53")) + (rule "greater_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "expand_moduloInteger" (formula "16") (term "0")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,0")) + (rule "replace_int_MIN" (formula "16") (term "0,0")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "46")) + (rule "true_left" (formula "46")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "24"))) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "41")) + (rule "translateJavaSubInt" (formula "44") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "44") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "41") (term "0")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_mulComm0" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "42")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "48") (term "1,1,0,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "41")) + (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "42")) + (rule "applyEq" (formula "22") (term "1,0,1,0") (ifseqformula "42")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "41")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "newSym_eq" (formula "41") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "41") (term "1,1")) + (rule "add_zero_right" (formula "41") (term "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "49") (term "1,1,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "21") (term "1,1,1,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "44") (term "3,0") (ifseqformula "41")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "41")) + (rule "applyEq" (formula "45") (term "1,0,2,0") (ifseqformula "41")) + (rule "eqSymm" (formula "45")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "41")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "41")) + (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "41")) + (rule "eqSymm" (formula "42")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "41")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "1") (term "0,0,1,1") (ifseqformula "42")) + (rule "applyEq" (formula "4") (term "0,1,1") (ifseqformula "42")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "42")) + (rule "applyEq" (formula "16") (term "0,0,1,1") (ifseqformula "42")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "42")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "42")) + (rule "applyEq" (formula "49") (term "1,1,0,1,0") (ifseqformula "42")) + (rule "applyEq" (formula "45") (term "1,0,2,0") (ifseqformula "41")) + (rule "eqSymm" (formula "45")) + (rule "applyEq" (formula "61") (term "0,1,0,1") (ifseqformula "42")) + (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "41")) + (rule "applyEq" (formula "57") (term "0,1,0,0") (ifseqformula "42")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1")) + (rule "mul_literals" (formula "57") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1")) + (rule "inEqSimp_subsumption6" (formula "39") (ifseqformula "17")) + (rule "greater_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "mul_literals" (formula "39") (term "1,0")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "17")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "59")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "57")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1")) + (rule "mul_literals" (formula "56") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,1")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_imp2or" (formula "47") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "48") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "48") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "48") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "48") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "48") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "48") (term "1,0,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "mul_literals" (formula "48") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "44") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "62")) (ifInst "" (formula "14"))) + (rule "expand_inInt" (formula "44") (term "1,0,0,1")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "51") (term "1,0")) + (rule "translateJavaSubInt" (formula "49") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "45") (term "1")) + (rule "translateJavaSubInt" (formula "51") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "3,0")) + (rule "mul_literals" (formula "49") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "3,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "44")) + (rule "applyEq" (formula "47") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "46") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "39")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "41")) + (rule "applyEq" (formula "48") (term "1,0,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "41")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "44")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "0")) + (rule "mod_axiom" (formula "44") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "44") (term "0,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "64")) (ifInst "" (formula "43"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "66")) (ifInst "" (formula "14"))) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "translateJavaSubInt" (formula "60") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "58") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "54") (term "1")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "polySimp_elimSub" (formula "58") (term "3,0")) + (rule "mul_literals" (formula "58") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "3,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "56") (term "1,3,0") (ifseqformula "39")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "39")) + (rule "eqSymm" (formula "53")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "54") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "57") (term "1,0,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "41")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "41")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0")) + (rule "mod_axiom" (formula "53") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "53") (term "0,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "22") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "22") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "22") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "47") (term "0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "expand_moduloInteger" (formula "45") (term "0")) + (rule "replace_int_RANGE" (formula "45") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "45") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,0")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "applyEq" (formula "45") (term "0,1,0") (ifseqformula "15")) + (rule "polySimp_pullOutFactor1" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,0")) + (rule "times_zero_1" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "commute_and" (formula "50") (term "1,0")) + (rule "commute_or" (formula "11") (term "0,0,0")) + (rule "commute_or" (formula "51") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "53") (term "0")) + (rule "commute_or" (formula "50") (term "0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "jdiv_axiom" (formula "1") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "18")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "60") (term "0,1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,1,1") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "3") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "64") (term "1,0,1") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "64") (term "1,0,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,2,1,0,1")) + (rule "equal_literals" (formula "64") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "polySimp_pullOutFactor0" (formula "64") (term "0,0,1,0,1")) + (rule "add_literals" (formula "64") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "64") (term "0,0,1,0,1")) + (rule "div_literals" (formula "64") (term "0,1,0,1")) + (rule "add_zero_left" (formula "64") (term "1,0,1")) + (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0")) + (rule "div_literals" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "3")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "polyDiv_pullOut" (formula "17") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "17") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0,1,1")) + (rule "add_literals" (formula "17") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "17") (term "0,0,0,1,1")) + (rule "div_literals" (formula "17") (term "0,0,1,1")) + (rule "add_zero_left" (formula "17") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "5") (term "1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,2,1,1")) + (rule "equal_literals" (formula "5") (term "0,1,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "polySimp_pullOutFactor0" (formula "5") (term "0,0,1,1")) + (rule "add_literals" (formula "5") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "5") (term "0,0,1,1")) + (rule "div_literals" (formula "5") (term "0,1,1")) + (rule "add_zero_left" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "qeq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "polyDiv_pullOut" (formula "2") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "2") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,0,1,1")) + (rule "div_literals" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "59") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "59") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "59") (term "0,0,0,1,1")) + (rule "add_literals" (formula "59") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "59") (term "0,0,0,1,1")) + (rule "div_literals" (formula "59") (term "0,0,1,1")) + (rule "add_zero_left" (formula "59") (term "0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "1")) + (rule "add_literals" (formula "59") (term "1,1,1")) + (rule "times_zero_1" (formula "59") (term "1,1")) + (rule "add_zero_right" (formula "59") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "4")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "polyDiv_pullOut" (formula "1") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "0,0,1")) + (rule "div_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "59")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "div_axiom" (formula "16") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "qeq_literals" (formula "16") (term "0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,1,1")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "polySimp_addComm1" (formula "18") (term "1")) + (rule "add_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,1,0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "19") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1")) + (rule "newSym_eq" (formula "19") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "19") (term "1,1,1")) + (rule "times_zero_1" (formula "19") (term "0,1,1")) + (rule "add_zero_left" (formula "19") (term "1,1")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "19")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "applyEq" (formula "19") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polyDiv_pullOut" (formula "19") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,0,0")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "polySimp_invertEq" (formula "19")) + (rule "times_zero_2" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "18")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "elimGcdGeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "18") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_antiSymm" (formula "14") (ifseqformula "18")) + (rule "applyEqRigid" (formula "20") (term "0,1") (ifseqformula "14")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEqRigid" (formula "20") (term "0,1,1") (ifseqformula "14")) + (rule "times_zero_2" (formula "20") (term "1,1")) + (rule "add_zero_right" (formula "20") (term "1")) + (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "14")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "21") (term "0,0,1,0") (ifseqformula "14")) + (rule "times_zero_2" (formula "21") (term "0,1,0")) + (rule "add_zero_left" (formula "21") (term "1,0")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "14")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "13") (term "0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "48") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "48") (term "1,0,0")) + (rule "expand_inInt" (formula "48") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "48") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "45") (term "0")) + (rule "replace_known_left" (formula "45") (term "0,1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "66")) (ifInst "" (formula "28"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "nnf_notAnd" (formula "57") (term "0,0")) + (rule "nnf_imp2or" (formula "47") (term "0,1,0")) + (rule "arrayLengthIsAShort" (formula "39") (term "0")) + (rule "expand_inShort" (formula "39")) + (rule "replace_short_MIN" (formula "39") (term "0,1")) + (rule "replace_short_MAX" (formula "39") (term "1,0")) + (rule "andLeft" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "36")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "4")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "22")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "59")) + (rule "translateJavaSubInt" (formula "59") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "59") (term "1")) + (rule "variableDeclarationFinal" (formula "59") (term "1") (newnames "equal_to_splitter")) + (rule "compound_assignment_2" (formula "59") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_12")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "59") (term "1")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "var")) + (rule "assignment" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "var_1")) + (rule "eval_order_array_access4" (formula "59") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "59") (term "1")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_arr_1")) + (rule "assignment_read_attribute_this_final" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "assignment_array2" (formula "59")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "59")) + (rule "pullOutSelect" (formula "59") (term "0,1,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "55"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "36")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56"))) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "arrayLengthIsAShort" (formula "51") (term "1")) + (rule "expand_inShort" (formula "51")) + (rule "replace_short_MIN" (formula "51") (term "0,1")) + (rule "replace_short_MAX" (formula "51") (term "1,0")) + (rule "andLeft" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "arrayLengthNotNegative" (formula "53") (term "1")) + (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "64") (term "0,1,0,0,1")) (ifInst "" (formula "37")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "62")) (ifInst "" (formula "15")) (ifInst "" (formula "14")) (ifInst "" (formula "24")) (ifInst "" (formula "10")) (ifInst "" (formula "24"))) + (rule "true_left" (formula "55")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "64") (term "1") (inst "#v0=x_13")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_13")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "a")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "b")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp")) + (builtin "One Step Simplification" (formula "64")) + (rule "returnUnfold" (formula "64") (term "1") (inst "#v0=x_14")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_14")) + (rule "less_than_comparison_simple" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "methodCallReturn" (formula "64") (term "1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "methodCallEmpty" (formula "64") (term "1")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "compound_assignment_1_new" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "eval_order_array_access3" (formula "64") (term "1") (inst "#v1=x_3") (inst "#v2=x_2") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_15")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_16")) + (rule "compound_subtraction_2" (formula "64") (term "1") (inst "#v1=x_18") (inst "#v0=x_17")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_17")) + (rule "compound_addition_2" (formula "64") (term "1") (inst "#v1=x_20") (inst "#v0=x_19")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_19")) + (rule "assignmentMultiplicationInt" (formula "64") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "64") (userinteraction)) + (rule "expand_inInt" (formula "64") (userinteraction)) + (rule "andRight" (formula "64") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "64") (term "1")) + (rule "polySimp_mulComm0" (formula "64") (term "0")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "50")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "46")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(3(1(9(0(7(8(6(3(5(#))))))))))") (inst "elimGcdLeftDiv=int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "1")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "51")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "50")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "31")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "26")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "6")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "9")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "46")) + (rule "greater_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0")) + (rule "mul_literals" (formula "50") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1")) + (rule "polySimp_rightDist" (formula "50") (term "1")) + (rule "mul_literals" (formula "50") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54")) + (rule "mul_literals" (formula "50") (term "1,0,1")) + (rule "greater_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "2")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_and_subsumption3" (formula "37") (term "0,0,0")) + (rule "leq_literals" (formula "37") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_and_subsumption3" (formula "38") (term "0,0,0")) + (rule "leq_literals" (formula "38") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "39")) + (rule "true_left" (formula "39")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "18"))) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "36") (term "1")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,0")) + (rule "mul_literals" (formula "39") (term "1,0,2,0")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,0")) + (rule "mul_literals" (formula "39") (term "1,0,2,0")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,0")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,0")) + (rule "eqSymm" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "53") (term "1,1") (ifseqformula "36")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "36")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "applyEq" (formula "43") (term "1,1,0,1,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "newSym_eq" (formula "36") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "36") (term "1,1")) + (rule "add_zero_right" (formula "36") (term "1")) + (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "36")) + (rule "eqSymm" (formula "37")) + (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "36")) + (rule "inEqSimp_homoInEq0" (formula "52")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "polySimp_addComm1" (formula "52") (term "0,0")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "3") (term "0,0,1,1") (ifseqformula "37")) + (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "37")) + (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "59") (term "0,1") (ifseqformula "37")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "57") (term "1,1") (ifseqformula "37")) + (rule "applyEq" (formula "2") (term "0,0") (ifseqformula "37")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "37")) + (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "37")) + (rule "applyEq" (formula "5") (term "0,0,0,0,2,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "5") (term "0,0,0,0,2,2,0") (ifseqformula "37")) + (rule "applyEq" (formula "6") (term "0,0,0,0,2,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "61") (term "0,1,0,1") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "36")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "52") (term "0,1,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1")) + (rule "mul_literals" (formula "52") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,1")) + (rule "inEqSimp_contradInEq5" (formula "35") (ifseqformula "1")) + (rule "mul_literals" (formula "35") (term "1,1,0")) + (rule "greater_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "closeFalse" (formula "35")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "polySimp_mulAssoc" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "50")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "elimGcdLeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "1") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "29")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "45") (ifseqformula "44")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "closeFalse" (formula "45")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaMulInt" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_20")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "64") (term "1") (inst "#v0=x_21")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_21")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "b_1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt")) + (builtin "One Step Simplification" (formula "64")) + (rule "returnUnfold" (formula "64") (term "1") (inst "#v0=x_22")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_22")) + (rule "condition_simple" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "ifthenelse_negated" (formula "64") (term "0,1,0")) + (rule "methodCallReturn" (formula "64") (term "1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "methodCallEmpty" (formula "64") (term "1")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "assignmentAdditionInt" (formula "64") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "64")) + (rule "expand_inInt" (formula "64") (userinteraction)) + (rule "andRight" (formula "64") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "64") (term "1")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "53")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "times_zero_1" (formula "7") (term "0,0")) + (rule "add_zero_left" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "28")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43")) + (rule "greater_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54")) + (rule "mul_literals" (formula "50") (term "1,0,1")) + (rule "greater_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "12"))) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "translateJavaSubInt" (formula "32") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "32") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "29") (term "1")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_elimSub" (formula "32") (term "0,2,0")) + (rule "mul_literals" (formula "32") (term "1,0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_elimSub" (formula "32") (term "0,2,0")) + (rule "mul_literals" (formula "32") (term "1,0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "36") (term "1,1,0,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "applyEq" (formula "50") (term "1,1") (ifseqformula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "newSym_eq" (formula "29") (inst "l=l_0") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "29") (term "1,1")) + (rule "add_zero_right" (formula "29") (term "1")) + (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "29")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "37") (term "1,1,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29")) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "48") (term "0,0,1,1") (ifseqformula "30")) + (rule "applyEq" (formula "51") (term "1,1") (ifseqformula "30")) + (rule "applyEq" (formula "53") (term "0,0,1,1") (ifseqformula "30")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "30")) + (rule "applyEq" (formula "37") (term "1,1,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "30")) + (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "46") (term "0,1,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "30")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "30")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "0,1")) + (rule "mul_literals" (formula "46") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "49")) + (rule "mul_literals" (formula "27") (term "1,1,0")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "elimGcdLeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(4(6(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "neg_literal" (formula "27") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "56")) + (rule "greater_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "mul_literals" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,0")) + (rule "mul_literals" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "46")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_rightDist" (formula "44") (term "0,0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "47") (term "0,0")) + (rule "mul_literals" (formula "47") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "mul_literals" (formula "47") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "mul_literals" (formula "55") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "50")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0")) + (rule "add_literals" (formula "49") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "50")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "53")) + (rule "mul_literals" (formula "46") (term "0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_subsumption6" (formula "46") (ifseqformula "49")) + (rule "mul_literals" (formula "46") (term "1,1,0")) + (rule "greater_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "49")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "1")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0")) + (rule "mul_literals" (formula "16") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "35")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "37")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "35")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "35")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "35")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "13")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "javaShiftLeftIntDef" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "47") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "66")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "47") (term "1,0,0,1")) + (rule "expand_inInt" (formula "47") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "54") (term "1,0")) + (rule "translateJavaSubInt" (formula "52") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "48") (term "1")) + (rule "translateJavaSubInt" (formula "54") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "3,0")) + (rule "mul_literals" (formula "52") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "54") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "54") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "3,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "47")) + (rule "applyEq" (formula "53") (term "1,0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "51") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "38")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "36")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "50") (term "0,1,0,0,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "50") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "47")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "0")) + (rule "mod_axiom" (formula "47") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "47") (term "0,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "41") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "67")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "46") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "42") (term "1")) + (rule "eqSymm" (formula "48") (term "1,0")) + (rule "polySimp_elimSub" (formula "46") (term "3,0")) + (rule "mul_literals" (formula "46") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "3,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "44")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "45") (term "1,3,0") (ifseqformula "41")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "41")) + (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,0") (ifseqformula "41")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "41")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "41")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "36") (term "0")) + (rule "mod_axiom" (formula "36") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "36") (term "0,0")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "47")) + (rule "true_left" (formula "47")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "commute_and" (formula "45") (term "1,0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "commute_or" (formula "46") (term "0,0,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "jdiv_axiom" (formula "57") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,2,1")) + (rule "eqSymm" (formula "57")) + (rule "inEqSimp_subsumption6" (formula "57") (term "0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "57") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "57") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "leq_literals" (formula "57") (term "0,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "57")) + (rule "applyEq" (formula "55") (term "0,1,1") (ifseqformula "57")) + (rule "applyEq" (formula "58") (term "0,1,1") (ifseqformula "57")) + (rule "applyEqRigid" (formula "54") (term "0") (ifseqformula "57")) + (rule "applyEq" (formula "62") (term "0,1,1") (ifseqformula "57")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "57")) + (rule "applyEqRigid" (formula "65") (term "1") (ifseqformula "57")) + (rule "applyEq" (formula "67") (term "1,0,1") (ifseqformula "57")) + (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "57")) + (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "67") (term "1,0,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,1,0,1")) + (rule "equal_literals" (formula "67") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1,0,1")) + (rule "add_literals" (formula "67") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "67") (term "0,0,1,0,1")) + (rule "div_literals" (formula "67") (term "0,1,0,1")) + (rule "add_zero_left" (formula "67") (term "1,0,1")) + (rule "polyDiv_pullOut" (formula "65") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "65") (term "0,1")) + (builtin "One Step Simplification" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "65") (term "0,0,1")) + (rule "add_literals" (formula "65") (term "1,0,0,1")) + (rule "times_zero_1" (formula "65") (term "0,0,1")) + (rule "div_literals" (formula "65") (term "0,1")) + (rule "add_zero_left" (formula "65") (term "1")) + (rule "polyDiv_pullOut" (formula "63") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0")) + (rule "add_literals" (formula "63") (term "1,0,0,0")) + (rule "times_zero_1" (formula "63") (term "0,0,0")) + (rule "div_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "13")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "polyDiv_pullOut" (formula "62") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "62") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0,1,1")) + (rule "add_literals" (formula "62") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "62") (term "0,0,0,1,1")) + (rule "div_literals" (formula "62") (term "0,0,1,1")) + (rule "add_zero_left" (formula "62") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "54") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "1,0,0,0")) + (rule "times_zero_1" (formula "54") (term "0,0,0")) + (rule "div_literals" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "54")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "times_zero_1" (formula "54") (term "1,0")) + (rule "add_zero_right" (formula "54") (term "0")) + (rule "leq_literals" (formula "54")) + (rule "true_left" (formula "54")) + (rule "polyDiv_pullOut" (formula "57") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "57") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "57") (term "0,0,0,1,1")) + (rule "add_literals" (formula "57") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "57") (term "0,0,0,1,1")) + (rule "div_literals" (formula "57") (term "0,0,1,1")) + (rule "add_zero_left" (formula "57") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "54") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "54") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0,1,1")) + (rule "add_literals" (formula "54") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "54") (term "0,0,0,1,1")) + (rule "div_literals" (formula "54") (term "0,0,1,1")) + (rule "add_zero_left" (formula "54") (term "0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "1")) + (rule "add_literals" (formula "54") (term "1,1,1")) + (rule "times_zero_1" (formula "54") (term "1,1")) + (rule "add_zero_right" (formula "54") (term "1")) + (rule "polyDiv_pullOut" (formula "54") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "1,0,0,0")) + (rule "times_zero_1" (formula "54") (term "0,0,0")) + (rule "div_literals" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "13")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "polyDiv_pullOut" (formula "54") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "54") (term "0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_pullOutFactor0" (formula "54") (term "0,0,1")) + (rule "add_literals" (formula "54") (term "1,0,0,1")) + (rule "times_zero_1" (formula "54") (term "0,0,1")) + (rule "div_literals" (formula "54") (term "0,1")) + (rule "add_zero_left" (formula "54") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "55") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0")) + (rule "mul_literals" (formula "55") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "mul_literals" (formula "55") (term "1")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "13")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow1" (formula "59") (ifseqformula "61")) + (rule "greater_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "mul_literals" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "13")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "wellFormedAnonEQ" (formula "17") (term "0,1,0") (ifseqformula "45")) + (rule "replace_known_left" (formula "17") (term "0,1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "65")) (ifInst "" (formula "23")) (ifInst "" (formula "44")) (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "9") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "arrayLengthNotNegative" (formula "61") (term "0")) + (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "62")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthIsAShort" (formula "61") (term "0")) + (rule "expand_inShort" (formula "61")) + (rule "replace_short_MIN" (formula "61") (term "0,1")) + (rule "replace_short_MAX" (formula "61") (term "1,0")) + (rule "andLeft" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "62")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "31")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "1")) + (rule "polySimp_elimOne" (formula "36") (term "1")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "48") (term "0")) + (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "45")) + (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "23")) (ifInst "" (formula "44")) (ifInst "" (formula "49"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "67")) (ifInst "" (formula "43"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "39") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "44") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "44") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "44") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "44") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,2,0,1,0")) + (rule "nnf_notAnd" (formula "51") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "commute_or_2" (formula "48") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "commute_or_2" (formula "48") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "52") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "div_axiom" (formula "12") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "12") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "qeq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "15") (term "1,1,1")) + (rule "times_zero_1" (formula "15") (term "0,1,1")) + (rule "add_zero_left" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "polySimp_invertEq" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "14") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14")) + (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "applyEqRigid" (formula "14") (term "0,1") (ifseqformula "10")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "add_zero_left" (formula "17") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "commute_or_2" (formula "9") (term "0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE" + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "71")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "66")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "23")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE" + (rule "inEqSimp_geqRight" (formula "71")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "66")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "2") (ifseqformula "22")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "64") (term "0")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "52")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "mul_literals" (formula "48") (term "1")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "48")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "add_zero_left" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "mul_literals" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1")) + (rule "polySimp_rightDist" (formula "43") (term "1")) + (rule "mul_literals" (formula "43") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "45")) + (rule "greater_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_rightDist" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "43") (term "0,0")) + (rule "mul_literals" (formula "43") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54")) + (rule "greater_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "mul_literals" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "43")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "2") (term "0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33")) + (rule "true_left" (formula "33")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "12"))) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "eqSymm" (formula "33")) + (rule "translateJavaMulInt" (formula "30") (term "1")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,1")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "applyEq" (formula "37") (term "1,1,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "50") (term "1,1") (ifseqformula "30")) + (rule "inEqSimp_sepPosMonomial0" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "newSym_eq" (formula "30") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "30") (term "1,1")) + (rule "add_zero_right" (formula "30") (term "1")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "30")) + (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "31")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "applyEq" (formula "56") (term "0,1") (ifseqformula "31")) + (rule "applyEq" (formula "47") (term "0,0,1,1") (ifseqformula "31")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "53") (term "0,0,1,1") (ifseqformula "31")) + (rule "applyEq" (formula "38") (term "1,1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "51") (term "1,1") (ifseqformula "31")) + (rule "applyEq" (formula "49") (term "0,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "31")) + (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "31")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1")) + (rule "mul_literals" (formula "49") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "48")) + (rule "greater_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "elimGcdLeq_antec" (formula "28") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "46") (term "0,0")) + (rule "mul_literals" (formula "46") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "56")) + (rule "greater_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "mul_literals" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,0")) + (rule "mul_literals" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "45")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "mul_literals" (formula "48") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "47") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_rightDist" (formula "47") (term "0,0,0")) + (rule "mul_literals" (formula "47") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "47")) + (rule "mul_literals" (formula "44") (term "1,1,0")) + (rule "greater_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "50")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "47") (term "0,0")) + (rule "mul_literals" (formula "47") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "polySimp_addComm1" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "mul_literals" (formula "47") (term "1")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "46")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "1")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0")) + (rule "mul_literals" (formula "16") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "36")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "13")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "javaShiftLeftIntDef" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "40") (term "0")) + (rule "replace_known_left" (formula "40") (term "1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "68")) (ifInst "" (formula "41"))) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "67")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "43") (term "1,0,0,1")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "50") (term "1,0")) + (rule "translateJavaSubInt" (formula "48") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "44") (term "1")) + (rule "translateJavaSubInt" (formula "50") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "3,0")) + (rule "mul_literals" (formula "48") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "3,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "39")) + (rule "inEqSimp_commuteGeq" (formula "45")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "37")) + (rule "eqSymm" (formula "43")) + (rule "applyEq" (formula "46") (term "1,3,0") (ifseqformula "37")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "37")) + (rule "applyEq" (formula "47") (term "1,0,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "37")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "43") (term "0")) + (rule "mod_axiom" (formula "43") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "43") (term "0,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0")) + (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "51") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "70")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "51") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "51") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "translateJavaSubInt" (formula "58") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "56") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "52") (term "1")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_elimSub" (formula "56") (term "3,0")) + (rule "mul_literals" (formula "56") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "58") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "58") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "3,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "applyEq" (formula "54") (term "1") (ifseqformula "51")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "39")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "applyEq" (formula "55") (term "1,3,0") (ifseqformula "51")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "51")) + (rule "applyEq" (formula "57") (term "1,0,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "39")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "51")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "51")) + (rule "applyEq" (formula "57") (term "0,1,0,0,1,0,0,0") (ifseqformula "51")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "51")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,1,0") (ifseqformula "51")) + (rule "applyEq" (formula "55") (term "1,3,0") (ifseqformula "37")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "37")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "37")) + (rule "applyEq" (formula "51") (term "1") (ifseqformula "37")) + (rule "applyEq" (formula "73") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "54") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "53") (term "0,1,0,0,1,1,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "0")) + (rule "mod_axiom" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "37") (term "0,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "commute_or" (formula "48") (term "0,0,0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "commute_or" (formula "47") (term "0,0,0")) + (rule "commute_and" (formula "47") (term "1,0")) + (rule "commute_or" (formula "9") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "expand_moduloInteger" (formula "41") (term "0")) + (rule "replace_int_HALFRANGE" (formula "41") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "41") (term "1,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,0")) + (rule "polySimp_homoEq" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0")) + (rule "applyEq" (formula "41") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_pullOutFactor1" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "1,0")) + (rule "times_zero_1" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "wellFormedAnonEQ" (formula "17") (term "0,1,0") (ifseqformula "46")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "23")) (ifInst "" (formula "45")) (ifInst "" (formula "21")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "51") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "19") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "19") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,0,1,1,1,0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "jdiv_axiom" (formula "60") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,2,1")) + (rule "eqSymm" (formula "60")) + (rule "inEqSimp_subsumption6" (formula "60") (term "0,0") (ifseqformula "13")) + (rule "mul_literals" (formula "60") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "60") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "leq_literals" (formula "60") (term "0,0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "60")) + (rule "applyEqRigid" (formula "57") (term "0") (ifseqformula "60")) + (rule "applyEq" (formula "61") (term "0,1,1") (ifseqformula "60")) + (rule "applyEqRigid" (formula "58") (term "0,1,1") (ifseqformula "60")) + (rule "applyEq" (formula "65") (term "0,1,1") (ifseqformula "60")) + (rule "applyEqRigid" (formula "59") (term "0") (ifseqformula "60")) + (rule "applyEq" (formula "68") (term "1") (ifseqformula "60")) + (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "60")) + (rule "applyEqRigid" (formula "70") (term "1,0,1") (ifseqformula "60")) + (rule "polyDiv_pullOut" (formula "70") (term "1,0,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "70") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0" (formula "70") (term "0,0,1,0,1")) + (rule "add_literals" (formula "70") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "70") (term "0,0,1,0,1")) + (rule "div_literals" (formula "70") (term "0,1,0,1")) + (rule "add_zero_left" (formula "70") (term "1,0,1")) + (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "68") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "68") (term "0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "68") (term "0,0,1")) + (rule "add_literals" (formula "68") (term "1,0,0,1")) + (rule "times_zero_1" (formula "68") (term "0,0,1")) + (rule "div_literals" (formula "68") (term "0,1")) + (rule "add_zero_left" (formula "68") (term "1")) + (rule "polyDiv_pullOut" (formula "59") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "59") (term "0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,0")) + (rule "div_literals" (formula "59") (term "0,0")) + (rule "add_zero_left" (formula "59") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "59")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "1,1,0")) + (rule "times_zero_1" (formula "59") (term "1,0")) + (rule "add_zero_right" (formula "59") (term "0")) + (rule "leq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "polyDiv_pullOut" (formula "64") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "64") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "64") (term "0,0,0,1,1")) + (rule "add_literals" (formula "64") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "64") (term "0,0,0,1,1")) + (rule "div_literals" (formula "64") (term "0,0,1,1")) + (rule "add_zero_left" (formula "64") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "58") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "58") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,0,1,1")) + (rule "add_literals" (formula "58") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "58") (term "0,0,0,1,1")) + (rule "div_literals" (formula "58") (term "0,0,1,1")) + (rule "add_zero_left" (formula "58") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "60") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,2,0,1,1")) + (rule "equal_literals" (formula "60") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_pullOutFactor0" (formula "60") (term "0,0,0,1,1")) + (rule "add_literals" (formula "60") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "60") (term "0,0,0,1,1")) + (rule "div_literals" (formula "60") (term "0,0,1,1")) + (rule "add_zero_left" (formula "60") (term "0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "1")) + (rule "add_literals" (formula "60") (term "1,1,1")) + (rule "times_zero_1" (formula "60") (term "1,1")) + (rule "add_zero_right" (formula "60") (term "1")) + (rule "polyDiv_pullOut" (formula "57") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "57") (term "0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "polySimp_pullOutFactor0" (formula "57") (term "0,0,0")) + (rule "add_literals" (formula "57") (term "1,0,0,0")) + (rule "times_zero_1" (formula "57") (term "0,0,0")) + (rule "div_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "13")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "polyDiv_pullOut" (formula "63") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0")) + (rule "add_literals" (formula "63") (term "1,0,0,0")) + (rule "times_zero_1" (formula "63") (term "0,0,0")) + (rule "div_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "13")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "polyDiv_pullOut" (formula "58") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "58") (term "0,1")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,1")) + (rule "add_literals" (formula "58") (term "1,0,0,1")) + (rule "times_zero_1" (formula "58") (term "0,0,1")) + (rule "div_literals" (formula "58") (term "0,1")) + (rule "add_zero_left" (formula "58") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "62") (ifseqformula "64")) + (rule "greater_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "13")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "57") (term "0,0")) + (rule "mul_literals" (formula "57") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "13")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "39") (term "0")) + (rule "replace_known_left" (formula "39") (term "0,1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "68")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "40") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "40") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "40") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "commute_or_2" (formula "20") (term "0,0")) + (rule "commute_or_2" (formula "19") (term "0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "43") (term "0")) + (rule "replace_known_left" (formula "43") (term "1,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "69")) (ifInst "" (formula "44"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "44") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "53") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "31")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "arrayLengthNotNegative" (formula "66") (term "0")) + (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "65")) + (rule "leq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "arrayLengthIsAShort" (formula "65") (term "0")) + (rule "expand_inShort" (formula "65")) + (rule "replace_short_MIN" (formula "65") (term "0,1")) + (rule "replace_short_MAX" (formula "65") (term "1,0")) + (rule "andLeft" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "66")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "1")) + (rule "polySimp_elimOne" (formula "36") (term "1")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0")) + (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "48")) + (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "70")) (ifInst "" (formula "23")) (ifInst "" (formula "47"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "nnf_imp2or" (formula "41") (term "0,1,0")) + (rule "div_axiom" (formula "12") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "12") (term "0,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,1,1")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "15") (term "1,1,1")) + (rule "times_zero_1" (formula "15") (term "0,1,1")) + (rule "add_zero_left" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "polySimp_invertEq" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "15")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14")) + (rule "applyEq" (formula "17") (term "0,1,1") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "1,1")) + (rule "add_zero_right" (formula "17") (term "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "applyEq" (formula "14") (term "0,1") (ifseqformula "10")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "add_zero_left" (formula "17") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "50") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "50") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "50") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "50") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "50") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "50") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "50") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "50") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "55") (term "0,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "commute_or_2" (formula "54") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "59") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "59") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "59") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "59") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,2,0,1,0")) + (rule "commute_or_2" (formula "9") (term "0,0,0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "51") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "50") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "59") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "59") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "0,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "59") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "58") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "44") (term "0")) + (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "76")) (ifInst "" (formula "45"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0")) + (rule "expand_inInt" (formula "45") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "49") (term "0")) + (rule "replace_known_right" (formula "49") (term "0,0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "28")) (ifInst "" (formula "50"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "50") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "25") (term "1,0,0,0")) + (rule "commute_or" (formula "24") (term "1,0,0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE" + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "neg_literal" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "70")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE" + (rule "inEqSimp_geqRight" (formula "76")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(neglit(5(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "2") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "70")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaAddInt" (formula "64") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_18")) + (rule "assignment_read_attribute_this_final" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "assignmentSubtractionInt" (formula "64") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "64")) + (rule "expand_inInt" (formula "64") (userinteraction)) + (rule "andRight" (formula "64") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "64") (term "1")) + (rule "polySimp_elimSub" (formula "64") (term "0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "28")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "29")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "times_zero_1" (formula "7") (term "0,0")) + (rule "add_zero_left" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43")) + (rule "greater_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_rightDist" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "50") (ifseqformula "54")) + (rule "mul_literals" (formula "50") (term "1,0,1")) + (rule "greater_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "37") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "expand_inInt" (formula "37") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "43") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "39") (term "1")) + (rule "eqSymm" (formula "45") (term "1,0")) + (rule "polySimp_elimSub" (formula "43") (term "3,0")) + (rule "mul_literals" (formula "43") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "45") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "43") (term "3,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "39")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "39")) + (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1")) + (rule "mod_axiom" (formula "39") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "43") (term "1,3,0")) + (rule "mod_axiom" (formula "43") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1")) + (rule "mod_axiom" (formula "55") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "34") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "34") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "0,0")) + (rule "mod_axiom" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1")) + (rule "mod_axiom" (formula "42") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "40") (term "0")) + (rule "mod_axiom" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "41") (term "1")) + (rule "mod_axiom" (formula "41") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1")) + (rule "mod_axiom" (formula "54") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "34") (term "1,1,1,0")) + (rule "mod_axiom" (formula "34") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "39") (term "0,1")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "43") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "55") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "55")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "39")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "shiftLeftDef" (formula "34") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "58") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0,0")) + (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "42") (term "0,1")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "42")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "shiftLeftDef" (formula "40") (term "0,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "41") (term "0,1")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "41") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "41")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "shiftLeftDef" (formula "54") (term "0,1")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "54") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "shiftLeftDef" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "44") (term "1,1,1,1,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "44") (term "1,1,1,0,0,0") (ifseqformula "39")) + (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_rightDist" (formula "60") (term "1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1")) + (rule "mul_literals" (formula "60") (term "0,1")) + (rule "polySimp_elimOne" (formula "60") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "58") (ifseqformula "51")) + (rule "greater_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "mul_literals" (formula "58") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "51")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "41")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "40") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "40")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "expand_moduloInteger" (formula "39") (term "0")) + (rule "replace_int_RANGE" (formula "39") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "39") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,0")) + (rule "polySimp_homoEq" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "23")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "11") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "62")) (ifInst "" (formula "61")) (ifInst "" (formula "34"))) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "1")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0")) + (rule "mul_literals" (formula "16") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "11")) + (rule "applyEq" (formula "45") (term "1,1,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "11")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "11")) + (rule "applyEq" (formula "34") (term "0,1,1,0,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "11")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "11")) + (rule "applyEq" (formula "34") (term "1,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "14") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "applyEq" (formula "13") (term "0,1,0,0,1,1,0") (ifseqformula "11")) + (rule "applyEq" (formula "38") (term "1,1") (ifseqformula "11")) + (rule "applyEq" (formula "13") (term "0,1,0,0,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "11") (term "1")) + (rule "mod_axiom" (formula "11") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "43") (term "1,3,0")) + (rule "mod_axiom" (formula "43") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1,3,0")) + (rule "mod_axiom" (formula "12") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0,1,1")) + (rule "mod_axiom" (formula "53") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "40") (term "0")) + (rule "mod_axiom" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "33") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "41") (term "1")) + (rule "mod_axiom" (formula "41") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0,0")) + (rule "mod_axiom" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1")) + (rule "mod_axiom" (formula "52") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1")) + (rule "mod_axiom" (formula "42") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "33") (term "1,1,1,0")) + (rule "mod_axiom" (formula "33") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,1")) + (rule "mod_axiom" (formula "37") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "13") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "11") (term "0,1")) + (rule "eqSymm" (formula "11")) + (rule "polySimp_elimNeg" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "11") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "11") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "43") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "43") (term "1,3,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "12") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "44") (term "1,1,1,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "53") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,1,1")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "shiftLeftDef" (formula "40") (term "0,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "33") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "33") (term "0,1,1,0,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "41") (term "0,1")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "41")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "shiftLeftDef" (formula "56") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,0")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "44") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "52") (term "0,1")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "shiftLeftDef" (formula "42") (term "0,1")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "42")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "11")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "shiftLeftDef" (formula "33") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "33") (term "1,1,1,0") (ifseqformula "11")) + (rule "shiftLeftDef" (formula "37") (term "0,1,1")) + (rule "polySimp_homoEq" (formula "37")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0")) + (rule "polySimp_homoEq" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "applyEq" (formula "37") (term "0,1,0,0") (ifseqformula "11")) + (rule "polySimp_sepPosMonomial" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "shiftLeftDef" (formula "13") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0,0") (ifseqformula "11")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "51")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "40")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow1" (formula "56") (ifseqformula "51")) + (rule "greater_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "mul_literals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "15"))) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "eqSymm" (formula "35")) + (rule "translateJavaMulInt" (formula "32") (term "0")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_mulComm0" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "33")) + (rule "inEqSimp_commuteGeq" (formula "48")) + (rule "applyEq" (formula "51") (term "1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "13") (term "1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "49") (term "1,0") (ifseqformula "33")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "39") (term "1,1,0,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "32")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "62")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "33")) + (rule "inEqSimp_sepPosMonomial0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1")) + (rule "polySimp_elimOne" (formula "62") (term "1,1")) + (rule "newSym_eq" (formula "32") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "32") (term "1,1")) + (rule "add_zero_right" (formula "32") (term "1")) + (rule "applyEq" (formula "12") (term "1,3,0") (ifseqformula "32")) + (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "32")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "51") (term "1,1,1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "48") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "32")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "applyEq" (formula "51") (term "1,1,1,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "36") (term "1,0,2,0") (ifseqformula "32")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "52") (term "1,1,1,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "59") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "32")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "applyEq" (formula "46") (term "0,0,1,1") (ifseqformula "33")) + (rule "applyEq" (formula "40") (term "1,1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "63") (term "1,1") (ifseqformula "33")) + (rule "applyEq" (formula "60") (term "1,1") (ifseqformula "33")) + (rule "applyEq" (formula "36") (term "1,0,2,0") (ifseqformula "32")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "33")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "33")) + (rule "applyEq" (formula "62") (term "0,0,1,1") (ifseqformula "33")) + (rule "applyEq" (formula "65") (term "0,1") (ifseqformula "33")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "32")) + (rule "applyEq" (formula "1") (term "1,0,1") (ifseqformula "33")) + (rule "applyEq" (formula "11") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "67") (term "0,1,0,1") (ifseqformula "33")) + (rule "applyEq" (formula "58") (term "0,1,0,0") (ifseqformula "33")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1")) + (rule "mul_literals" (formula "58") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,0,1")) + (rule "inEqSimp_subsumption6" (formula "30") (ifseqformula "47")) + (rule "mul_literals" (formula "30") (term "1,1,0")) + (rule "greater_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "62")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "47")) + (rule "greater_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "mul_literals" (formula "44") (term "1,0")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "polySimp_rightDist" (formula "56") (term "0,0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "mul_literals" (formula "58") (term "1")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "45")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "62") (ifseqformula "66")) + (rule "mul_literals" (formula "62") (term "1,0,1")) + (rule "greater_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "43")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1")) + (rule "mul_literals" (formula "59") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "57") (term "0,0")) + (rule "mul_literals" (formula "57") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "45")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "expand_moduloInteger" (formula "11") (term "0")) + (rule "replace_int_RANGE" (formula "11") (term "1,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "applyEq" (formula "11") (term "0,1,0") (ifseqformula "42")) + (rule "polySimp_pullOutFactor1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,0")) + (rule "times_zero_1" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "50") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "49") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "48") (term "0")) + (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "36")) + (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "15")) (ifInst "" (formula "35")) (ifInst "" (formula "49"))) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "34") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "70")) (ifInst "" (formula "40"))) + (rule "expand_inInt" (formula "34") (term "1,0,0,1")) + (rule "expand_inInt" (formula "34") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "41") (term "1,0")) + (rule "translateJavaSubInt" (formula "39") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "35") (term "1")) + (rule "translateJavaSubInt" (formula "41") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "3,0")) + (rule "mul_literals" (formula "39") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "41") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "3,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "31")) + (rule "inEqSimp_commuteGeq" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "29")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "36") (term "1,3,0") (ifseqformula "29")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "29")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "34") (term "0")) + (rule "mod_axiom" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "34") (term "0,0")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "52") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52") (term "1,0,0")) + (rule "expand_inInt" (formula "52") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "11") (term "0")) + (rule "wellFormedAnon" (formula "11") (term "1,0")) + (rule "wellFormedAnonEQ" (formula "11") (term "0,1,0") (ifseqformula "40")) + (rule "replace_known_left" (formula "11") (term "0,1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "73")) (ifInst "" (formula "16")) (ifInst "" (formula "39")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "12") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "12") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "12") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "12") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "54") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "54") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "54") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "54") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "54") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "53") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "53") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "53") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "53") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "53") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1,0,1,0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "expand_moduloInteger" (formula "34") (term "0")) + (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "34") (term "0,0")) + (rule "replace_int_RANGE" (formula "34") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "44")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "1,0")) + (rule "times_zero_1" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "nnf_imp2or" (formula "51") (term "0")) + (rule "commute_and" (formula "39") (term "1,0")) + (rule "commute_or" (formula "40") (term "0,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "div_axiom" (formula "43") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "mul_literals" (formula "43") (term "1,1,1,1")) + (rule "qeq_literals" (formula "43") (term "0,1")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "polySimp_addComm1" (formula "45") (term "1")) + (rule "add_literals" (formula "45") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_homoInEq1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "applyEq" (formula "46") (term "0,0,0,1,0,0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "46") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,1,2,1,0,0") (ifseqformula "43")) + (rule "polySimp_addComm0" (formula "46") (term "1,2,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,1,1,1,1,0,0") (ifseqformula "43")) + (rule "polySimp_addComm0" (formula "46") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "mul_literals" (formula "45") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "46") (term "0,1,0,0") (ifseqformula "44")) + (rule "inEqSimp_homoInEq1" (formula "46") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "46") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "mod_axiom" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0")) + (rule "polySimp_homoEq" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1")) + (rule "newSym_eq" (formula "46") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polyDiv_pullOut" (formula "46") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "polySimp_homoEq" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_addComm0" (formula "46") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,1,1,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,0,0")) + (rule "times_zero_1" (formula "46") (term "0,0")) + (rule "add_zero_left" (formula "46") (term "0")) + (rule "polySimp_invertEq" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "42")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0")) + (rule "neg_literal" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "46")) + (rule "mul_literals" (formula "41") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_antiSymm" (formula "41") (ifseqformula "45")) + (rule "applyEqRigid" (formula "42") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "applyEqRigid" (formula "45") (term "0,1") (ifseqformula "41")) + (rule "mul_literals" (formula "45") (term "1")) + (rule "applyEq" (formula "46") (term "0,1,1") (ifseqformula "41")) + (rule "mul_literals" (formula "46") (term "1,1")) + (rule "add_literals" (formula "46") (term "1")) + (rule "applyEqRigid" (formula "48") (term "0,0,1,0") (ifseqformula "41")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "add_zero_left" (formula "48") (term "1,0")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "41")) + (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "43")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "42")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "jdiv_axiom" (formula "72") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,2,1")) + (rule "eqSymm" (formula "72")) + (rule "inEqSimp_subsumption6" (formula "72") (term "0,0") (ifseqformula "49")) + (rule "mul_literals" (formula "72") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "72") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "leq_literals" (formula "72") (term "0,0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "eqSymm" (formula "72")) + (rule "applyEqRigid" (formula "70") (term "1") (ifseqformula "72")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "72")) + (rule "applyEqRigid" (formula "62") (term "0") (ifseqformula "72")) + (rule "applyEqRigid" (formula "47") (term "0") (ifseqformula "72")) + (rule "applyEqRigid" (formula "63") (term "0,1,1") (ifseqformula "72")) + (rule "applyEq" (formula "48") (term "0,1,1") (ifseqformula "72")) + (rule "applyEqRigid" (formula "67") (term "0,1,1") (ifseqformula "72")) + (rule "applyEqRigid" (formula "73") (term "1,0,1") (ifseqformula "72")) + (rule "applyEq" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "72")) + (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "73") (term "1,0,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "73") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0" (formula "73") (term "0,0,1,0,1")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,1")) + (rule "div_literals" (formula "73") (term "0,1,0,1")) + (rule "add_zero_left" (formula "73") (term "1,0,1")) + (rule "polyDiv_pullOut" (formula "67") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,0,1,1")) + (rule "equal_literals" (formula "67") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,0,1,1")) + (rule "add_literals" (formula "67") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "67") (term "0,0,0,1,1")) + (rule "div_literals" (formula "67") (term "0,0,1,1")) + (rule "add_zero_left" (formula "67") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "48") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,2,0,1,1")) + (rule "equal_literals" (formula "48") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_pullOutFactor0" (formula "48") (term "0,0,0,1,1")) + (rule "add_literals" (formula "48") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "48") (term "0,0,0,1,1")) + (rule "div_literals" (formula "48") (term "0,0,1,1")) + (rule "add_zero_left" (formula "48") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "63") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "63") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "63") (term "0,0,0,1,1")) + (rule "add_literals" (formula "63") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "63") (term "0,0,0,1,1")) + (rule "div_literals" (formula "63") (term "0,0,1,1")) + (rule "add_zero_left" (formula "63") (term "0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "63") (term "1")) + (rule "add_literals" (formula "63") (term "1,1,1")) + (rule "times_zero_1" (formula "63") (term "1,1")) + (rule "add_literals" (formula "63") (term "1")) + (rule "polyDiv_pullOut" (formula "47") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "0,0,0")) + (rule "div_literals" (formula "47") (term "0,0")) + (rule "add_zero_left" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "49")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polyDiv_pullOut" (formula "61") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "61") (term "0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "polySimp_pullOutFactor0" (formula "61") (term "0,0,0")) + (rule "add_literals" (formula "61") (term "1,0,0,0")) + (rule "times_zero_1" (formula "61") (term "0,0,0")) + (rule "div_literals" (formula "61") (term "0,0")) + (rule "add_zero_left" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "61")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0")) + (rule "add_literals" (formula "61") (term "1,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0")) + (rule "add_zero_right" (formula "61") (term "0")) + (rule "leq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "polyDiv_pullOut" (formula "65") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "65") (term "0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "1,0,0,0")) + (rule "times_zero_1" (formula "65") (term "0,0,0")) + (rule "div_literals" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_pullOutFactor0b" (formula "65") (term "0")) + (rule "add_literals" (formula "65") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "48")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "polyDiv_pullOut" (formula "66") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "66") (term "0,1")) + (builtin "One Step Simplification" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "66") (term "0,0,1")) + (rule "add_literals" (formula "66") (term "1,0,0,1")) + (rule "times_zero_1" (formula "66") (term "0,0,1")) + (rule "div_literals" (formula "66") (term "0,1")) + (rule "add_zero_left" (formula "66") (term "1")) + (rule "polyDiv_pullOut" (formula "67") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "67") (term "0,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1")) + (rule "add_literals" (formula "67") (term "1,0,0,1")) + (rule "times_zero_1" (formula "67") (term "0,0,1")) + (rule "div_literals" (formula "67") (term "0,1")) + (rule "add_zero_left" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "64") (ifseqformula "66")) + (rule "greater_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "48")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "47") (term "0,0")) + (rule "mul_literals" (formula "47") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "mul_literals" (formula "47") (term "1")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "49")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "commute_or_2" (formula "55") (term "0,0")) + (rule "commute_or_2" (formula "54") (term "0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "52") (term "0")) + (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "38")) + (rule "replace_known_left" (formula "52") (term "0,1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "71")) (ifInst "" (formula "15")) (ifInst "" (formula "37"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "39") (term "0,0,0")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "arrayLengthIsAShort" (formula "66") (term "0")) + (rule "expand_inShort" (formula "66")) + (rule "replace_short_MIN" (formula "66") (term "0,1")) + (rule "replace_short_MAX" (formula "66") (term "1,0")) + (rule "andLeft" (formula "66")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "67")) + (rule "leq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "23")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "67") (term "0")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "66")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "arrayLengthIsAShort" (formula "49") (term "0")) + (rule "expand_inShort" (formula "49")) + (rule "replace_short_MAX" (formula "49") (term "1,0")) + (rule "replace_short_MIN" (formula "49") (term "0,1")) + (rule "andLeft" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "arrayLengthNotNegative" (formula "51") (term "0")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1")) + (rule "polySimp_elimOne" (formula "28") (term "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "34") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34") (term "1,0,0")) + (rule "expand_inInt" (formula "34") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or" (formula "9") (term "0,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0")) + (rule "nnf_notAnd" (formula "56") (term "0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "nnf_imp2or" (formula "56") (term "0,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "1,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "36") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "36") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "35") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "35") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,0,1,1,1,0")) + (rule "commute_or_2" (formula "40") (term "0,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_imp2or" (formula "32") (term "0,1,0")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "35") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "0,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "35") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "56") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "56") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "56") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "54") (term "0")) + (rule "wellFormedAnonEQ" (formula "54") (term "1,0") (ifseqformula "38")) + (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "74")) (ifInst "" (formula "15")) (ifInst "" (formula "55"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "55") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "55") (term "1,0,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "div_axiom" (formula "45") (term "0") (inst "quotient=quotient_1")) + (rule "qeq_literals" (formula "45") (term "0,1,1")) + (builtin "One Step Simplification" (formula "45")) + (rule "equal_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "mul_literals" (formula "45") (term "1,1,1")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1")) + (rule "add_literals" (formula "47") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "47") (term "1")) + (rule "add_literals" (formula "47") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "applyEqRigid" (formula "45") (term "0") (ifseqformula "48")) + (rule "eqSymm" (formula "45")) + (rule "applyEqRigid" (formula "46") (term "0,1,0,0") (ifseqformula "45")) + (rule "mul_literals" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEqRigid" (formula "47") (term "0,1,0,0") (ifseqformula "45")) + (rule "mul_literals" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "47")) + (rule "mul_literals" (formula "47") (term "1")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "51")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "54")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "nnf_notAnd" (formula "57") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "commute_or" (formula "12") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "60") (term "0,0,0")) + (rule "shift_paren_or" (formula "59") (term "0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0")) + (rule "nnf_imp2or" (formula "34") (term "0,1,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE" + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_zero_right" (formula "67") (term "0,0")) + (rule "qeq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "73")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "72") (ifseqformula "2")) + (rule "qeq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "closeFalse" (formula "72")) + ) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE" + (rule "inEqSimp_geqRight" (formula "74")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=add(Z(4(2(8(1(4(7(3(7(0(1(#))))))))))), l_0)") (inst "elimGcdLeftDiv=int::select(anon_heap_LOOP_0<>, + indices, + arr(i_0))") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_zero_right" (formula "67") (term "0,0")) + (rule "qeq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "2")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_contradInEq1" (formula "54") (ifseqformula "2")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "closeFalse" (formula "54")) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "64") (term "0")) + (rule "polySimp_elimSub" (formula "64") (term "1")) + (rule "polySimp_addComm1" (formula "64") (term "1")) + (rule "polySimp_addComm0" (formula "64") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "25")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "add_zero_left" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "28")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "52")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "49")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "7")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "43")) + (rule "greater_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_rightDist" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "49") (ifseqformula "53")) + (rule "mul_literals" (formula "49") (term "1,0,1")) + (rule "greater_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_rightDist" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "add_literals" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "44")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_and_subsumption3" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "13") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "eqSymm" (formula "21") (term "1,0")) + (rule "translateJavaSubInt" (formula "19") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "1")) + (rule "translateJavaSubInt" (formula "21") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "3,0")) + (rule "mul_literals" (formula "19") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "3,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "15")) + (rule "applyEq" (formula "56") (term "0,1,1") (ifseqformula "15")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "42") (term "0,1,1,0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "15")) + (rule "applyEq" (formula "42") (term "1,1,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "15")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1")) + (rule "mod_axiom" (formula "17") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0")) + (rule "mod_axiom" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1,3,0")) + (rule "mod_axiom" (formula "19") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "58") (term "0,0")) + (rule "mod_axiom" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "0,1,1")) + (rule "mod_axiom" (formula "55") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1")) + (rule "mod_axiom" (formula "54") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "42") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "42") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1")) + (rule "mod_axiom" (formula "18") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0")) + (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,1")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "shiftLeftDef" (formula "16") (term "0,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "19") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "58") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "58") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "58") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "58") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,0,0")) + (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "55") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "55") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "55")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0,0")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "shiftLeftDef" (formula "54") (term "0,1")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "shiftLeftDef" (formula "42") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,0,1,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "18") (term "0,1")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "18") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "42") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "42") (term "1,1,1,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "20") (term "1,1,1,1,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "21") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "15")) + (rule "shiftLeftDef" (formula "20") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "15")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_rightDist" (formula "60") (term "1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1")) + (rule "mul_literals" (formula "60") (term "0,1")) + (rule "polySimp_elimOne" (formula "60") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "58") (ifseqformula "51")) + (rule "greater_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "mul_literals" (formula "58") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "51")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "17")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "16")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "46")) + (rule "true_left" (formula "46")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "46") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "63")) (ifInst "" (formula "62")) (ifInst "" (formula "14"))) + (rule "expand_inInt" (formula "46") (term "1,0,0,1")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "47") (term "1")) + (rule "eqSymm" (formula "53") (term "1,0")) + (rule "polySimp_elimSub" (formula "51") (term "3,0")) + (rule "mul_literals" (formula "51") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "3,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "46")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "46")) + (rule "applyEq" (formula "22") (term "1,1,1,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "46")) + (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "57") (term "0,1,1") (ifseqformula "46")) + (rule "applyEq" (formula "56") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "19") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "44") (term "0,1,1,0,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "46")) + (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "46")) + (rule "applyEq" (formula "20") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "46")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,1,0") (ifseqformula "46")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "46") (term "1")) + (rule "mod_axiom" (formula "46") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,3,0")) + (rule "mod_axiom" (formula "47") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "0")) + (rule "mod_axiom" (formula "54") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "1,3,0")) + (rule "mod_axiom" (formula "21") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,1,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "22") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "23") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "23") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0,1,1")) + (rule "mod_axiom" (formula "56") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1")) + (rule "mod_axiom" (formula "55") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1")) + (rule "mod_axiom" (formula "19") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "0")) + (rule "mod_axiom" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "59") (term "0,0")) + (rule "mod_axiom" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "20") (term "1")) + (rule "mod_axiom" (formula "20") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,1")) + (rule "mod_axiom" (formula "15") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "48") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "48") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "46") (term "0,1")) + (rule "eqSymm" (formula "46")) + (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "47") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "54") (term "0,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "22") (term "1,1,1,1,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "21") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "44") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "44") (term "1,1,1,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "22") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "23") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "56") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "56") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "56")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "46")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "shiftLeftDef" (formula "55") (term "0,1")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "55")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,0")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "46")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "shiftLeftDef" (formula "19") (term "0,1")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "46")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "shiftLeftDef" (formula "44") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,1,0,1,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "18") (term "0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "59") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "59") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "59") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "59") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0,0")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "46")) + (rule "shiftLeftDef" (formula "20") (term "0,1")) + (rule "polySimp_elimNeg" (formula "20") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "20") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "20") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "20") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "46")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "shiftLeftDef" (formula "15") (term "0,1,1")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "46")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "shiftLeftDef" (formula "48") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "48") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "48") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "48") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "48") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "46")) + (rule "inEqSimp_exactShadow1" (formula "59") (ifseqformula "54")) + (rule "greater_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "mul_literals" (formula "59") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "mul_literals" (formula "55") (term "1")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "18")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "54")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "2") (term "0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "1") (term "1,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "22"))) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaSubInt" (formula "42") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "42") (term "0,2,1")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "42")) + (rule "translateJavaMulInt" (formula "39") (term "0")) + (rule "polySimp_elimSub" (formula "42") (term "0,2,1")) + (rule "mul_literals" (formula "42") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "42") (term "0,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "20") (term "1,0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "46") (term "1,1,0,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "39")) + (rule "applyEq" (formula "49") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "50") (term "1,0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "39")) + (rule "inEqSimp_homoInEq1" (formula "61")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "40")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "inEqSimp_sepPosMonomial0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1")) + (rule "newSym_eq" (formula "39") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "39") (term "1,1")) + (rule "add_zero_right" (formula "39") (term "1")) + (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "39")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "51") (term "1,1,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "3,0") (ifseqformula "39")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "47") (term "1,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "1,0,2,0") (ifseqformula "39")) + (rule "eqSymm" (formula "43")) + (rule "applyEq" (formula "19") (term "1,1,1,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "18") (term "1,3,0") (ifseqformula "39")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "14") (term "0,0,1,1") (ifseqformula "40")) + (rule "applyEq" (formula "62") (term "0,0") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "47") (term "1,1,0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "61") (term "0,0,1,1") (ifseqformula "40")) + (rule "applyEq" (formula "64") (term "0,1") (ifseqformula "40")) + (rule "applyEq" (formula "43") (term "1,0,2,0") (ifseqformula "39")) + (rule "eqSymm" (formula "43")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "40")) + (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "40")) + (rule "applyEq" (formula "66") (term "0,1,0,1") (ifseqformula "40")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "1") (term "1,0,1") (ifseqformula "40")) + (rule "applyEq" (formula "1") (term "0,0,0,0,2,0,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "39")) + (rule "applyEq" (formula "57") (term "0,1,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "40")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1")) + (rule "mul_literals" (formula "57") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "15")) + (rule "greater_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "elimGcdLeq_antec" (formula "37") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0")) + (rule "neg_literal" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "37") (term "0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_exactShadow1" (formula "60") (ifseqformula "64")) + (rule "mul_literals" (formula "60") (term "1,0,1")) + (rule "greater_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "13")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "61")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption6" (formula "13") (ifseqformula "16")) + (rule "greater_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mul_literals" (formula "13") (term "1,0")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "15")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1")) + (rule "mul_literals" (formula "57") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "polySimp_rightDist" (formula "56") (term "0,0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "62")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "15")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "expand_moduloInteger" (formula "48") (term "0")) + (rule "replace_int_RANGE" (formula "48") (term "1,1,0")) + (rule "replace_int_MIN" (formula "48") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "48") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "applyEq" (formula "48") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_pullOutFactor1" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,0")) + (rule "times_zero_1" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "49") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "68")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "43") (term "1,0,0,1")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "50") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "48") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "44") (term "1")) + (rule "eqSymm" (formula "50") (term "1,0")) + (rule "polySimp_elimSub" (formula "48") (term "3,0")) + (rule "mul_literals" (formula "48") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "3,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "38")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "38")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "38")) + (rule "eqSymm" (formula "43")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "38")) + (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "43") (term "0")) + (rule "mod_axiom" (formula "43") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "43") (term "0,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0")) + (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "41") (term "0")) + (rule "replace_known_left" (formula "41") (term "1,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "71")) (ifInst "" (formula "42"))) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "52") (term "0")) + (rule "wellFormedAnonEQ" (formula "52") (term "1,0") (ifseqformula "49")) + (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "24")) (ifInst "" (formula "48")) (ifInst "" (formula "53"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "42") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "42") (term "1,0,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "20") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "20") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "54") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "54") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "54") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "54") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "54") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "21") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "21") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "47") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "expand_moduloInteger" (formula "44") (term "0")) + (rule "replace_int_HALFRANGE" (formula "44") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "44") (term "1,1,0")) + (rule "replace_int_MIN" (formula "44") (term "0,0")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_pullOutFactor1" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,0")) + (rule "times_zero_1" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "commute_and" (formula "49") (term "1,0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "div_axiom" (formula "12") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "12") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "qeq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "15") (term "1,1,1")) + (rule "times_zero_1" (formula "15") (term "0,1,1")) + (rule "add_zero_left" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "polySimp_invertEq" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "14")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "elimGcdLeq_antec" (formula "14") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "neg_literal" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14")) + (rule "applyEqRigid" (formula "15") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEqRigid" (formula "15") (term "0,1") (ifseqformula "10")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "applyEq" (formula "15") (term "0,1,1") (ifseqformula "10")) + (rule "mul_literals" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "add_zero_left" (formula "17") (term "1,0")) + (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "jdiv_axiom" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1")) + (rule "eqSymm" (formula "16")) + (rule "inEqSimp_subsumption6" (formula "16") (term "0,0") (ifseqformula "19")) + (rule "greater_literals" (formula "16") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "eqSymm" (formula "16")) + (rule "applyEq" (formula "71") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "64") (term "0,1,1") (ifseqformula "16")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "16")) + (rule "applyEqRigid" (formula "69") (term "0") (ifseqformula "16")) + (rule "applyEq" (formula "68") (term "0,1,1") (ifseqformula "16")) + (rule "applyEqRigid" (formula "17") (term "0") (ifseqformula "16")) + (rule "applyEqRigid" (formula "1") (term "0,0,0,2,0,0,0") (ifseqformula "16")) + (rule "applyEqRigid" (formula "73") (term "1,0,1") (ifseqformula "16")) + (rule "polyDiv_pullOut" (formula "73") (term "1,0,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "73") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0" (formula "73") (term "0,0,1,0,1")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,1")) + (rule "div_literals" (formula "73") (term "0,1,0,1")) + (rule "add_zero_left" (formula "73") (term "1,0,1")) + (rule "polyDiv_pullOut" (formula "1") (term "0,0,0,2,0,0,0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,2,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,2,0,0,0")) + (rule "div_literals" (formula "1") (term "0,0,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,2,0,0,0")) + (rule "polyDiv_pullOut" (formula "17") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "0,0,0")) + (rule "div_literals" (formula "17") (term "0,0")) + (rule "add_zero_left" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "polyDiv_pullOut" (formula "67") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,0,1,1")) + (rule "equal_literals" (formula "67") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,0,1,1")) + (rule "add_literals" (formula "67") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "67") (term "0,0,0,1,1")) + (rule "div_literals" (formula "67") (term "0,0,1,1")) + (rule "add_zero_left" (formula "67") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "68") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "68") (term "0,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "68") (term "0,0,0")) + (rule "add_literals" (formula "68") (term "1,0,0,0")) + (rule "times_zero_1" (formula "68") (term "0,0,0")) + (rule "div_literals" (formula "68") (term "0,0")) + (rule "add_zero_left" (formula "68") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "polySimp_pullOutFactor0b" (formula "68") (term "0")) + (rule "add_literals" (formula "68") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "18")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "polyDiv_pullOut" (formula "17") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "17") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "17") (term "0,0,0,1,1")) + (rule "add_literals" (formula "17") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "17") (term "0,0,0,1,1")) + (rule "div_literals" (formula "17") (term "0,0,1,1")) + (rule "add_zero_left" (formula "17") (term "0,1,1")) + (rule "polyDiv_pullOut" (formula "62") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "62") (term "0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0")) + (rule "add_literals" (formula "62") (term "1,0,0,0")) + (rule "times_zero_1" (formula "62") (term "0,0,0")) + (rule "div_literals" (formula "62") (term "0,0")) + (rule "add_zero_left" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "62")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "1,1,0")) + (rule "times_zero_1" (formula "62") (term "1,0")) + (rule "add_zero_right" (formula "62") (term "0")) + (rule "leq_literals" (formula "62")) + (rule "true_left" (formula "62")) + (rule "polyDiv_pullOut" (formula "62") (term "0,1,1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "62") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "62") (term "0,0,0,1,1")) + (rule "add_literals" (formula "62") (term "1,0,0,0,1,1")) + (rule "times_zero_1" (formula "62") (term "0,0,0,1,1")) + (rule "div_literals" (formula "62") (term "0,0,1,1")) + (rule "add_zero_left" (formula "62") (term "0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "1")) + (rule "add_literals" (formula "62") (term "1,1,1")) + (rule "times_zero_1" (formula "62") (term "1,1")) + (rule "add_zero_right" (formula "62") (term "1")) + (rule "polyDiv_pullOut" (formula "67") (term "1") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0,2,1")) + (rule "equal_literals" (formula "67") (term "0,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_pullOutFactor0" (formula "67") (term "0,0,1")) + (rule "add_literals" (formula "67") (term "1,0,0,1")) + (rule "times_zero_1" (formula "67") (term "0,0,1")) + (rule "div_literals" (formula "67") (term "0,1")) + (rule "add_zero_left" (formula "67") (term "1")) + (rule "polyDiv_pullOut" (formula "16") (term "1") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "16") (term "0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "16") (term "0,0,1")) + (rule "add_literals" (formula "16") (term "1,0,0,1")) + (rule "times_zero_1" (formula "16") (term "0,0,1")) + (rule "div_literals" (formula "16") (term "0,1")) + (rule "add_zero_left" (formula "16") (term "1")) + (rule "inEqSimp_exactShadow1" (formula "65") (ifseqformula "67")) + (rule "mul_literals" (formula "65") (term "1,0,1")) + (rule "greater_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "18")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "commute_or" (formula "53") (term "0,0,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "commute_or_2" (formula "56") (term "0,0")) + (rule "commute_or" (formula "52") (term "0,0,0")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "42")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "inEqSimp_homoInEq1" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0")) + (rule "qeq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "69")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "69") (term "0")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "68")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "37")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthNotNegative" (formula "42") (term "0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "inEqSimp_sepPosMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "1")) + (rule "polySimp_elimOne" (formula "42") (term "1")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0")) + (rule "qeq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "commute_or_2" (formula "26") (term "0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "49") (term "0")) + (rule "replace_known_left" (formula "49") (term "0,1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "73")) (ifInst "" (formula "29"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or" (formula "9") (term "0,0,0,0")) + (rule "nnf_notAnd" (formula "52") (term "0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "57") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "57") (term "1,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "nnf_imp2or" (formula "47") (term "0,1,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "52") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "52") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "52") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "52") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "52") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "52") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "51") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "51") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "51") (term "0,0,0,1,1,1,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "nnf_notAnd" (formula "58") (term "0,0")) + (rule "nnf_imp2or" (formula "58") (term "0,1,0")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "nnf_notAnd" (formula "52") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "52") (term "0,0,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "52") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "52") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "52") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "52") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "52") (term "0,1,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "52") (term "1,1,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "52") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,1,0,0")) + (rule "mul_literals" (formula "52") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "51") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,0,0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "57") (term "0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "div_axiom" (formula "14") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "14") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "qeq_literals" (formula "14") (term "0,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1")) + (rule "add_literals" (formula "16") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "16") (term "1")) + (rule "add_literals" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "17")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "16") (term "0,1,0,0") (ifseqformula "14")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "14")) + (rule "mul_literals" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "commute_or_2" (formula "57") (term "0,0")) + (rule "commute_or_2" (formula "56") (term "0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (rule "commute_or" (formula "26") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "59") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "59") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "59") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "0,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,1,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,1,0,0")) + (rule "shift_paren_or" (formula "60") (term "0,0,0")) + (rule "nnf_imp2or" (formula "51") (term "0,1,0")) + (rule "nnf_notAnd" (formula "59") (term "0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "50") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "nnf_notAnd" (formula "58") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] TRUE" + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "67")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch " self.sorted_splitters[ l_0 * -1 + indices[i_0]@anon_heap_LOOP_0<>] >= 1 + values[begin + i_0] FALSE" + (rule "inEqSimp_geqRight" (formula "73")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "67")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaSubInt" (formula "64") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "64") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "64")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "64")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "preincrement" (formula "64") (term "1")) + (rule "compound_int_cast_expression" (formula "64") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "64") (term "1")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_23")) + (rule "remove_parentheses_right" (formula "64") (term "1")) + (rule "assignmentAdditionInt" (formula "64") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "64")) + (rule "expand_inInt" (formula "64")) + (rule "replace_int_MAX" (formula "64") (term "1,0")) + (rule "replace_int_MIN" (formula "64") (term "0,1")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "times_zero_2" (formula "50") (term "1,0")) + (rule "add_zero_right" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,1")) + (rule "add_literals" (formula "64") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1")) + (rule "polySimp_elimOne" (formula "33") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "polySimp_rightDist" (formula "53") (term "0,1")) + (rule "mul_literals" (formula "53") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "1")) + (rule "polySimp_elimOne" (formula "49") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63") (term "0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "59") (term "1") (ifseqformula "6")) + (rule "leq_literals" (formula "59") (term "0,1")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_leqRight" (formula "59")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "28")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "48")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "29") (ifseqformula "1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0")) + (rule "add_zero_right" (formula "29") (term "0")) + (rule "leq_literals" (formula "29")) + (rule "closeFalse" (formula "29")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaAddInt" (formula "64") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "64") (term "1")) + (rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "blockEmpty" (formula "64") (term "1")) + (rule "lsContinue" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "precOfInt" (formula "64")) + (rule "inEqSimp_ltToLeq" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,1")) + (rule "add_literals" (formula "64") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "64") (term "1,0,0,1")) + (rule "add_zero_right" (formula "64") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1")) + (rule "add_literals" (formula "64") (term "0,0,0,0,1")) + (rule "add_zero_left" (formula "64") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "times_zero_2" (formula "50") (term "1,0")) + (rule "add_zero_right" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "times_zero_2" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "applyEq" (formula "64") (term "1,0,0") (ifseqformula "34")) + (rule "polySimp_addComm1" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0")) + (rule "applyEq" (formula "64") (term "1,0,1") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "64") (term "0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,1")) + (rule "add_literals" (formula "64") (term "1,1,0,1")) + (rule "times_zero_1" (formula "64") (term "1,0,1")) + (rule "add_zero_right" (formula "64") (term "0,1")) + (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1")) + (rule "add_literals" (formula "64") (term "1,0,1")) + (rule "times_zero_1" (formula "64") (term "0,1")) + (rule "leq_literals" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_geqRight" (formula "64")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "50")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_15 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64"))) + (builtin "One Step Simplification" (formula "65")) + (rule "false_right" (formula "65")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "times_zero_2" (formula "51") (term "1,0")) + (rule "add_zero_right" (formula "51") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "35")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_rightDist" (formula "54") (term "0,1")) + (rule "mul_literals" (formula "54") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "26")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "51")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "false_right" (formula "60")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46")) + (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "times_zero_2" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "52")) + (rule "applyEq" (formula "49") (term "0,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "53")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "mul_literals" (formula "45") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1")) + (rule "polySimp_elimOne" (formula "47") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1")) + (rule "polySimp_rightDist" (formula "43") (term "1")) + (rule "mul_literals" (formula "43") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1")) + (rule "polySimp_elimOne" (formula "43") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "1,1,0")) + (rule "times_zero_1" (formula "46") (term "1,0")) + (rule "add_zero_right" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "46") (ifseqformula "42")) + (rule "greater_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "polySimp_rightDist" (formula "46") (term "0,0")) + (rule "mul_literals" (formula "46") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "mul_literals" (formula "46") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "4")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0")) + (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "10")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "55"))) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "translateJavaSubInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "1")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0")) + (rule "mul_literals" (formula "16") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "12")) + (rule "applyEq" (formula "51") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "52") (term "0,1,1") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "13")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1")) + (rule "mod_axiom" (formula "12") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0")) + (rule "mod_axiom" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "mod_axiom" (formula "14") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,3,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "49") (term "0")) + (rule "mod_axiom" (formula "49") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "0,0")) + (rule "mod_axiom" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "50") (term "1")) + (rule "mod_axiom" (formula "50") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0,1,1")) + (rule "mod_axiom" (formula "51") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "39") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,1")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "13") (term "0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "shiftLeftDef" (formula "16") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "49") (term "0,0")) + (rule "polySimp_elimNeg" (formula "49") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "49") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "49") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "49") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "54") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0,0")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "50") (term "0,1")) + (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,1")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "shiftLeftDef" (formula "51") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "polySimp_addComm1" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "mul_literals" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0,0")) + (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "mul_literals" (formula "51") (term "0,1")) + (rule "shiftLeftDef" (formula "39") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "49")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "qeq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "54") (ifseqformula "49")) + (rule "greater_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_rightDist" (formula "54") (term "0,0")) + (rule "mul_literals" (formula "54") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0")) + (rule "polySimp_rightDist" (formula "54") (term "0,1,0")) + (rule "mul_literals" (formula "54") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "mul_literals" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "14")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "43") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "58")) (ifInst "" (formula "62")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "45")) + (rule "eqSymm" (formula "50") (term "1,0")) + (rule "translateJavaSubInt" (formula "48") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "44") (term "1")) + (rule "translateJavaSubInt" (formula "50") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "3,0")) + (rule "mul_literals" (formula "48") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "50") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "3,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "43")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "43")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "43")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "43")) + (rule "applyEq" (formula "54") (term "0,1,1") (ifseqformula "43")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "40") (term "0,1,1,0,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "43")) + (rule "applyEq" (formula "18") (term "1,1,1,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "43")) + (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "43")) + (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "43")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "43")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "43")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "43") (term "1")) + (rule "mod_axiom" (formula "43") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "56") (term "0,0")) + (rule "mod_axiom" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1")) + (rule "mod_axiom" (formula "52") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0,1,1")) + (rule "mod_axiom" (formula "53") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "19") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "40") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1")) + (rule "mod_axiom" (formula "16") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,3,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,3,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0")) + (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0")) + (rule "mod_axiom" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1,1")) + (rule "mod_axiom" (formula "12") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "43") (term "0,1")) + (rule "eqSymm" (formula "43")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "56") (term "0,0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,0,0")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "43")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "shiftLeftDef" (formula "52") (term "0,1")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "43")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "shiftLeftDef" (formula "53") (term "0,0,1,1")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0,1,1")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,1,1")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,1,1")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,1,1")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "43")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "shiftLeftDef" (formula "19") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "40") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "40") (term "0,1,1,0,1,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "16") (term "0,1")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "43")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "18") (term "1,1,1,1,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "44") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "17") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "17") (term "1,3,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "40") (term "1,1,1,0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "14") (term "0,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "43")) + (rule "shiftLeftDef" (formula "12") (term "0,1,1")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1,1")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0,1,0,0") (ifseqformula "43")) + (rule "polySimp_sepPosMonomial" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "43")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "14")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow1" (formula "56") (ifseqformula "51")) + (rule "greater_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "mul_literals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "51")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "59") (ifseqformula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but bucket Out of Bounds!)" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "false_right" (formula "60")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm1" (formula "50") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47")) + (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "times_zero_2" (formula "49") (term "1,0")) + (rule "add_zero_right" (formula "49") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "mul_literals" (formula "46") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "1")) + (rule "polySimp_elimOne" (formula "48") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "46")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_contradInEq1" (formula "45") (ifseqformula "1")) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_homoInEq1" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0")) + (rule "mul_literals" (formula "45") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_zero_right" (formula "45") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_literals" (formula "45") (term "0")) + (rule "leq_literals" (formula "45")) + (rule "closeFalse" (formula "45")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "59")) + (rule "equal_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "closeTrue" (formula "59")) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (_indices = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_indices != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (rule "false_right" (formula "54")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "33")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_5 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "false_right" (formula "51")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "27")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "24")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "26")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "5")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "4")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "33")) + (rule "true_left" (formula "33")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "10") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "expand_inInt" (formula "10") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "1")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0")) + (rule "mul_literals" (formula "16") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "12")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1")) + (rule "mod_axiom" (formula "12") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "0")) + (rule "mod_axiom" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "0,1,1,0,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "mod_axiom" (formula "14") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1")) + (rule "mod_axiom" (formula "15") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1,3,0")) + (rule "mod_axiom" (formula "16") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "17") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,1")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "13") (term "0,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "39") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,0,1,1,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,0,1,1,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "39") (term "0,1,1,0,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "shiftLeftDef" (formula "15") (term "0,1")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "shiftLeftDef" (formula "16") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "17") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "12")) + (rule "shiftLeftDef" (formula "18") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "commute_or" (formula "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "20"))) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaSubInt" (formula "40") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,2,1")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "40")) + (rule "translateJavaMulInt" (formula "37") (term "0")) + (rule "polySimp_elimSub" (formula "40") (term "0,2,1")) + (rule "mul_literals" (formula "40") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "40") (term "0,2,0")) + (rule "mul_literals" (formula "40") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "44") (term "1,1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "15") (term "0,0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "applyEq" (formula "18") (term "1,0,1,0") (ifseqformula "38")) + (rule "newSym_eq" (formula "37") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "37") (term "1,1")) + (rule "add_zero_right" (formula "37") (term "1")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "16") (term "1,3,0") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "3,0") (ifseqformula "37")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0,0") (ifseqformula "37")) + (rule "applyEq" (formula "38") (term "0,0") (ifseqformula "37")) + (rule "eqSymm" (formula "38")) + (rule "applyEq" (formula "41") (term "1,0,2,0") (ifseqformula "37")) + (rule "eqSymm" (formula "41")) + (rule "applyEq" (formula "45") (term "1,1,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "37")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "17") (term "1,1,1,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "14") (term "1") (ifseqformula "37")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "45") (term "1,1,0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "41") (term "1,0,2,0") (ifseqformula "37")) + (rule "eqSymm" (formula "41")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "37")) + (rule "inEqSimp_subsumption6" (formula "35") (ifseqformula "13")) + (rule "mul_literals" (formula "35") (term "1,1,0")) + (rule "greater_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "46") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "48")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "46") (term "1,0,0,1")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "51") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "47") (term "1")) + (rule "eqSymm" (formula "53") (term "1,0")) + (rule "polySimp_elimSub" (formula "51") (term "3,0")) + (rule "mul_literals" (formula "51") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "3,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "48") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "46")) + (rule "applyEq" (formula "50") (term "1,3,0") (ifseqformula "46")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "49")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "46")) + (rule "applyEq" (formula "50") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "52") (term "1,0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "51") (term "0,1,0,0,1,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "52") (term "0,1,0,0,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "46")) + (rule "applyEq" (formula "48") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "1,3,0") (ifseqformula "36")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "applyEq" (formula "46") (term "1") (ifseqformula "36")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "36") (term "0")) + (rule "mod_axiom" (formula "36") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "36") (term "0,0")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "18") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "18") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "18") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,2,0,1,0")) + (rule "commute_or" (formula "44") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "17") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "17") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,0,0,1,1,1,0")) + (rule "commute_or" (formula "9") (term "0,0,0,0")) + (rule "commute_and" (formula "18") (term "1,0,0")) + (rule "commute_and" (formula "17") (term "1,0,0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "expand_moduloInteger" (formula "36") (term "0")) + (rule "replace_int_RANGE" (formula "36") (term "1,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "36") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0")) + (rule "applyEq" (formula "36") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_pullOutFactor1" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "1,0")) + (rule "times_zero_1" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "35")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "wellFormedAnonEQ" (formula "16") (term "0,1,0") (ifseqformula "42")) + (rule "replace_known_left" (formula "16") (term "1,0,1,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "51")) (ifInst "" (formula "22")) (ifInst "" (formula "20")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "47") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "47") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "47") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "47") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_imp2or" (formula "38") (term "0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "17")) + (rule "expand_inInt" (formula "17") (term "1,0,0")) + (rule "expand_inInt" (formula "17") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "46") (term "0")) + (rule "wellFormedAnonEQ" (formula "46") (term "1,0") (ifseqformula "42")) + (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "52")) (ifInst "" (formula "22")) (ifInst "" (formula "41"))) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "40") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "50")) (ifInst "" (formula "11"))) + (rule "expand_inInt" (formula "40") (term "1,0,0,1")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "47") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "45") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "41") (term "1")) + (rule "eqSymm" (formula "47") (term "1,0")) + (rule "polySimp_elimSub" (formula "45") (term "3,0")) + (rule "mul_literals" (formula "45") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "47") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "3,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "51")) + (rule "applyEq" (formula "45") (term "1,0,1,0") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "50")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "1,3,0") (ifseqformula "49")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "49")) + (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,1,0") (ifseqformula "48")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "0")) + (rule "mod_axiom" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "40") (term "0,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "nnf_imp2or" (formula "17") (term "0,1,0")) + (rule "commute_or_2" (formula "47") (term "0,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "commute_or_2" (formula "9") (term "0,0,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "commute_or_2" (formula "51") (term "0,0")) + (rule "expand_moduloInteger" (formula "40") (term "0")) + (rule "replace_int_MIN" (formula "40") (term "0,0")) + (rule "replace_int_RANGE" (formula "40") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "40") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "applyEq" (formula "40") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_pullOutFactor1" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,0")) + (rule "times_zero_1" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "commute_and" (formula "45") (term "1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "18") (term "0,0")) + (rule "commute_or_2" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_imp2or" (formula "49") (term "0,1,0")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "nnf_notAnd" (formula "49") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "48") (term "0")) + (rule "wellFormedAnonEQ" (formula "48") (term "1,0") (ifseqformula "44")) + (rule "replace_known_right" (formula "48") (term "0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "22")) (ifInst "" (formula "43")) (ifInst "" (formula "49"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "49") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "49") (term "1,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "div_axiom" (formula "12") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "12") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "12") (term "0,1,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "equal_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm1" (formula "14") (term "1")) + (rule "add_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,1,0,0") (ifseqformula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,1,0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1")) + (rule "newSym_eq" (formula "15") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "15") (term "1,1,1")) + (rule "times_zero_1" (formula "15") (term "0,1,1")) + (rule "add_zero_right" (formula "15") (term "1,1")) + (rule "add_zero_right" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "15")) + (rule "polySimp_homoEq" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "applyEq" (formula "15") (term "1,0,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polyDiv_pullOut" (formula "15") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "polySimp_invertEq" (formula "15")) + (rule "times_zero_2" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "15")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_antiSymm" (formula "10") (ifseqformula "14")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "applyEq" (formula "15") (term "0,1") (ifseqformula "10")) + (rule "times_zero_2" (formula "15") (term "1")) + (rule "applyEq" (formula "16") (term "0,1,1") (ifseqformula "10")) + (rule "mul_literals" (formula "16") (term "1,1")) + (rule "add_literals" (formula "16") (term "1")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,0") (ifseqformula "10")) + (rule "times_zero_2" (formula "17") (term "0,1,0")) + (rule "add_zero_left" (formula "17") (term "1,0")) + (rule "applyEqRigid" (formula "13") (term "1") (ifseqformula "10")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "12")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or_2" (formula "41") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "52") (term "0")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "arrayLengthIsAShort" (formula "1") (term "0,1")) + (rule "expand_inShort" (formula "1")) + (rule "replace_short_MAX" (formula "1") (term "1,0")) + (rule "replace_short_MIN" (formula "1") (term "0,1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "37")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "1")) + (rule "polySimp_elimOne" (formula "41") (term "1")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: values.length <= begin + i_0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1")) + (rule "times_zero_1" (formula "36") (term "0,0")) + (rule "add_zero_left" (formula "36") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "40") (ifseqformula "2")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0")) + (rule "add_zero_right" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0")) + (rule "add_zero_right" (formula "40") (term "0")) + (rule "leq_literals" (formula "40")) + (rule "closeFalse" (formula "40")) + ) + (branch "CUT: values.length <= begin + i_0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "59")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "2")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "8")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "50") (term "1")) + (rule "blockBreak" (formula "50") (term "1")) + (rule "lsBreak" (formula "50") (term "1")) + (rule "assignment" (formula "50") (term "1")) + (builtin "One Step Simplification" (formula "50")) + (rule "methodCallEmpty" (formula "50") (term "1")) + (rule "tryEmpty" (formula "50") (term "1")) + (rule "emptyModality" (formula "50") (term "1")) + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "impRight" (formula "50")) + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (_indices = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_4" (formula "40") (term "1")) + (rule "for_to_while" (formula "40") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "40") (term "1")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "i")) + (rule "assignment" (formula "40") (term "1")) + (builtin "One Step Simplification" (formula "40")) + (rule "loopScopeInvDia" (formula "40") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "40")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0,0,0")) + (rule "impRight" (formula "41")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "47") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,2,2,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "47") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "28")) + (rule "applyEq" (formula "47") (term "1,0,1,1,0") (ifseqformula "28")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "28")) + (rule "inEqSimp_commuteGeq" (formula "2")) + (rule "commute_and" (formula "4") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "4") (term "0,0,0")) + (rule "commute_and_2" (formula "4") (term "0,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "shift_paren_and" (formula "4") (term "0,0,0")) + (rule "ifElseUnfold" (formula "47") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_2")) + (rule "compound_less_than_comparison_2" (formula "47") (term "1") (inst "#v1=x_4") (inst "#v0=x_3")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_3")) + (rule "assignment" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "variableDeclarationAssign" (formula "47") (term "1")) + (rule "variableDeclaration" (formula "47") (term "1") (newnames "x_4")) + (rule "assignment_read_length" (formula "47")) + (branch "Normal Execution (_indices != null)" + (builtin "One Step Simplification" (formula "47")) + (rule "applyEq" (formula "47") (term "0,1,0") (ifseqformula "28")) + (rule "less_than_comparison_simple" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0,0") (ifseqformula "8") (ifseqformula "9")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0") (ifseqformula "9") (ifseqformula "10")) + (rule "ifElseSplit" (formula "49")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (builtin "Block Contract (Internal)" (formula "50") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "51")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "20")) (ifInst "" (formula "13")) (ifInst "" (formula "48"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1") (ifseqformula "34")) + (rule "andLeft" (formula "40")) + (rule "eqSymm" (formula "52") (term "0,0,1,0,1")) + (rule "replace_known_left" (formula "41") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "emptyStatement" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "emptyStatement" (formula "51") (term "1")) + (rule "tryEmpty" (formula "51") (term "1")) + (rule "blockEmptyLabel" (formula "51") (term "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "methodCallEmpty" (formula "51") (term "1")) + (rule "emptyModality" (formula "51") (term "1")) + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "andRight" (formula "50")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "50")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50")) + (rule "wellFormedAnon" (formula "50")) + (rule "wellFormedAnonEQ" (formula "50") (term "0") (ifseqformula "34")) + (rule "replace_known_left" (formula "50") (term "1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "11")) (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "50")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "andRight" (formula "50")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47"))) + (rule "closeTrue" (formula "50")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0") (ifseqformula "34")) + (rule "orRight" (formula "50")) + (rule "orRight" (formula "50")) + (rule "close" (formula "50") (ifseqformula "12")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "50")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1,1,0") (ifseqformula "34")) + (rule "expand_inInt" (formula "40") (term "1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,2,1")) + (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "pullOutSelect" (formula "41") (term "0") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "41")) + (rule "simplifySelectOfAnon" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "46")) (ifInst "" (formula "52"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "41") (term "0,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "41") (term "0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "41")) + (rule "simplifySelectOfAnonEQ" (formula "41") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "46")) (ifInst "" (formula "52")) (ifInst "" (formula "14"))) + (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "41")) + (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "41")) + (rule "hideAuxiliaryEq" (formula "41")) + (rule "elim_double_block_2" (formula "53") (term "1")) + (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "53")) + (rule "ifSplit" (formula "53")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "compound_assignment_op_minus_array" (formula "53") (term "1") (inst "#v1=x_2") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_6")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "eval_order_array_access3" (formula "53") (term "1") (inst "#v1=x_8") (inst "#v2=x_7") (inst "#v0=x_arr_1")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_7")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_8")) + (rule "compound_int_cast_expression" (formula "53") (term "1") (inst "#v=x_9")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_9")) + (rule "remove_parentheses_right" (formula "53") (term "1")) + (rule "compound_subtraction_2" (formula "53") (term "1") (inst "#v1=x_11") (inst "#v0=x_10")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_10")) + (rule "assignment_array2" (formula "53")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "53")) + (rule "pullOutSelect" (formula "53") (term "0,1,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "54") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_11")) + (rule "assignment_read_attribute_this_final" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "assignmentSubtractionInt" (formula "53") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "53") (userinteraction)) + (rule "instAll" (formula "4") (term "0") (ifseqformula "7") (userinteraction)) + (rule "impLeft" (formula "4") (userinteraction)) + (branch "Case 1" + (rule "expand_inInt" (formula "54")) + (rule "replace_int_MIN" (formula "54") (term "0,1")) + (rule "replace_int_MAX" (formula "54") (term "1,0")) + (rule "replace_known_left" (formula "43") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_elimSub" (formula "54") (term "1,1")) + (rule "polySimp_elimSub" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "1,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "43") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "43") (term "0,1")) + (rule "add_literals" (formula "43") (term "1,0,1")) + (rule "times_zero_1" (formula "43") (term "0,1")) + (rule "leq_literals" (formula "43") (term "1")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "1")) + (rule "mul_literals" (formula "54") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "54") (term "0,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1")) + (rule "polySimp_elimOne" (formula "30") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1")) + (rule "mul_literals" (formula "53") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "53") (term "0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0")) + (rule "polySimp_elimOne" (formula "53") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "42") (term "0") (ifseqformula "4")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_leqRight" (formula "42")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "25")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "21")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "1")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + (branch "Case 2" + (builtin "Evaluate Query" (formula "4") (term "0") (newnames "value,callee,queryResult,res_classify") (userinteraction)) + (rule "replaceKnownQuery1001200110_5" (formula "5") (term "0")) + (rule "replaceKnownSelect_taclet01200110_3" (formula "5") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet01200110_4" (formula "5") (term "1")) + (rule "replaceKnownSelect_taclet200110_0" (formula "1") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet200110_2" (formula "1") (term "0,1,0,0")) + (rule "expand_inInt" (formula "55")) + (rule "replace_int_MIN" (formula "55") (term "0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0")) + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "4")) + (rule "eqSymm" (formula "44") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "55") (term "0,0")) + (rule "polySimp_elimSub" (formula "55") (term "1,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "1,1")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "queryResult")) + (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "4")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "applyEq" (formula "55") (term "1,1,1") (ifseqformula "4")) + (rule "polySimp_addComm0" (formula "55") (term "1,1")) + (rule "commute_and" (formula "55")) + (builtin "Use Operation Contract" (formula "44") (newnames "heapBefore_classify,result,exc_1") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0")) + (branch "Post (classify)" + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10"))) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "44") (term "0,1,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,0,1,0")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "49")) + (rule "translateJavaSubInt" (formula "48") (term "3,0")) + (rule "translateJavaMulInt" (formula "47") (term "1")) + (rule "eqSymm" (formula "49")) + (rule "polySimp_elimSub" (formula "48") (term "3,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "methodCallEmpty" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "emptyModality" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "notRight" (formula "52")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulAssoc" (formula "48") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "63") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "mul_literals" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0,0")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "47") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "48") (term "1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "49") (term "0,3,0") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "1")) + (rule "polySimp_elimOne" (formula "32") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1")) + (rule "polySimp_rightDist" (formula "62") (term "1,1")) + (rule "mul_literals" (formula "62") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62") (term "0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow1" (formula "43") (ifseqformula "42")) + (rule "greater_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "0,0")) + (rule "mul_literals" (formula "43") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "43")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "26")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "27")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "23")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "6")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption3" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Tree" (formula "34")) + (rule "true_left" (formula "34")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedAs_in_de_wiesler_Tree" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "43") (term "0,2,0,1")) + (rule "translateJavaSubInt" (formula "44") (term "1,0")) + (rule "polySimp_elimSub" (formula "43") (term "0,2,0,1")) + (rule "mul_literals" (formula "43") (term "1,0,2,0,1")) + (rule "polySimp_elimSub" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,2,0,1")) + (rule "polySimp_addComm0" (formula "44") (term "1,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0")) + (rule "add_zero_right" (formula "43") (term "0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1")) + (rule "polySimp_rightDist" (formula "43") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1")) + (rule "mul_literals" (formula "43") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1")) + (rule "pullOutSelect" (formula "44") (term "0,1") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,1,0,0") (ifseqformula "31")) + (rule "inEqSimp_commuteGeq" (formula "45") (term "1")) + (rule "pullOutSelect" (formula "43") (term "0,1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,1,1,0,0") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "1")) + (rule "polySimp_addComm1" (formula "44") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1")) + (rule "mul_literals" (formula "44") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1")) + (rule "pullOutSelect" (formula "45") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "45")) + (rule "pullOutSelect" (formula "43") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "43") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "43")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "52"))) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "translateJavaSubInt" (formula "34") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,2,1")) + (rule "eqSymm" (formula "31")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,1")) + (rule "mul_literals" (formula "34") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,0")) + (rule "mul_literals" (formula "34") (term "1,0,2,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "31")) + (rule "applyEq" (formula "52") (term "1,2,0") (ifseqformula "32")) + (rule "applyEq" (formula "54") (term "0,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "50") (term "1,0,1,0,1,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "50") (term "0,0,0,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "53") (term "1,0,1,0,1,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "53") (term "0,1,0,2,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "50") (term "1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "49") (term "0,0,0,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "49") (term "1,2,0") (ifseqformula "32")) + (rule "applyEq" (formula "49") (term "1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "52") (term "0,0,0,0") (ifseqformula "32")) + (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "52")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "49") (term "0,0,0,0") (ifseqformula "32")) + (rule "replace_known_right" (formula "49") (term "0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "49")) + (rule "applyEq" (formula "53") (term "0,0,0,0") (ifseqformula "32")) + (rule "replace_known_right" (formula "53") (term "0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "53")) + (rule "applyEq" (formula "50") (term "0,1,0,2,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "50") (term "1,0,0,0,1,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "31")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "31")) + (rule "applyEq" (formula "50") (term "0,0,0,0") (ifseqformula "32")) + (rule "replace_known_right" (formula "50") (term "0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "50")) + (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "31")) + (rule "applyEq" (formula "49") (term "1,0,0,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "49") (term "0,1,0,2,2,0") (ifseqformula "31")) + (rule "applyEq" (formula "52") (term "1,0,0,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "52") (term "1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "49") (term "0,1,0,2,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "52") (term "0,1,0,2,2,0") (ifseqformula "31")) + (rule "applyEq" (formula "52") (term "0,0,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "52") (term "0,1,0,2,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "31")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "53") (term "0,0,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "53") (term "1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "53") (term "1,0,0,0,1,0,0") (ifseqformula "32")) + (rule "inEqSimp_subsumption0" (formula "68") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0,0")) + (rule "add_zero_right" (formula "68") (term "0,0,0")) + (rule "qeq_literals" (formula "68") (term "0,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_geqRight" (formula "68")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "52") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0")) + (rule "qeq_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "qeq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_exactShadow1" (formula "48") (ifseqformula "1")) + (rule "greater_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,0")) + (rule "mul_literals" (formula "48") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "mul_literals" (formula "48") (term "1")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "48")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_contradInEq0" (formula "47") (ifseqformula "46")) + (rule "qeq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "closeFalse" (formula "47")) + ) + (branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10"))) + (builtin "One Step Simplification" (formula "45")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,0") (ifseqformula "35")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "close" (formula "46") (ifseqformula "45")) + ) + (branch "Pre (classify)" + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "10"))) + (rule "wellFormedAnon" (formula "44") (term "0,0")) + (rule "wellFormedAnonEQ" (formula "44") (term "0,0,0") (ifseqformula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "0,1,0") (ifseqformula "35")) + (rule "expand_inInt" (formula "44") (term "1")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1")) + (rule "replace_known_left" (formula "44") (term "1,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "12")) (ifInst "" (formula "11")) (ifInst "" (formula "42"))) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1")) + (rule "replace_known_left" (formula "44") (term "1") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "44")) + (rule "orRight" (formula "44")) + (rule "orRight" (formula "44")) + (rule "replace_known_right" (formula "3") (term "1") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "0")) + (rule "mul_literals" (formula "57") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "1")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "57") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "3")) + (rule "applyEq" (formula "36") (term "0,0,1,0,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "3")) + (rule "applyEq" (formula "10") (term "1") (ifseqformula "3")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "3")) + (rule "applyEq" (formula "36") (term "0,1,1,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "38") (term "1") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "22")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "5")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0")) + (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "20")) + (rule "close" (formula "38") (ifseqformula "3")) + ) + (branch "Null reference (callee = null)" + (builtin "One Step Simplification" (formula "44")) + (rule "notRight" (formula "44")) + (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "mul_literals" (formula "54") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,1")) + (rule "applyEq" (formula "36") (term "0,0,1,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "50") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "36") (term "0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "38") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53") (term "0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0")) + (rule "polySimp_elimOne" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1")) + (rule "mul_literals" (formula "53") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "25")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "26")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "5")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "32") (term "0,0,0")) + (rule "leq_literals" (formula "32") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_and_subsumption3" (formula "31") (term "0,0,0")) + (rule "leq_literals" (formula "31") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "39"))) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "34") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "33") (term "0,1,0,2,1") (ifseqformula "1")) + (rule "applyEq" (formula "33") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "32") (term "0,3,0") (ifseqformula "1")) + (rule "applyEq" (formula "37") (term "0,1,1,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "37") (term "1,1,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "33")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "close" (formula "45") (ifseqformula "1")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "53")) + (rule "translateJavaSubInt" (formula "53") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "53") (term "1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "assignment_to_primitive_array_component" (formula "53")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "53")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "preincrement" (formula "53") (term "1")) + (rule "compound_int_cast_expression" (formula "53") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_12")) + (rule "remove_parentheses_right" (formula "53") (term "1")) + (rule "assignmentAdditionInt" (formula "53") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53")) + (rule "replace_int_MIN" (formula "53") (term "0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "53") (term "0,1")) + (rule "add_literals" (formula "53") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1")) + (rule "polySimp_elimOne" (formula "30") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "48") (term "1") (ifseqformula "4")) + (rule "leq_literals" (formula "48") (term "0,1")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_leqRight" (formula "48")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "26")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "53")) + (rule "translateJavaAddInt" (formula "53") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "53") (term "1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "lsContinue" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,0")) + (rule "mul_literals" (formula "53") (term "0,0,0")) + (rule "precOfInt" (formula "53")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "53") (term "0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "53") (term "0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,1")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,1")) + (rule "add_literals" (formula "53") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "53") (term "1,0,0,1")) + (rule "add_zero_right" (formula "53") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,0,1")) + (rule "add_literals" (formula "53") (term "0,0,0,0,1")) + (rule "add_zero_left" (formula "53") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "times_zero_2" (formula "53") (term "1,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0")) + (rule "applyEq" (formula "53") (term "1,0,0") (ifseqformula "31")) + (rule "polySimp_addComm1" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0")) + (rule "applyEq" (formula "53") (term "1,0,1") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "53") (term "0,1")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "53") (term "0,1")) + (rule "add_literals" (formula "53") (term "1,1,0,1")) + (rule "times_zero_1" (formula "53") (term "1,0,1")) + (rule "add_zero_right" (formula "53") (term "0,1")) + (rule "polySimp_pullOutFactor1" (formula "53") (term "0,1")) + (rule "add_literals" (formula "53") (term "1,0,1")) + (rule "times_zero_1" (formula "53") (term "0,1")) + (rule "leq_literals" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_geqRight" (formula "53")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_7 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (builtin "One Step Simplification" (formula "54")) + (rule "false_right" (formula "54")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "32")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "5")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_6 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "53"))) + (builtin "One Step Simplification" (formula "54")) + (rule "false_right" (formula "54")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "32")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "23")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "5")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "50") (term "1")) + (rule "blockBreak" (formula "50") (term "1")) + (rule "lsBreak" (formula "50") (term "1")) + (rule "assignment" (formula "50") (term "1")) + (builtin "One Step Simplification" (formula "50")) + (rule "methodCallEmpty" (formula "50") (term "1")) + (rule "tryEmpty" (formula "50") (term "1")) + (rule "emptyModality" (formula "50") (term "1")) + (rule "andRight" (formula "50")) + (branch "Case 1" + (rule "impRight" (formula "50")) + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "51")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "closeTrue" (formula "51")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (_indices = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) +) +(branch "Exceptional Post (classify_all)" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "22") (ifseqformula "21")) +) +(branch "Pre (classify_all)" + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "24")) (ifInst "" (formula "25")) (ifInst "" (formula "1")) (ifInst "" (formula "24")) (ifInst "" (formula "4")) (ifInst "" (formula "25")) (ifInst "" (formula "9"))) + (rule "expand_inInt" (formula "26") (term "1,0,1")) + (rule "expand_inInt" (formula "26") (term "1,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,1")) + (rule "replace_known_left" (formula "26") (term "0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "5"))) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1")) + (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1")) + (rule "replace_known_left" (formula "26") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "translateJavaSubInt" (formula "20") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "20") (term "0,2,0")) + (rule "eqSymm" (formula "17")) + (rule "eqSymm" (formula "20")) + (rule "translateJavaMulInt" (formula "17") (term "1,0")) + (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_elimSub" (formula "20") (term "0,2,1")) + (rule "mul_literals" (formula "20") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "20") (term "0,2,0")) + (rule "mul_literals" (formula "20") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "20") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "eqSymm" (formula "28") (term "1,0")) + (rule "translateJavaSubInt" (formula "26") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "22") (term "1")) + (rule "translateJavaSubInt" (formula "28") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "3,0")) + (rule "mul_literals" (formula "26") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "3,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "22")) + (rule "applyEq" (formula "25") (term "1") (ifseqformula "22")) + (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "2,0") (ifseqformula "22")) + (rule "applyEq" (formula "18") (term "3,0") (ifseqformula "22")) + (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_commuteGeq" (formula "25")) + (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22")) + (rule "eqSymm" (formula "19")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "0,1,0,0,1,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22")) + (rule "eqSymm" (formula "19")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1")) + (rule "mod_axiom" (formula "22") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "23") (term "0")) + (rule "mod_axiom" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "24") (term "1")) + (rule "mod_axiom" (formula "24") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "26") (term "1,3,0")) + (rule "mod_axiom" (formula "26") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "2,0")) + (rule "mod_axiom" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "18") (term "3,0")) + (rule "mod_axiom" (formula "18") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "0")) + (rule "mod_axiom" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "0,1,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1,0,2,1")) + (rule "mod_axiom" (formula "19") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1,0,2,0")) + (rule "mod_axiom" (formula "19") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "22") (term "0,1")) + (rule "eqSymm" (formula "22")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "23") (term "0,0")) + (rule "polySimp_elimNeg" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "23") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "23") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "23") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "24") (term "0,1")) + (rule "polySimp_elimNeg" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "24") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "24") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "24") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "22")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "shiftLeftDef" (formula "26") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "26") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "26") (term "1,3,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "16") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,2,0")) + (rule "applyEq" (formula "16") (term "2,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "18") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,3,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,3,0")) + (rule "applyEq" (formula "18") (term "3,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "25") (term "0,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "16") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,1,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "19") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "27") (term "1,1,1,1,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "28") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "27") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "22")) + (rule "shiftLeftDef" (formula "19") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "19")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "22")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "25")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "expand_moduloInteger" (formula "22") (term "0")) + (rule "replace_int_MIN" (formula "22") (term "0,0")) + (rule "replace_int_RANGE" (formula "22") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "22") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "29") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "29") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,0,1,1,1,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "commute_and" (formula "28") (term "1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "27") (term "0")) + (rule "replace_known_left" (formula "27") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32")) (ifInst "" (formula "28"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "28")) + (rule "expand_inInt" (formula "28") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "28") (term "1,0,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "18") (term "0")) + (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "1")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_imp2or" (formula "29") (term "0,1,0")) + (rule "nnf_notAnd" (formula "30") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,1,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,1,0,0")) + (rule "mul_literals" (formula "30") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "13") (term "0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1")) + (rule "polySimp_elimOne" (formula "13") (term "1")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "14")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "11")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "14")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "30") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "27")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthIsAShort" (formula "30") (term "1")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "27")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "32") (term "0")) + (rule "replace_known_left" (formula "32") (term "0,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "38")) (ifInst "" (formula "1"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "33") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "33") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "1,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "arrayLengthNotNegative" (formula "30") (term "0")) + (rule "arrayLengthIsAShort" (formula "31") (term "0")) + (rule "expand_inShort" (formula "31")) + (rule "replace_short_MIN" (formula "31") (term "0,1")) + (rule "replace_short_MAX" (formula "31") (term "1,0")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "ifthenelse_split" (formula "19") (term "0")) + (branch "self.equal_buckets = TRUE TRUE" + (rule "newSym_eq" (formula "20") (inst "newSymDef=mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "20") (term "1,1")) + (rule "add_zero_right" (formula "20") (term "1")) + (rule "applyEq" (formula "25") (term "1,1,0,0,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "20")) + (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "41") (term "1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "26") (term "1,0,2,0") (ifseqformula "20")) + (rule "eqSymm" (formula "26")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "20")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "40") (term "1,1,1,0,0,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "25") (term "1,1,0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "20")) + (rule "eqSymm" (formula "21")) + (rule "applyEq" (formula "23") (term "3,0") (ifseqformula "20")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "1,0,2,0") (ifseqformula "20")) + (rule "eqSymm" (formula "26")) + (rule "applyEq" (formula "29") (term "1,1") (ifseqformula "20")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,1,1,0") (ifseqformula "20")) + (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "31")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "mul_literals" (formula "17") (term "1,0")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "elimGcdLeq_antec" (formula "17") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,0")) + (rule "neg_literal" (formula "17") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "37") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0")) + (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1")) (ifInst "" (formula "36"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "nnf_notAnd" (formula "36") (term "0,0")) + (rule "nnf_imp2or" (formula "36") (term "0,1,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "commute_or_2" (formula "37") (term "0,0")) + (rule "commute_or_2" (formula "38") (term "0,0")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "commute_or_2" (formula "37") (term "0,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0,1,0")) + (rule "commute_or_2" (formula "36") (term "0,0")) + (rule "commute_or_2" (formula "21") (term "0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "35") (term "0")) + (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "42")) (ifInst "" (formula "36"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "nnf_notAnd" (formula "36") (term "0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0")) + (rule "div_axiom" (formula "26") (term "0,0,0,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "26") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "26") (term "0,1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "equal_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "polySimp_addComm1" (formula "28") (term "1")) + (rule "add_literals" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "applyEq" (formula "29") (term "0,1,1,1,1,1,0,0") (ifseqformula "26")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "29") (term "0,0,0,1,0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "applyEq" (formula "29") (term "0,1,1,2,1,0,0") (ifseqformula "26")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "0,1,0,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "29") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mod_axiom" (formula "29") (term "0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_homoEq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "newSym_eq" (formula "29") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "29") (term "0,1,1")) + (rule "times_zero_1" (formula "29") (term "1,1,1")) + (rule "add_zero_left" (formula "29") (term "1,1")) + (rule "add_zero_right" (formula "29") (term "1")) + (rule "applyEq" (formula "30") (term "0,0") (ifseqformula "29")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1")) + (rule "applyEq" (formula "29") (term "1,0,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polyDiv_pullOut" (formula "29") (term "0") (inst "polyDivCoeff=l_1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_homoEq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,0,0")) + (rule "times_zero_1" (formula "29") (term "0,0")) + (rule "add_zero_left" (formula "29") (term "0")) + (rule "polySimp_invertEq" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "times_zero_2" (formula "29") (term "1")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "elimGcdLeq_antec" (formula "27") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "29")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "elimGcdGeq_antec" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_antiSymm" (formula "24") (ifseqformula "28")) + (rule "applyEqRigid" (formula "29") (term "0") (ifseqformula "24")) + (rule "leq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "29") (term "0,1,1") (ifseqformula "24")) + (rule "times_zero_2" (formula "29") (term "1,1")) + (rule "add_zero_right" (formula "29") (term "1")) + (rule "applyEqRigid" (formula "28") (term "0,1") (ifseqformula "24")) + (rule "times_zero_2" (formula "28") (term "1")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "24")) + (rule "applyEq" (formula "31") (term "0,0,1,0") (ifseqformula "24")) + (rule "times_zero_2" (formula "31") (term "0,1,0")) + (rule "add_zero_left" (formula "31") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "26")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "25")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "38") (term "0")) + (rule "replace_known_left" (formula "38") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "46")) (ifInst "" (formula "39"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "39") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "39") (term "1,0,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "nnf_imp2or" (formula "39") (term "0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "commute_or" (formula "22") (term "1,0,0,0")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "32")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1")) + (rule "polySimp_elimOne" (formula "16") (term "1")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "12")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "30")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthIsAShort" (formula "16") (term "0")) + (rule "expand_inShort" (formula "16")) + (rule "replace_short_MIN" (formula "16") (term "0,1")) + (rule "replace_short_MAX" (formula "16") (term "1,0")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "commute_or" (formula "42") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "43") (term "0,0,0")) + (rule "shift_paren_or" (formula "44") (term "0,0,0")) + (rule "shift_paren_or" (formula "41") (term "0,0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "commute_or" (formula "42") (term "0,0,0,1,0")) + (rule "commute_or" (formula "22") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "40") (term "0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "1,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "div_axiom" (formula "28") (term "0") (inst "quotient=quotient_1")) + (rule "equal_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1")) + (rule "add_literals" (formula "30") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "1")) + (rule "add_literals" (formula "30") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "31")) + (rule "eqSymm" (formula "28")) + (rule "applyEqRigid" (formula "30") (term "0,1,0,0") (ifseqformula "28")) + (rule "times_zero_2" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "28")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "37")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "33")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "commute_or_2" (formula "45") (term "0,0,0")) + (rule "commute_or_2" (formula "42") (term "0,0,0")) + (rule "commute_or_2" (formula "21") (term "0,0,0")) + (rule "cnf_rightDist" (formula "44") (term "0")) + (rule "shift_paren_or" (formula "43") (term "0,0,0")) + (rule "commute_or_2" (formula "43") (term "0,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0,1,0")) + (rule "commute_or" (formula "41") (term "1,0,0,0")) + (rule "distr_forallAnd" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "commute_or_2" (formula "40") (term "0,0,1,0")) + (rule "commute_or_2" (formula "39") (term "0,0")) + (rule "commute_or" (formula "45") (term "0")) + (rule "commute_or" (formula "40") (term "1,0,0,0")) + (rule "commute_or" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "46") (term "0,0,0,0")) + (rule "qeq_literals" (formula "46") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "commute_or" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "42") (term "0,0,0,0")) + (rule "qeq_literals" (formula "42") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "commute_or" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "43") (term "0,0,0,0")) + (rule "qeq_literals" (formula "43") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "shift_paren_or" (formula "41") (term "0,0,0")) + (rule "commute_or" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "44") (term "0,0,0,0")) + (rule "qeq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "shift_paren_or" (formula "39") (term "0,0,0")) + (rule "commute_or" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "45") (term "0,0,0,0")) + (rule "qeq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "shift_paren_or" (formula "40") (term "0,0,0")) + (rule "commute_or_2" (formula "39") (term "0,0,0")) + (rule "commute_or" (formula "39") (term "0,0,0,1,0")) + (rule "commute_or" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "40") (term "0,0,0,0")) + (rule "qeq_literals" (formula "40") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "41"))) + (rule "true_left" (formula "40")) + (rule "commute_or" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "39") (term "0,0,0,0")) + (rule "qeq_literals" (formula "39") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "57") (term "1,0") (ifseqformula "1") (ifseqformula "2")) + (rule "replace_known_right" (formula "1") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48"))) + (rule "closeFalse" (formula "1")) + ) + (branch "self.equal_buckets = TRUE FALSE" + (rule "applyEq" (formula "40") (term "1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "35") (term "1,3,0") (ifseqformula "19")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "19")) + (rule "eqSymm" (formula "24")) + (rule "applyEq" (formula "21") (term "3,0") (ifseqformula "19")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "38") (term "1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "36") (term "1,1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "37") (term "1,1,1,0,0,0,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "37") (term "1,1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "1,1,0,0,0,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "19")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "24") (term "1,0,2,0") (ifseqformula "19")) + (rule "eqSymm" (formula "24")) + (rule "applyEq" (formula "27") (term "1,1") (ifseqformula "19")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,1,1,0") (ifseqformula "19")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "18")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "18")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "18")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "commute_or" (formula "38") (term "1,0,0")) + (rule "div_axiom" (formula "27") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "qeq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "polySimp_addComm1" (formula "29") (term "1")) + (rule "add_literals" (formula "29") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "applyEq" (formula "30") (term "0,1,1,1,1,1,0,0") (ifseqformula "27")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "30") (term "0,1,1,2,1,0,0") (ifseqformula "27")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0,0")) + (rule "applyEq" (formula "30") (term "0,0,0,1,0,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "30") (term "0,1,0,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "30") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "mod_axiom" (formula "30") (term "0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "newSym_eq" (formula "30") (inst "newSymDef=add(mul(int::final(self, + de.wiesler.Classifier::$num_buckets), + Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "30") (term "0,1,1")) + (rule "times_zero_1" (formula "30") (term "1,1,1")) + (rule "add_zero_left" (formula "30") (term "1,1")) + (rule "add_zero_right" (formula "30") (term "1")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1")) + (rule "applyEq" (formula "30") (term "1,0,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polyDiv_pullOut" (formula "30") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,0,0")) + (rule "times_zero_1" (formula "30") (term "0,0")) + (rule "add_zero_left" (formula "30") (term "0")) + (rule "polySimp_invertEq" (formula "30")) + (rule "times_zero_2" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "29")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "elimGcdGeq_antec" (formula "25") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addLiterals" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "27")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "neg_literal" (formula "29") (term "0,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_antiSymm" (formula "25") (ifseqformula "29")) + (rule "applyEqRigid" (formula "32") (term "0,1,1") (ifseqformula "25")) + (rule "times_zero_2" (formula "32") (term "1,1")) + (rule "add_zero_right" (formula "32") (term "1")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEqRigid" (formula "29") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEqRigid" (formula "29") (term "0,1") (ifseqformula "25")) + (rule "times_zero_2" (formula "29") (term "1")) + (rule "applyEqRigid" (formula "32") (term "0,0,1,0") (ifseqformula "25")) + (rule "times_zero_2" (formula "32") (term "0,1,0")) + (rule "add_zero_left" (formula "32") (term "1,0")) + (rule "applyEqRigid" (formula "28") (term "1") (ifseqformula "25")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "26")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "commute_or" (formula "39") (term "1,0,0")) + (rule "commute_or" (formula "23") (term "1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "commute_or" (formula "39") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "37") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "37") (term "1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "40") (term "0,0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "commute_or" (formula "23") (term "1,0,0,1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "20") (term "0,0") (ifseqformula "1") (ifseqformula "2")) + (rule "replace_known_right" (formula "20") (term "1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "46"))) + (rule "closeFalse" (formula "20")) + ) +) +(branch "Null reference (t = null)" + (builtin "One Step Simplification" (formula "26")) + (rule "notRight" (formula "26")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "translateJavaSubInt" (formula "21") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "21") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "18") (term "1,1")) + (rule "eqSymm" (formula "21")) + (rule "eqSymm" (formula "18")) + (rule "polySimp_elimSub" (formula "21") (term "0,2,0")) + (rule "mul_literals" (formula "21") (term "1,0,2,0")) + (rule "eqSymm" (formula "21")) + (rule "polySimp_elimSub" (formula "21") (term "0,2,0")) + (rule "mul_literals" (formula "21") (term "1,0,2,0")) + (rule "eqSymm" (formula "21")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "18") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "18") (term "0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "21") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "eqSymm" (formula "21")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "20") (term "0,3,0") (ifseqformula "1")) + (rule "applyEq" (formula "21") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "eqSymm" (formula "21")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "close" (formula "23") (ifseqformula "1")) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..5788b04 --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,9257 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Sep 05 21:23:00 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Sep 05 21:23:00 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "32088") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "notLeft" (formula "12")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "15")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "translateJavaAddInt" (formula "14") (term "1")) +(rule "eqSymm" (formula "35")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "4")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "9")) +(rule "polySimp_addComm0" (formula "14") (term "1")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "31")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "30")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "29")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "28")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "eqSymm" (formula "27")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "26")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "eqSymm" (formula "25")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "eqSymm" (formula "24")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "eqSymm" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) +(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "20")) +(rule "applyEq" (formula "14") (term "1,1") (ifseqformula "20")) +(rule "commute_and" (formula "18") (term "1,0,0")) +(rule "commute_and" (formula "18") (term "0,0,0")) +(rule "shift_paren_and" (formula "18") (term "0,0")) +(rule "commute_and_2" (formula "18") (term "0,0,0")) +(rule "methodBodyExpand" (formula "41") (term "1") (newnames "heapBefore_classify_locally,savedHeapBefore_classify_locally")) + (builtin "One Step Simplification" (formula "41")) + (builtin "Block Contract (Internal)" (formula "41") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "11")) (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "22")) + (rule "eqSymm" (formula "41") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "41") (term "1")) + (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (rule "tryEmpty" (formula "41") (term "1")) + (rule "blockEmptyLabel" (formula "41") (term "1")) + (rule "blockEmpty" (formula "41") (term "1")) + (rule "methodCallEmpty" (formula "41") (term "1")) + (rule "emptyModality" (formula "41") (term "1")) + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "41")) + (branch "Case 1" + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "41")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "41")) + (branch "Case 1" + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "37"))) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "2"))) + (rule "closeTrue" (formula "41")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "41")) + ) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "0,1,0")) + (rule "expand_inInt" (formula "22") (term "0,0,1")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "commute_and" (formula "25") (term "0,0")) + (rule "elim_double_block_2" (formula "45") (term "1")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "ifUnfold" (formula "48") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "48") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "48") (term "1")) + (builtin "One Step Simplification" (formula "48")) + (rule "replace_known_left" (formula "48") (term "0,0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "48")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "ifSplit" (formula "51")) + (branch "if x true" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "write")) + (builtin "Use Operation Contract" (formula "51") (newnames "heapBefore_classify_locally_batched,result_22,exc_26,heapAfter_classify_locally_batched,anon_heap_classify_locally_batched") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0")) + (branch "Post (classify_locally_batched)" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "33") (term "0,1,0,1")) + (rule "expand_inInt" (formula "33") (term "0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "33") (term "0,1,0,1,0,1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "33") (term "0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,0,0,0,1,1,1,1,1,0,1")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "38")) + (rule "translateJavaMulInt" (formula "33") (term "0,2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "33") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "33") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "33") (term "2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "5,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,0")) + (rule "eqSymm" (formula "42") (term "1,0")) + (rule "translateJavaMod" (formula "39") (term "1,1")) + (rule "translateJavaSubInt" (formula "33") (term "2,1,1,1,0")) + (rule "translateJavaMod" (formula "33") (term "1,0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,1,5,0")) + (rule "translateJavaSubInt" (formula "42") (term "4,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "1")) + (rule "translateJavaSubInt" (formula "33") (term "0,1,0,2,0,0,1,0")) + (rule "translateJavaMod" (formula "41") (term "1,5,0")) + (rule "translateJavaMod" (formula "42") (term "1,4,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,1,1")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "2,0,1,1,0")) + (rule "mul_literals" (formula "33") (term "1,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,0")) + (rule "polySimp_elimSub" (formula "33") (term "2,1,1,1,0")) + (rule "mul_literals" (formula "33") (term "1,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,1,5,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "33") (term "0,1,0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "5,0")) + (rule "polySimp_elimSub" (formula "39") (term "1")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "4,0,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,2,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,1,0,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "assignment" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "i")) + (rule "applyEq" (formula "33") (term "0,1,2,1,1,1,0") (ifseqformula "26")) + (rule "applyEq" (formula "33") (term "1,2,0,1,1,0") (ifseqformula "26")) + (rule "applyEq" (formula "33") (term "1,2,1,0,1,0") (ifseqformula "26")) + (rule "commuteUnion" (formula "33") (term "1,1,0")) + (rule "commuteUnion" (formula "33") (term "0,1,0")) + (rule "commute_and" (formula "42") (term "0,0")) + (rule "associativeLawUnion" (formula "33") (term "1,0")) + (rule "compound_subtraction_2" (formula "65") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_2")) + (rule "assignment" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_1")) + (rule "compound_modulo_1" (formula "65") (term "1") (inst "#v=x_3")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x_3")) + (rule "remove_parentheses_right" (formula "65") (term "1")) + (rule "assignmentSubtractionInt" (formula "65") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65")) + (rule "replace_int_MIN" (formula "65") (term "0,1")) + (rule "replace_int_MAX" (formula "65") (term "1,0")) + (rule "polySimp_elimSub" (formula "65") (term "1,1")) + (rule "polySimp_elimSub" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "1,1")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,1")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "65") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "jmod_axiom" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,4,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "41") (term "5,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,5,0")) + (rule "add_literals" (formula "41") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "41") (term "1,0,5,0")) + (rule "add_zero_right" (formula "41") (term "0,5,0")) + (rule "jmod_axiom" (formula "33") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "39") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1")) + (rule "polySimp_rightDist" (formula "65") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1")) + (rule "mul_literals" (formula "65") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "64") (term "1") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0,1")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,1")) + (rule "add_literals" (formula "64") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "64") (term "1,0,0,1")) + (rule "add_zero_right" (formula "64") (term "0,0,1")) + (rule "qeq_literals" (formula "64") (term "0,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_leqRight" (formula "64")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "17")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaSubInt" (formula "65") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,1,0")) + (rule "assignmentModulo" (formula "65")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaMod" (formula "65") (term "0,1,0")) + (rule "assignmentSubtractionInt" (formula "65") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65")) + (rule "replace_int_MIN" (formula "65") (term "0,1")) + (rule "replace_int_MAX" (formula "65") (term "1,0")) + (rule "polySimp_elimSub" (formula "65") (term "0,0")) + (rule "polySimp_elimSub" (formula "65") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,1")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,1")) + (rule "jmod_axiom" (formula "41") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "41") (term "5,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,5,0")) + (rule "add_literals" (formula "41") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "41") (term "1,0,5,0")) + (rule "add_zero_right" (formula "41") (term "0,5,0")) + (rule "jmod_axiom" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,4,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "33") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "33") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "39") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0")) + (rule "jmod_axiom" (formula "65") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0,0")) + (rule "jmod_axiom" (formula "65") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "65") (term "0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "65") (term "0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,1")) + (rule "add_literals" (formula "65") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "65") (term "1,0,0,1")) + (rule "add_zero_right" (formula "65") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65") (term "0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1")) + (rule "polySimp_rightDist" (formula "65") (term "1,1")) + (rule "mul_literals" (formula "65") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "17")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "20")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "0,1")) + (rule "replace_known_left" (formula "63") (term "1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "63")) + (rule "inEqSimp_leqRight" (formula "63")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,0,0")) + (rule "times_zero_1" (formula "36") (term "0,0")) + (rule "add_zero_left" (formula "36") (term "0")) + (rule "elimGcdGeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "17")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaSubInt" (formula "30") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "30") (term "0,2,1")) + (rule "eqSymm" (formula "27")) + (rule "eqSymm" (formula "30")) + (rule "translateJavaMulInt" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,0")) + (rule "mul_literals" (formula "30") (term "1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,0")) + (rule "mul_literals" (formula "30") (term "1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "24")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "14")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "41") (inst "b=b")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "26"))) + (rule "expand_inInt" (formula "41") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "translateJavaMulInt" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "eqSymm" (formula "54")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "25")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "22") (term "0") (inst "element=element")) + (rule "expand_inInt" (formula "22") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "2")) (ifInst "" (formula "71")) (ifInst "" (formula "23")) (ifInst "" (formula "23")) (ifInst "" (formula "11"))) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0,1,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "50")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "28"))) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "eqSymm" (formula "54")) + (rule "eqSymm" (formula "52")) + (rule "translateJavaSubInt" (formula "54") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "54") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "52") (term "1,0")) + (rule "polySimp_elimSub" (formula "54") (term "0,2,0")) + (rule "mul_literals" (formula "54") (term "1,0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "polySimp_elimSub" (formula "54") (term "0,2,0")) + (rule "mul_literals" (formula "54") (term "1,0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0")) + (rule "eqSymm" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "27")) + (rule "eqSymm" (formula "52")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "23")) + (rule "pullOutSelect" (formula "51") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "52") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "56"))) + (rule "simplifySelectOfAnonEQ" (formula "51") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "56"))) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "30")) + (rule "elementOfUnion" (formula "52") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "52") (term "1,0,0,0")) + (rule "replace_known_right" (formula "52") (term "0,0,1,0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "52")) + (rule "elementOfUnion" (formula "51") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "51") (term "1,0,0,0")) + (rule "replace_known_right" (formula "51") (term "0,0,1,0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "51")) + (rule "elementOfUnion" (formula "52") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "52") (term "1,0,0,0")) + (rule "replace_known_right" (formula "52") (term "0,0,1,0,0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "52")) + (rule "elementOfUnion" (formula "51") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "51") (term "1,0,0,0")) + (rule "replace_known_right" (formula "51") (term "0,0,1,0,0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "51")) + (rule "elementOfUnion" (formula "52") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0,0,0")) + (rule "replace_known_right" (formula "52") (term "0,0,0,0,0,0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "52")) + (rule "elementOfArrayRangeConcrete" (formula "52") (term "0,0,0")) + (rule "replace_known_right" (formula "52") (term "0,0,0,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "52")) + (rule "ifthenelse_negated" (formula "52") (term "0")) + (rule "elementOfUnion" (formula "51") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "51") (term "0,0,0,0")) + (rule "replace_known_right" (formula "51") (term "0,0,0,0,0,0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "51")) + (rule "elementOfArrayRangeConcrete" (formula "51") (term "0,0,0")) + (rule "replace_known_right" (formula "51") (term "0,0,0,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "51")) + (rule "ifthenelse_negated" (formula "51") (term "0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "translateJavaMod" (formula "47") (term "0")) + (rule "jmod_axiom" (formula "47") (term "0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "newSym_eq" (formula "47") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_22, Z(0(#))))")) + (rule "times_zero_1" (formula "47") (term "1,1,1")) + (rule "times_zero_1" (formula "47") (term "0,1,1")) + (rule "add_zero_right" (formula "47") (term "1,1")) + (rule "add_zero_right" (formula "47") (term "1")) + (rule "applyEq" (formula "48") (term "0,0") (ifseqformula "47")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1")) + (rule "applyEq" (formula "49") (term "4,0") (ifseqformula "48")) + (rule "applyEq" (formula "50") (term "3,0,1,0") (ifseqformula "48")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "48")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "48")) + (rule "inEqSimp_homoInEq1" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_zero_right" (formula "45") (term "0")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "48")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "47") (term "1,0,0") (ifseqformula "48")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "48")) + (rule "inEqSimp_homoInEq0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "times_zero_2" (formula "45") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "elimGcdGeq_antec" (formula "46") (inst "elimGcdRightDiv=mul(l_0, Z(6(1(#))))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0")) + (rule "leq_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "39")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "13") (term "0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "inEqSimp_subsumption6" (formula "41") (ifseqformula "47")) + (rule "times_zero_1" (formula "41") (term "1,1,0")) + (rule "greater_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (inst "b=b")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "43")) (ifInst "" (formula "27"))) + (rule "expand_inInt" (formula "10") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "10") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "10") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "translateJavaMulInt" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "eqSymm" (formula "57")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "27")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "nnf_notAnd" (formula "36") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "36") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0")) + (rule "mul_literals" (formula "51") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,1,1")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "36") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "36") (term "1,0,1,0")) + (rule "add_zero_right" (formula "36") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "36") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "51") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "51") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "40") (term "1,0")) + (rule "translateJavaSubInt" (formula "38") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "34") (term "1")) + (rule "translateJavaSubInt" (formula "40") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "3,0")) + (rule "mul_literals" (formula "38") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "3,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "62") (term "1,0,2,2,0") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "1,0,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "36") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "61") (term "1,0,2,2,0") (ifseqformula "34")) + (rule "applyEq" (formula "60") (term "3,0") (ifseqformula "34")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "29")) + (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34")) + (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_commuteGeq" (formula "37")) + (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34")) + (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "34") (term "1")) + (rule "mod_axiom" (formula "34") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "28") (term "0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,0,2,2,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0,2,2,0")) + (rule "javaShiftLeftIntDef" (formula "61") (term "1,0,2,1,0")) + (rule "mod_axiom" (formula "61") (term "1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "javaShiftLeftIntDef" (formula "35") (term "0")) + (rule "mod_axiom" (formula "35") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "1,0,2,1,0")) + (rule "mod_axiom" (formula "62") (term "1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "javaShiftLeftIntDef" (formula "36") (term "1")) + (rule "mod_axiom" (formula "36") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "61") (term "1,0,2,2,0")) + (rule "mod_axiom" (formula "61") (term "1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,1,0,2,2,0")) + (rule "javaShiftLeftIntDef" (formula "60") (term "3,0")) + (rule "mod_axiom" (formula "60") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "2,0")) + (rule "mod_axiom" (formula "28") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "0")) + (rule "mod_axiom" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,3,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "30") (term "3,0")) + (rule "mod_axiom" (formula "30") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,1")) + (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,0")) + (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "34") (term "0,1")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "28") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,2,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,2,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,2,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "62") (term "1,0,2,2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "35") (term "0,0")) + (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "36") (term "0,1")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "36")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "34")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,2,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,2,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,2,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "61") (term "1,0,2,2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "60") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "60") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "60") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "60") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "60") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,3,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,3,0")) + (rule "applyEq" (formula "60") (term "3,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "28") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,2,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,2,0")) + (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "37") (term "0,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "38") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "30") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,3,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,3,0")) + (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "31")) + (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "39") (term "1,1,1,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "61") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "61") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "61") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "61") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "61") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "31")) + (rule "shiftLeftDef" (formula "62") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "62") (term "1,0,2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "31")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "37")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "53") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,1,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,1,0,0,1,1,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,1,1,1")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "expand_moduloInteger" (formula "34") (term "0")) + (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "34") (term "0,0")) + (rule "replace_int_RANGE" (formula "34") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Buffers" (formula "22") (term "0,1,0,1,1,1") (inst "b=b")) + (rule "translateJavaCastInt" (formula "22") (term "0,1,0,1,1,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "22") (term "0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "66"))) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "62") (term "1,1,1,0") (inst "i=i_1")) + (rule "polySimp_homoEq" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "66") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "67")) (ifInst "" (formula "35"))) + (rule "expand_inInt" (formula "66") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "66") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "73") (term "1,0")) + (rule "translateJavaSubInt" (formula "71") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "67") (term "1")) + (rule "translateJavaSubInt" (formula "73") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "71") (term "3,0")) + (rule "mul_literals" (formula "71") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "73") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "73") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "71") (term "3,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "inEqSimp_commuteLeq" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "applyEq" (formula "64") (term "1,0,2,2,0") (ifseqformula "66")) + (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "66")) + (rule "applyEq" (formula "65") (term "1,0,2,2,0") (ifseqformula "66")) + (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "66")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "66")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "42") (term "1,1,1,0,0,0") (ifseqformula "66")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "41") (term "1,3,0") (ifseqformula "66")) + (rule "applyEq" (formula "43") (term "1,1,1,0,0,0") (ifseqformula "66")) + (rule "applyEq" (formula "63") (term "3,0") (ifseqformula "66")) + (rule "applyEq" (formula "30") (term "2,0") (ifseqformula "66")) + (rule "applyEq" (formula "42") (term "1,1,1,1,0") (ifseqformula "66")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "66")) + (rule "applyEq" (formula "65") (term "1,0,2,1,0") (ifseqformula "66")) + (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "66")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "67") (term "0,0") (ifseqformula "31")) + (rule "inEqSimp_commuteGeq" (formula "67")) + (rule "applyEq" (formula "68") (term "1,3,0") (ifseqformula "66")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "70") (term "1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "66")) + (rule "applyEq" (formula "70") (term "0,1,0,0,1,0,0,0") (ifseqformula "66")) + (rule "applyEq" (formula "69") (term "0,1,0,0,1,0,0,0") (ifseqformula "66")) + (rule "applyEq" (formula "69") (term "0,1,0,0,1,1,0") (ifseqformula "66")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "66")) + (rule "eqSymm" (formula "33")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "69") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "66") (term "1")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "66")) + (rule "mod_axiom" (formula "66") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1")) + (rule "mod_axiom" (formula "67") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,2,0")) + (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,2,0")) + (rule "javaShiftLeftIntDef" (formula "32") (term "3,0")) + (rule "mod_axiom" (formula "32") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "65") (term "1,0,2,2,0")) + (rule "mod_axiom" (formula "65") (term "1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,1,0,2,2,0")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,1,0")) + (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "0")) + (rule "mod_axiom" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "1,3,0")) + (rule "mod_axiom" (formula "40") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "42") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "62") (term "3,0")) + (rule "mod_axiom" (formula "62") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "30") (term "2,0")) + (rule "mod_axiom" (formula "30") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "41") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "41") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1")) + (rule "mod_axiom" (formula "39") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "64") (term "1,0,2,1,0")) + (rule "mod_axiom" (formula "64") (term "1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "javaShiftLeftIntDef" (formula "30") (term "0,1,0")) + (rule "mod_axiom" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "0")) + (rule "mod_axiom" (formula "38") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "67") (term "1,3,0")) + (rule "mod_axiom" (formula "67") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "36") (term "1,1")) + (rule "mod_axiom" (formula "36") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,1")) + (rule "javaShiftLeftIntDef" (formula "33") (term "1,0,2,1")) + (rule "mod_axiom" (formula "33") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "33") (term "1,0,2,0")) + (rule "mod_axiom" (formula "33") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "68") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "65") (term "0,1")) + (rule "eqSymm" (formula "65")) + (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "66") (term "0,0")) + (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,0")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,2,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,2,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,2,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "63") (term "1,0,2,2,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "32") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,3,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,3,0")) + (rule "applyEq" (formula "32") (term "3,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,2,0")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,2,0")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,2,0")) + (rule "mul_literals" (formula "64") (term "1,0,0,0,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "64") (term "1,0,2,2,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "63") (term "1,0,2,1,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "41") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "41") (term "1,1,1,0,0,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "40") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "40") (term "1,3,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "42") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "42") (term "1,1,1,0,0,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "62") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "62") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "62") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "62") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "62") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,3,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,3,0")) + (rule "applyEq" (formula "62") (term "3,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "30") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,2,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,2,0")) + (rule "applyEq" (formula "30") (term "2,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "41") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "41") (term "1,1,1,1,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "39") (term "0,1")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "39") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "39")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "65")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "30") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "38") (term "0,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "67") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "67") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "67") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "67") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "67") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "67") (term "1,3,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "36") (term "0,1,1")) + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "applyEq" (formula "36") (term "0,1,0,0") (ifseqformula "65")) + (rule "polySimp_sepPosMonomial" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "shiftLeftDef" (formula "33") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "65")) + (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "33")) + (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "68") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "68") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "68") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "68") (term "1,1,1,0,0,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "33") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "65")) + (rule "shiftLeftDef" (formula "64") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "64") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "64") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "64") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "64") (term "1,0,2,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "63") (term "0,1,0,2,1,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,1,0,2,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,1,0,2,1,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,1,0,2,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,1,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,0,2,1,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0,0,0,1,0,2,1,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "63") (term "1,0,2,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "33")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "66")) + (rule "mul_literals" (formula "38") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "Contract_axiom_for_countElement_in_Buffers" (formula "46") (term "0,1,1,0")) + (rule "replace_known_left" (formula "46") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "22")) (ifInst "" (formula "8")) (ifInst "" (formula "92")) (ifInst "" (formula "22"))) + (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "61") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "61") (term "1,0,0,0") (ifseqformula "49")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "eqSymm" (formula "61") (term "0,1,1,0,0,0,0")) + (rule "replace_known_right" (formula "61") (term "0,0,1,1,1,1,1,1,0,0,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "26")) (ifInst "" (formula "94")) (ifInst "" (formula "93")) (ifInst "" (formula "2")) (ifInst "" (formula "48")) (ifInst "" (formula "3")) (ifInst "" (formula "91"))) + (rule "polySimp_elimSub" (formula "61") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,1,1,0")) + (rule "inEqSimp_commuteGeq" (formula "61") (term "0,1,0")) + (rule "applyEq" (formula "61") (term "0,0,1,0") (ifseqformula "26")) + (rule "inEqSimp_subsumption0" (formula "61") (term "0,1,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "61") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "47") (term "0,1,0") (inst "i=i_1")) + (rule "bsum_lower_equals_upper" (formula "47") (term "0,1,0")) + (rule "eqSymm" (formula "47") (term "1,0")) + (rule "polySimp_invertEq" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "mul_literals" (formula "47") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "62")) + (rule "expand_inInt" (formula "62") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "translateJavaSubInt" (formula "66") (term "1")) + (rule "polySimp_elimSub" (formula "66") (term "1")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1")) + (rule "polySimp_rightDist" (formula "66") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "66") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,1,1")) + (rule "polySimp_addComm1" (formula "66") (term "1")) + (rule "polySimp_addAssoc" (formula "66") (term "0,1")) + (rule "polySimp_addComm0" (formula "66") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "66") (term "0,1")) + (rule "add_literals" (formula "66") (term "1,1,0,1")) + (rule "times_zero_1" (formula "66") (term "1,0,1")) + (rule "add_zero_right" (formula "66") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0")) + (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0,0") (ifseqformula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "25") (term "0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "42") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "42") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "42") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "41") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "41") (term "0,0,0,1,1,1,0")) + (rule "commute_and" (formula "42") (term "1,0,0")) + (rule "commute_and" (formula "41") (term "1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "jdiv_axiom" (formula "58") (term "0")) + (rule "eqSymm" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,2,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,0,0")) + (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "applyEq" (formula "49") (term "0,1,2,1,0,0,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "58")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "67") (term "0,1,1") (ifseqformula "58")) + (rule "applyEq" (formula "68") (term "0,1,4,1,1,1,0") (ifseqformula "58")) + (rule "jdiv_axiom" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,2,1")) + (rule "eqSymm" (formula "60")) + (rule "applyEq" (formula "60") (term "1") (ifseqformula "61")) + (rule "inEqSimp_subsumption6" (formula "60") (term "0,0") (ifseqformula "57")) + (rule "times_zero_1" (formula "60") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "60") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "leq_literals" (formula "60") (term "0,0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "polyDiv_pullOut" (formula "60") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "60") (term "0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_homoEq" (formula "60")) + (rule "polySimp_pullOutFactor0" (formula "60") (term "0,0,0,1,0")) + (rule "add_literals" (formula "60") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "60") (term "0,0,0,1,0")) + (rule "div_literals" (formula "60") (term "0,0,1,0")) + (rule "add_zero_left" (formula "60") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,0")) + (rule "times_zero_1" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "nnf_notAnd" (formula "55") (term "0,0,0")) + (rule "nnf_notAnd" (formula "55") (term "1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "1,0,0")) + (rule "arrayLengthNotNegative" (formula "54") (term "0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "55")) + (rule "qeq_literals" (formula "54")) + (rule "true_left" (formula "54")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "28")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "arrayLengthNotNegative" (formula "53") (term "0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "54")) + (rule "qeq_literals" (formula "53")) + (rule "true_left" (formula "53")) + (rule "arrayLengthIsAShort" (formula "54") (term "0")) + (rule "expand_inShort" (formula "54")) + (rule "replace_short_MAX" (formula "54") (term "1,0")) + (rule "replace_short_MIN" (formula "54") (term "0,1")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "56")) + (rule "qeq_literals" (formula "55")) + (rule "true_left" (formula "55")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "55")) + (rule "leq_literals" (formula "54")) + (rule "true_left" (formula "54")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "53") (term "0")) + (rule "expand_inShort" (formula "53")) + (rule "replace_short_MAX" (formula "53") (term "1,0")) + (rule "replace_short_MIN" (formula "53") (term "0,1")) + (rule "andLeft" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "55")) + (rule "qeq_literals" (formula "54")) + (rule "true_left" (formula "54")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "54")) + (rule "leq_literals" (formula "53")) + (rule "closeFalse" (formula "53")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "65")) + (builtin "Block Contract (Internal)" (formula "65") (newnames "result_23,exc_27,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "66")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "11")) (ifInst "" (formula "3")) (ifInst "" (formula "62"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "1") (ifseqformula "33")) + (rule "andLeft" (formula "46")) + (rule "eqSymm" (formula "67") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "67") (term "0,1,0,0")) + (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polySimp_elimSub" (formula "66") (term "0,1,0,0")) + (rule "variableDeclarationAssign" (formula "66") (term "1")) + (rule "variableDeclaration" (formula "66") (term "1") (newnames "exc_27_1")) + (rule "assignment" (formula "66") (term "1")) + (builtin "One Step Simplification" (formula "66")) + (rule "emptyStatement" (formula "66") (term "1")) + (builtin "One Step Simplification" (formula "66")) + (rule "emptyStatement" (formula "66") (term "1")) + (rule "tryEmpty" (formula "66") (term "1")) + (rule "blockEmptyLabel" (formula "66") (term "1")) + (rule "blockEmpty" (formula "66") (term "1")) + (rule "methodCallEmpty" (formula "66") (term "1")) + (rule "emptyModality" (formula "66") (term "1")) + (rule "andRight" (formula "66")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "66")) + (rule "closeTrue" (formula "66")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "66")) + (rule "closeTrue" (formula "66")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "65")) + (branch "Case 1" + (rule "andRight" (formula "65")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "65")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "65")) + (rule "wellFormedAnonEQ" (formula "65") (ifseqformula "33")) + (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "65")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "65")) + (branch "Case 1" + (rule "andRight" (formula "65")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "61"))) + (rule "closeTrue" (formula "65")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "65")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (ifseqformula "33")) + (rule "orRight" (formula "65")) + (rule "close" (formula "65") (ifseqformula "2")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "65")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "66")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "1,1,1,0") (ifseqformula "33")) + (rule "expand_inInt" (formula "46") (term "0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,0,1,0")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "translateJavaSubInt" (formula "70") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "50") (term "1,0")) + (rule "translateJavaSubInt" (formula "50") (term "0")) + (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0")) + (rule "polySimp_elimSub" (formula "49") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,0,0")) + (rule "times_zero_1" (formula "49") (term "0,0")) + (rule "add_zero_left" (formula "49") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "elim_double_block_2" (formula "69") (term "1")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "1") (ifseqformula "1") (ifseqformula "10")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "55") (term "0,0") (ifseqformula "2") (ifseqformula "3")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "0") (ifseqformula "3") (ifseqformula "12")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0") (ifseqformula "4") (ifseqformula "5")) + (rule "ifUnfold" (formula "73") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "73") (term "1")) + (builtin "One Step Simplification" (formula "73")) + (rule "replace_known_left" (formula "73") (term "0,0,1,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "73")) + (rule "ifSplit" (formula "73")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "73") (term "1")) + (rule "variableDeclarationAssign" (formula "73") (term "1")) + (rule "variableDeclaration" (formula "73") (term "1") (newnames "indices")) + (rule "arrayCreation" (formula "73") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_arr")) + (rule "variableDeclarationAssign" (formula "73") (term "1")) + (rule "variableDeclaration" (formula "73") (term "1") (newnames "dim0")) + (rule "assignmentSubtractionInt" (formula "73") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "73")) + (rule "expand_inInt" (formula "73")) + (rule "replace_int_MAX" (formula "73") (term "1,0")) + (rule "replace_int_MIN" (formula "73") (term "0,1")) + (rule "polySimp_elimSub" (formula "73") (term "0,0")) + (rule "polySimp_elimSub" (formula "73") (term "1,1")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1,1,1")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,0")) + (rule "add_literals" (formula "73") (term "1,0,0,0")) + (rule "times_zero_1" (formula "73") (term "0,0,0")) + (rule "add_zero_left" (formula "73") (term "0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "1,1")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,1")) + (rule "add_literals" (formula "73") (term "1,0,1,1")) + (rule "times_zero_1" (formula "73") (term "0,1,1")) + (rule "add_zero_left" (formula "73") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "jmod_axiom" (formula "53") (term "0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0")) + (rule "jmod_axiom" (formula "46") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,4,0,1,0")) + (rule "add_literals" (formula "46") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "46") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "46") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "45") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "45") (term "5,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,5,0")) + (rule "add_literals" (formula "45") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "45") (term "1,0,5,0")) + (rule "add_zero_right" (formula "45") (term "0,5,0")) + (rule "jmod_axiom" (formula "37") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "73") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0")) + (rule "jmod_axiom" (formula "73") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1")) + (rule "inEqSimp_homoInEq1" (formula "73") (term "1")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "73") (term "0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "73") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,1")) + (rule "jmod_axiom" (formula "43") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,0")) + (rule "mul_literals" (formula "73") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1")) + (rule "polySimp_rightDist" (formula "73") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,1")) + (rule "mul_literals" (formula "73") (term "0,0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "70") (term "1") (ifseqformula "50")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0,1")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "70") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "70") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "70") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,1")) + (rule "add_literals" (formula "70") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "70") (term "1,0,0,1")) + (rule "add_zero_right" (formula "70") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0,1")) + (rule "add_literals" (formula "70") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "70") (term "1,0,0,1")) + (rule "add_literals" (formula "70") (term "0,0,1")) + (rule "qeq_literals" (formula "70") (term "0,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "inEqSimp_geqRight" (formula "70")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_subsumption2" (formula "51") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "greater_literals" (formula "51") (term "0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_rightDist" (formula "51") (term "0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "qeq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "25")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,0,0")) + (rule "times_zero_1" (formula "40") (term "0,0")) + (rule "add_zero_left" (formula "40") (term "0")) + (rule "elimGcdGeq_antec" (formula "40") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0")) + (rule "leq_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "42")) + (rule "mul_literals" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow0" (formula "38") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "38")) + (rule "greater_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,0,0")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "elimGcdGeq_antec" (formula "38") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "38")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow2" (formula "41") (ifseqformula "1")) + (rule "greater_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "mul_literals" (formula "41") (term "1,0,0")) + (rule "times_zero_1" (formula "41") (term "0,0")) + (rule "add_zero_left" (formula "41") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "mul_literals" (formula "41") (term "0,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "40") (term "0,0")) + (rule "mul_literals" (formula "40") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "40")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "73")) + (rule "translateJavaSubInt" (formula "73") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "73") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0")) + (rule "add_zero_left" (formula "73") (term "0,1,0")) + (rule "ifUnfold" (formula "73") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "73") (term "1") (newnames "x_5")) + (rule "less_than_comparison_simple" (formula "73") (term "1")) + (builtin "One Step Simplification" (formula "73")) + (rule "ifSplit" (formula "73")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "blockThrow" (formula "74") (term "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "throwUnfold" (formula "74") (term "1") (inst "#v0=n")) + (rule "variableDeclarationAssign" (formula "74") (term "1")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "n")) + (builtin "Use Dependency Contract" (formula "50") (ifInst "" (formula "74") (term "1,0,0,1")) (ifInst "" (formula "38")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "55") (term "1,1,0,0,0") (ifseqformula "38")) + (rule "replace_known_left" (formula "55") (term "1,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "71")) (ifInst "" (formula "7")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "37")) (ifInst "" (formula "17")) (ifInst "" (formula "50"))) + (rule "true_left" (formula "55")) + (rule "instanceCreationAssignment" (formula "74") (term "1") (inst "#v0=n_1")) + (rule "variableDeclarationAssign" (formula "74") (term "1")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_1")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=n_2")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_2")) + (rule "methodBodyExpand" (formula "74") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "74")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "__NEW__")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=n_3")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "n_3")) + (rule "allocateInstance" (formula "74")) + (builtin "One Step Simplification" (formula "75")) + (builtin "One Step Simplification" (formula "1")) + (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0") (ifseqformula "39")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,1,0") (ifseqformula "39")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8"))) + (rule "notLeft" (formula "1")) + (rule "orRight" (formula "56")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "78")) + (rule "assignment_write_attribute_this" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallWithinClass" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__1,savedHeapBefore__1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__2,savedHeapBefore__2")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment_write_attribute_this" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "assignment_write_attribute_this" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "methodCallReturnIgnoreResult" (formula "78") (term "1")) + (rule "methodCallReturn" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__1,savedHeapBefore__1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__2,savedHeapBefore__2")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallSuper" (formula "78") (term "1")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore__3,savedHeapBefore__3")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment_write_attribute_this" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "assignment_write_attribute_this" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment_write_attribute" (formula "78")) + (branch "Normal Execution (n_1 != null)" + (builtin "One Step Simplification" (formula "78")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallParamThrow" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "tryCatchThrow" (formula "78") (term "1")) + (rule "ifElseUnfold" (formula "78") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_6")) + (rule "equality_comparison_simple" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "replace_known_right" (formula "78") (term "0,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "78")) + (rule "ifElseSplit" (formula "78")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "79")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "elim_double_block" (formula "78") (term "1")) + (rule "ifElseSplit" (formula "78")) + (branch "if n instanceof java.lang.Throwable true" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59"))) + (rule "true_left" (formula "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "e")) + (rule "delete_unnecessary_cast" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "79")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "emptyModality" (formula "78") (term "1")) + (rule "andRight" (formula "78")) + (branch "Case 1" + (rule "andRight" (formula "78")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0")) + (rule "add_literals" (formula "47") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "47") (term "1,0,5,0")) + (rule "add_zero_right" (formula "47") (term "0,5,0")) + (rule "jmod_axiom" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0")) + (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "48") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "45") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "24")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq4" (formula "52") (ifseqformula "2")) + (rule "greater_literals" (formula "52") (term "0,1,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "greater_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "polySimp_rightDist" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1")) + (rule "mul_literals" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm1" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0")) + (rule "add_zero_right" (formula "52") (term "0")) + (rule "leq_literals" (formula "52")) + (rule "closeFalse" (formula "52")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0")) + (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "48") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0")) + (rule "add_literals" (formula "47") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "47") (term "1,0,5,0")) + (rule "add_zero_right" (formula "47") (term "0,5,0")) + (rule "jmod_axiom" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "45") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_contradInEq4" (formula "52") (ifseqformula "2")) + (rule "greater_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "greater_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "polySimp_rightDist" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1")) + (rule "mul_literals" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm1" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0")) + (rule "add_zero_right" (formula "52") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0")) + (rule "add_zero_right" (formula "52") (term "0")) + (rule "leq_literals" (formula "52")) + (rule "closeFalse" (formula "52")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "58"))) + (rule "false_right" (formula "78")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,4,0,1,0")) + (rule "add_literals" (formula "48") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "48") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "5,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,5,0")) + (rule "add_literals" (formula "47") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "47") (term "1,0,5,0")) + (rule "add_zero_right" (formula "47") (term "0,5,0")) + (rule "jmod_axiom" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "jmod_axiom" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "39") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "45") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "55") (ifseqformula "2")) + (rule "andLeft" (formula "55")) + (rule "inEqSimp_homoInEq1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "1,1,0")) + (rule "times_zero_1" (formula "55") (term "1,0")) + (rule "add_zero_right" (formula "55") (term "0")) + (rule "leq_literals" (formula "55")) + (rule "closeFalse" (formula "55")) + ) + ) + (branch "if n instanceof java.lang.Throwable false" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (n_1 = null)" + (rule "false_right" (formula "79")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "1")) + (builtin "Use Dependency Contract" (formula "49") (ifInst "" (formula "74") (term "1,0,0,1")) (ifInst "" (formula "37")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "54") (term "1,1,0,0,0") (ifseqformula "37")) + (rule "replace_known_left" (formula "54") (term "0,1") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "71")) (ifInst "" (formula "6")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "36")) (ifInst "" (formula "16")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "54")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=x_arr_1")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_arr_1")) + (rule "variableDeclarationAssign" (formula "74") (term "1")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "length_1")) + (rule "assignment" (formula "74") (term "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "methodBodyExpand" (formula "74") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "74")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "newObject")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "74") (term "1") (inst "#v0=x_arr_2")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_arr_2")) + (rule "variableDeclarationAssign" (formula "74") (term "1")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "length_2")) + (rule "assignment" (formula "74") (term "1")) + (builtin "One Step Simplification" (formula "74")) + (rule "allocateInstanceWithLength" (formula "74")) + (builtin "One Step Simplification" (formula "75")) + (builtin "One Step Simplification" (formula "1")) + (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0") (ifseqformula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,1,1,0") (ifseqformula "38")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38"))) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "orRight" (formula "56")) + (rule "blockEmpty" (formula "79") (term "1")) + (rule "assignment" (formula "79") (term "1")) + (builtin "One Step Simplification" (formula "79")) + (rule "arrayLengthIsAShort" (formula "1") (term "0")) + (rule "expand_inShort" (formula "1")) + (rule "replace_short_MIN" (formula "1") (term "0,1")) + (rule "replace_short_MAX" (formula "1") (term "1,0")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "3")) + (rule "arrayLengthNotNegative" (formula "3") (term "0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "4")) + (rule "methodCall" (formula "81")) + (branch "Normal Execution (newObject != null )" + (rule "methodBodyExpand" (formula "81") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "81")) + (rule "assignment_write_attribute_this" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "methodCallWithinClass" (formula "81") (term "1")) + (rule "methodBodyExpand" (formula "81") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "81")) + (rule "arrayInitialisation" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "polySimp_elimSub" (formula "81") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "81") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "2,1,0,1,0")) + (rule "applyEq" (formula "81") (term "1,2,1,0,1,0") (ifseqformula "3")) + (rule "methodCallEmpty" (formula "81") (term "1")) + (rule "blockEmpty" (formula "81") (term "1")) + (rule "assignment_write_attribute_this" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "methodCallReturnIgnoreResult" (formula "81") (term "1")) + (rule "blockEmpty" (formula "81") (term "1")) + (rule "methodCallReturn" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "methodCallEmpty" (formula "81") (term "1")) + (rule "blockEmpty" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "blockEmpty" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (builtin "Block Contract (Internal)" (formula "81") (newnames "result_24,exc_28,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "19")) (ifInst "" (formula "11")) (ifInst "" (formula "78"))) + (builtin "One Step Simplification" (formula "82")) + (rule "andLeft" (formula "58")) + (rule "eqSymm" (formula "83") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "59") (term "0")) + (rule "variableDeclarationAssign" (formula "83") (term "1")) + (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_28_1")) + (rule "assignment" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfStore" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfCreate" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "63"))) + (rule "castDel" (formula "59") (term "1,0")) + (rule "eqSymm" (formula "59") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "59") (term "0,0")) + (rule "replace_known_right" (formula "59") (term "1,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "80"))) + (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "80")) (ifInst "" (formula "10"))) + (rule "applyEqReverse" (formula "60") (term "0") (ifseqformula "59")) + (rule "hideAuxiliaryEq" (formula "59")) + (rule "tryEmpty" (formula "82") (term "1")) + (rule "blockEmptyLabel" (formula "82") (term "1")) + (rule "blockEmpty" (formula "82") (term "1")) + (rule "methodCallEmpty" (formula "82") (term "1")) + (rule "emptyModality" (formula "82") (term "1")) + (rule "andRight" (formula "82")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "82")) + (rule "closeTrue" (formula "82")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "82")) + (rule "closeTrue" (formula "82")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81")) + (rule "wellFormedStorePrimitive" (formula "81")) + (rule "inEqSimp_ltRight" (formula "61")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "80") (term "1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,2,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "wellFormedMemsetArrayPrimitive" (formula "76")) + (rule "wellFormedStorePrimitive" (formula "76")) + (rule "wellFormedStorePrimitive" (formula "76")) + (rule "wellFormedStorePrimitive" (formula "76")) + (rule "wellFormedCreate" (formula "76")) + (rule "wellFormedAnonEQ" (formula "76") (ifseqformula "37")) + (rule "replace_known_left" (formula "76") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "36"))) + (rule "closeTrue" (formula "76")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "77"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81")) + (rule "dismissNonSelectedField" (formula "81") (term "0")) + (rule "inEqSimp_ltRight" (formula "61")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "80") (term "1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,2,1,0,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "73")) (ifInst "" (formula "10"))) + (rule "applyEqReverse" (formula "77") (term "0") (ifseqformula "1")) + (rule "close" (formula "77") (ifseqformula "10")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "81")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "58")) + (builtin "One Step Simplification" (formula "82")) + (rule "expand_inInt" (formula "58") (term "0,1,0")) + (rule "replace_int_MIN" (formula "58") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "58") (term "1,0,0,1,0")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "replace_known_left" (formula "61") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "74"))) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "elim_double_block_2" (formula "90") (term "1")) + (rule "ifUnfold" (formula "90") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "90") (term "1")) + (builtin "One Step Simplification" (formula "90")) + (rule "replace_known_left" (formula "90") (term "0,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "90")) + (rule "ifSplit" (formula "90")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "91")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "91")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "90") (term "1")) + (builtin "Use Operation Contract" (formula "90") (newnames "heapBefore_classify_all,exc_29,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0")) + (branch "Post (classify_all)" + (builtin "One Step Simplification" (formula "92")) + (builtin "One Step Simplification" (formula "62")) + (rule "expand_inInt" (formula "62") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "64")) + (rule "translateJavaAddInt" (formula "64") (term "0,2,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0")) + (rule "applyEq" (formula "64") (term "1,1,0,0,0") (ifseqformula "3")) + (rule "commute_and" (formula "64") (term "1,0,0")) + (rule "commute_and" (formula "64") (term "0,0,0")) + (rule "shift_paren_and" (formula "64") (term "0,0")) + (rule "commute_and_2" (formula "64") (term "0,0,0")) + (builtin "Use Operation Contract" (formula "96") (newnames "heapBefore_finish_batch,result_25,exc_30,heapAfter_finish_batch,anon_heap_finish_batch") (contract "de.wiesler.Classifier[de.wiesler.Classifier::finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0")) + (branch "Post (finish_batch)" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "68")) + (rule "expand_inInt" (formula "68") (term "0,0,0,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "68") (term "0,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,0,1,0,1")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "78")) + (rule "translateJavaSubInt" (formula "68") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "76") (term "0,0")) + (rule "translateJavaAddInt" (formula "77") (term "5,0")) + (rule "eqSymm" (formula "78") (term "1,0")) + (rule "translateJavaMulInt" (formula "68") (term "0,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "78") (term "4,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "2,0,1,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "76") (term "0,0")) + (rule "polySimp_elimSub" (formula "68") (term "2,1,1,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "polySimp_addComm0" (formula "68") (term "2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "inEqSimp_commuteLeq" (formula "74")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0")) + (rule "assignment" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "applyEq" (formula "78") (term "1,4,0,1,0") (ifseqformula "3")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "4,0,1,0")) + (rule "add_literals" (formula "78") (term "1,1,4,0,1,0")) + (rule "times_zero_1" (formula "78") (term "1,4,0,1,0")) + (rule "add_zero_right" (formula "78") (term "4,0,1,0")) + (rule "applyEq" (formula "68") (term "1,2,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "68") (term "0,1,2,1,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "68") (term "1,2,1,0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "77") (term "1,5,0") (ifseqformula "3")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "5,0")) + (rule "add_literals" (formula "77") (term "1,1,5,0")) + (rule "times_zero_1" (formula "77") (term "1,5,0")) + (rule "add_zero_right" (formula "77") (term "5,0")) + (rule "commuteUnion" (formula "68") (term "1,1,0")) + (rule "commuteUnion" (formula "68") (term "0,1,0")) + (rule "commute_and" (formula "78") (term "0,0")) + (rule "associativeLawUnion" (formula "68") (term "1,0")) + (builtin "Use Operation Contract" (formula "110") (newnames "heapBefore_calculate_bucket_starts,exc_31,heapAfter_calculate_bucket_starts,anon_heap_calculate_bucket_starts") (contract "de.wiesler.Classifier[de.wiesler.Classifier::calculate_bucket_starts([I,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0")) + (branch "Post (calculate_bucket_starts)" + (builtin "One Step Simplification" (formula "82")) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "85")) + (rule "translateJavaSubInt" (formula "84") (term "1")) + (rule "translateJavaSubInt" (formula "85") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "84") (term "1")) + (rule "polySimp_elimSub" (formula "85") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "1")) + (rule "polySimp_addComm0" (formula "85") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0")) + (rule "applyEq" (formula "82") (term "2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "83") (term "2,0") (ifseqformula "34")) + (rule "applyEq" (formula "84") (term "0,2,0") (ifseqformula "34")) + (rule "applyEq" (formula "85") (term "1,1,0,0,0") (ifseqformula "34")) + (rule "pullOutSelect" (formula "84") (term "0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "116"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,1,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,0,1,0,0") (ifseqformula "62")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "84") (term "2,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "117"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "84") (term "0,1,0,0") (ifseqformula "62")) + (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,1,0,0")) + (rule "elementOfUnion" (formula "84") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "85") (term "0,0,0,0,1,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "84") (term "0,0,0,1,0,0") (ifseqformula "85")) + (rule "simplifySelectOfMemset" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "simplifySelectOfStore" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93"))) + (rule "simplifySelectOfStore" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93"))) + (rule "simplifySelectOfStore" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93"))) + (rule "simplifySelectOfCreate" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "93")) (ifInst "" (formula "100"))) + (rule "simplifySelectOfAnonEQ" (formula "85") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "118")) (ifInst "" (formula "17"))) + (rule "applyEqReverse" (formula "86") (term "0,0,0,0,1,0,0") (ifseqformula "85")) + (rule "applyEqReverse" (formula "84") (term "0,0,0,1,0,0") (ifseqformula "85")) + (rule "hideAuxiliaryEq" (formula "85")) + (rule "replace_known_left" (formula "84") (term "0,0,1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "84")) + (rule "replace_known_left" (formula "85") (term "0,0,0,1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "85")) + (rule "pullOutSelect" (formula "84") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "118"))) + (rule "eqSymm" (formula "84") (term "0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "84")) + (rule "dismissNonSelectedField" (formula "84") (term "2,0")) + (rule "dismissNonSelectedField" (formula "84") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet0001201112101012_2" (formula "84") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0001201112101012_8" (formula "84") (term "0,0,0,0")) + (rule "replace_known_left" (formula "84") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "84")) + (rule "simplifySelectOfMemset" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "dismissNonSelectedField" (formula "84") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0")) + (rule "eqSymm" (formula "84") (term "0,0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "84")) + (rule "simplifySelectOfStore" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93"))) + (rule "simplifySelectOfStore" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93"))) + (rule "simplifySelectOfCreate" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "93")) (ifInst "" (formula "100"))) + (rule "simplifySelectOfAnonEQ" (formula "84") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "118")) (ifInst "" (formula "17"))) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "1,0,0")) + (rule "eqSymm" (formula "84") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,1,0,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0")) + (rule "commute_and" (formula "88") (term "1,0,0")) + (rule "commute_and" (formula "88") (term "0,0,0")) + (rule "methodCallReturn" (formula "121") (term "1")) + (rule "assignment" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "shift_paren_and" (formula "88") (term "0,0")) + (rule "commute_and_2" (formula "88") (term "0,0,0")) + (rule "methodCallEmpty" (formula "121") (term "1")) + (rule "tryEmpty" (formula "121") (term "1")) + (rule "emptyModality" (formula "121") (term "1")) + (rule "andRight" (formula "121")) + (branch "Case 1" + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "121")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "121") (userinteraction)) + (rule "polySimp_homoEq" (formula "87")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "polySimp_addComm0" (formula "87") (term "0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "88") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,1,0")) + (rule "inEqSimp_ltRight" (formula "101")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "88") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "86") (term "0,1,0,0")) + (rule "add_literals" (formula "86") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "86") (term "0,1,0,0")) + (rule "qeq_literals" (formula "86") (term "1,0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,1,0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "85") (term "0,1,0,0")) + (rule "qeq_literals" (formula "85") (term "1,0,0")) + (builtin "One Step Simplification" (formula "85")) + (rule "applyEqReverse" (formula "86") (term "2,0") (ifseqformula "85")) + (rule "hideAuxiliaryEq" (formula "85")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,1,0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "84") (term "0,1,0,0")) + (rule "qeq_literals" (formula "84") (term "1,0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEqReverse" (formula "85") (term "2,0") (ifseqformula "84")) + (rule "hideAuxiliaryEq" (formula "84")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "78") (term "0,1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1,4,1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,1,4,1,1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,0,1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "4,1,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,4,1,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,4,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,4,1,1,0")) + (rule "add_literals" (formula "78") (term "1,1,0,4,1,1,0")) + (rule "times_zero_1" (formula "78") (term "1,0,4,1,1,0")) + (rule "add_zero_right" (formula "78") (term "0,4,1,1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "68") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "68") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "68") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "jmod_axiom" (formula "75") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "75") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "75") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "85")) + (rule "polySimp_mulComm0" (formula "85") (term "1")) + (rule "polySimp_rightDist" (formula "85") (term "1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,1")) + (rule "polySimp_elimOne" (formula "85") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "85") (term "0,1")) + (rule "polySimp_mulComm0" (formula "85") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,1")) + (rule "polySimp_elimOne" (formula "85") (term "0,1")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "85")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "85")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0")) + (rule "add_zero_right" (formula "27") (term "0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "85")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "applyEq" (formula "41") (term "1,0,0,1,2,1,0,0,1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "50") (term "5,0,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "1") (term "1,0,0,1,0") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "applyEq" (formula "50") (term "1,0,0,1,4,0,1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0,1,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0,1,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "4,0,1,0")) + (rule "applyEq" (formula "2") (term "1,0,0,1,0") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "applyEq" (formula "39") (term "5,0,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "78") (term "5,0,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "77") (term "5,0") (ifseqformula "85")) + (rule "applyEq" (formula "68") (term "1,0,0,1,2,1,0,0,1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "78") (term "4,0,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "57") (term "1,0,0,1,0") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "57") (term "0,0,1,0,0")) + (rule "add_literals" (formula "57") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "57") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "57") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "applyEq" (formula "49") (term "1,0,0,1,5,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0,1,5,0")) + (rule "add_zero_right" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "5,0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "85")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "applyEq" (formula "62") (term "1,0,0,1,2,1,0,0,0") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,2,1,0,0,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,0,1,0,2,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0,1,0,2,1,0,0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,2,1,0,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,2,1,0,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0,1,0,2,1,0,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,2,1,0,0,0")) + (rule "applyEq" (formula "64") (term "1,0,0,1,0,0,2,2,0,1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,1,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,2,2,0,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,2,2,0,1,0")) + (rule "applyEq" (formula "78") (term "5,1,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "64") (term "1,0,0,1,0,0,0,0,0,0,0") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,1,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0,0")) + (rule "applyEq" (formula "50") (term "5,1,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "3") (term "1,0,0,1,1") (ifseqformula "85")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,1,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,1,0,1")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,1")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,1")) + (rule "applyEq" (formula "78") (term "1,0,0,1,4,1,1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,0,1,4,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0,1,4,1,1,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0,1,4,1,1,0")) + (rule "add_zero_right" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "4,1,1,0")) + (rule "applyEq" (formula "75") (term "1,0,0,1,0,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0,1,0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "applyEq" (formula "39") (term "3,1,1,0") (ifseqformula "85")) + (rule "applyEq" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,0,0,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,2,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "62") (term "2,1,0,0,0")) + (rule "add_literals" (formula "62") (term "1,1,2,1,0,0,0")) + (rule "times_zero_1" (formula "62") (term "1,2,1,0,0,0")) + (rule "add_zero_right" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "2,1,0,0,0")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "times_zero_1" (formula "57") (term "1,0")) + (rule "add_zero_right" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "85")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "85")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "85")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "polySimp_addComm1" (formula "3") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "1,1,1")) + (rule "times_zero_1" (formula "3") (term "1,1")) + (rule "add_zero_right" (formula "3") (term "1")) + (rule "polySimp_addComm0" (formula "3") (term "1")) + (rule "applyEq" (formula "64") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "85")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "86") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "86") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "86") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_invertInEq0" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "times_zero_2" (formula "27") (term "1")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "polySimp_addComm0" (formula "42") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "42") (term "0")) + (rule "add_literals" (formula "42") (term "1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0")) + (rule "add_zero_right" (formula "42") (term "0")) + (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=jdiv(arr_0<>, Z(6(1(#))))") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0")) + (rule "polySimp_addComm0" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72")) + (rule "mul_literals" (formula "68") (term "0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "13")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "45")) + (rule "mul_literals" (formula "41") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "mul_literals" (formula "69") (term "1")) + (rule "inEqSimp_subsumption6" (formula "69") (ifseqformula "43")) + (rule "greater_literals" (formula "69") (term "0,0")) + (builtin "One Step Simplification" (formula "69")) + (rule "mul_literals" (formula "69") (term "1,0")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1")) + (rule "polySimp_rightDist" (formula "69") (term "1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1")) + (rule "mul_literals" (formula "69") (term "0,1")) + (rule "polySimp_elimOne" (formula "69") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0,0")) + (rule "add_literals" (formula "69") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "27")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55")) + (rule "greater_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "mul_literals" (formula "43") (term "1,0,0")) + (rule "mul_literals" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "85") (term "0,0,0")) + (rule "leq_literals" (formula "85") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_and_subsumption3" (formula "29") (term "0,0,0")) + (rule "leq_literals" (formula "29") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_and_subsumption3" (formula "62") (term "0,0,0")) + (rule "leq_literals" (formula "62") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "4")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "eqSymm" (formula "67")) + (rule "translateJavaMulInt" (formula "64") (term "1,1")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,1")) + (rule "eqSymm" (formula "64")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,0")) + (rule "mul_literals" (formula "67") (term "1,0,2,0")) + (rule "eqSymm" (formula "67")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,0")) + (rule "mul_literals" (formula "67") (term "1,0,2,0")) + (rule "eqSymm" (formula "67")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0")) + (rule "eqSymm" (formula "67")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0")) + (rule "eqSymm" (formula "67")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "30")) + (rule "inEqSimp_subsumption1" (formula "88") (term "0,0") (ifseqformula "62")) + (rule "leq_literals" (formula "88") (term "0,0,0")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "82") (term "0,5,1,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "37") (term "0,0,1,0,2,1,0,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "44") (term "0,0,0,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "47") (term "0,5,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "1") (term "0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "2") (term "0,0,1,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "74") (term "0,0,1,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "21") (term "0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "61") (term "0,0,1,1,0,0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "47") (term "0,5,1,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "2") (term "0,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "35") (term "0,5,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "47") (term "0,0,0,4,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "54") (term "0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "82") (term "0,4,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "82") (term "0,5,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "71") (term "0,0,1,0,2,1,0,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "46") (term "0,0,0,5,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "13") (term "0,1,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "27") (term "0,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "79") (term "0,0,0,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "26") (term "0,1,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "61") (term "1,0,1,0,0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "54") (term "1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "81") (term "0,5,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "42") (term "0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "35") (term "0,3,1,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "89") (term "0,1") (ifseqformula "88")) + (rule "applyEqReverse" (formula "59") (term "1,0,2,1,0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "59") (term "0,0,1,2,1,0,0,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "61") (term "0,0,0,0,0,2,2,0,1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "82") (term "0,0,0,4,1,1,0") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_homoEq" (formula "88")) + (rule "polySimp_addComm0" (formula "82") (term "5,1,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "polySimp_addComm0" (formula "47") (term "5,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "5,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "5,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "5,0,1,0")) + (rule "polySimp_addComm1" (formula "71") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "5,0")) + (rule "polySimp_addComm0" (formula "27") (term "1")) + (rule "polySimp_addComm0" (formula "79") (term "1")) + (rule "polySimp_addComm0" (formula "81") (term "5,0")) + (rule "polySimp_addComm0" (formula "35") (term "3,1,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "4,1,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "88") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "74")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "44")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "applyEq" (formula "47") (term "1,4,0,1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "47") (term "4,0,1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "applyEq" (formula "71") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "71") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "times_zero_1" (formula "54") (term "1,0")) + (rule "add_zero_right" (formula "54") (term "0")) + (rule "applyEq" (formula "79") (term "1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "applyEq" (formula "37") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "1,5,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "46") (term "5,0")) + (rule "applyEq" (formula "61") (term "1,0,0,2,2,0,1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,2,0,1,0")) + (rule "applyEq" (formula "82") (term "1,4,1,1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "82") (term "4,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1")) + (rule "polySimp_rightDist" (formula "88") (term "1")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1")) + (rule "polySimp_elimOne" (formula "88") (term "1,1")) + (rule "polySimp_mulComm0" (formula "88") (term "0,1")) + (rule "applyEq" (formula "81") (term "1,5,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "81") (term "5,0")) + (rule "polySimp_pullOutFactor1" (formula "81") (term "0,5,0")) + (rule "add_literals" (formula "81") (term "1,0,5,0")) + (rule "times_zero_1" (formula "81") (term "0,5,0")) + (rule "add_zero_left" (formula "81") (term "5,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "88")) + (rule "applyEq" (formula "13") (term "0,1,0") (ifseqformula "88")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "applyEq" (formula "71") (term "1,2,1,0,0,1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "71") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0,2,1,0,0,1,0")) + (rule "add_literals" (formula "71") (term "1,1,0,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "71") (term "0,0,2,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "88")) + (rule "applyEq" (formula "59") (term "0,0,1,2,1,0,0,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "59") (term "2,1,0,0,0")) + (rule "applyEq" (formula "82") (term "1,4,0,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "82") (term "4,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "82") (term "0,4,0,1,0")) + (rule "add_literals" (formula "82") (term "1,0,4,0,1,0")) + (rule "times_zero_1" (formula "82") (term "0,4,0,1,0")) + (rule "add_zero_left" (formula "82") (term "4,0,1,0")) + (rule "applyEq" (formula "61") (term "0,0,1,1,0,0,0,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "61") (term "1,0,0,0,0")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "44") (term "0,0,0,0")) + (rule "add_literals" (formula "44") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "applyEq" (formula "26") (term "0,1,0") (ifseqformula "88")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "applyEq" (formula "82") (term "1,5,0,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "82") (term "5,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "82") (term "0,5,0,1,0")) + (rule "add_literals" (formula "82") (term "1,0,5,0,1,0")) + (rule "times_zero_1" (formula "82") (term "0,5,0,1,0")) + (rule "add_zero_left" (formula "82") (term "5,0,1,0")) + (rule "applyEq" (formula "47") (term "1,4,0,1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "47") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,4,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "47") (term "0,0,4,0,1,0")) + (rule "add_literals" (formula "47") (term "1,0,0,4,0,1,0")) + (rule "times_zero_1" (formula "47") (term "0,0,4,0,1,0")) + (rule "add_zero_left" (formula "47") (term "0,4,0,1,0")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "88")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "applyEq" (formula "47") (term "1,5,0,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "47") (term "5,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "47") (term "0,5,0,1,0")) + (rule "add_literals" (formula "47") (term "1,0,5,0,1,0")) + (rule "times_zero_1" (formula "47") (term "0,5,0,1,0")) + (rule "add_zero_left" (formula "47") (term "5,0,1,0")) + (rule "applyEq" (formula "35") (term "1,5,0,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "35") (term "5,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "35") (term "0,5,0,1,0")) + (rule "add_literals" (formula "35") (term "1,0,5,0,1,0")) + (rule "times_zero_1" (formula "35") (term "0,5,0,1,0")) + (rule "add_zero_left" (formula "35") (term "5,0,1,0")) + (rule "applyEq" (formula "46") (term "1,5,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "46") (term "5,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,5,0")) + (rule "polySimp_pullOutFactor1" (formula "46") (term "0,0,5,0")) + (rule "add_literals" (formula "46") (term "1,0,0,5,0")) + (rule "times_zero_1" (formula "46") (term "0,0,5,0")) + (rule "add_zero_left" (formula "46") (term "0,5,0")) + (rule "applyEq" (formula "37") (term "1,2,1,0,0,1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "37") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,2,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,2,1,0,0,1,0")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "88")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "applyEq" (formula "74") (term "0,0,1,0") (ifseqformula "88")) + (rule "applyEq" (formula "79") (term "1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "79") (term "0,0,0,0")) + (rule "add_literals" (formula "79") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "79") (term "0,0,0,0")) + (rule "add_zero_left" (formula "79") (term "0,0,0")) + (rule "applyEq" (formula "82") (term "1,4,1,1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "82") (term "4,1,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,4,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "82") (term "0,0,4,1,1,0")) + (rule "add_literals" (formula "82") (term "1,0,0,4,1,1,0")) + (rule "times_zero_1" (formula "82") (term "0,0,4,1,1,0")) + (rule "add_zero_left" (formula "82") (term "0,4,1,1,0")) + (rule "applyEq" (formula "82") (term "1,5,1,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "82") (term "5,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "82") (term "0,5,1,1,0")) + (rule "add_literals" (formula "82") (term "1,0,5,1,1,0")) + (rule "times_zero_1" (formula "82") (term "0,5,1,1,0")) + (rule "add_zero_left" (formula "82") (term "5,1,1,0")) + (rule "applyEq" (formula "61") (term "1,0,0,2,2,0,1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "61") (term "1,0,0,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "61") (term "0,0,0,0,2,2,0,1,0")) + (rule "add_zero_left" (formula "61") (term "0,0,0,2,2,0,1,0")) + (rule "applyEq" (formula "47") (term "1,5,1,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "47") (term "5,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "47") (term "0,5,1,1,0")) + (rule "add_literals" (formula "47") (term "1,0,5,1,1,0")) + (rule "times_zero_1" (formula "47") (term "0,5,1,1,0")) + (rule "add_zero_left" (formula "47") (term "5,1,1,0")) + (rule "applyEq" (formula "35") (term "1,3,1,1,0") (ifseqformula "88")) + (rule "polySimp_addAssoc" (formula "35") (term "3,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "35") (term "0,3,1,1,0")) + (rule "add_literals" (formula "35") (term "1,0,3,1,1,0")) + (rule "times_zero_1" (formula "35") (term "0,3,1,1,0")) + (rule "add_zero_left" (formula "35") (term "3,1,1,0")) + (rule "applyEq" (formula "59") (term "1,2,1,0,0,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "59") (term "2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0,0,0")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "applyEq" (formula "61") (term "1,1,0,0,0,0") (ifseqformula "88")) + (rule "polySimp_addComm1" (formula "61") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1")) + (rule "polySimp_elimOne" (formula "23") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "47") (term "0,1,4,0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "47") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,4,0,1,0")) + (rule "add_literals" (formula "47") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "47") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "47") (term "0,4,0,1,0")) + (rule "applyEq" (formula "79") (term "0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "79") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "79") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0,0")) + (rule "applyEq" (formula "71") (term "0,1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "71") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "71") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "71") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "71") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "71") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0")) + (rule "applyEq" (formula "37") (term "0,1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "0,1,5,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "46") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "46") (term "5,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,5,0")) + (rule "add_literals" (formula "46") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "46") (term "1,0,5,0")) + (rule "add_zero_right" (formula "46") (term "0,5,0")) + (rule "applyEq" (formula "82") (term "0,1,4,1,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "82") (term "1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,4,1,1,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,4,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,4,1,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,4,1,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "4,1,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,4,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,0,4,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,4,1,1,0")) + (rule "add_literals" (formula "82") (term "1,1,0,4,1,1,0")) + (rule "times_zero_1" (formula "82") (term "1,0,4,1,1,0")) + (rule "add_zero_right" (formula "82") (term "0,4,1,1,0")) + (rule "applyEq" (formula "61") (term "0,1,0,0,2,2,0,1,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,2,2,0,1,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0,2,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "pullOutSelect" (formula "67") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "100")) (ifInst "" (formula "95"))) + (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "100")) (ifInst "" (formula "95"))) + (rule "ifthenelse_negated" (formula "67") (term "0")) + (rule "dismissNonSelectedField" (formula "68") (term "2,0")) + (rule "dismissNonSelectedField" (formula "68") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "67") (term "1,0")) + (rule "dismissNonSelectedField" (formula "67") (term "0,0,0")) + (rule "ifthenelse_negated" (formula "68") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,0,0")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_subsumption6" (formula "43") (ifseqformula "42")) + (rule "mul_literals" (formula "43") (term "1,1,0")) + (rule "greater_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "80")) + (rule "mul_literals" (formula "76") (term "0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "80")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "pullOutSelect" (formula "67") (term "1,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfMemset" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "dismissNonSelectedField" (formula "67") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfStore" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfStore" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfCreate" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "105"))) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96")) (ifInst "" (formula "4"))) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "67")) + (rule "applyEqReverse" (formula "68") (term "1,0") (ifseqformula "67")) + (rule "hideAuxiliaryEq" (formula "67")) + (rule "pullOutSelect" (formula "67") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "applyEq" (formula "69") (term "0,0,0") (ifseqformula "67")) + (rule "simplifySelectOfMemset" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfStore" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfStore" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfStore" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfCreate" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "105"))) + (rule "castDel" (formula "67") (term "1,0")) + (rule "eqSymm" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "67")) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96")) (ifInst "" (formula "4"))) + (rule "applyEqReverse" (formula "69") (term "0,0,0") (ifseqformula "67")) + (rule "applyEqReverse" (formula "68") (term "0,0,0") (ifseqformula "67")) + (rule "hideAuxiliaryEq" (formula "67")) + (rule "replace_known_left" (formula "67") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "67")) + (rule "applyEqReverse" (formula "68") (term "1") (ifseqformula "67")) + (rule "hideAuxiliaryEq" (formula "67")) + (rule "replace_known_left" (formula "67") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "21")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "23")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_exactShadow0" (formula "74") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "74")) + (rule "greater_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0")) + (rule "mul_literals" (formula "74") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_subsumption6" (formula "74") (ifseqformula "13")) + (rule "greater_literals" (formula "74") (term "0,0")) + (builtin "One Step Simplification" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "54")) + (rule "greater_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "mul_literals" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "1")) + (rule "polySimp_elimOne" (formula "42") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "20")) + (rule "mul_literals" (formula "62") (term "0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "62")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "22")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfMemset" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "eqSymm" (formula "68")) + (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68")) + (rule "hideAuxiliaryEq" (formula "68")) + (rule "dismissNonSelectedField" (formula "67") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "67")) + (rule "dismissNonSelectedField" (formula "67") (term "0")) + (rule "dismissNonSelectedField" (formula "67") (term "0")) + (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfCreate" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "104"))) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "95")) (ifInst "" (formula "4"))) + (rule "eqSymm" (formula "68")) + (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68")) + (rule "hideAuxiliaryEq" (formula "68")) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "67") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "67")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "90")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "65"))) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "translateJavaSubInt" (formula "94") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "94") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "92") (term "1,1")) + (rule "eqSymm" (formula "94")) + (rule "eqSymm" (formula "92")) + (rule "polySimp_elimSub" (formula "94") (term "0,2,0")) + (rule "mul_literals" (formula "94") (term "1,0,2,0")) + (rule "eqSymm" (formula "94")) + (rule "polySimp_elimSub" (formula "94") (term "0,2,0")) + (rule "mul_literals" (formula "94") (term "1,0,2,0")) + (rule "eqSymm" (formula "94")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,2,0")) + (rule "eqSymm" (formula "94")) + (rule "polySimp_addComm0" (formula "94") (term "0,2,0")) + (rule "eqSymm" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "90")) + (rule "applyEq" (formula "91") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "64")) + (rule "eqSymm" (formula "90")) + (rule "pullOutSelect" (formula "91") (term "0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnonEQ" (formula "91") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,0,1,0,0") (ifseqformula "58")) + (rule "eqSymm" (formula "92")) + (rule "simplifySelectOfAnonEQ" (formula "92") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "97"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,0,0") (ifseqformula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,0,1,0,0") (ifseqformula "58")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,0,0")) + (rule "replace_known_right" (formula "92") (term "0,0,0,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "92")) + (rule "ifthenelse_negated" (formula "91") (term "0")) + (rule "ifthenelse_negated" (formula "92") (term "0")) + (rule "dismissNonSelectedField" (formula "91") (term "0,0,0,0,0")) + (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "91") (term "0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "91") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "91") (term "0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "91")) + (rule "simplifySelectOfAnonEQ" (formula "91") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97"))) + (rule "replaceKnownSelect_taclet000001201112101012_19" (formula "91") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_33" (formula "91") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "58")) + (rule "dismissNonSelectedField" (formula "92") (term "0,0,0,0,0")) + (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "92") (term "0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "92") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "92") (term "0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "92")) + (rule "simplifySelectOfAnonEQ" (formula "92") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "97"))) + (rule "replaceKnownSelect_taclet000001201112101012_18" (formula "92") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_33" (formula "92") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,0,0") (ifseqformula "58")) + (rule "dismissNonSelectedField" (formula "91") (term "0,0,0,1,0,0")) + (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "91") (term "0,0,0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "91") (term "0,0,0,1,0,0")) + (rule "replace_known_left" (formula "91") (term "0,0,1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "91")) + (rule "dismissNonSelectedField" (formula "92") (term "0,0,0,1,0,0")) + (rule "replaceKnownSelect_taclet000001201112101012_26" (formula "92") (term "0,0,0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_32" (formula "92") (term "0,0,0,1,0,0")) + (rule "replace_known_left" (formula "92") (term "0,0,1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "92")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfUnion" (formula "92") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "92") (term "1,0,0")) + (rule "replace_known_right" (formula "92") (term "0,0,1,0,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "92")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfUnion" (formula "92") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "92") (term "1,0,0")) + (rule "replace_known_right" (formula "92") (term "0,0,1,0,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "92")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "1,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,1,0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "91")) + (rule "applyEqReverse" (formula "92") (term "1") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "92")) + (rule "hideAuxiliaryEq" (formula "91")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "91")) + (rule "true_left" (formula "91")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "28") (term "0") (inst "element=element")) + (rule "expand_inInt" (formula "28") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "28") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "28") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "28") (term "1,1,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "123")) (ifInst "" (formula "29")) (ifInst "" (formula "29"))) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0,1,1,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "78")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "66"))) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "eqSymm" (formula "82")) + (rule "translateJavaMulInt" (formula "80") (term "1,1")) + (rule "translateJavaSubInt" (formula "82") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "82") (term "0,2,1")) + (rule "eqSymm" (formula "80")) + (rule "polySimp_elimSub" (formula "82") (term "0,2,0")) + (rule "mul_literals" (formula "82") (term "1,0,2,0")) + (rule "eqSymm" (formula "82")) + (rule "polySimp_elimSub" (formula "82") (term "0,2,0")) + (rule "mul_literals" (formula "82") (term "1,0,2,0")) + (rule "eqSymm" (formula "82")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,2,1")) + (rule "replaceKnownSelect_taclet000001201112101012_42" (formula "82") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_43" (formula "82") (term "1")) + (rule "polySimp_addComm0" (formula "82") (term "0,2,0")) + (rule "replaceKnownSelect_taclet000001201112101012_41" (formula "82") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet000001201112101012_43" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "78")) + (rule "applyEq" (formula "79") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "79")) + (rule "applyEq" (formula "77") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "77") (term "1") (ifseqformula "30")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "49")) + (rule "close" (formula "126") (ifseqformula "49")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "90"))) + (rule "closeTrue" (formula "121")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121")) + (rule "closeTrue" (formula "121")) + ) + ) + (branch "Exceptional Post (calculate_bucket_starts)" + (builtin "One Step Simplification" (formula "82")) + (builtin "One Step Simplification" (formula "112")) + (rule "andLeft" (formula "82")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,0,1,0") (ifseqformula "62")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "85")) + (rule "notLeft" (formula "83")) + (rule "close" (formula "86") (ifseqformula "85")) + ) + (branch "Pre (calculate_bucket_starts)" + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "80")) (ifInst "" (formula "109")) (ifInst "" (formula "107")) (ifInst "" (formula "108")) (ifInst "" (formula "109")) (ifInst "" (formula "107")) (ifInst "" (formula "108"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1") (ifseqformula "62")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,0") (ifseqformula "62")) + (rule "wellFormedAnonEQ" (formula "110") (term "0,0,0,0,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,0,0,0,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,0,0,0,0,0") (ifseqformula "62")) + (rule "wellFormedAnonEQ" (formula "110") (term "0,0,0,0,0,0,0") (ifseqformula "62")) + (rule "wellFormedStorePrimitive" (formula "110") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "110") (term "1,0,0,0")) + (rule "expand_inInt" (formula "110") (term "1,0,0")) + (rule "expand_inInt" (formula "110") (term "1,0,0,0,0")) + (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0,0")) + (rule "replace_known_left" (formula "110") (term "1,0,0,0,0,0,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "67")) (ifInst "" (formula "13")) (ifInst "" (formula "70")) (ifInst "" (formula "15"))) + (rule "inEqSimp_ltRight" (formula "90")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1")) + (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "109") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0,0")) + (rule "replace_known_left" (formula "109") (term "1,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0")) + (rule "replace_known_left" (formula "109") (term "1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0")) + (rule "replace_known_left" (formula "109") (term "1,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0")) + (rule "jmod_axiom" (formula "78") (term "0,1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1,4,1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,4,1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,1,4,1,1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,0,1,4,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,1,4,1,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "4,1,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,4,1,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,4,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,4,1,1,0")) + (rule "add_literals" (formula "78") (term "1,1,0,4,1,1,0")) + (rule "times_zero_1" (formula "78") (term "1,0,4,1,1,0")) + (rule "add_zero_right" (formula "78") (term "0,4,1,1,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "68") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "68") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "68") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "68") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0")) + (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1")) + (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1,0")) + (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0,1,0,0")) + (rule "jmod_axiom" (formula "109") (term "1,2,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1,2,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "2,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,0,0,0,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "jmod_axiom" (formula "75") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "75") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "75") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "wellFormedMemsetArrayPrimitive" (formula "105") (term "0,0,0")) + (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0")) + (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0")) + (rule "wellFormedStorePrimitive" (formula "105") (term "0,0,0")) + (rule "wellFormedCreate" (formula "105") (term "0,0,0")) + (rule "wellFormedAnonEQ" (formula "105") (term "0,0,0") (ifseqformula "37")) + (rule "replace_known_left" (formula "105") (term "0,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "36"))) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,0,0")) + (rule "times_zero_1" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_literals" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72")) + (rule "mul_literals" (formula "68") (term "0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0")) + (rule "polySimp_addComm0" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0")) + (rule "polySimp_addComm0" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "pullOutSelect" (formula "107") (term "0,0,0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80")) (ifInst "" (formula "88"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")) (ifInst "" (formula "12"))) + (rule "applyEqReverse" (formula "108") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "107") (term "0,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "107")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "pullOutSelect" (formula "107") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "88"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "105")) (ifInst "" (formula "14"))) + (rule "applyEqReverse" (formula "108") (term "0,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "107") (term "0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "107")) + (rule "orRight" (formula "107")) + (rule "orRight" (formula "107")) + (rule "inEqSimp_exactShadow0" (formula "68") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "68")) + (rule "greater_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "mul_literals" (formula "68") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_subsumption6" (formula "68") (ifseqformula "12")) + (rule "greater_literals" (formula "68") (term "0,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "54")) + (rule "times_zero_1" (formula "42") (term "1,0,0,1")) + (rule "greater_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "times_zero_1" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "1")) + (rule "polySimp_elimOne" (formula "42") (term "1")) + (rule "pullOutSelect" (formula "107") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "88"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "88"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "106")) (ifInst "" (formula "15"))) + (rule "applyEqReverse" (formula "108") (term "0") (ifseqformula "1")) + (rule "close" (formula "108") (ifseqformula "15")) + ) + ) + (branch "Exceptional Post (finish_batch)" + (builtin "One Step Simplification" (formula "68")) + (builtin "One Step Simplification" (formula "98")) + (rule "andLeft" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,0") (ifseqformula "62")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "notLeft" (formula "69")) + (rule "close" (formula "72") (ifseqformula "71")) + ) + (branch "Pre (finish_batch)" + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "66")) (ifInst "" (formula "75")) (ifInst "" (formula "95")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "75")) (ifInst "" (formula "95")) (ifInst "" (formula "93")) (ifInst "" (formula "94"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1") (ifseqformula "62")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0") (ifseqformula "62")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0,0,0,0,0,0") (ifseqformula "62")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0,0,0,0,0,0,0") (ifseqformula "62")) + (rule "wellFormedAnonEQ" (formula "96") (term "0,0,0,0,0,0,0,0") (ifseqformula "62")) + (rule "wellFormedStorePrimitive" (formula "96") (term "0,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "96") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "96") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "96") (term "1,0,0")) + (rule "expand_inInt" (formula "96") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "96") (term "0,1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "61")) (ifInst "" (formula "13")) (ifInst "" (formula "43"))) + (rule "inEqSimp_ltRight" (formula "76")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "95") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "95") (term "0,0,1,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,0,0,0")) + (rule "replace_known_left" (formula "95") (term "1,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "95") (term "1,0,0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0")) + (rule "replace_known_left" (formula "95") (term "1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "1,1,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0,1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,0,0")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,2,2,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,2,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,0,2,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0,2,2,0,1,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,2,2,0,1,0")) + (rule "add_zero_right" (formula "64") (term "0,0,0,2,2,0,1,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "62") (term "1,2,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,2,1,0,0,0")) + (rule "jmod_axiom" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0,0,0")) + (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0,0,0,0")) + (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1")) + (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,0,0,0")) + (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0,0,0")) + (rule "jmod_axiom" (formula "95") (term "1,2,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,2,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "2,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,2,1,0,0,0,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "jmod_axiom" (formula "95") (term "0,1,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,0,1,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "0,1,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "95") (term "0,0,1,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0,0,1,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "0,0,1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "95") (term "0,0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,0,0,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,1,1,0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0,1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0,1,1,0,0")) + (rule "add_zero_right" (formula "95") (term "0,0,1,1,0,0")) + (rule "jmod_axiom" (formula "95") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "95") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "95") (term "0,1,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "0,0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "27")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "wellFormedMemsetArrayPrimitive" (formula "91") (term "0,0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "91") (term "0,0,0,0,0")) + (rule "wellFormedCreate" (formula "91") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "91") (term "0,0,0,0,0") (ifseqformula "37")) + (rule "replace_known_left" (formula "91") (term "1,0,0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "8"))) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "replace_known_left" (formula "92") (term "1,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "92")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,0,0")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "pullOutSelect" (formula "93") (term "0,0,1,0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66")) (ifInst "" (formula "74"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "93")) (ifInst "" (formula "12"))) + (rule "applyEqReverse" (formula "94") (term "0,0,1,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "93") (term "0,1,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_exactShadow0" (formula "40") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "40")) + (rule "greater_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "13")) + (rule "mul_literals" (formula "40") (term "1,1,0")) + (rule "greater_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "pullOutSelect" (formula "93") (term "0,0,0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "94") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "94")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55")) + (rule "mul_literals" (formula "43") (term "1,0,0,1")) + (rule "greater_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1")) + (rule "polySimp_elimOne" (formula "43") (term "1")) + (rule "pullOutSelect" (formula "93") (term "0,0,1,0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67")) (ifInst "" (formula "74"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "91")) (ifInst "" (formula "14"))) + (rule "applyEqReverse" (formula "94") (term "0,0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "93") (term "0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "93")) + (rule "pullOutSelect" (formula "93") (term "0,0,1") (inst "selectSK=java_lang_Object_created__3")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "92")) (ifInst "" (formula "15"))) + (rule "applyEqReverse" (formula "94") (term "0,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "93") (term "0,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_leqRight" (formula "93")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_exactShadow0" (formula "1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "1")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "28")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (classify_all)" + (builtin "One Step Simplification" (formula "92")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "63") (term "1,0") (ifseqformula "62")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "close" (formula "66") (ifseqformula "65")) + ) + (branch "Pre (classify_all)" + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "89")) (ifInst "" (formula "69")) (ifInst "" (formula "89")) (ifInst "" (formula "69"))) + (rule "andRight" (formula "90")) + (branch "Case 1" + (rule "inEqSimp_ltRight" (formula "70")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,0,0")) + (rule "times_zero_1" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "27")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "44")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow0" (formula "40") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "40")) + (rule "greater_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0")) + (rule "mul_literals" (formula "40") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "13")) + (rule "mul_literals" (formula "40") (term "1,1,0")) + (rule "greater_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55")) + (rule "greater_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1")) + (rule "polySimp_elimOne" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,1")) + (rule "eqSymm" (formula "33")) + (rule "eqSymm" (formula "36")) + (rule "translateJavaMulInt" (formula "33") (term "1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "30")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "20")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "55")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "34"))) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "eqSymm" (formula "59")) + (rule "eqSymm" (formula "57")) + (rule "translateJavaSubInt" (formula "59") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "59") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "57") (term "1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,2,0")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_elimSub" (formula "59") (term "0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,2,0")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "57")) + (rule "pullOutSelect" (formula "58") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfAnonEQ" (formula "58") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "58")) + (rule "applyEq" (formula "59") (term "2,0") (ifseqformula "35")) + (rule "elementOfUnion" (formula "59") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "1,0,0,0")) + (rule "replace_known_right" (formula "59") (term "0,0,1,0,0,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "59")) + (rule "elementOfUnion" (formula "58") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "58") (term "1,0,0,0")) + (rule "replace_known_right" (formula "58") (term "0,0,1,0,0,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "58")) + (rule "elementOfUnion" (formula "59") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "1,0,0,0")) + (rule "replace_known_right" (formula "59") (term "0,0,1,0,0,0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "59")) + (rule "elementOfUnion" (formula "58") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "58") (term "1,0,0,0")) + (rule "replace_known_right" (formula "58") (term "0,0,1,0,0,0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "58")) + (rule "elementOfUnion" (formula "59") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0,0")) + (rule "replace_known_right" (formula "59") (term "0,0,0,0,0,0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "59")) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0")) + (rule "replace_known_right" (formula "59") (term "0,0,0,0,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "59")) + (rule "elementOfUnion" (formula "58") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "58") (term "0,0,0,0")) + (rule "replace_known_right" (formula "58") (term "0,0,0,0,0,0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "58")) + (rule "elementOfArrayRangeConcrete" (formula "58") (term "0,0,0")) + (rule "replace_known_right" (formula "58") (term "0,0,0,0,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "58")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "replace_known_right" (formula "58") (term "0,0,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "58")) + (rule "replace_known_right" (formula "59") (term "0,0,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "59")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "58") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "58")) + (rule "applyEqReverse" (formula "59") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "4"))) + (rule "true_left" (formula "59")) + (rule "hideAuxiliaryEq" (formula "58")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "31"))) + (rule "expand_inInt" (formula "16") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "translateJavaMulInt" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "eqSymm" (formula "69")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "1") (ifseqformula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "29") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "48") (inst "b=b")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "17")) (ifInst "" (formula "33"))) + (rule "expand_inInt" (formula "48") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "translateJavaMulInt" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "1")) + (rule "eqSymm" (formula "67")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "32")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "5")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaMod" (formula "52") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "newSym_eq" (formula "52") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_22, Z(0(#))))")) + (rule "times_zero_1" (formula "52") (term "0,1,1")) + (rule "times_zero_1" (formula "52") (term "1,1,1")) + (rule "add_zero_right" (formula "52") (term "1,1")) + (rule "add_zero_right" (formula "52") (term "1")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "52")) + (rule "polySimp_homoEq" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1")) + (rule "applyEq" (formula "54") (term "4,0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "3,0,1,0") (ifseqformula "53")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "applyEq" (formula "52") (term "1,0,0") (ifseqformula "53")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq1" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "1,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0")) + (rule "add_zero_right" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "50")) + (rule "times_zero_2" (formula "50") (term "1")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "elimGcdGeq_antec" (formula "50") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "50") (term "0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "elimGcdGeq_antec" (formula "51") (inst "elimGcdRightDiv=mul(l_0, Z(6(1(#))))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0")) + (rule "leq_literals" (formula "51") (term "0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_literals" (formula "51") (term "0,0")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "45")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "add_zero_left" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "elimGcdLeq_antec" (formula "21") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "neg_literal" (formula "21") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "48") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "mul_literals" (formula "48") (term "1")) + (rule "inEqSimp_subsumption6" (formula "48") (ifseqformula "52")) + (rule "greater_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_exactShadow2" (formula "52") (ifseqformula "63")) + (rule "greater_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1")) + (rule "polySimp_elimOne" (formula "52") (term "1,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "52") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "52")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "qeq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "51")) + (rule "times_zero_1" (formula "22") (term "0,0")) + (rule "add_zero_left" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "100")) + (rule "replace_known_right" (formula "100") (term "0,1") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "71"))) + (rule "closeTrue" (formula "100")) + ) + (branch "Case 2" + (rule "andRight" (formula "90")) + (branch "Case 1" + (rule "andRight" (formula "90")) + (branch "Case 1" + (rule "andRight" (formula "90")) + (branch "Case 1" + (rule "andRight" (formula "90")) + (branch "Case 1" + (rule "wellFormedStorePrimitive" (formula "90")) + (rule "inEqSimp_ltRight" (formula "70")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "89") (term "1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption2" (formula "2") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "wellFormedMemsetArrayPrimitive" (formula "85")) + (rule "wellFormedStorePrimitive" (formula "85")) + (rule "wellFormedStorePrimitive" (formula "85")) + (rule "wellFormedStorePrimitive" (formula "85")) + (rule "wellFormedCreate" (formula "85")) + (rule "wellFormedAnonEQ" (formula "85") (ifseqformula "37")) + (rule "replace_known_left" (formula "85") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "36"))) + (rule "closeTrue" (formula "85")) + ) + (branch "Case 2" + (rule "dismissNonSelectedField" (formula "90") (term "0")) + (rule "inEqSimp_ltRight" (formula "70")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "54")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "pullOutSelect" (formula "85") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")) (ifInst "" (formula "66"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "85")) (ifInst "" (formula "12"))) + (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "1")) + (rule "close" (formula "86") (ifseqformula "12")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "90")) + (rule "replace_int_MAX" (formula "90") (term "1,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1")) + (rule "inEqSimp_ltRight" (formula "70")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "89") (term "0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "89") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "89") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "89") (term "1")) + (rule "mul_literals" (formula "89") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "89") (term "0,1")) + (rule "polySimp_addComm0" (formula "89") (term "0,0,1")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "jmod_axiom" (formula "89") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "89") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0,0")) + (rule "add_literals" (formula "89") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "89") (term "1,0,0,0")) + (rule "add_zero_right" (formula "89") (term "0,0,0")) + (rule "jmod_axiom" (formula "89") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "89") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "89") (term "0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "89") (term "0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "89") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "89") (term "0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "89") (term "0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "89") (term "0,1")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "89") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "89") (term "0,0,1")) + (rule "add_literals" (formula "89") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "89") (term "1,0,0,1")) + (rule "add_zero_right" (formula "89") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "89") (term "0")) + (rule "polySimp_mulLiterals" (formula "89") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "89") (term "1")) + (rule "polySimp_mulComm0" (formula "89") (term "1,1")) + (rule "polySimp_rightDist" (formula "89") (term "1,1")) + (rule "mul_literals" (formula "89") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "26")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "25")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_leqRight" (formula "86")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption5" (formula "41") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "greater_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "mul_literals" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,0,0")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "28")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow2" (formula "43") (ifseqformula "55")) + (rule "greater_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "mul_literals" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1")) + (rule "polySimp_elimOne" (formula "43") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow0" (formula "1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "1")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "28")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "90")) + (rule "replace_int_MIN" (formula "90") (term "0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0")) + (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_ltRight" (formula "70")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "89")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "jmod_axiom" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "jmod_axiom" (formula "58") (term "0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0")) + (rule "jmod_axiom" (formula "51") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,4,0,1,0")) + (rule "add_literals" (formula "51") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "51") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "51") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "42") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "50") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "50") (term "5,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,5,0")) + (rule "add_literals" (formula "50") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "50") (term "1,0,5,0")) + (rule "add_zero_right" (formula "50") (term "0,5,0")) + (rule "jmod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "jmod_axiom" (formula "48") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "29")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + ) + (branch "Case 2" + (rule "dismissNonSelectedField" (formula "90") (term "0")) + (rule "inEqSimp_ltRight" (formula "70")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "jmod_axiom" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,4,0,1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,0,1,4,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "4,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,4,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0,4,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,4,0,1,0")) + (rule "add_literals" (formula "50") (term "1,1,0,4,0,1,0")) + (rule "times_zero_1" (formula "50") (term "1,0,4,0,1,0")) + (rule "add_zero_right" (formula "50") (term "0,4,0,1,0")) + (rule "jmod_axiom" (formula "57") (term "0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,5,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,5,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,0,1,5,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "5,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,5,0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,5,0")) + (rule "add_literals" (formula "49") (term "1,1,0,5,0")) + (rule "times_zero_1" (formula "49") (term "1,0,5,0")) + (rule "add_zero_right" (formula "49") (term "0,5,0")) + (rule "jmod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "jmod_axiom" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "jmod_axiom" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "41") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "jmod_axiom" (formula "89") (term "1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0,0")) + (rule "jmod_axiom" (formula "47") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "pullOutSelect" (formula "85") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "66"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "closeTrue" (formula "86")) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (newObject = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "61"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "65")) + (rule "equal_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "closeTrue" (formula "65")) + ) + ) + ) + (branch "Exceptional Post (classify_locally_batched)" + (builtin "One Step Simplification" (formula "53")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,0") (ifseqformula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "34")) + (rule "close" (formula "38") (ifseqformula "37")) + ) + (branch "Pre (classify_locally_batched)" + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "12")) (ifInst "" (formula "50")) (ifInst "" (formula "48")) (ifInst "" (formula "49")) (ifInst "" (formula "1")) (ifInst "" (formula "50")) (ifInst "" (formula "4")) (ifInst "" (formula "48")) (ifInst "" (formula "9")) (ifInst "" (formula "49")) (ifInst "" (formula "10"))) + (rule "expand_inInt" (formula "51") (term "1")) + (rule "expand_inInt" (formula "51") (term "0")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1")) + (rule "replace_int_MAX" (formula "51") (term "1,0,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1,0")) + (rule "replace_known_left" (formula "51") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "7"))) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1")) + (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_leqRight" (formula "51")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..87454dd --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__classify_locally_batched((I,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,8937 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:45:31 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:45:31 CEST 2023 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:classify_locally_batched([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "37667") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "notLeft" (formula "12")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "15")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "translateJavaAddInt" (formula "14") (term "1")) +(rule "eqSymm" (formula "35")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "4")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "9")) +(rule "polySimp_addComm0" (formula "14") (term "1")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "31")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "30")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "29")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "28")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "eqSymm" (formula "27")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "26")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "eqSymm" (formula "25")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "eqSymm" (formula "24")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "eqSymm" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) +(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "20")) +(rule "applyEq" (formula "14") (term "1,1") (ifseqformula "20")) +(rule "commute_and" (formula "18") (term "1,0,0")) +(rule "commute_and" (formula "18") (term "0,0,0")) +(rule "shift_paren_and" (formula "18") (term "0,0")) +(rule "commute_and_2" (formula "18") (term "0,0,0")) +(rule "methodBodyExpand" (formula "41") (term "1") (newnames "heapBefore_classify_locally_batched,savedHeapBefore_classify_locally_batched,_beginBefore_classify_locally_batched,_bucket_startsBefore_classify_locally_batched,_buffersBefore_classify_locally_batched,_endBefore_classify_locally_batched,_valuesBefore_classify_locally_batched")) + (builtin "One Step Simplification" (formula "41")) +(rule "variableDeclarationAssign" (formula "41") (term "1")) +(rule "variableDeclaration" (formula "41") (term "1") (newnames "write")) +(rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) +(rule "variableDeclarationAssign" (formula "41") (term "1")) +(rule "variableDeclaration" (formula "41") (term "1") (newnames "i")) +(rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (builtin "Block Contract (Internal)" (formula "41") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "11")) (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "22")) + (rule "eqSymm" (formula "41") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "41") (term "1")) + (rule "variableDeclaration" (formula "41") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "emptyStatement" (formula "41") (term "1")) + (rule "tryEmpty" (formula "41") (term "1")) + (rule "blockEmptyLabel" (formula "41") (term "1")) + (rule "blockEmpty" (formula "41") (term "1")) + (rule "methodCallEmpty" (formula "41") (term "1")) + (rule "emptyModality" (formula "41") (term "1")) + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41")) + (rule "closeTrue" (formula "41")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "41")) + (branch "Case 1" + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "41")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "41")) + (branch "Case 1" + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "37"))) + (rule "closeTrue" (formula "41")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "2"))) + (rule "closeTrue" (formula "41")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "41")) + ) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "22") (term "0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "elim_double_block_2" (formula "45") (term "1")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "ifUnfold" (formula "48") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "48") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "48") (term "1")) + (builtin "One Step Simplification" (formula "48")) + (rule "replace_known_left" (formula "48") (term "0,0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "48")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "ifSplit" (formula "51")) + (branch "if x true" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "ifUnfold" (formula "51") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_1")) + (rule "compound_greater_equal_than_comparison_1" (formula "51") (term "1") (inst "#v0=x_2")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_2")) + (rule "assignmentSubtractionInt" (formula "51") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51")) + (rule "replace_int_MIN" (formula "51") (term "0,1")) + (rule "replace_int_MAX" (formula "51") (term "1,0")) + (rule "polySimp_elimSub" (formula "51") (term "1,1")) + (rule "polySimp_elimSub" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "1,1")) + (rule "polySimp_addComm0" (formula "51") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "1")) + (rule "mul_literals" (formula "51") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "51") (term "0,1")) + (rule "polySimp_addComm0" (formula "51") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1")) + (rule "polySimp_rightDist" (formula "51") (term "1,1")) + (rule "mul_literals" (formula "51") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "49") (term "1") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0,1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0,1")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "49") (term "1,0,0,1")) + (rule "add_zero_right" (formula "49") (term "0,0,1")) + (rule "qeq_literals" (formula "49") (term "0,1")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_leqRight" (formula "49")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "1")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "51")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,1,0")) + (rule "greater_equal_than_comparison_simple" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "ifSplit" (formula "51")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "cutoff")) + (rule "assignmentSubtractionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "polySimp_elimSub" (formula "52") (term "1,1")) + (rule "mul_literals" (formula "52") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "52") (term "0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "52") (term "1,1")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "50") (term "0") (ifseqformula "8")) + (rule "leq_literals" (formula "50") (term "0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "inEqSimp_geqRight" (formula "50")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "19")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "19")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "2")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "2")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaSubInt" (formula "52") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "0,1,0")) + (rule "mul_literals" (formula "52") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "52") (term "1")) + (rule "variableDeclarationFinal" (formula "52") (term "1") (newnames "indices")) + (rule "arrayCreation" (formula "52") (term "1") (inst "#v0=x_arr")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_arr")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "dim0")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "ifUnfold" (formula "52") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_3")) + (rule "less_than_comparison_simple" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "less_literals" (formula "52") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "ifSplit" (formula "52")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "53")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "53")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "47") (term "1") (ifseqformula "2") (ifseqformula "3")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "47") (term "0,0") (ifseqformula "3") (ifseqformula "4")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "48") (term "1") (ifseqformula "4") (ifseqformula "13")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "36") (term "0") (ifseqformula "5") (ifseqformula "14")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "56") (term "1") (inst "#v0=x_arr_1")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_1")) + (rule "variableDeclarationAssign" (formula "56") (term "1")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "length_1")) + (rule "assignment" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "methodBodyExpand" (formula "56") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "56")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "newObject")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "56") (term "1") (inst "#v0=x_arr_2")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_2")) + (rule "variableDeclarationAssign" (formula "56") (term "1")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "length_2")) + (rule "assignment" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "allocateInstanceWithLength" (formula "56")) + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7"))) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "arrayLengthIsAShort" (formula "1") (term "0")) + (rule "expand_inShort" (formula "1")) + (rule "replace_short_MIN" (formula "1") (term "0,1")) + (rule "replace_short_MAX" (formula "1") (term "1,0")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "arrayLengthNotNegative" (formula "1") (term "0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "methodCall" (formula "60")) + (branch "Normal Execution (newObject != null )" + (rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "60")) + (rule "assignment_write_attribute_this" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "methodCallWithinClass" (formula "60") (term "1")) + (rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "60")) + (rule "arrayInitialisation" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_elimSub" (formula "60") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "2,1,0,1,0")) + (rule "applyEq" (formula "60") (term "1,2,1,0,1,0") (ifseqformula "1")) + (rule "add_literals" (formula "60") (term "2,1,0,1,0")) + (rule "methodCallEmpty" (formula "60") (term "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "assignment_write_attribute_this" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "methodCallReturnIgnoreResult" (formula "60") (term "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "methodCallReturn" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "methodCallEmpty" (formula "60") (term "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (builtin "Block Contract (Internal)" (formula "60") (newnames "result_22,exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "18")) (ifInst "" (formula "10")) (ifInst "" (formula "57"))) + (rule "andLeft" (formula "39")) + (rule "eqSymm" (formula "62") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "variableDeclarationAssign" (formula "62") (term "1")) + (rule "variableDeclaration" (formula "62") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "62") (term "1")) + (builtin "One Step Simplification" (formula "62")) + (rule "emptyStatement" (formula "62") (term "1")) + (builtin "One Step Simplification" (formula "62")) + (rule "emptyStatement" (formula "62") (term "1")) + (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "simplifySelectOfStore" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "simplifySelectOfStore" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "simplifySelectOfStore" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "simplifySelectOfCreate" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "43"))) + (rule "castDel" (formula "40") (term "1,0")) + (rule "eqSymm" (formula "40") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "40") (term "0,0")) + (rule "replace_known_right" (formula "40") (term "0,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "43"))) + (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "40")) + (rule "hideAuxiliaryEq" (formula "40")) + (rule "tryEmpty" (formula "61") (term "1")) + (rule "blockEmptyLabel" (formula "61") (term "1")) + (rule "blockEmpty" (formula "61") (term "1")) + (rule "methodCallEmpty" (formula "61") (term "1")) + (rule "emptyModality" (formula "61") (term "1")) + (rule "andRight" (formula "61")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "61")) + (rule "closeTrue" (formula "61")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "61")) + (rule "closeTrue" (formula "61")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "60")) + (branch "Case 1" + (rule "andRight" (formula "60")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "60")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "60")) + (rule "wellFormedStorePrimitive" (formula "60")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "24")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "wellFormedMemsetArrayPrimitive" (formula "56")) + (rule "wellFormedStorePrimitive" (formula "56")) + (rule "wellFormedStorePrimitive" (formula "56")) + (rule "wellFormedStorePrimitive" (formula "56")) + (rule "wellFormedCreate" (formula "56")) + (rule "close" (formula "56") (ifseqformula "8")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "60")) + (branch "Case 1" + (rule "andRight" (formula "60")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "56"))) + (rule "closeTrue" (formula "60")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "60")) + (rule "dismissNonSelectedField" (formula "60") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "26")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "25")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37"))) + (rule "applyEqReverse" (formula "57") (term "0") (ifseqformula "1")) + (rule "close" (formula "57") (ifseqformula "10")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "10"))) + (rule "closeTrue" (formula "60")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "39") (term "0,1,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,0,1,0")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "52"))) + (rule "true_left" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "elim_double_block_2" (formula "69") (term "1")) + (rule "ifUnfold" (formula "69") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "69") (term "1")) + (builtin "One Step Simplification" (formula "69")) + (rule "replace_known_left" (formula "69") (term "0,0,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "69")) + (rule "ifSplit" (formula "69")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "69") (term "1")) + (rule "loopScopeInvDia" (formula "69") (term "1") (newnames "i_0,write_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "69")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "0,0,1,0,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,0,0,1,0,0")) + (rule "impRight" (formula "70")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "2,1,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "0,1,1,0,1")) + (rule "translateJavaMulInt" (formula "8") (term "0,2,1,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,0,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "2,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "2,0,0,0,0,1,0")) + (rule "translateJavaMod" (formula "7") (term "1,0,2,1,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,0,0,0,0,1,0,0")) + (rule "translateJavaMulInt" (formula "7") (term "0,2,1,0,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "6") (term "0,0")) + (rule "translateJavaSubInt" (formula "5") (term "0,0")) + (rule "translateJavaMod" (formula "2") (term "1,1")) + (rule "translateJavaMulInt" (formula "80") (term "0,2,1,0,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "0,1,0,2,1,0,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "9") (term "0,2,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "0,2,1,0,0,1,0")) + (rule "translateJavaMod" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "10") (term "0,2,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "0,1,0,2,1,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,0,1,0,0")) + (rule "translateJavaMod" (formula "5") (term "0")) + (rule "translateJavaSubInt" (formula "2") (term "1")) + (rule "translateJavaMod" (formula "80") (term "1,0,2,1,0,0,1,0,1,0,1,0")) + (rule "eqSymm" (formula "8") (term "1,0")) + (rule "translateJavaSubInt" (formula "9") (term "0,1,0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "2") (term "0,1,1")) + (rule "translateJavaSubInt" (formula "80") (term "0,1,0,2,1,0,0,1,0,1,0,1,0")) + (rule "translateJavaMod" (formula "8") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "translateJavaMod" (formula "9") (term "1,0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "0,1,0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "0,2,1,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "8") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "80") (term "1,2,0,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "80") (term "2,1,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "80") (term "1,2,1,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "80") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "80") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "9") (term "2,0,0,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "2,0,0,0,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,2,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,0,0,0,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,0,0,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "0,0")) + (rule "polySimp_elimSub" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "80") (term "1,2,1,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,2,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "5") (term "0,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,0,0,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,0,0,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "80") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "80") (term "1,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "0,1,0,2,1,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "8") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "2") (term "0,0,1,1")) + (rule "polySimp_elimSub" (formula "80") (term "0,1,0,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "0,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,2,1,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "0,1,0,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,2,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "8") (term "0,0,1,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,2,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,2,1,0,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "9") (term "0,0,1,0,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,2,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "80") (term "2,0,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "80") (term "2,1,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "2,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,0,0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,0,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "80") (term "2,1,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "2,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0,1,0,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,1,0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,1,0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0,2,1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "polySimp_addComm1" (formula "80") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_5")) + (rule "applyEq" (formula "80") (term "1,2,1,0,1,0,1,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "80") (term "1,2,0,0,0,0,1,0,1,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "8") (term "0,1,2,1,0,0,0,1,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "7") (term "0,1,2,1,0,0,0,1,0,0") (ifseqformula "44")) + (rule "applyEq" (formula "10") (term "0,1,2,1,0,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "8") (term "1,2,0,0,0,0,1,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "10") (term "1,2,0,0,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "80") (term "0,1,2,1,0,0,0,1,0,1,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "9") (term "0,1,2,1,0,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "8") (term "1,2,1,0,1,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "7") (term "1,2,0,0,0,0,1,0,0") (ifseqformula "44")) + (rule "applyEq" (formula "9") (term "1,2,1,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "10") (term "1,2,1,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "9") (term "1,2,0,0,0,0,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "7") (term "1,2,1,0,1,0,0") (ifseqformula "44")) + (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "10") (term "0,0,0,1,0")) + (rule "commuteUnion" (formula "80") (term "0,0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "10") (term "0,1,0")) + (rule "commuteUnion_2" (formula "80") (term "1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "1,0")) + (rule "commuteUnion_2" (formula "8") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "10") (term "1,0")) + (rule "commuteUnion_2" (formula "80") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "1,0,1,0,0")) + (rule "commuteUnion" (formula "7") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "1,1,0")) + (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "10") (term "0,1,1,0")) + (rule "commuteUnion" (formula "80") (term "0,0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "80") (term "1,0,1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "1,0,0")) + (rule "commuteUnion_2" (formula "9") (term "1,1,1,0")) + (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "10") (term "1,1,0")) + (rule "commuteUnion_2" (formula "80") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "0,1,1,1,0")) + (rule "commuteUnion_2" (formula "8") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "80") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,1,0")) + (rule "commute_and" (formula "8") (term "0,0")) + (rule "associativeLawUnion" (formula "10") (term "1,0")) + (rule "associativeLawUnion" (formula "9") (term "1,0")) + (rule "associativeLawUnion" (formula "10") (term "1,0")) + (rule "associativeLawUnion" (formula "9") (term "1,0")) + (rule "associativeLawUnion" (formula "7") (term "1,0,0")) + (rule "associativeLawUnion" (formula "9") (term "0,1,0")) + (rule "associativeLawUnion" (formula "10") (term "0,0,1,0")) + (rule "associativeLawUnion" (formula "8") (term "1,0,0,1,0")) + (rule "ifElseUnfold" (formula "80") (term "1") (inst "#boolv=x_6")) + (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_6")) + (rule "less_equal_than_comparison_simple" (formula "80") (term "1")) + (builtin "One Step Simplification" (formula "80")) + (rule "associativeLawUnion" (formula "7") (term "0,0,1,0,0")) + (rule "associativeLawUnion" (formula "80") (term "1,0,1,0,1,0,0")) + (rule "ifElseSplit" (formula "80")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "81")) + (builtin "One Step Simplification" (formula "1")) + (rule "methodCallUnfoldArguments" (formula "81") (term "1")) + (rule "variableDeclarationAssign" (formula "81") (term "1")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "var")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "variableDeclarationAssign" (formula "81") (term "1")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "variableDeclarationAssign" (formula "81") (term "1")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_2")) + (rule "assignmentAdditionInt" (formula "81") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "81")) + (rule "expand_inInt" (formula "81")) + (rule "replace_int_MIN" (formula "81") (term "0,1")) + (rule "replace_int_MAX" (formula "81") (term "1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "polySimp_addComm0" (formula "81") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0")) + (rule "add_literals" (formula "81") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "81") (term "0,1")) + (rule "add_literals" (formula "81") (term "0,0,1")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "81") (term "0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "6") (term "1,1,1")) + (rule "times_zero_1" (formula "6") (term "0,1,1")) + (rule "add_zero_right" (formula "6") (term "1,1")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "applyEq" (formula "78") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "7")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "applyEq" (formula "78") (term "0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "78") (term "1")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1")) + (rule "polySimp_elimOne" (formula "78") (term "0,1")) + (rule "inEqSimp_invertInEq0" (formula "2")) + (rule "times_zero_2" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "1,1,0")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0,0")) + (rule "qeq_literals" (formula "79") (term "0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_geqRight" (formula "79")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1")) + (rule "times_zero_1" (formula "36") (term "0,0")) + (rule "add_zero_left" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "36") (ifseqformula "3")) + (rule "greater_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "times_zero_1" (formula "36") (term "1,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "closeFalse" (formula "36")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaAddInt" (formula "81") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "81") (term "1")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "var_3")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (builtin "Use Operation Contract" (formula "81") (newnames "heapBefore_classify_all,exc_27,heapAfter_classify_all,anon_heap_classify_all") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_all([I,int,int,[I)].JML normal_behavior operation contract.0")) + (branch "Post (classify_all)" + (builtin "One Step Simplification" (formula "55")) + (builtin "One Step Simplification" (formula "83")) + (rule "expand_inInt" (formula "55") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "57")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "blockEmpty" (formula "87") (term "1")) + (rule "applyEq" (formula "57") (term "1,1,0,0,0") (ifseqformula "13")) + (rule "commute_and" (formula "57") (term "1,0,0")) + (rule "commute_and" (formula "57") (term "0,0,0")) + (rule "shift_paren_and" (formula "57") (term "0,0")) + (rule "commute_and_2" (formula "57") (term "0,0,0")) + (builtin "Use Operation Contract" (formula "87") (newnames "heapBefore_finish_batch,result_23,exc_28,heapAfter_finish_batch,anon_heap_finish_batch") (contract "de.wiesler.Classifier[de.wiesler.Classifier::finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0")) + (branch "Post (finish_batch)" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "89")) + (rule "expand_inInt" (formula "61") (term "0,0,0,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "61") (term "0,1,0,1")) + (rule "replace_int_MIN" (formula "61") (term "0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "61") (term "1,0,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "61") (term "0,1,0,1,0,1")) + (rule "replace_int_MAX" (formula "61") (term "1,0,0,1,0,1")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "67")) + (rule "translateJavaSubInt" (formula "61") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "70") (term "5,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,0")) + (rule "translateJavaAddInt" (formula "71") (term "4,1,1,0")) + (rule "translateJavaMulInt" (formula "61") (term "0,2,1,1,1,0")) + (rule "eqSymm" (formula "71") (term "1,0")) + (rule "polySimp_elimSub" (formula "61") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "2,0,1,1,0")) + (rule "mul_literals" (formula "61") (term "1,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,0")) + (rule "polySimp_elimSub" (formula "61") (term "2,1,1,1,0")) + (rule "mul_literals" (formula "61") (term "1,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "2,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1,0,0")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "applyEq" (formula "71") (term "1,4,0,1,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "71") (term "4,0,1,0")) + (rule "applyEq" (formula "70") (term "1,5,0") (ifseqformula "13")) + (rule "polySimp_addComm0" (formula "70") (term "5,0")) + (rule "applyEq" (formula "61") (term "1,2,0,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "61") (term "0,1,2,1,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "61") (term "1,2,1,0,1,0") (ifseqformula "45")) + (rule "commuteUnion" (formula "61") (term "1,1,0")) + (rule "commuteUnion" (formula "61") (term "0,1,0")) + (rule "commute_and" (formula "71") (term "0,0")) + (rule "associativeLawUnion" (formula "61") (term "1,0")) + (rule "compound_assignment_op_plus" (formula "101") (term "1")) + (rule "compound_int_cast_expression" (formula "101") (term "1") (inst "#v=x_6")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_7")) + (rule "remove_parentheses_right" (formula "101") (term "1")) + (rule "compound_addition_2" (formula "101") (term "1") (inst "#v1=x_9") (inst "#v0=x_8")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_8")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_9")) + (rule "remove_parentheses_right" (formula "101") (term "1")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "assignmentAdditionInt" (formula "101") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "101")) + (rule "expand_inInt" (formula "101")) + (rule "replace_int_MIN" (formula "101") (term "0,1")) + (rule "replace_int_MAX" (formula "101") (term "1,0")) + (rule "polySimp_addComm0" (formula "101") (term "0,0")) + (rule "polySimp_addComm0" (formula "101") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101") (term "0")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0,0")) + (rule "mul_literals" (formula "101") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0,0")) + (rule "add_literals" (formula "101") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "101") (term "1")) + (rule "mul_literals" (formula "101") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "101") (term "0,1")) + (rule "add_literals" (formula "101") (term "0,0,1")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101") (term "0")) + (rule "polySimp_mulLiterals" (formula "101") (term "0,0")) + (rule "polySimp_elimOne" (formula "101") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101") (term "1")) + (rule "mul_literals" (formula "101") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "6") (term "0,1,1")) + (rule "times_zero_1" (formula "6") (term "1,1,1")) + (rule "add_zero_right" (formula "6") (term "1,1")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7")) + (rule "applyEq" (formula "58") (term "1,2,1,0,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "58") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "7")) + (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "applyEq" (formula "98") (term "0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "98") (term "1")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "98") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "98") (term "0,1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "68") (term "1,4,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "68") (term "4,0,1,0")) + (rule "applyEq" (formula "67") (term "1,5,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "67") (term "5,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "applyEq" (formula "98") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "98") (term "0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "98") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0,0")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "7")) + (rule "applyEq" (formula "68") (term "4,1,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "54") (term "0,0,2,2,0,1,0") (ifseqformula "7")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "inEqSimp_invertInEq0" (formula "2")) + (rule "times_zero_2" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "98") (term "1")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1")) + (rule "polySimp_elimOne" (formula "98") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "98") (term "0")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,0")) + (rule "polySimp_elimOne" (formula "98") (term "0,0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "64")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "polySimp_elimOne" (formula "4") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "40")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "2")) + (rule "times_zero_1" (formula "5") (term "1,1,0")) + (rule "greater_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66")) + (rule "mul_literals" (formula "62") (term "0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "100") (term "1") (ifseqformula "62")) + (rule "inEqSimp_homoInEq0" (formula "100") (term "0,1")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,0,1")) + (rule "mul_literals" (formula "100") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "100") (term "0,0,0,1")) + (rule "add_literals" (formula "100") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "100") (term "0,0,1")) + (rule "add_literals" (formula "100") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "100") (term "1,0,0,1")) + (rule "add_zero_right" (formula "100") (term "0,0,1")) + (rule "qeq_literals" (formula "100") (term "0,1")) + (builtin "One Step Simplification" (formula "100")) + (rule "inEqSimp_leqRight" (formula "100")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "40")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "101")) + (rule "translateJavaAddInt" (formula "101") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "101") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "101") (term "1")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "blockEmpty" (formula "101") (term "1")) + (rule "lsContinue" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "mul_literals" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0,0")) + (rule "precOfInt" (formula "101")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "101") (term "1")) + (rule "polySimp_rightDist" (formula "101") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "101") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "101") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "101") (term "0,1")) + (rule "polySimp_addComm1" (formula "101") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "101") (term "0,1")) + (rule "add_literals" (formula "101") (term "1,1,0,1")) + (rule "times_zero_1" (formula "101") (term "1,0,1")) + (rule "add_zero_right" (formula "101") (term "0,1")) + (rule "polySimp_addAssoc" (formula "101") (term "0,1")) + (rule "polySimp_addComm1" (formula "101") (term "0,0,1")) + (rule "add_literals" (formula "101") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "101") (term "0,1")) + (rule "add_literals" (formula "101") (term "1,1,0,1")) + (rule "times_zero_1" (formula "101") (term "1,0,1")) + (rule "add_zero_right" (formula "101") (term "0,1")) + (rule "leq_literals" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "inEqSimp_leqRight" (formula "101")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "jmod_axiom" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "38")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (finish_batch)" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "62") (term "1,0") (ifseqformula "61")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "62") (term "0,1,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "64")) + (rule "notLeft" (formula "62")) + (rule "close" (formula "66") (ifseqformula "65")) + ) + (branch "Pre (finish_batch)" + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "59")) (ifInst "" (formula "67")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85")) (ifInst "" (formula "67")) (ifInst "" (formula "86")) (ifInst "" (formula "84")) (ifInst "" (formula "85"))) + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "wellFormedAnonEQ" (formula "87") (ifseqformula "55")) + (rule "wellFormedAnon" (formula "87") (term "0")) + (rule "wellFormedStorePrimitive" (formula "87") (term "0,0")) + (rule "replace_known_left" (formula "87") (term "1") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "12"))) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "wellFormedMemsetArrayPrimitive" (formula "83")) + (rule "wellFormedStorePrimitive" (formula "83")) + (rule "wellFormedStorePrimitive" (formula "83")) + (rule "wellFormedStorePrimitive" (formula "83")) + (rule "wellFormedCreate" (formula "83")) + (rule "close" (formula "83") (ifseqformula "20")) + ) + (branch "Case 2" + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "87")) + (rule "orRight" (formula "87")) + (rule "orRight" (formula "87")) + (rule "dismissNonSelectedField" (formula "87") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "84")) + (rule "closeTrue" (formula "84")) + ) + ) + (branch "Case 2" + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "87")) + (rule "orRight" (formula "87")) + (rule "orRight" (formula "87")) + (rule "dismissNonSelectedField" (formula "87") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "57")) (ifInst "" (formula "64"))) + (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1")) + (rule "close" (formula "84") (ifseqformula "24")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "87")) + (rule "replace_int_MAX" (formula "87") (term "1,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1")) + (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_contradInEq0" (formula "37") (ifseqformula "1")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "87") (userinteraction)) + (rule "andRight" (formula "87") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "87") (term "1")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "newSym_eq" (formula "7") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "7") (term "1,1,1")) + (rule "times_zero_1" (formula "7") (term "0,1,1")) + (rule "add_zero_left" (formula "7") (term "1,1")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEq" (formula "8") (term "0,0") (ifseqformula "7")) + (rule "polySimp_homoEq" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "8")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "applyEq" (formula "11") (term "4,0,1,0") (ifseqformula "8")) + (rule "applyEq" (formula "6") (term "1") (ifseqformula "8")) + (rule "applyEq" (formula "10") (term "5,0") (ifseqformula "8")) + (rule "applyEq" (formula "55") (term "0,0,2,2,0,1,0") (ifseqformula "8")) + (rule "inEqSimp_invertInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "40")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "3")) + (rule "greater_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "40")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "22")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "40")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "87") (term "0")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "jmod_axiom" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "38")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "newSym_eq" (formula "7") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "7") (term "0,1,1")) + (rule "times_zero_1" (formula "7") (term "1,1,1")) + (rule "add_zero_left" (formula "7") (term "1,1")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEq" (formula "8") (term "0,0") (ifseqformula "7")) + (rule "polySimp_homoEq" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "applyEq" (formula "11") (term "4,0,1,0") (ifseqformula "8")) + (rule "applyEq" (formula "10") (term "5,0") (ifseqformula "8")) + (rule "applyEq" (formula "7") (term "1,0,0") (ifseqformula "8")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "applyEq" (formula "6") (term "1") (ifseqformula "8")) + (rule "applyEq" (formula "55") (term "0,0,2,2,0,1,0") (ifseqformula "8")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "inEqSimp_invertInEq0" (formula "3")) + (rule "times_zero_2" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "5")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "87")) + (rule "replace_int_MAX" (formula "87") (term "1,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "6") (term "1,1,1")) + (rule "times_zero_1" (formula "6") (term "0,1,1")) + (rule "add_zero_right" (formula "6") (term "1,1")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "7")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "84") (term "0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "84") (term "1")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "84") (term "0,1")) + (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0")) + (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7")) + (rule "applyEq" (formula "54") (term "0,0,2,2,0,1,0") (ifseqformula "7")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "inEqSimp_invertInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "1")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1")) + (rule "polySimp_elimOne" (formula "84") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "84") (term "0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,0")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "85") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "85") (term "0,0,0,0")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0,0")) + (rule "add_zero_right" (formula "85") (term "0,0,0")) + (rule "qeq_literals" (formula "85") (term "0,0")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_geqRight" (formula "85")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1")) + (rule "times_zero_1" (formula "36") (term "0,0")) + (rule "add_zero_left" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "36") (ifseqformula "3")) + (rule "times_zero_1" (formula "36") (term "1,1,0")) + (rule "greater_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "closeFalse" (formula "36")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "87")) + (rule "replace_int_MAX" (formula "87") (term "1,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1")) + (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "jmod_axiom" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "1")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeFalse" (formula "28")) + ) + ) + (branch "Case 2" + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "87")) + (rule "orRight" (formula "87")) + (rule "orRight" (formula "87")) + (rule "dismissNonSelectedField" (formula "87") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58")) (ifInst "" (formula "64"))) + (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1")) + (rule "close" (formula "84") (ifseqformula "28")) + ) + ) + (branch "Case 2" + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "87")) + (rule "orRight" (formula "87")) + (rule "orRight" (formula "87")) + (rule "dismissNonSelectedField" (formula "87") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "pullOutSelect" (formula "83") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "64"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "82"))) + (rule "applyEqReverse" (formula "84") (term "0") (ifseqformula "1")) + (rule "close" (formula "84") (ifseqformula "29")) + ) + ) + ) + (branch "Exceptional Post (classify_all)" + (builtin "One Step Simplification" (formula "55")) + (builtin "One Step Simplification" (formula "83")) + (rule "andLeft" (formula "55")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "close" (formula "59") (ifseqformula "58")) + ) + (branch "Pre (classify_all)" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "11")) (ifInst "" (formula "80")) (ifInst "" (formula "61")) (ifInst "" (formula "80")) (ifInst "" (formula "61"))) + (rule "wellFormedAnon" (formula "81") (term "0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "81") (term "0,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "81")) + (rule "dismissNonSelectedField" (formula "81") (term "0,0,1,0,0,0")) + (rule "dismissNonSelectedField" (formula "81") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "add_literals" (formula "81") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,1,0")) + (rule "mul_literals" (formula "81") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0,1,1,0")) + (rule "add_literals" (formula "81") (term "0,0,1,1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "81") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,1,0")) + (rule "mul_literals" (formula "81") (term "1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "wellFormedMemsetArrayPrimitive" (formula "77") (term "0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0")) + (rule "wellFormedStorePrimitive" (formula "77") (term "0,0,0,0")) + (rule "wellFormedCreate" (formula "77") (term "0,0,0,0")) + (rule "replace_known_left" (formula "77") (term "0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "77")) + (rule "newSym_eq" (formula "6") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i_0, Z(0(#))))")) + (rule "times_zero_1" (formula "6") (term "1,1,1")) + (rule "times_zero_1" (formula "6") (term "0,1,1")) + (rule "add_zero_right" (formula "6") (term "1,1")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "6")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "applyEq" (formula "78") (term "0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "78") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,0")) + (rule "applyEq" (formula "78") (term "0,0,1,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,0,0")) + (rule "applyEq" (formula "9") (term "5,0") (ifseqformula "7")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "10") (term "4,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "78") (term "0,1,1,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "78") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "applyEq" (formula "78") (term "0,0,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1,0")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "7")) + (rule "inEqSimp_invertInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,1,0")) + (rule "elimGcdGeq_antec" (formula "3") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(add(mul(begin, Z(neglit(1(#)))), end), Z(6(1(#))))") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "pullOutSelect" (formula "78") (term "0,0,1") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "79") (term "0,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "79")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "39")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "1,1,0")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "pullOutSelect" (formula "78") (term "0,0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52")) (ifInst "" (formula "59"))) + (rule "applyEqReverse" (formula "79") (term "0,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "78") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0,0,0")) + (rule "qeq_literals" (formula "79") (term "0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_subsumption0" (formula "79") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "79") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0,1")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,0,1")) + (rule "add_literals" (formula "79") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "79") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "79") (term "0,0,0,1")) + (rule "qeq_literals" (formula "79") (term "0,0,1")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "39")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "21")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "1")) + (rule "times_zero_1" (formula "36") (term "0,0")) + (rule "add_zero_left" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "elimGcdLeq_antec" (formula "36") (inst "elimGcdRightDiv=Z(6(4(0(2(#)))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "36") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_and_subsumption3" (formula "42") (term "0,0,0")) + (rule "leq_literals" (formula "42") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "31")) + (rule "replace_known_right" (formula "20") (term "0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "20")) + (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "19")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "translateJavaSubInt" (formula "49") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "49") (term "0,2,1")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "49")) + (rule "translateJavaMulInt" (formula "46") (term "1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0,2,1")) + (rule "mul_literals" (formula "49") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "49") (term "0,2,0")) + (rule "mul_literals" (formula "49") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "43")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "43")) + (rule "applyEq" (formula "46") (term "1") (ifseqformula "43")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "34")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "44")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "Contract_axiom_for_isClassifiedUntil_in_Classifier" (formula "54") (term "0")) + (rule "translateJavaSubInt" (formula "54") (term "0,0,0,1,1,1,0,0,0,0")) + (rule "eqSymm" (formula "54") (term "0,1,1,0,0,0,0")) + (rule "replace_known_right" (formula "54") (term "0,1,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "42")) (ifInst "" (formula "87")) (ifInst "" (formula "85")) (ifInst "" (formula "86")) (ifInst "" (formula "23")) (ifInst "" (formula "24"))) + (rule "polySimp_elimSub" (formula "54") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "54") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "54") (term "1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "54") (term "0,0,0,1,1,0")) + (rule "inEqSimp_commuteGeq" (formula "54") (term "0,1,0")) + (rule "applyEq" (formula "54") (term "0,0,1,0") (ifseqformula "42")) + (rule "inEqSimp_subsumption0" (formula "54") (term "0,1,0") (ifseqformula "33")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0,0,1,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "54") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaMod" (formula "9") (term "0")) + (rule "jmod_axiom" (formula "9") (term "0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "newSym_eq" (formula "9") (inst "l=l_1") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(write_0, Z(0(#))))")) + (rule "times_zero_1" (formula "9") (term "1,1,1")) + (rule "times_zero_1" (formula "9") (term "0,1,1")) + (rule "add_zero_left" (formula "9") (term "1,1")) + (rule "add_zero_right" (formula "9") (term "1")) + (rule "applyEq" (formula "10") (term "0,0") (ifseqformula "9")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1")) + (rule "applyEq" (formula "9") (term "1,0,0") (ifseqformula "10")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "applyEq" (formula "12") (term "3,0,1,0") (ifseqformula "10")) + (rule "applyEq" (formula "11") (term "4,0") (ifseqformula "10")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "1")) + (rule "inEqSimp_invertInEq0" (formula "5")) + (rule "times_zero_2" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "elimGcdGeq_antec" (formula "5") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=mul(l_1, Z(6(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "35")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "elimGcdLeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0")) + (rule "neg_literal" (formula "6") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "43") (term "0") (inst "element=element")) + (rule "expand_inInt" (formula "43") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "43") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "43") (term "1,1,1,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "25")) (ifInst "" (formula "31")) (ifInst "" (formula "89")) (ifInst "" (formula "44")) (ifInst "" (formula "44"))) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,0,1,1,1")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "58") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "58")) + (rule "expand_inInt" (formula "58") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "58") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "58") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "translateJavaSubInt" (formula "62") (term "1")) + (rule "polySimp_elimSub" (formula "62") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "1")) + (rule "add_literals" (formula "62") (term "1,1")) + (rule "times_zero_1" (formula "62") (term "1")) + (rule "replace_known_left" (formula "43") (term "0,1,1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0")) + (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "45")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "33") (inst "b=b")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "48"))) + (rule "expand_inInt" (formula "33") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "translateJavaMulInt" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "eqSymm" (formula "69")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "50")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Classifier" (formula "13") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "14")) + (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "19")) + (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "18")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "jdiv_axiom" (formula "12") (term "0,1,2,1,0,0,1,0,0")) + (rule "eqSymm" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,2,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "12")) + (rule "applyEq" (formula "14") (term "0,1,2,1,0,0,1,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "13") (term "0,1,2,1,0,0,1,0,0") (ifseqformula "12")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0,1,1")) + (rule "jdiv_axiom" (formula "8") (term "0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,2,1")) + (rule "eqSymm" (formula "8")) + (rule "applyEqRigid" (formula "8") (term "1") (ifseqformula "9")) + (rule "inEqSimp_subsumption6" (formula "8") (term "0,0") (ifseqformula "3")) + (rule "times_zero_1" (formula "8") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "8") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "leq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polyDiv_pullOut" (formula "8") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_pullOutFactor0" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0")) + (rule "div_literals" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "commute_and" (formula "98")) + (rule "inEqSimp_and_subsumption2" (formula "98")) + (rule "inEqSimp_homoInEq0" (formula "98") (term "0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "98") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "98") (term "0,0,0,0")) + (rule "add_literals" (formula "98") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "98") (term "0,0,0")) + (rule "add_literals" (formula "98") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "98") (term "1,0,0,0")) + (rule "add_zero_right" (formula "98") (term "0,0,0")) + (rule "qeq_literals" (formula "98") (term "0,0")) + (builtin "One Step Simplification" (formula "98")) + (rule "inEqSimp_geqRight" (formula "98")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "1")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "38") (ifseqformula "3")) + (rule "greater_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + ) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "81")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "81") (term "1")) + (rule "blockBreak" (formula "81") (term "1")) + (rule "lsBreak" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (builtin "Block Contract (Internal)" (formula "81") (newnames "result_23,exc_27,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "29")) (ifInst "" (formula "21")) (ifInst "" (formula "78"))) + (builtin "One Step Simplification" (formula "82")) + (rule "andLeft" (formula "53")) + (rule "eqSymm" (formula "83") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "54") (term "0,0")) + (rule "variableDeclarationAssign" (formula "83") (term "1")) + (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_27_1")) + (rule "assignment" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (rule "pullOutSelect" (formula "54") (term "0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "simplifySelectOfStore" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "simplifySelectOfStore" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "simplifySelectOfStore" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "simplifySelectOfCreate" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "64"))) + (rule "castDel" (formula "54") (term "1,0")) + (rule "eqSymm" (formula "54") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "54") (term "0,0")) + (rule "replace_known_right" (formula "54") (term "1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "80"))) + (rule "applyEqReverse" (formula "55") (term "0,0") (ifseqformula "54")) + (rule "hideAuxiliaryEq" (formula "54")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "tryEmpty" (formula "82") (term "1")) + (rule "blockEmptyLabel" (formula "82") (term "1")) + (rule "blockEmpty" (formula "82") (term "1")) + (rule "methodCallEmpty" (formula "82") (term "1")) + (rule "emptyModality" (formula "82") (term "1")) + (rule "andRight" (formula "82")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "82")) + (rule "closeTrue" (formula "82")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "82")) + (rule "closeTrue" (formula "82")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81")) + (rule "wellFormedAnon" (formula "81")) + (rule "wellFormedStorePrimitive" (formula "81") (term "0")) + (rule "replace_known_left" (formula "81") (term "1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_leqRight" (formula "53")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "wellFormedMemsetArrayPrimitive" (formula "77")) + (rule "wellFormedStorePrimitive" (formula "77")) + (rule "wellFormedStorePrimitive" (formula "77")) + (rule "wellFormedStorePrimitive" (formula "77")) + (rule "wellFormedCreate" (formula "77")) + (rule "close" (formula "77") (ifseqformula "20")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "77"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81")) + (rule "orRight" (formula "81")) + (rule "dismissNonSelectedField" (formula "81") (term "0")) + (rule "inEqSimp_leqRight" (formula "53")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,2,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "jmod_axiom" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,1,2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,2,1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0,0,1,0,0")) + (rule "jmod_axiom" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "jmod_axiom" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,2,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,2,1,0,0,1,0")) + (rule "jmod_axiom" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "pullOutSelect" (formula "77") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfMemset" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "58"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "74"))) + (rule "applyEqReverse" (formula "78") (term "0") (ifseqformula "1")) + (rule "close" (formula "78") (ifseqformula "22")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "81")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "82")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,0,1,0")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "eqSymm" (formula "57")) + (rule "translateJavaMod" (formula "57") (term "1,0")) + (rule "translateJavaSubInt" (formula "57") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "57") (term "0")) + (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "polySimp_elimSub" (formula "56") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "elim_double_block_2" (formula "85") (term "1")) + (rule "ifUnfold" (formula "85") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "85") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "85") (term "1")) + (builtin "One Step Simplification" (formula "85")) + (rule "replace_known_left" (formula "85") (term "0,0,1,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "85")) + (rule "ifSplit" (formula "85")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "85") (term "1")) + (rule "emptyStatement" (formula "85") (term "1")) + (rule "blockEmpty" (formula "85") (term "1")) + (rule "methodCallReturn" (formula "85") (term "1")) + (rule "assignment" (formula "85") (term "1")) + (builtin "One Step Simplification" (formula "85")) + (rule "methodCallEmpty" (formula "85") (term "1")) + (rule "tryEmpty" (formula "85") (term "1")) + (rule "emptyModality" (formula "85") (term "1")) + (rule "andRight" (formula "85")) + (branch "Case 1" + (rule "impRight" (formula "85")) + (rule "andRight" (formula "86")) + (branch "Case 1" + (rule "andRight" (formula "86")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "10"))) + (rule "closeTrue" (formula "86")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "86")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "closeTrue" (formula "86")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "85")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (newObject = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "41"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "1")) + (rule "methodCallReturn" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "methodCallEmpty" (formula "52") (term "1")) + (rule "tryEmpty" (formula "52") (term "1")) + (rule "emptyModality" (formula "52") (term "1")) + (rule "andRight" (formula "52")) + (branch "Case 1" + (rule "andRight" (formula "52")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "52")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "52") (userinteraction)) + (rule "inEqSimp_geqRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "18")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "1")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "21")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "17")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "29") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "translateJavaSubInt" (formula "33") (term "1")) + (rule "polySimp_elimSub" (formula "33") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "33") (term "1")) + (rule "add_literals" (formula "33") (term "1,1")) + (rule "times_zero_1" (formula "33") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "applyEq" (formula "32") (term "0,1,0,0,1,0,0,0") (ifseqformula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "11") (inst "b=b")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "translateJavaMulInt" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "eqSymm" (formula "38")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "18")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "13")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "eqSymm" (formula "33")) + (rule "eqSymm" (formula "30")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "33") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "30") (term "1,0")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimSub" (formula "33") (term "0,2,0")) + (rule "mul_literals" (formula "33") (term "1,0,2,0")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "33") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "28")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "16")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "27")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "24") (term "0,1,0")) + (rule "Definition_axiom_for_count_in_de_wiesler_Buffers" (formula "40") (term "0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "40") (term "0")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "38") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "4,0,1,0")) + (rule "translateJavaMulInt" (formula "38") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "38") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_allElementsCounted_in_Classifier" (formula "36") (term "0")) + (rule "replace_known_left" (formula "36") (term "1,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "62")) (ifInst "" (formula "60")) (ifInst "" (formula "3")) (ifInst "" (formula "59"))) + (rule "inEqSimp_commuteGeq" (formula "36") (term "0,0")) + (rule "applyEq" (formula "36") (term "0,0,0") (ifseqformula "25")) + (rule "inEqSimp_subsumption0" (formula "36") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "Contract_axiom_for_isClassifiedBlocksRange_in_Classifier" (formula "38") (term "0")) + (rule "translateJavaSubInt" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "replace_known_right" (formula "38") (term "0,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "63")) (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "polySimp_elimSub" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "0,0,0,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "39") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0")) + (rule "translateJavaDivInt" (formula "39") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "39") (term "0,1,4,0,1,0")) + (rule "translateJavaAddInt" (formula "39") (term "3,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "39") (term "4,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "1,3,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "39") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "39") (term "1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "0,1,1,0,0,0")) + (rule "jdiv_axiom_inline" (formula "39") (term "1,1,0,0,0")) + (rule "times_zero_2" (formula "39") (term "0,0,2,1,1,0,0,0")) + (rule "qeq_literals" (formula "39") (term "0,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "div_literals" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "37") (term "0") (inst "b=b") (inst "b_0=b_0")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,0")) + (rule "andLeft" (formula "37")) + (rule "translateJavaCastInt" (formula "38") (term "0")) + (rule "translateJavaSubInt" (formula "38") (term "1")) + (rule "polySimp_elimSub" (formula "38") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "38") (term "1")) + (rule "add_literals" (formula "38") (term "1,1")) + (rule "times_zero_1" (formula "38") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "25")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0,0") (ifseqformula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "23") (term "0,0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "42") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "nnf_notAnd" (formula "40") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "nnf_notAnd" (formula "37") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0")) + (rule "commute_or_2" (formula "41") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "32") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "expand_inInt" (formula "32") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "40") (term "1,0")) + (rule "translateJavaSubInt" (formula "38") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "34") (term "1")) + (rule "translateJavaSubInt" (formula "40") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "3,0")) + (rule "mul_literals" (formula "38") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "3,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "applyEq" (formula "36") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "1,0,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "34")) + (rule "applyEq" (formula "37") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_commuteGeq" (formula "37")) + (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "29")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "34") (term "1")) + (rule "mod_axiom" (formula "34") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "36") (term "1")) + (rule "mod_axiom" (formula "36") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "28") (term "0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "30") (term "3,0")) + (rule "mod_axiom" (formula "30") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "35") (term "0")) + (rule "mod_axiom" (formula "35") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,3,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "0")) + (rule "mod_axiom" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "2,0")) + (rule "mod_axiom" (formula "28") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,1")) + (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "31") (term "1,0,2,0")) + (rule "mod_axiom" (formula "31") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "40") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "34") (term "0,1")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "36") (term "0,1")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,1")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "36")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "34")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "shiftLeftDef" (formula "28") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "30") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,3,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,3,0")) + (rule "applyEq" (formula "30") (term "3,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "35") (term "0,0")) + (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "38") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "38") (term "1,3,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "37") (term "0,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "28") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,2,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,2,0")) + (rule "applyEq" (formula "28") (term "2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "40") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "40") (term "1,1,1,0,0,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "39") (term "1,1,1,1,0") (ifseqformula "34")) + (rule "shiftLeftDef" (formula "31") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "31") (term "1,0,2,0") (ifseqformula "34")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "37")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "expand_moduloInteger" (formula "34") (term "0")) + (rule "replace_int_HALFRANGE" (formula "34") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "34") (term "1,1,0")) + (rule "replace_int_MIN" (formula "34") (term "0,0")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "48") (term "0,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "translateJavaMod" (formula "48") (term "0,0,0")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "45"))) + (rule "true_left" (formula "48")) + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "46") (term "1,1,0") (inst "i=i_1")) + (rule "bsum_lower_equals_upper" (formula "46") (term "1,1,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "48") (term "0,1,0")) + (rule "replace_known_right" (formula "48") (term "0,1,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "2")) (ifInst "" (formula "3"))) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "49") (term "0,1,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,1,0,0,0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "45") (term "1,1")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "29")) (ifInst "" (formula "30"))) + (rule "translateJavaMulInt" (formula "45") (term "1,1,1,0,0,1,1")) + (rule "eqSymm" (formula "45") (term "1,0,1,1")) + (rule "eqSymm" (formula "45") (term "1,0,0,1,1")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,0,1,0,1,1")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,1,1,0,1,1")) + (rule "mul_literals" (formula "45") (term "1,0,2,1,1,0,1,1")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,0,1,0,1,1")) + (rule "mul_literals" (formula "45") (term "1,0,2,0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,0,1,1")) + (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,1,1")) + (rule "applyEq" (formula "45") (term "0,1,0,1,1") (ifseqformula "28")) + (rule "eqSymm" (formula "45") (term "1,0,1,1")) + (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "45")) + (rule "applyEq" (formula "45") (term "0,1,0,1,1") (ifseqformula "25")) + (rule "replace_known_left" (formula "45") (term "1,0,1,1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "45")) + (rule "applyEq" (formula "45") (term "0,0,1,1") (ifseqformula "25")) + (rule "replace_known_left" (formula "45") (term "0,1,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "45")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "51") (term "2,0")) + (rule "Definition_axiom_for_isValidBufferLen_in_de_wiesler_Classifier" (formula "50") (term "0,1,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,1,1,0")) + (rule "add_zero_right" (formula "50") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,0,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "41") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "41") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "41") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "40") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "40") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,0,1,1,1,0")) + (rule "commute_or" (formula "24") (term "1,0,0,0")) + (rule "commute_and" (formula "41") (term "1,0,0")) + (rule "commute_and" (formula "40") (term "1,0,0")) + (rule "nnf_imp2or" (formula "49") (term "0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "30") (term "0")) + (rule "replace_known_right" (formula "30") (term "0,0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "2")) (ifInst "" (formula "31"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "31") (term "0") (inst "j=j") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "51") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,1,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,1,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "40") (term "0")) + (rule "replace_known_left" (formula "40") (term "0,1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "55")) (ifInst "" (formula "2"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "41") (term "0") (inst "j=j") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "41") (term "1,0,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "cut_direct" (formula "76") (term "0,0")) + (branch "CUT: buffers.buffer = null TRUE" + (builtin "One Step Simplification" (formula "77")) + (rule "false_right" (formula "77")) + (rule "replace_known_left" (formula "51") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "62")) + (rule "applyEq" (formula "67") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "66") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "51") (term "1,2,0,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "57")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "12") (term "0")) + (rule "expand_inShort" (formula "12")) + (rule "replace_short_MIN" (formula "12") (term "0,1")) + (rule "replace_short_MAX" (formula "12") (term "1,0")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "14")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "20")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_imp2or" (formula "32") (term "0,1,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "51") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,0,0,1,0")) + (rule "commute_or_2" (formula "51") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "40") (term "1")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "37")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "40") (term "1")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "37")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "49") (term "0,1")) + (rule "replace_known_right" (formula "49") (term "0,0,0,1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "56"))) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "53") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "translateJavaMod" (formula "53") (term "0,1,0,1,0")) + (rule "jmod_axiom" (formula "53") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "53") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1,0,1,0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "nnf_imp2or" (formula "43") (term "0,1,0")) + (rule "nnf_notAnd" (formula "45") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "39") (term "0")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "31") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "31") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "31") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0")) + (rule "ifthenelse_split" (formula "29") (term "0")) + (branch "self.equal_buckets = TRUE TRUE" + (rule "newSym_eq" (formula "30") (inst "newSymDef=mul(int::final(buffers, + de.wiesler.Buffers::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "30") (term "1,1")) + (rule "add_zero_right" (formula "30") (term "1")) + (rule "applyEq" (formula "35") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "35")) + (rule "applyEq" (formula "33") (term "1,1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "47") (term "1,3,0") (ifseqformula "30")) + (rule "applyEq" (formula "34") (term "1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "49") (term "1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "30")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "48") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "48") (term "1,1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "34") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "30")) + (rule "applyEq" (formula "50") (term "1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "30")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "30")) + (rule "applyEq" (formula "14") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "58") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "35") (term "1,0,2,0") (ifseqformula "30")) + (rule "eqSymm" (formula "35")) + (rule "applyEq" (formula "55") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "59") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "57") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "25") (term "1,1,0,0") (ifseqformula "31")) + (rule "applyEq" (formula "38") (term "1,1") (ifseqformula "30")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "31")) + (rule "applyEq" (formula "49") (term "0,1,0,0,1,1,1,0") (ifseqformula "30")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "40")) + (rule "mul_literals" (formula "28") (term "1,1,0")) + (rule "greater_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "elimGcdLeq_antec" (formula "13") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "neg_literal" (formula "13") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "elimGcdLeq_antec" (formula "15") (inst "elimGcdRightDiv=Z(3(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "15") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "15")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "44") (ifseqformula "15")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "15")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "52") (term "0")) + (rule "replace_known_right" (formula "52") (term "0,0,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "59"))) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "55") (term "0,1,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "45") (term "0")) + (rule "replace_known_left" (formula "45") (term "0,1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "60")) (ifInst "" (formula "3"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "46") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "1,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "49") (term "0,0")) + (rule "commute_or_2" (formula "47") (term "0,0")) + (rule "commute_or_2" (formula "33") (term "0,0")) + (rule "commute_or_2" (formula "48") (term "0,0")) + (rule "commute_or" (formula "57") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "13") (term "0,0,0")) + (rule "shift_paren_or" (formula "25") (term "0,0,0")) + (rule "shift_paren_or" (formula "54") (term "0,0,0")) + (rule "shift_paren_or" (formula "56") (term "0,0,0")) + (rule "commute_or" (formula "56") (term "1,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (inst "i=i_1") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "59")) (ifInst "" (formula "36"))) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "translateJavaSubInt" (formula "58") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "54") (term "1")) + (rule "translateJavaSubInt" (formula "60") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "3,0")) + (rule "mul_literals" (formula "58") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "3,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "31")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "29")) + (rule "eqSymm" (formula "53")) + (rule "applyEq" (formula "58") (term "1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "1,3,0") (ifseqformula "29")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "31")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "53")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "54") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0")) + (rule "mod_axiom" (formula "53") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "53") (term "0,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "nnf_imp2or" (formula "54") (term "0")) + (rule "expand_moduloInteger" (formula "53") (term "0")) + (rule "replace_int_HALFRANGE" (formula "53") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "53") (term "1,1,0")) + (rule "replace_int_MIN" (formula "53") (term "0,0")) + (rule "polySimp_homoEq" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0")) + (rule "applyEq" (formula "53") (term "0,1,0") (ifseqformula "37")) + (rule "polySimp_pullOutFactor1" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "1,0")) + (rule "times_zero_1" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "nnf_notAnd" (formula "54") (term "0,0")) + (rule "nnf_notAnd" (formula "53") (term "0,0")) + (rule "nnf_notAnd" (formula "54") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "54") (term "0,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54") (term "0,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "54") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "54") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "54") (term "0,0,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "54") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "54") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "54") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "53") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "0,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "1,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "53") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "53") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "0,0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "53") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "53") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "45") (term "0")) + (rule "replace_known_right" (formula "45") (term "0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "3")) (ifInst "" (formula "46"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "46") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "33") (term "0,0,0,1,0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "commute_or_2" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "commute_or" (formula "48") (term "0,0,0,1,0")) + (rule "nnf_imp2or" (formula "46") (term "0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0")) + (rule "commute_or" (formula "33") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,1,0")) + (rule "commute_or" (formula "48") (term "1,0,0,1,0")) + (rule "commute_or_2" (formula "47") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,1,0")) + (rule "div_axiom" (formula "37") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "37") (term "0,1,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "equal_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,1,1")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "polySimp_addComm1" (formula "39") (term "1")) + (rule "add_literals" (formula "39") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_homoInEq1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "applyEq" (formula "40") (term "0,1,1,2,1,0,0") (ifseqformula "37")) + (rule "polySimp_addComm0" (formula "40") (term "1,2,1,0,0")) + (rule "applyEq" (formula "40") (term "0,1,1,1,1,1,0,0") (ifseqformula "37")) + (rule "polySimp_addComm0" (formula "40") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "40") (term "0,0,0,1,0,0") (ifseqformula "37")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "40") (term "0,1,0,0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "40") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "mod_axiom" (formula "40") (term "0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "newSym_eq" (formula "40") (inst "l=l_1") (inst "newSymDef=add(mul(l_0, Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))")) + (rule "times_zero_1" (formula "40") (term "0,1,1")) + (rule "times_zero_1" (formula "40") (term "1,1,1")) + (rule "add_zero_left" (formula "40") (term "1,1")) + (rule "add_zero_right" (formula "40") (term "1")) + (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "40")) + (rule "polySimp_homoEq" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1")) + (rule "applyEq" (formula "40") (term "1,0,0") (ifseqformula "41")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "polyDiv_pullOut" (formula "40") (term "0") (inst "polyDivCoeff=l_1")) + (rule "equal_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,0,0")) + (rule "times_zero_1" (formula "40") (term "0,0")) + (rule "add_zero_left" (formula "40") (term "0")) + (rule "polySimp_invertEq" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "times_zero_2" (formula "40") (term "1")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "39")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "elimGcdGeq_antec" (formula "35") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_antiSymm" (formula "35") (ifseqformula "39")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "40") (term "0,1") (ifseqformula "35")) + (rule "times_zero_2" (formula "40") (term "1")) + (rule "applyEq" (formula "41") (term "0,1,1") (ifseqformula "35")) + (rule "times_zero_2" (formula "41") (term "1,1")) + (rule "add_zero_right" (formula "41") (term "1")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "36")) + (rule "true_left" (formula "36")) + (rule "applyEq" (formula "38") (term "1") (ifseqformula "35")) + (rule "applyEq" (formula "42") (term "0,0,1,0") (ifseqformula "35")) + (rule "times_zero_2" (formula "42") (term "0,1,0")) + (rule "add_zero_left" (formula "42") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "36")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption0" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "commute_or_2" (formula "13") (term "0,0,0")) + (rule "commute_or_2" (formula "59") (term "0,0,0")) + (rule "commute_or_2" (formula "61") (term "0,0,0")) + (rule "shift_paren_or" (formula "53") (term "0,0,0")) + (rule "commute_or" (formula "51") (term "1,0,0,0")) + (rule "commute_or" (formula "33") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "52") (term "0,0,0")) + (rule "shift_paren_or" (formula "62") (term "0,0,0")) + (rule "commute_or" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "commute_or_2" (formula "61") (term "0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "58") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "58") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "58") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "58") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "58") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "57") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "57") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "57") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "57") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "57") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "57") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "57") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "57") (term "0,0,0,1,1,1,0")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "arrayLengthIsAShort" (formula "47") (term "0")) + (rule "expand_inShort" (formula "47")) + (rule "replace_short_MIN" (formula "47") (term "0,1")) + (rule "replace_short_MAX" (formula "47") (term "1,0")) + (rule "andLeft" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "41")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "12")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthIsAShort" (formula "45") (term "0")) + (rule "expand_inShort" (formula "45")) + (rule "replace_short_MAX" (formula "45") (term "1,0")) + (rule "replace_short_MIN" (formula "45") (term "0,1")) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "arrayLengthNotNegative" (formula "46") (term "0")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "41")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "arrayLengthNotNegative" (formula "44") (term "0")) + (rule "arrayLengthIsAShort" (formula "12") (term "0")) + (rule "expand_inShort" (formula "12")) + (rule "replace_short_MAX" (formula "12") (term "1,0")) + (rule "replace_short_MIN" (formula "12") (term "0,1")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "13")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + (branch "self.equal_buckets = TRUE FALSE" + (rule "applyEq" (formula "42") (term "1") (ifseqformula "29")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "45") (term "1,3,0") (ifseqformula "29")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "29")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "48") (term "1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "31") (term "1,1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "47") (term "1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "32") (term "1,1,1,0,0,0,0,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "33") (term "1,0,2,0") (ifseqformula "29")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "29")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,1,1,0") (ifseqformula "29")) + (rule "inEqSimp_subsumption0" (formula "40") (ifseqformula "13")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "40") (ifseqformula "13")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "13")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "commute_or" (formula "51") (term "1,0,0,0")) + (rule "commute_or" (formula "14") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "25") (term "0,0,0")) + (rule "div_axiom" (formula "36") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "36") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "qeq_literals" (formula "36") (term "0,1")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "polySimp_addComm1" (formula "38") (term "1")) + (rule "add_literals" (formula "38") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "applyEq" (formula "39") (term "0,1,1,1,1,1,0,0") (ifseqformula "36")) + (rule "polySimp_addComm0" (formula "39") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "39") (term "0,0,0,1,0,0") (ifseqformula "36")) + (rule "inEqSimp_homoInEq1" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0")) + (rule "applyEq" (formula "39") (term "0,1,1,2,1,0,0") (ifseqformula "36")) + (rule "polySimp_addComm0" (formula "39") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "39") (term "0,1,0,0") (ifseqformula "37")) + (rule "inEqSimp_homoInEq1" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "39") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "mod_axiom" (formula "39") (term "0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0")) + (rule "polySimp_homoEq" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1")) + (rule "newSym_eq" (formula "39") (inst "newSymDef=add(mul(int::final(buffers, + de.wiesler.Buffers::$num_buckets), + Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + int::final(de.wiesler.Tree::final(self, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$log_buckets))), + Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "39") (term "1,1,1")) + (rule "times_zero_1" (formula "39") (term "0,1,1")) + (rule "add_zero_left" (formula "39") (term "1,1")) + (rule "add_zero_right" (formula "39") (term "1")) + (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1")) + (rule "applyEq" (formula "39") (term "1,0,0") (ifseqformula "40")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "polyDiv_pullOut" (formula "39") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "polySimp_homoEq" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,0,0")) + (rule "times_zero_1" (formula "39") (term "0,0")) + (rule "add_zero_left" (formula "39") (term "0")) + (rule "polySimp_invertEq" (formula "39")) + (rule "times_zero_2" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "38")) + (rule "mul_literals" (formula "34") (term "0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "elimGcdGeq_antec" (formula "34") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(2(3(#)))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_antiSymm" (formula "34") (ifseqformula "38")) + (rule "applyEqRigid" (formula "40") (term "0,1") (ifseqformula "34")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "40") (term "0,1,1") (ifseqformula "34")) + (rule "mul_literals" (formula "40") (term "1,1")) + (rule "add_zero_right" (formula "40") (term "1")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "34")) + (rule "leq_literals" (formula "38")) + (rule "true_left" (formula "38")) + (rule "applyEq" (formula "41") (term "0,0,1,0") (ifseqformula "34")) + (rule "times_zero_2" (formula "41") (term "0,1,0")) + (rule "add_zero_left" (formula "41") (term "1,0")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "34")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "35")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "56") (term "0,1,0,1,0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_notAnd" (formula "47") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "56") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "53") (term "1") (inst "i_0=i_0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "60")) (ifInst "" (formula "36"))) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,1")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "53") (term "3,0,1,0,0,1")) + (rule "translateJavaSubInt" (formula "53") (term "0,2,1,1,0,1,1")) + (rule "translateJavaShiftLeftInt" (formula "53") (term "1,1,0,0,0,0,0,1")) + (rule "eqSymm" (formula "53") (term "1,0,1,1")) + (rule "polySimp_elimSub" (formula "53") (term "3,0,1,0,0,1")) + (rule "mul_literals" (formula "53") (term "1,3,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "53") (term "0,2,0,1,0,1,1")) + (rule "mul_literals" (formula "53") (term "1,0,2,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "53") (term "3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,0,0,0,1")) + (rule "replace_known_left" (formula "53") (term "1,0,0,0,0,0,0,1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,1,0,1")) + (rule "applyEq" (formula "53") (term "1,1,1,0,0,0,0,1") (ifseqformula "29")) + (rule "replace_known_left" (formula "53") (term "1,1,0,0,0,0,1") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "53")) + (rule "applyEq" (formula "53") (term "1,0,1,0,1,1") (ifseqformula "30")) + (rule "applyEq" (formula "53") (term "0,0,1,0,0,0,1") (ifseqformula "30")) + (rule "inEqSimp_commuteGeq" (formula "53") (term "1,0,0,0,1")) + (rule "applyEq" (formula "53") (term "0,0,0,0,0,0,0,0,1") (ifseqformula "30")) + (rule "replace_known_right" (formula "53") (term "0,0,0,0,0,0,0,1") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "53")) + (rule "applyEq" (formula "53") (term "0,1,0,0,0,0,1") (ifseqformula "29")) + (rule "replace_known_left" (formula "53") (term "1,0,0,0,0,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "53")) + (rule "applyEq" (formula "53") (term "1,3,0,1,0,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "53") (term "1,0,1,0,0,1") (ifseqformula "30")) + (rule "applyEq" (formula "53") (term "0,0,0,0,0,1") (ifseqformula "29")) + (rule "eqSymm" (formula "53") (term "0,0,0,0,1")) + (rule "applyEq" (formula "53") (term "0,1,0,0,0,1") (ifseqformula "29")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,0,0,1")) + (rule "replace_known_left" (formula "53") (term "1,0,0,0,1") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "53")) + (rule "applyEq" (formula "53") (term "0,1,0,0,1,1,0,1,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0,1,1") (ifseqformula "29")) + (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0,0,1,0,1") (ifseqformula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,1,0,1,0,1")) + (rule "mul_literals" (formula "53") (term "0,1,1,1,0,1,0,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,1")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0,0,0,0,1")) + (rule "mod_axiom" (formula "53") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0,1")) + (rule "applyEq" (formula "53") (term "0,1,1,0,0,0,0,0,1") (ifseqformula "37")) + (rule "times_zero_2" (formula "53") (term "1,1,0,0,0,0,0,1")) + (rule "add_zero_right" (formula "53") (term "1,0,0,0,0,0,1")) + (rule "shiftLeftDef" (formula "53") (term "0,0,0,0,0,1")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0,0,0,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0,0,0,0,1")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0,0,0,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0,0,0,0,1")) + (rule "applyEq" (formula "53") (term "2,0,0,0,0,0,1") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0,0,1")) + (rule "inEqSimp_contradInEq1" (formula "53") (term "0,0,0,0,0,0,1") (ifseqformula "35")) + (rule "qeq_literals" (formula "53") (term "0,0,0,0,0,0,0,1")) + (builtin "One Step Simplification" (formula "53")) + (rule "commute_or" (formula "56") (term "1,0,0,0")) + (rule "commute_or" (formula "56") (term "1,0,0,1,0")) + (rule "commute_or" (formula "57") (term "1,0,0,0")) + (rule "commute_or" (formula "32") (term "1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "46") (term "0")) + (rule "replace_known_left" (formula "46") (term "0,1") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "62")) (ifInst "" (formula "3"))) + (rule "replace_known_left" (formula "54") (term "1,0,0,1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "54")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "47") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "1,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "48") (term "1,0,0")) + (rule "commute_or_2" (formula "50") (term "0,0")) + (rule "commute_or_2" (formula "49") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "12")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEqRigid" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEqRigid" (formula "11") (term "0") (ifseqformula "12")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + (branch "CUT: buffers.buffer = null FALSE" + (builtin "One Step Simplification" (formula "77")) + (rule "notRight" (formula "77")) + (rule "replace_known_right" (formula "51") (term "0,1,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "51")) + (rule "applyEq" (formula "70") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "60")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "66")) + (rule "applyEq" (formula "54") (term "1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "68") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "53") (term "1,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "63")) + (rule "applyEq" (formula "14") (term "1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "25") (term "1,0,1,0") (ifseqformula "1")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "12")) + (rule "qeq_literals" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "20")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "12")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "12")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "52")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "52")) + (rule "closeTrue" (formula "52")) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..4b29e0d --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__equal_buckets()).JML normal_behavior operation contract.0.proof @@ -0,0 +1,98 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 21:24:55 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 21:24:55 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:equal_buckets()].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:equal_buckets()].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "13") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "assignment" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_equal_buckets,savedHeapBefore_equal_buckets")) + (builtin "One Step Simplification" (formula "8")) +(rule "returnUnfold" (formula "8") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x")) +(rule "assignment_read_attribute_this_final" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallReturn" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "tryEmpty" (formula "8") (term "1")) +(rule "emptyModality" (formula "8") (term "1")) +(rule "andRight" (formula "8")) +(branch "Case 1" + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "5"))) + (rule "closeTrue" (formula "8")) +) +(branch "Case 2" + (builtin "One Step Simplification" (formula "8")) + (rule "closeTrue" (formula "8")) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..fa37a18 --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__finish_batch((I,(I,int,int,int,int,(I,de.wiesler.Buffers)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,9857 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:06:18 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:06:18 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:finish_batch([I,[I,int,int,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "70852") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "notLeft" (formula "11")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "17")) +(rule "notLeft" (formula "2")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "26")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "32")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "36")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "38")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "40")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "20")) +(rule "translateJavaAddInt" (formula "19") (term "1")) +(rule "eqSymm" (formula "41")) +(rule "translateJavaAddInt" (formula "47") (term "0")) +(rule "translateJavaSubInt" (formula "48") (term "0,0")) +(rule "translateJavaMod" (formula "49") (term "0")) +(rule "translateJavaAddInt" (formula "51") (term "0,2,2,0,1,0")) +(rule "translateJavaSubInt" (formula "49") (term "0,0")) +(rule "replace_known_right" (formula "15") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "15")) +(rule "replace_known_right" (formula "14") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "14")) +(rule "replace_known_right" (formula "5") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "5")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "4")) +(rule "polySimp_elimSub" (formula "48") (term "0,0")) +(rule "polySimp_elimSub" (formula "49") (term "0,0")) +(rule "polySimp_addComm0" (formula "19") (term "1")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "polySimp_addComm0" (formula "47") (term "0,0")) +(rule "polySimp_addComm0" (formula "48") (term "0,0")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "51")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "49")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "48")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "45")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "44")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "43")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "42")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "41")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "40")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "39")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) +(rule "notLeft" (formula "20")) +(rule "eqSymm" (formula "33")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "23")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "inEqSimp_commuteLeq" (formula "24")) +(rule "inEqSimp_commuteLeq" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) +(rule "assignment" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) +(rule "applyEq" (formula "19") (term "1,1") (ifseqformula "20")) +(rule "commute_and" (formula "30") (term "0,0,0")) +(rule "commute_and" (formula "30") (term "1,0,0")) +(rule "shift_paren_and" (formula "30") (term "0,0")) +(rule "commute_and_2" (formula "30") (term "0,0,0")) +(rule "methodBodyExpand" (formula "59") (term "1") (newnames "heapBefore_finish_batch,savedHeapBefore_finish_batch,_beginBefore_finish_batch,_bucket_startsBefore_finish_batch,_buffersBefore_finish_batch,_endBefore_finish_batch,_iBefore_finish_batch,_indicesBefore_finish_batch,_valuesBefore_finish_batch,_writeBefore_finish_batch,bucketBefore_finish_batch")) + (builtin "One Step Simplification" (formula "59")) +(rule "variableDeclarationGhostAssign" (formula "59") (term "1")) +(rule "variableDeclarationGhost" (formula "59") (term "1") (newnames "old_write")) +(rule "assignment" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) +(rule "for_to_while" (formula "59") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1")) +(rule "variableDeclarationAssign" (formula "59") (term "1")) +(rule "variableDeclaration" (formula "59") (term "1") (newnames "j")) +(rule "assignment" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) +(rule "elim_double_block_3" (formula "59") (term "1")) +(rule "arrayLengthNotNegative" (formula "19") (term "0")) +(rule "arrayLengthIsAShort" (formula "20") (term "0")) +(rule "expand_inShort" (formula "20")) +(rule "replace_short_MIN" (formula "20") (term "0,1")) +(rule "replace_short_MAX" (formula "20") (term "1,0")) +(rule "andLeft" (formula "20")) +(rule "inEqSimp_commuteLeq" (formula "21")) +(rule "arrayLengthNotNegative" (formula "32") (term "0")) +(rule "arrayLengthIsAShort" (formula "33") (term "0")) +(rule "expand_inShort" (formula "33")) +(rule "replace_short_MIN" (formula "33") (term "0,1")) +(rule "replace_short_MAX" (formula "33") (term "1,0")) +(rule "andLeft" (formula "33")) +(rule "inEqSimp_commuteLeq" (formula "34")) +(rule "loopScopeInvDia" (formula "65") (term "1") (newnames "j_0,_write_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) +(branch "Invariant Initially Valid" + (rule "closeTrue" (formula "65")) +) +(branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "0,0,1,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,0,0,1,0,0")) + (rule "impRight" (formula "66")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "75") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "75") (term "2,0,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "75") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "75") (term "2,1,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "75") (term "2,1,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "75") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,0,0,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "7") (term "4,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "9") (term "0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,0")) + (rule "translateJavaMulInt" (formula "8") (term "0,2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "6") (term "5,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,1,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,0,0,1,0,0")) + (rule "translateJavaSubInt" (formula "5") (term "0,0")) + (rule "translateJavaMulInt" (formula "75") (term "0,2,1,0,0,1,0,1,0,1,0")) + (rule "eqSymm" (formula "7") (term "1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "6") (term "0,2,1,0,0,1,0,0")) + (rule "translateJavaMulInt" (formula "7") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "75") (term "2,0,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "75") (term "1,2,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "75") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "75") (term "2,1,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "75") (term "1,2,1,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "75") (term "2,1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "75") (term "1,2,1,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "75") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,0,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,0,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "5") (term "0,0")) + (rule "polySimp_elimSub" (formula "75") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "75") (term "1,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,1,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,0,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,0,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,1,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,2,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,2,1,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "75") (term "2,0,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "75") (term "2,1,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "75") (term "2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,1,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "75") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,1,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "6") (term "0,1,2,1,0,0,1,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "7") (term "0,1,2,1,0,0,1,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "9") (term "0,1,2,1,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "8") (term "0,1,2,1,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "7") (term "1,2,1,1,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "6") (term "1,2,1,1,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "7") (term "1,2,0,0,0,1,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "75") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "75") (term "1,2,0,0,0,1,0,1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "6") (term "1,2,0,0,0,1,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "9") (term "1,2,1,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "8") (term "1,2,0,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "75") (term "0,1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "9") (term "1,2,0,0,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "8") (term "1,2,1,1,0") (ifseqformula "33")) + (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0,0")) + (rule "commuteUnion" (formula "8") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "75") (term "1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "9") (term "0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,0,0")) + (rule "commuteUnion" (formula "8") (term "1,0")) + (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "9") (term "0,0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,1,1,0,0")) + (rule "commuteUnion" (formula "8") (term "1,1,0")) + (rule "commuteUnion" (formula "75") (term "0,0,1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "9") (term "0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "9") (term "1,0")) + (rule "commuteUnion_2" (formula "7") (term "0,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "75") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "9") (term "0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "75") (term "0,1,0,1,0,1,0")) + (rule "commute_and" (formula "7") (term "0,0")) + (rule "associativeLawUnion" (formula "8") (term "1,0")) + (rule "associativeLawUnion" (formula "8") (term "1,0")) + (rule "associativeLawUnion" (formula "6") (term "1,0,0")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "associativeLawUnion" (formula "9") (term "0,1,0")) + (rule "associativeLawUnion" (formula "6") (term "1,0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0,0") (ifseqformula "11") (ifseqformula "12")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0") (ifseqformula "12") (ifseqformula "13")) + (rule "ifElseUnfold" (formula "80") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_2")) + (rule "compound_less_than_comparison_2" (formula "80") (term "1") (inst "#v0=x_3") (inst "#v1=x_4")) + (rule "variableDeclarationAssign" (formula "80") (term "1")) + (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_3")) + (rule "assignment" (formula "80") (term "1")) + (builtin "One Step Simplification" (formula "80")) + (rule "variableDeclarationAssign" (formula "80") (term "1")) + (rule "variableDeclaration" (formula "80") (term "1") (newnames "x_4")) + (rule "assignment_read_length" (formula "80")) + (branch "Normal Execution (_indices != null)" + (builtin "One Step Simplification" (formula "80")) + (rule "less_than_comparison_simple" (formula "80") (term "1")) + (builtin "One Step Simplification" (formula "80")) + (rule "ifElseSplit" (formula "80")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "81")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationGhostAssign" (formula "81") (term "1")) + (rule "variableDeclarationGhost" (formula "81") (term "1") (newnames "heapAtLoopBodyBegin")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "variableDeclarationAssign" (formula "81") (term "1")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "bucket")) + (rule "assignment_array2" (formula "81")) + (branch "Normal Execution (_indices != null)" + (builtin "One Step Simplification" (formula "81")) + (rule "pullOutSelect" (formula "81") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "18"))) + (rule "variableDeclarationAssign" (formula "82") (term "1")) + (rule "variableDeclaration" (formula "82") (term "1") (newnames "value")) + (rule "eval_order_array_access5" (formula "82") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_2")) + (rule "variableDeclarationAssign" (formula "82") (term "1")) + (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "82") (term "1")) + (builtin "One Step Simplification" (formula "82")) + (rule "variableDeclarationAssign" (formula "82") (term "1")) + (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_5")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "82") (term "0,1,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "assignmentAdditionInt" (formula "81") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "81")) + (rule "expand_inInt" (formula "81") (userinteraction)) + (rule "andRight" (formula "81") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "81") (term "1")) + (rule "inEqSimp_leqRight" (formula "81")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "46")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "48")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "44") (term "1,1,1")) + (rule "times_zero_1" (formula "44") (term "0,1,1")) + (rule "add_zero_right" (formula "44") (term "1,1")) + (rule "add_zero_right" (formula "44") (term "1")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "45")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "1")) + (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "42")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "1,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0")) + (rule "add_zero_right" (formula "41") (term "0")) + (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0")) + (rule "leq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "44")) + (rule "times_zero_1" (formula "48") (term "0,0")) + (rule "add_zero_left" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "43")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "22")) + (rule "times_zero_1" (formula "35") (term "0,0")) + (rule "add_zero_left" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "35") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_subsumption6" (formula "28") (ifseqformula "48")) + (rule "times_zero_1" (formula "28") (term "1,1,0")) + (rule "greater_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "46")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "add_zero_left" (formula "40") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "40")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_zero_right" (formula "11") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "inEqSimp_subsumption6" (formula "11") (ifseqformula "49")) + (rule "times_zero_1" (formula "11") (term "1,1,0")) + (rule "greater_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "46") (ifseqformula "1")) + (rule "qeq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "closeFalse" (formula "46")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "81") (term "0")) + (rule "inEqSimp_leqRight" (formula "81")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "48")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "38")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "44") (term "1,1,1")) + (rule "times_zero_1" (formula "44") (term "0,1,1")) + (rule "add_literals" (formula "44") (term "1,1")) + (rule "add_zero_right" (formula "44") (term "1")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "42")) + (rule "mul_literals" (formula "46") (term "0,0")) + (rule "add_zero_left" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "6")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "25")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaAddInt" (formula "81") (term "0,1,0")) + (rule "assignment_array2" (formula "81")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "81")) + (builtin "Block Contract (Internal)" (formula "81") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "29")) (ifInst "" (formula "16")) (ifInst "" (formula "77")) (ifInst "" (formula "15"))) + (builtin "One Step Simplification" (formula "82")) + (rule "eqSymm" (formula "82") (term "0,0,1,0,1")) + (rule "pullOutSelect" (formula "82") (term "0,1,0,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81")) (ifInst "" (formula "19"))) + (rule "variableDeclarationAssign" (formula "83") (term "1")) + (rule "variableDeclaration" (formula "83") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyStatement" (formula "83") (term "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "commute_and" (formula "1") (term "0,0")) + (rule "tryEmpty" (formula "83") (term "1")) + (rule "blockEmptyLabel" (formula "83") (term "1")) + (rule "blockEmpty" (formula "83") (term "1")) + (rule "methodCallEmpty" (formula "83") (term "1")) + (rule "emptyModality" (formula "83") (term "1")) + (rule "andRight" (formula "83")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "83")) + (rule "closeTrue" (formula "83")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "83")) + (rule "closeTrue" (formula "83")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81")) + (rule "wellFormedAnon" (formula "81")) + (rule "replace_known_left" (formula "81") (term "0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "81")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "andRight" (formula "81")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "76"))) + (rule "closeTrue" (formula "81")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "81")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "81")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "82")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "0,1,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,0,1,0")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "pullOutSelect" (formula "85") (term "0,1,0") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "59") (term "2,0") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "84")) (ifInst "" (formula "19"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,1,0,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "1")) + (rule "commute_and" (formula "1") (term "0,0")) + (rule "elim_double_block_2" (formula "86") (term "1")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "75") (term "1") (ifseqformula "15") (ifseqformula "29")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "0") (ifseqformula "16") (ifseqformula "30")) + (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "replace_known_left" (formula "88") (term "0,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "88")) + (rule "ifSplit" (formula "88")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "88") (term "1")) + (builtin "Block Contract (Internal)" (formula "88") (newnames "result_22,exc_26,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "84")) (ifInst "" (formula "18"))) + (builtin "One Step Simplification" (formula "89")) + (rule "eqSymm" (formula "89") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "89") (term "1")) + (rule "variableDeclaration" (formula "89") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "89") (term "1")) + (builtin "One Step Simplification" (formula "89")) + (rule "emptyStatement" (formula "89") (term "1")) + (builtin "One Step Simplification" (formula "89")) + (rule "emptyStatement" (formula "89") (term "1")) + (rule "tryEmpty" (formula "89") (term "1")) + (rule "blockEmptyLabel" (formula "89") (term "1")) + (rule "blockEmpty" (formula "89") (term "1")) + (rule "methodCallEmpty" (formula "89") (term "1")) + (rule "emptyModality" (formula "89") (term "1")) + (rule "andRight" (formula "89")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "89")) + (rule "closeTrue" (formula "89")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "89")) + (rule "closeTrue" (formula "89")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "88")) + (branch "Case 1" + (rule "andRight" (formula "88")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "88")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "88")) + (rule "wellFormedAnon" (formula "88")) + (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "88")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "88")) + (branch "Case 1" + (rule "andRight" (formula "88")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "83"))) + (rule "closeTrue" (formula "88")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "88")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "88")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "62")) + (builtin "One Step Simplification" (formula "89")) + (rule "expand_inInt" (formula "62") (term "0,1,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,0,1,0")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "applyEq" (formula "66") (term "1") (ifseqformula "39")) + (rule "elim_double_block_2" (formula "93") (term "1")) + (rule "ifUnfold" (formula "93") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "93") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "93") (term "1")) + (builtin "One Step Simplification" (formula "93")) + (rule "replace_known_left" (formula "93") (term "0,0,1,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "93")) + (rule "ifSplit" (formula "93")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "93") (term "1")) + (builtin "Block Contract (Internal)" (formula "93") (newnames "anonOut_heap,result_23,exc_27,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,write_Before_BLOCK#11,o,f,anonOut__write")) + (branch "Validity" + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "32")) (ifInst "" (formula "92")) (ifInst "" (formula "21")) (ifInst "" (formula "91")) (ifInst "" (formula "30")) (ifInst "" (formula "90")) (ifInst "" (formula "31")) (ifInst "" (formula "19")) (ifInst "" (formula "89")) (ifInst "" (formula "18"))) + (builtin "One Step Simplification" (formula "94")) + (rule "expand_inInt" (formula "67") (term "1,0,1")) + (rule "expand_inInt" (formula "67") (term "1,1")) + (rule "expand_inInt" (formula "67") (term "0,0,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,1")) + (rule "replace_int_MIN" (formula "67") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,1,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,1")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "69")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "exc_27_1")) + (rule "assignment" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "ifUnfold" (formula "98") (term "1") (inst "#boolv=x")) + (builtin "One Step Simplification" (formula "98")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "x")) + (rule "compound_equality_comparison_1" (formula "98") (term "1") (inst "#v0=x_1")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_8")) + (builtin "Use Operation Contract" (formula "98") (newnames "heapBefore_len,result_24,exc_28") (contract "de.wiesler.Buffers[de.wiesler.Buffers::len(int)].JML normal_behavior operation contract.0")) + (branch "Post (len)" + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "14"))) + (rule "expand_inInt" (formula "72") (term "0,1,0")) + (rule "replace_int_MIN" (formula "72") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "72") (term "1,0,0,1,0")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "72")) + (rule "eqSymm" (formula "74")) + (rule "inEqSimp_commuteLeq" (formula "73")) + (rule "assignment" (formula "103") (term "1")) + (builtin "One Step Simplification" (formula "103")) + (rule "equality_comparison_simple" (formula "103") (term "1")) + (builtin "One Step Simplification" (formula "103")) + (rule "ifSplit" (formula "103")) + (branch "if x true" + (builtin "Block Contract (Internal)" (formula "104") (newnames "result_25,exc_29,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "33")) (ifInst "" (formula "68")) (ifInst "" (formula "20")) (ifInst "" (formula "100")) (ifInst "" (formula "19"))) + (rule "true_left" (formula "78")) + (rule "eqSymm" (formula "104") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "104") (term "1")) + (rule "variableDeclaration" (formula "104") (term "1") (newnames "exc_29_1")) + (rule "assignment" (formula "104") (term "1")) + (builtin "One Step Simplification" (formula "104")) + (rule "emptyStatement" (formula "104") (term "1")) + (builtin "One Step Simplification" (formula "104")) + (rule "emptyStatement" (formula "104") (term "1")) + (rule "applyEq" (formula "73") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "73")) + (rule "true_left" (formula "73")) + (rule "applyEq" (formula "73") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "73")) + (rule "true_left" (formula "73")) + (rule "applyEq" (formula "73") (term "1") (ifseqformula "1")) + (rule "tryEmpty" (formula "102") (term "1")) + (rule "blockEmptyLabel" (formula "102") (term "1")) + (rule "blockEmpty" (formula "102") (term "1")) + (rule "methodCallEmpty" (formula "102") (term "1")) + (rule "emptyModality" (formula "102") (term "1")) + (rule "andRight" (formula "102")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "102")) + (rule "closeTrue" (formula "102")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "102")) + (rule "closeTrue" (formula "102")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "104")) + (branch "Case 1" + (rule "andRight" (formula "104")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "104")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "68"))) + (rule "closeTrue" (formula "104")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "104")) + (branch "Case 1" + (rule "andRight" (formula "104")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "99"))) + (rule "closeTrue" (formula "104")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "104")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "104")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "78")) + (builtin "One Step Simplification" (formula "105")) + (rule "expand_inInt" (formula "78") (term "0,1,0")) + (rule "replace_int_MIN" (formula "78") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "78") (term "1,0,0,1,0")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "translateJavaAddInt" (formula "82") (term "0")) + (rule "translateJavaSubInt" (formula "83") (term "1,0")) + (rule "replace_known_left" (formula "81") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "polySimp_elimSub" (formula "82") (term "1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "80")) + (rule "inEqSimp_commuteLeq" (formula "81")) + (rule "applyEq" (formula "74") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "74")) + (rule "true_left" (formula "74")) + (rule "applyEq" (formula "73") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "73")) + (rule "true_left" (formula "73")) + (rule "applyEq" (formula "73") (term "1") (ifseqformula "1")) + (rule "pullOutSelect" (formula "81") (term "1,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "81")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "106")) (ifInst "" (formula "31"))) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0")) + (rule "eqSymm" (formula "81") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0")) + (rule "eqSymm" (formula "81") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "0,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0")) + (rule "eqSymm" (formula "81") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "81") (term "0,0,1,0,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0")) + (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "81")) + (rule "elim_double_block_2" (formula "109") (term "1")) + (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "109")) + (builtin "Use Dependency Contract" (formula "16") (ifInst "" (formula "109") (term "1,1,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "83") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "83") (term "0,1,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "105")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "34")) (ifInst "" (formula "16")) (ifInst "" (formula "34"))) + (rule "true_left" (formula "83")) + (rule "ifSplit" (formula "109")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "109") (term "1")) + (rule "compound_assignment_op_plus_array" (formula "109") (term "1") (inst "#v0=x_arr") (inst "#v1=x")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_10")) + (rule "assignment" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "eval_order_array_access3" (formula "109") (term "1") (inst "#v0=x_arr_2") (inst "#v2=x_11") (inst "#v1=x_12")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_11")) + (rule "assignment" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_12")) + (rule "compound_int_cast_expression" (formula "109") (term "1") (inst "#v=x_13")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_13")) + (rule "remove_parentheses_right" (formula "109") (term "1")) + (rule "compound_addition_1" (formula "109") (term "1") (inst "#v=x_14")) + (rule "variableDeclarationAssign" (formula "109") (term "1")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_14")) + (rule "assignment_array2" (formula "109")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "109")) + (rule "replaceKnownSelect_taclet20001212010001_3" (formula "109") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "109") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "109")) + (rule "applyEqReverse" (formula "109") (term "0,0") (ifseqformula "81") (userinteraction)) + (rule "ifthenelse_split" (formula "109") (term "0,0") (userinteraction)) + (branch "indices[j_0] <= -1 + buffers.num_buckets TRUE" + (rule "Definition_axiom_for_isClassifiedUntil_in_de_wiesler_Classifier" (formula "14") (term "0") (inst "b=b") (userinteraction)) + (builtin "One Step Simplification" (formula "14") (userinteraction)) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "Definition_axiom_for_allElementsCounted_in_de_wiesler_Classifier" (formula "14") (term "0") (inst "b_0=b_0") (inst "b=b") (userinteraction)) + (builtin "One Step Simplification" (formula "14") (userinteraction)) + (rule "andLeft" (formula "14")) + (rule "translateJavaCastInt" (formula "15") (term "0") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(int::select(anon_heap_LOOP_0<>, + bucket_starts, + arr(int::select(heap, + indices, + arr(j_0)))), + javaSubInt(_write_0, begin))<>") (userinteraction)) + (branch "CUT: bucket_starts[indices[j_0]]@anon_heap_LOOP_0<> <= javaSubInt(_write_0, begin) TRUE" + (rule "expand_inInt" (formula "116") (userinteraction)) + (rule "andRight" (formula "116") (userinteraction)) + (branch "Case 1" + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "116") (term "1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "1") (term "1")) + (rule "translateJavaSubInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "20") (term "1")) + (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "polySimp_elimSub" (formula "1") (term "1")) + (rule "polySimp_elimSub" (formula "16") (term "1")) + (rule "polySimp_elimSub" (formula "20") (term "1")) + (rule "polySimp_addComm0" (formula "115") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "1")) + (rule "polySimp_addComm0" (formula "20") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_leqRight" (formula "115")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "jmod_axiom" (formula "59") (term "0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "60")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "49")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "82")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "48")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0,0,0") (ifseqformula "11")) + (rule "qeq_literals" (formula "7") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "65") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "56")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "newSym_eq" (formula "53") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "53") (term "1,1,1")) + (rule "times_zero_1" (formula "53") (term "0,1,1")) + (rule "add_zero_left" (formula "53") (term "1,1")) + (rule "add_zero_right" (formula "53") (term "1")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "53")) + (rule "polySimp_homoEq" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1")) + (rule "applyEq" (formula "51") (term "0,1,1") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1")) + (rule "polySimp_rightDist" (formula "51") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "51") (term "1")) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "68") (term "1,2,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "68") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0,2,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "15") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "15") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "58") (term "5,0") (ifseqformula "54")) + (rule "applyEq" (formula "53") (term "1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0")) + (rule "applyEq" (formula "78") (term "0") (ifseqformula "54")) + (rule "inEqSimp_homoInEq1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0")) + (rule "applyEq" (formula "18") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "applyEq" (formula "16") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "16") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "54")) + (rule "inEqSimp_homoInEq0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "21") (term "1,2,1,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "54")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0,1,1,0") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0,1,1,0")) + (rule "applyEq" (formula "19") (term "4,1,1,0") (ifseqformula "54")) + (rule "applyEq" (formula "57") (term "0,0,2,2,0,1,0") (ifseqformula "54")) + (rule "applyEq" (formula "63") (term "0,0,2,2,0") (ifseqformula "54")) + (rule "applyEq" (formula "19") (term "0,4,0,1,0") (ifseqformula "54")) + (rule "applyEq" (formula "18") (term "1,0,1") (ifseqformula "54")) + (rule "polySimp_addAssoc" (formula "18") (term "0,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "48")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "11")) + (rule "mul_literals" (formula "30") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "3")) + (rule "mul_literals" (formula "68") (term "0,0")) + (rule "add_zero_left" (formula "68") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "57")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "32")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "add_zero_left" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "leq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "neg_literal" (formula "44") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "44") (term "0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0")) + (rule "add_zero_right" (formula "52") (term "0")) + (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "qeq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "54")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "56")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_rightDist" (formula "60") (term "1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1")) + (rule "polySimp_elimOne" (formula "60") (term "1,1")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "85") (term "0,0")) + (rule "polySimp_addComm1" (formula "85") (term "0")) + (rule "polySimp_rightDist" (formula "85") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0")) + (rule "mul_literals" (formula "85") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "85") (term "0,0")) + (rule "add_literals" (formula "85") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "85")) + (rule "polySimp_mulLiterals" (formula "85") (term "0")) + (rule "polySimp_elimOne" (formula "85") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "35") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "inEqSimp_subsumption6" (formula "35") (ifseqformula "54")) + (rule "mul_literals" (formula "35") (term "1,1,0")) + (rule "greater_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "86") (term "0,0")) + (rule "polySimp_addComm1" (formula "86") (term "0")) + (rule "polySimp_rightDist" (formula "86") (term "0,0,0")) + (rule "mul_literals" (formula "86") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0")) + (rule "polySimp_addComm1" (formula "86") (term "0,0,0")) + (rule "add_literals" (formula "86") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,0")) + (rule "add_literals" (formula "86") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "86")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "48")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "86") (term "0,0")) + (rule "polySimp_rightDist" (formula "86") (term "0,0,0")) + (rule "mul_literals" (formula "86") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0")) + (rule "polySimp_addComm1" (formula "86") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "86") (term "0")) + (rule "add_literals" (formula "86") (term "1,1,0")) + (rule "times_zero_1" (formula "86") (term "1,0")) + (rule "polySimp_addLiterals" (formula "86") (term "0")) + (rule "polySimp_addComm1" (formula "86") (term "0")) + (rule "add_literals" (formula "86") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "86")) + (rule "mul_literals" (formula "86") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "86") (ifseqformula "45")) + (rule "mul_literals" (formula "86") (term "0,1,0")) + (rule "greater_literals" (formula "86") (term "0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "qeq_literals" (formula "86") (term "0")) + (builtin "One Step Simplification" (formula "86")) + (rule "closeFalse" (formula "86")) + ) + (branch "Case 2" + (rule "instAll" (formula "1") (term "0,2,0") (ifseqformula "15") (userinteraction)) + (rule "impLeft" (formula "1") (userinteraction)) + (branch "Case 1" + (rule "expand_inInt" (formula "90") (term "1")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "replace_int_MIN" (formula "117") (term "0")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "20") (term "1")) + (rule "translateJavaSubInt" (formula "1") (term "1")) + (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "replace_known_left" (formula "89") (term "0,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "89")) + (rule "polySimp_elimSub" (formula "16") (term "1")) + (rule "polySimp_elimSub" (formula "20") (term "1")) + (rule "polySimp_elimSub" (formula "1") (term "1")) + (rule "polySimp_addComm0" (formula "116") (term "1")) + (rule "polySimp_addComm1" (formula "20") (term "1")) + (rule "polySimp_addComm0" (formula "20") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "1")) + (rule "replace_known_left" (formula "90") (term "1") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "0")) + (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_leqRight" (formula "90")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "49")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "49")) + (rule "applyEq" (formula "17") (term "0,1,0,0,1,0,0,0") (ifseqformula "49")) + (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "49")) + (rule "jmod_axiom" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "polySimp_elimOne" (formula "76") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Case 2" + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "1") (term "1") (inst "i=i_1") (userinteraction)) + (rule "bsum_positive1" (formula "1") (term "1") (userinteraction)) + (rule "replaceKnownSelect_taclet20001212010001_3" (formula "2") (term "0")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "replace_int_MIN" (formula "118") (term "0")) + (rule "expand_inInt" (formula "17") (term "1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "18") (term "1")) + (rule "translateJavaSubInt" (formula "3") (term "1")) + (rule "translateJavaSubInt" (formula "22") (term "1")) + (rule "eqSymm" (formula "2")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "replace_known_left" (formula "90") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "90")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "90")) + (rule "applyEqReverse" (formula "91") (term "1,0") (ifseqformula "90")) + (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "90")) + (rule "hideAuxiliaryEq" (formula "90")) + (rule "polySimp_elimSub" (formula "18") (term "1")) + (rule "polySimp_elimSub" (formula "3") (term "1")) + (rule "polySimp_elimSub" (formula "22") (term "1")) + (rule "polySimp_addComm0" (formula "117") (term "1")) + (rule "polySimp_addComm1" (formula "22") (term "1")) + (rule "polySimp_addComm0" (formula "22") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "117")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "49")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "50")) + (rule "applyEq" (formula "22") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "18") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "jmod_axiom" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1")) + (rule "polySimp_rightDist" (formula "77") (term "1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1")) + (rule "mul_literals" (formula "77") (term "0,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "51")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0,0,0") (ifseqformula "13")) + (rule "qeq_literals" (formula "9") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEqReverse" (formula "71") (term "2,0") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "CUT: bucket_starts[indices[j_0]]@anon_heap_LOOP_0<> <= javaSubInt(_write_0, begin) FALSE" + (rule "applyEqReverse" (formula "89") (term "1") (ifseqformula "15") (userinteraction)) + (rule "bsum_positive_element_upper_bound" (formula "89") (term "1") (inst "index=int::select(heap, indices, arr(j_0))") (userinteraction)) + (branch "Precondition" + (rule "andRight" (formula "89")) + (branch "Case 1" + (rule "andRight" (formula "89")) + (branch "Case 1" + (rule "allRight" (formula "89") (inst "sk=b_0") (userinteraction)) + (rule "allLeftHide" (formula "14") (inst "t=b_0") (userinteraction)) + (rule "impLeft" (formula "14") (userinteraction)) + (branch "Case 1" + (rule "expand_inInt" (formula "117")) + (rule "expand_inInt" (formula "88") (term "1")) + (rule "expand_inInt" (formula "17") (term "1,0,0")) + (rule "replace_int_MIN" (formula "117") (term "0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0")) + (rule "impRight" (formula "89")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "20") (term "1")) + (rule "eqSymm" (formula "90")) + (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "replace_known_left" (formula "90") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "90")) + (rule "polySimp_elimSub" (formula "16") (term "1")) + (rule "polySimp_elimSub" (formula "20") (term "1")) + (rule "polySimp_addComm0" (formula "119") (term "1,1")) + (rule "polySimp_addComm0" (formula "119") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "1")) + (rule "polySimp_addComm0" (formula "20") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "92")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "92")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "0")) + (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "48")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "119") (term "1")) + (rule "mul_literals" (formula "119") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "119") (term "0,1")) + (rule "add_literals" (formula "119") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "119") (term "0")) + (rule "polySimp_mulComm0" (formula "119") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "119") (term "1,0,0")) + (rule "mul_literals" (formula "119") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "119") (term "0,0")) + (rule "add_literals" (formula "119") (term "0,0,0")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "49")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "49")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "49")) + (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "1,1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,1,0")) + (rule "add_zero_right" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0,0") (ifseqformula "49")) + (rule "jmod_axiom" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1")) + (rule "polySimp_elimOne" (formula "76") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1")) + (rule "mul_literals" (formula "118") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,0")) + (rule "polySimp_elimOne" (formula "118") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "74")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "50")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "44")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "83")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "86") (term "1") (ifseqformula "3")) + (rule "leq_literals" (formula "86") (term "0,1")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_leqRight" (formula "86")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "58")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0,0") (ifseqformula "14")) + (rule "qeq_literals" (formula "10") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "applyEqReverse" (formula "67") (term "2,0") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "59")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "106")) (ifInst "" (formula "37"))) + (rule "newSym_eq" (formula "55") (inst "l=l_0") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))")) + (rule "times_zero_1" (formula "55") (term "0,1,1")) + (rule "times_zero_1" (formula "55") (term "1,1,1")) + (rule "add_zero_left" (formula "55") (term "1,1")) + (rule "add_zero_right" (formula "55") (term "1")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "55")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1")) + (rule "applyEq" (formula "18") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "22") (term "1,2,1,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "22") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "53") (term "0,1,1") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1")) + (rule "polySimp_rightDist" (formula "53") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "53") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "53") (term "1")) + (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "17") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "17") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "70") (term "1,2,1,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "70") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq1" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "applyEq" (formula "60") (term "5,0") (ifseqformula "56")) + (rule "applyEq" (formula "21") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "80") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "80") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_addComm1" (formula "80") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,2,1,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "81") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "81") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "82") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "82") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,1,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,1,0,1,0")) + (rule "applyEq" (formula "65") (term "1,2,1,0,0,1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "65") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "2") (term "1,2,1,0,0,2,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "2") (term "2,1,0,0,2,0,0")) + (rule "applyEq" (formula "16") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "16") (term "2,1,0,0,1,0,2,0")) + (rule "applyEq" (formula "21") (term "4,1,1,0") (ifseqformula "56")) + (rule "applyEq" (formula "21") (term "0,4,0,1,0") (ifseqformula "56")) + (rule "applyEq" (formula "65") (term "0,0,2,2,0") (ifseqformula "56")) + (rule "applyEq" (formula "59") (term "0,0,2,2,0,1,0") (ifseqformula "56")) + (rule "applyEq" (formula "20") (term "1,0,1") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0")) + (rule "eqSymm" (formula "2") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "35") (ifseqformula "50")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "6")) + (rule "mul_literals" (formula "70") (term "0,0")) + (rule "add_zero_left" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "mul_literals" (formula "70") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "14")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0")) + (rule "eqSymm" (formula "2") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "2")) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "1,0,0")) + (rule "eqSymm" (formula "2") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "times_zero_1" (formula "54") (term "1,0")) + (rule "add_zero_right" (formula "54") (term "0")) + (rule "elimGcdGeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "57")) + (rule "mul_literals" (formula "61") (term "0,0")) + (rule "add_zero_left" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "35")) + (rule "mul_literals" (formula "47") (term "0,0")) + (rule "add_zero_left" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "elimGcdLeq_antec" (formula "47") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "47") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "47") (term "0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "qeq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "57")) + (rule "mul_literals" (formula "34") (term "0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "mul_literals" (formula "34") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "87") (term "0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "polySimp_rightDist" (formula "87") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0")) + (rule "mul_literals" (formula "87") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,0,0")) + (rule "add_literals" (formula "87") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0")) + (rule "add_zero_right" (formula "87") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "87")) + (rule "polySimp_mulLiterals" (formula "87") (term "0")) + (rule "polySimp_elimOne" (formula "87") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "87")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "87") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "87") (term "0")) + (rule "add_literals" (formula "87") (term "1,1,0")) + (rule "times_zero_1" (formula "87") (term "1,0")) + (rule "add_zero_right" (formula "87") (term "0")) + (rule "polySimp_rightDist" (formula "87") (term "0")) + (rule "mul_literals" (formula "87") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "87")) + (rule "mul_literals" (formula "87") (term "1")) + (rule "elimGcdGeq_antec" (formula "87") (inst "elimGcdRightDiv=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(1(#)))")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0,1,0")) + (rule "leq_literals" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "87") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "87") (term "0,0,0,0")) + (rule "add_literals" (formula "87") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0")) + (rule "add_zero_right" (formula "87") (term "0,0")) + (rule "leq_literals" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "87")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "87") (term "0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "polySimp_rightDist" (formula "87") (term "0,0,0")) + (rule "mul_literals" (formula "87") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "87")) + (rule "polySimp_mulLiterals" (formula "87") (term "0")) + (rule "polySimp_elimOne" (formula "87") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "37") (term "0,0")) + (rule "mul_literals" (formula "37") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "88")) + (rule "mul_literals" (formula "37") (term "1,1,0")) + (rule "greater_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "50")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "11")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "polySimp_rightDist" (formula "15") (term "0,1")) + (rule "mul_literals" (formula "15") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "56")) + (rule "mul_literals" (formula "49") (term "0,0")) + (rule "add_zero_left" (formula "49") (term "0")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "49")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "46")) + (rule "mul_literals" (formula "76") (term "0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "76")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Case 2" + (rule "Definition_axiom_for_countClassOfSliceEq_in_de_wiesler_Classifier" (formula "14") (term "1") (inst "i=i_1") (userinteraction)) + (rule "bsum_positive1" (formula "14") (term "1") (userinteraction)) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "118")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "118") (term "0,1")) + (rule "replace_int_MAX" (formula "118") (term "1,0")) + (rule "impRight" (formula "90")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "3")) + (rule "translateJavaSubInt" (formula "22") (term "1")) + (rule "translateJavaSubInt" (formula "18") (term "1")) + (rule "eqSymm" (formula "17")) + (rule "eqSymm" (formula "92")) + (rule "replace_known_left" (formula "90") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "90")) + (rule "applyEqReverse" (formula "91") (term "1,0") (ifseqformula "90")) + (rule "hideAuxiliaryEq" (formula "90")) + (rule "polySimp_elimSub" (formula "22") (term "1")) + (rule "polySimp_elimSub" (formula "18") (term "1")) + (rule "polySimp_addComm0" (formula "120") (term "1,1")) + (rule "polySimp_addComm0" (formula "120") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1")) + (rule "polySimp_addComm0" (formula "22") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "93")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "93")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "50")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "120") (term "1")) + (rule "mul_literals" (formula "120") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "120") (term "0,1")) + (rule "add_literals" (formula "120") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "120") (term "0")) + (rule "polySimp_mulComm0" (formula "120") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "120") (term "1,0,0")) + (rule "mul_literals" (formula "120") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "120") (term "0,0")) + (rule "add_literals" (formula "120") (term "0,0,0")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "51")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "51")) + (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "51")) + (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "1,1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,1,0")) + (rule "add_zero_right" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "23") (term "0,1,0,0,1,0,0,0") (ifseqformula "51")) + (rule "jmod_axiom" (formula "62") (term "0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1")) + (rule "polySimp_rightDist" (formula "50") (term "1")) + (rule "mul_literals" (formula "50") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1")) + (rule "polySimp_elimOne" (formula "50") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "119") (term "1")) + (rule "mul_literals" (formula "119") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "119") (term "0")) + (rule "polySimp_mulLiterals" (formula "119") (term "0,0")) + (rule "polySimp_elimOne" (formula "119") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "62")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "53")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "46")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "85")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "60") (ifseqformula "61")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "71")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "49")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0,0,0") (ifseqformula "13")) + (rule "qeq_literals" (formula "9") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEqReverse" (formula "66") (term "2,0") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "16")) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "108")) (ifInst "" (formula "39"))) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "117")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "18") (term "1,0,0")) + (rule "replace_int_MIN" (formula "117") (term "0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "1")) + (rule "translateJavaSubInt" (formula "19") (term "1")) + (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEqReverse" (formula "88") (term "1,0") (ifseqformula "87")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "polySimp_elimSub" (formula "15") (term "1")) + (rule "polySimp_elimSub" (formula "19") (term "1")) + (rule "polySimp_addComm0" (formula "116") (term "0,0")) + (rule "polySimp_addComm0" (formula "116") (term "1,1")) + (rule "polySimp_addComm1" (formula "19") (term "1")) + (rule "polySimp_addComm0" (formula "19") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "89")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "89")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "0")) + (rule "polySimp_mulComm0" (formula "116") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,0")) + (rule "mul_literals" (formula "116") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "116") (term "0,0")) + (rule "add_literals" (formula "116") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "1")) + (rule "mul_literals" (formula "116") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "116") (term "0,1")) + (rule "add_literals" (formula "116") (term "0,0,1")) + (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "48")) + (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "1,1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,1,0")) + (rule "add_zero_right" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "jmod_axiom" (formula "59") (term "0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "115") (term "0")) + (rule "polySimp_mulLiterals" (formula "115") (term "0,0")) + (rule "polySimp_elimOne" (formula "115") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "115") (term "1")) + (rule "mul_literals" (formula "115") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "44")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption0" (formula "60") (ifseqformula "62")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "59")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "47")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "1")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "inEqSimp_contradInEq0" (formula "68") (ifseqformula "1")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "closeFalse" (formula "68")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "117")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "18") (term "1,0,0")) + (rule "replace_int_MAX" (formula "117") (term "1,0")) + (rule "replace_int_MIN" (formula "117") (term "0,1")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "1")) + (rule "translateJavaSubInt" (formula "19") (term "1")) + (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEqReverse" (formula "88") (term "1,0") (ifseqformula "87")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "polySimp_elimSub" (formula "15") (term "1")) + (rule "polySimp_elimSub" (formula "19") (term "1")) + (rule "polySimp_addComm0" (formula "116") (term "1,1")) + (rule "polySimp_addComm0" (formula "116") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "1")) + (rule "polySimp_addComm0" (formula "19") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "89")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "89")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "1")) + (rule "mul_literals" (formula "116") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "116") (term "0,1")) + (rule "add_literals" (formula "116") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "0")) + (rule "polySimp_mulComm0" (formula "116") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,0")) + (rule "mul_literals" (formula "116") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "116") (term "0,0")) + (rule "add_literals" (formula "116") (term "0,0,0")) + (rule "applyEq" (formula "17") (term "1,0") (ifseqformula "48")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "48")) + (rule "apply_eq_monomials" (formula "2") (term "1,0") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "1,1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,1,0")) + (rule "add_zero_right" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,0") (ifseqformula "48")) + (rule "jmod_axiom" (formula "59") (term "0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "115") (term "1")) + (rule "mul_literals" (formula "115") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "115") (term "0")) + (rule "polySimp_mulLiterals" (formula "115") (term "0,0")) + (rule "polySimp_elimOne" (formula "115") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "86")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "Usage" + (rule "replaceKnownSelect_taclet20001212010001_3" (formula "1") (term "0")) + (rule "expand_inInt" (formula "117")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "replace_int_MAX" (formula "117") (term "1,0")) + (rule "replace_int_MIN" (formula "117") (term "0,1")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "16") (term "1")) + (rule "translateJavaSubInt" (formula "20") (term "1")) + (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "89") (term "1,0") (ifseqformula "88")) + (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "88")) + (rule "close" (formula "90") (ifseqformula "1")) + ) + ) + ) + (branch "indices[j_0] <= -1 + buffers.num_buckets FALSE" + (rule "expand_inInt" (formula "110")) + (rule "replace_int_MIN" (formula "110") (term "0,1")) + (rule "replace_int_MAX" (formula "110") (term "1,0")) + (rule "replace_known_right" (formula "81") (term "0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEqReverse" (formula "82") (term "1,0") (ifseqformula "81")) + (rule "hideAuxiliaryEq" (formula "81")) + (rule "polySimp_addComm0" (formula "109") (term "0,0")) + (rule "polySimp_addComm0" (formula "109") (term "1,1")) + (rule "inEqSimp_leqRight" (formula "108")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "109") (term "0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0,0")) + (rule "mul_literals" (formula "109") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0")) + (rule "add_literals" (formula "109") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "109") (term "1")) + (rule "mul_literals" (formula "109") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "109") (term "0,1")) + (rule "add_literals" (formula "109") (term "0,0,1")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "109") (term "0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "109") (term "1")) + (rule "mul_literals" (formula "109") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "67")) + (rule "leq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "52")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "63")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "109")) + (rule "translateJavaAddInt" (formula "109") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "109") (term "1")) + (rule "assignment" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "assignment_to_primitive_array_component" (formula "109")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "109")) + (builtin "Use Operation Contract" (formula "109") (newnames "heapBefore_flush,exc_30,heapAfter_flush,anon_heap_flush") (contract "de.wiesler.Buffers[de.wiesler.Buffers::flush(int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (flush)" + (builtin "One Step Simplification" (formula "84")) + (builtin "One Step Simplification" (formula "111")) + (builtin "Block Contract (Internal)" (formula "111") (newnames "result_26,exc_31,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "107"))) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "84")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (ifseqformula "84")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "88")) + (rule "eqSymm" (formula "120") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,0,1,1,0")) + (rule "eqSymm" (formula "88")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "86") (term "0,0,2,1,1,0")) + (rule "eqSymm" (formula "87") (term "1,0")) + (rule "translateJavaSubInt" (formula "88") (term "0")) + (rule "eqSymm" (formula "86") (term "1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0")) + (rule "mul_literals" (formula "84") (term "1,2,1,1,0")) + (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0")) + (rule "polySimp_elimSub" (formula "88") (term "0")) + (rule "mul_literals" (formula "88") (term "1,0")) + (rule "polySimp_addComm0" (formula "87") (term "3,0,0,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "87") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "93") (term "0,0")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "19"))) + (rule "true_left" (formula "93")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "119") (term "1")) + (rule "variableDeclaration" (formula "119") (term "1") (newnames "exc_31_1")) + (rule "assignment" (formula "119") (term "1")) + (builtin "One Step Simplification" (formula "119")) + (rule "emptyStatement" (formula "119") (term "1")) + (builtin "One Step Simplification" (formula "119")) + (rule "emptyStatement" (formula "119") (term "1")) + (rule "commute_and" (formula "87") (term "0,0")) + (rule "commute_and" (formula "86") (term "1,0,0")) + (rule "commute_and" (formula "86") (term "0,0,0")) + (rule "shift_paren_and" (formula "86") (term "0,0")) + (rule "commute_and_2" (formula "86") (term "0,0,0")) + (rule "tryEmpty" (formula "119") (term "1")) + (rule "blockEmptyLabel" (formula "119") (term "1")) + (rule "blockEmpty" (formula "119") (term "1")) + (rule "methodCallEmpty" (formula "119") (term "1")) + (rule "emptyModality" (formula "119") (term "1")) + (rule "andRight" (formula "119")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "119")) + (rule "closeTrue" (formula "119")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "119")) + (rule "closeTrue" (formula "119")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "111")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "andLeft" (formula "84")) + (rule "wellFormedAnonEQ" (formula "112") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "112") (term "0")) + (rule "wellFormedAnon" (formula "112") (term "0")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "88")) + (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "88") (term "1")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0")) + (rule "eqSymm" (formula "86") (term "1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,0,1,1,0")) + (rule "eqSymm" (formula "88")) + (rule "translateJavaMulInt" (formula "86") (term "0,0,2,0,1,0")) + (rule "replace_known_left" (formula "118") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "118")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "106"))) + (rule "closeTrue" (formula "111")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "andLeft" (formula "84")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (ifseqformula "84")) + (rule "andLeft" (formula "85")) + (rule "orRight" (formula "113")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "89")) + (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "88") (term "3,0,1,1,0")) + (rule "eqSymm" (formula "89")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "87") (term "0,0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "88") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "89") (term "0")) + (rule "eqSymm" (formula "87") (term "1,0")) + (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0")) + (rule "mul_literals" (formula "84") (term "1,2,1,1,0")) + (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_elimSub" (formula "89") (term "0")) + (rule "mul_literals" (formula "89") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "89") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "3,1,0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "118") (term "0")) + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "118")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "111")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "85")) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "84") (term "0,0,0,1,1,1,0,1")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "85") (term "0,1,0")) + (rule "replace_int_MIN" (formula "84") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "85") (term "1,0,0,1,0")) + (rule "andLeft" (formula "84")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,1,1,0") (ifseqformula "84")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "89")) + (rule "translateJavaSubInt" (formula "84") (term "2,1,1,0")) + (rule "translateJavaSubInt" (formula "97") (term "0,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "88") (term "3,0,1,1,0")) + (rule "eqSymm" (formula "89")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "97") (term "0,0,0")) + (rule "translateJavaMulInt" (formula "87") (term "0,0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "88") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "89") (term "0")) + (rule "eqSymm" (formula "87") (term "1,0")) + (rule "replace_known_left" (formula "95") (term "0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "polySimp_elimSub" (formula "84") (term "2,1,1,0")) + (rule "mul_literals" (formula "84") (term "1,2,1,1,0")) + (rule "polySimp_addLiterals" (formula "84") (term "2,1,1,0")) + (rule "polySimp_elimSub" (formula "96") (term "0,0")) + (rule "polySimp_elimSub" (formula "89") (term "0")) + (rule "mul_literals" (formula "89") (term "1,0")) + (rule "polySimp_addComm0" (formula "88") (term "3,0,1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "96") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,0,0")) + (rule "pullOutSelect" (formula "97") (term "0,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "97") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "122"))) + (rule "dismissNonSelectedField" (formula "97") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "31"))) + (rule "elementOfUnion" (formula "97") (term "0,0")) + (rule "elementOfSingleton" (formula "97") (term "0,0,0")) + (builtin "One Step Simplification" (formula "97")) + (rule "eqSymm" (formula "97") (term "0,0,0")) + (rule "replace_known_right" (formula "97") (term "0,0,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "97")) + (rule "elementOfArrayRangeConcrete" (formula "97") (term "0,0")) + (rule "eqSymm" (formula "97") (term "0,0,0,0")) + (rule "replace_known_right" (formula "97") (term "0,0,0,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "97")) + (rule "simplifySelectOfStore" (formula "97")) + (builtin "One Step Simplification" (formula "97")) + (rule "castDel" (formula "97") (term "0")) + (rule "applyEqReverse" (formula "98") (term "0,0") (ifseqformula "97")) + (rule "hideAuxiliaryEq" (formula "97")) + (rule "commute_and" (formula "88") (term "0,0")) + (rule "elim_double_block_2" (formula "124") (term "1")) + (rule "commute_and" (formula "87") (term "1,0,0")) + (rule "commute_and" (formula "87") (term "0,0,0")) + (rule "shift_paren_and" (formula "87") (term "0,0")) + (rule "commute_and_2" (formula "87") (term "0,0,0")) + (rule "ifUnfold" (formula "124") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "124") (term "1") (newnames "x_15")) + (rule "inequality_comparison_simple" (formula "124") (term "1")) + (builtin "One Step Simplification" (formula "124")) + (rule "replace_known_left" (formula "124") (term "0,0,1,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "124")) + (rule "ifSplit" (formula "124")) + (branch "if x_15 true" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_15 false" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "124") (term "1")) + (builtin "Block Contract (Internal)" (formula "124") (newnames "result_27,exc_32,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "120"))) + (builtin "One Step Simplification" (formula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1") (ifseqformula "84")) + (rule "andLeft" (formula "98")) + (rule "eqSymm" (formula "126") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "99") (term "0,0")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "19"))) + (rule "true_left" (formula "99")) + (rule "variableDeclarationAssign" (formula "125") (term "1")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_32_1")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (rule "tryEmpty" (formula "125") (term "1")) + (rule "blockEmptyLabel" (formula "125") (term "1")) + (rule "blockEmpty" (formula "125") (term "1")) + (rule "methodCallEmpty" (formula "125") (term "1")) + (rule "emptyModality" (formula "125") (term "1")) + (rule "andRight" (formula "125")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "124")) + (branch "Case 1" + (rule "andRight" (formula "124")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "124")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "124")) + (rule "wellFormedAnonEQ" (formula "124") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "124") (term "0")) + (rule "wellFormedAnon" (formula "124") (term "0")) + (rule "replace_known_left" (formula "124") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "124")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "124")) + (branch "Case 1" + (rule "andRight" (formula "124")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "119"))) + (rule "closeTrue" (formula "124")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "124")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "124") (ifseqformula "84")) + (rule "orRight" (formula "124")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "dismissNonSelectedField" (formula "124") (term "0")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "124")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "124")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "84")) + (rule "expand_inInt" (formula "98") (term "0,1,0")) + (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "translateJavaAddInt" (formula "104") (term "4,0")) + (rule "translateJavaAddInt" (formula "102") (term "5,0")) + (rule "translateJavaMulInt" (formula "103") (term "3,0")) + (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "polySimp_addComm0" (formula "103") (term "4,0")) + (rule "polySimp_addComm0" (formula "101") (term "5,0")) + (rule "inEqSimp_commuteLeq" (formula "100")) + (rule "elim_double_block_2" (formula "130") (term "1")) + (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_16")) + (rule "inequality_comparison_simple" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "130")) + (rule "ifSplit" (formula "130")) + (branch "if x_16 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_16 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (builtin "Block Contract (Internal)" (formula "130") (newnames "result_28,exc_33,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "126"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "104") (term "1") (ifseqformula "84")) + (rule "andLeft" (formula "104")) + (rule "eqSymm" (formula "132") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "105") (term "0,0")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "19"))) + (rule "true_left" (formula "105")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_33_1")) + (rule "assignment" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (rule "tryEmpty" (formula "131") (term "1")) + (rule "blockEmptyLabel" (formula "131") (term "1")) + (rule "blockEmpty" (formula "131") (term "1")) + (rule "methodCallEmpty" (formula "131") (term "1")) + (rule "emptyModality" (formula "131") (term "1")) + (rule "andRight" (formula "131")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "130")) + (branch "Case 1" + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "wellFormedAnonEQ" (formula "130") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "130") (term "0")) + (rule "wellFormedAnon" (formula "130") (term "0")) + (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "130")) + (branch "Case 1" + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "125"))) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "130") (ifseqformula "84")) + (rule "orRight" (formula "130")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "dismissNonSelectedField" (formula "130") (term "0")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "130")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "104") (term "1,1,1,0") (ifseqformula "84")) + (rule "expand_inInt" (formula "104") (term "0,1,0")) + (rule "replace_int_MAX" (formula "104") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "104") (term "0,1,0,1,0")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "translateJavaAddInt" (formula "108") (term "4,0")) + (rule "replace_known_left" (formula "107") (term "0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "107")) + (rule "true_left" (formula "107")) + (rule "polySimp_addComm0" (formula "107") (term "4,0")) + (rule "inEqSimp_commuteLeq" (formula "106")) + (rule "elim_double_block_2" (formula "134") (term "1")) + (rule "ifUnfold" (formula "134") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "134") (term "1") (newnames "x_17")) + (rule "inequality_comparison_simple" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "replace_known_left" (formula "134") (term "0,0,1,0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "134")) + (builtin "Use Dependency Contract" (formula "16") (ifInst "" (formula "134") (term "1,1,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "108") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "108") (term "0,1,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "130")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "34")) (ifInst "" (formula "16")) (ifInst "" (formula "34"))) + (rule "true_left" (formula "108")) + (rule "ifSplit" (formula "134")) + (branch "if x_17 true" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_17 false" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "134") (term "1")) + (builtin "Block Contract (Internal)" (formula "134") (newnames "result_29,exc_34,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "130"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "108") (term "1") (ifseqformula "84")) + (rule "andLeft" (formula "108")) + (rule "eqSymm" (formula "136") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "109") (term "0,0")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "19"))) + (rule "true_left" (formula "109")) + (rule "variableDeclarationAssign" (formula "135") (term "1")) + (rule "variableDeclaration" (formula "135") (term "1") (newnames "exc_34_1")) + (rule "assignment" (formula "135") (term "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "emptyStatement" (formula "135") (term "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "emptyStatement" (formula "135") (term "1")) + (rule "tryEmpty" (formula "135") (term "1")) + (rule "blockEmptyLabel" (formula "135") (term "1")) + (rule "blockEmpty" (formula "135") (term "1")) + (rule "methodCallEmpty" (formula "135") (term "1")) + (rule "emptyModality" (formula "135") (term "1")) + (rule "andRight" (formula "135")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "135")) + (rule "closeTrue" (formula "135")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "135")) + (rule "closeTrue" (formula "135")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "134")) + (branch "Case 1" + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134")) + (rule "wellFormedAnonEQ" (formula "134") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "134") (term "0")) + (rule "wellFormedAnon" (formula "134") (term "0")) + (rule "replace_known_left" (formula "134") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "134")) + (branch "Case 1" + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "129"))) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (ifseqformula "84")) + (rule "orRight" (formula "134")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "dismissNonSelectedField" (formula "134") (term "0")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "134")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "108")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "108") (term "1,1,1,0") (ifseqformula "84")) + (rule "expand_inInt" (formula "108") (term "0,1,0")) + (rule "replace_int_MIN" (formula "108") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "108") (term "1,0,0,1,0")) + (rule "andLeft" (formula "108")) + (rule "andLeft" (formula "108")) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "translateJavaAddInt" (formula "112") (term "4,0")) + (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "111")) + (rule "true_left" (formula "111")) + (rule "polySimp_addComm0" (formula "111") (term "4,0")) + (rule "inEqSimp_commuteLeq" (formula "110")) + (rule "elim_double_block_2" (formula "138") (term "1")) + (rule "ifUnfold" (formula "138") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "138") (term "1") (newnames "x_18")) + (rule "inequality_comparison_simple" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "replace_known_left" (formula "138") (term "0,0,1,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "138")) + (rule "ifSplit" (formula "138")) + (branch "if x_18 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_18 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "138") (term "1")) + (builtin "Block Contract (Internal)" (formula "138") (newnames "result_30,exc_35,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "139")) + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "134"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1") (ifseqformula "84")) + (rule "andLeft" (formula "112")) + (rule "eqSymm" (formula "140") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "113") (term "0,0")) + (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "19"))) + (rule "true_left" (formula "113")) + (rule "variableDeclarationAssign" (formula "139") (term "1")) + (rule "variableDeclaration" (formula "139") (term "1") (newnames "exc_35_1")) + (rule "assignment" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "emptyStatement" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "emptyStatement" (formula "139") (term "1")) + (rule "tryEmpty" (formula "139") (term "1")) + (rule "blockEmptyLabel" (formula "139") (term "1")) + (rule "blockEmpty" (formula "139") (term "1")) + (rule "methodCallEmpty" (formula "139") (term "1")) + (rule "emptyModality" (formula "139") (term "1")) + (rule "andRight" (formula "139")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "139")) + (rule "closeTrue" (formula "139")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "139")) + (rule "closeTrue" (formula "139")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "138")) + (branch "Case 1" + (rule "andRight" (formula "138")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "138")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "138")) + (rule "wellFormedAnonEQ" (formula "138") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "138") (term "0")) + (rule "wellFormedAnon" (formula "138") (term "0")) + (rule "replace_known_left" (formula "138") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "138")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "138")) + (branch "Case 1" + (rule "andRight" (formula "138")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "133"))) + (rule "closeTrue" (formula "138")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "138")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "138") (ifseqformula "84")) + (rule "orRight" (formula "138")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "dismissNonSelectedField" (formula "138") (term "0")) + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "138")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "138")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "139")) + (builtin "One Step Simplification" (formula "112")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,1,0") (ifseqformula "84")) + (rule "expand_inInt" (formula "112") (term "1,0,0,1")) + (rule "expand_inInt" (formula "112") (term "0,1,0")) + (rule "replace_int_MAX" (formula "112") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "112") (term "1,0,0,1,0")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "translateJavaAddInt" (formula "116") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "4,1,1,0")) + (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "115")) + (rule "true_left" (formula "115")) + (rule "polySimp_addComm0" (formula "115") (term "4,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "114")) + (rule "applyEq" (formula "115") (term "1,1,0,0,0") (ifseqformula "40")) + (rule "commute_and" (formula "115") (term "1,0,0")) + (rule "commute_and" (formula "115") (term "0,0,0")) + (rule "elim_double_block_2" (formula "142") (term "1")) + (rule "shift_paren_and" (formula "115") (term "0,0")) + (rule "commute_and_2" (formula "115") (term "0,0,0")) + (rule "ifUnfold" (formula "142") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "142") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "replace_known_left" (formula "142") (term "0,0,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "142")) + (builtin "Use Dependency Contract" (formula "86") (term "0") (ifInst "" (formula "73") (term "0")) (ifInst "" (formula "84")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "139")) (ifInst "" (formula "68")) (ifInst "" (formula "67")) (ifInst "" (formula "15")) (ifInst "" (formula "32"))) + (rule "wellFormedAnonEQ" (formula "116") (term "0,0,0,0") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "116") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0")) + (rule "expand_inInt" (formula "116") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "116") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "116") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "116") (term "1")) + (rule "replace_known_left" (formula "116") (term "1,0,0,0,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "71"))) + (rule "disjointDefinition" (formula "116") (term "1,0")) + (rule "disjointWithSingleton1" (formula "116") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "1,0,0")) + (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "116")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0")) + (rule "replace_known_left" (formula "116") (term "0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "116")) + (rule "applyEq" (formula "116") (term "0,1") (ifseqformula "73")) + (rule "eqSymm" (formula "116") (term "1")) + (rule "applyEq" (formula "116") (term "0,1") (ifseqformula "86")) + (rule "equal_literals" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "elementOfUnion" (formula "116")) + (rule "elementOfSingleton" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "124"))) + (rule "elementOfUnion" (formula "116")) + (rule "elementOfArrayRangeConcrete" (formula "116") (term "1")) + (rule "replace_known_right" (formula "116") (term "0,0,1") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "116")) + (rule "elementOfSingleton" (formula "116")) + (builtin "One Step Simplification" (formula "116")) + (rule "true_left" (formula "116")) + (rule "ifSplit" (formula "142")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "143")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "143")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "142") (term "1")) + (builtin "Block Contract (Internal)" (formula "142") (newnames "result_31,exc_36,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "33")) (ifInst "" (formula "20")) (ifInst "" (formula "138"))) + (builtin "One Step Simplification" (formula "143")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1") (ifseqformula "84")) + (rule "andLeft" (formula "116")) + (rule "eqSymm" (formula "144") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "117") (term "0,0")) + (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "19"))) + (rule "true_left" (formula "117")) + (rule "variableDeclarationAssign" (formula "143") (term "1")) + (rule "variableDeclaration" (formula "143") (term "1") (newnames "exc_36_1")) + (rule "assignment" (formula "143") (term "1")) + (builtin "One Step Simplification" (formula "143")) + (rule "emptyStatement" (formula "143") (term "1")) + (builtin "One Step Simplification" (formula "143")) + (rule "emptyStatement" (formula "143") (term "1")) + (rule "tryEmpty" (formula "143") (term "1")) + (rule "blockEmptyLabel" (formula "143") (term "1")) + (rule "blockEmpty" (formula "143") (term "1")) + (rule "methodCallEmpty" (formula "143") (term "1")) + (rule "emptyModality" (formula "143") (term "1")) + (rule "andRight" (formula "143")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "143")) + (rule "closeTrue" (formula "143")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "143")) + (rule "closeTrue" (formula "143")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "142")) + (branch "Case 1" + (rule "andRight" (formula "142")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "33"))) + (rule "closeTrue" (formula "142")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "142")) + (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "84")) + (rule "wellFormedStorePrimitiveArray" (formula "142") (term "0")) + (rule "wellFormedAnon" (formula "142") (term "0")) + (rule "replace_known_left" (formula "142") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "142")) + (branch "Case 1" + (rule "andRight" (formula "142")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "137"))) + (rule "closeTrue" (formula "142")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "142")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (ifseqformula "84")) + (rule "orRight" (formula "142")) + (rule "polySimp_homoEq" (formula "115") (term "1,0")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "115") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "115") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "142") (term "0")) + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "142")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "143")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,1,0") (ifseqformula "84")) + (rule "expand_inInt" (formula "116") (term "0,1,0")) + (rule "replace_int_MIN" (formula "116") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "116") (term "1,0,0,1,0")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "117")) + (rule "translateJavaCastInt" (formula "120") (term "0,1")) + (rule "translateJavaCastInt" (formula "120") (term "0")) + (rule "translateJavaAddInt" (formula "120") (term "1")) + (rule "replace_known_left" (formula "119") (term "0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "119")) + (rule "true_left" (formula "119")) + (rule "polySimp_addComm0" (formula "119") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "118")) + (rule "applyEq" (formula "119") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "119") (term "1,1,1") (ifseqformula "40")) + (rule "elim_double_block_2" (formula "146") (term "1")) + (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_20")) + (rule "inequality_comparison_simple" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "146")) + (builtin "Use Dependency Contract" (formula "89") (term "1") (ifInst "" (formula "89") (term "1,0")) (ifInst "" (formula "84")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::count()].JML accessible clause.0")) + (rule "wellFormedStorePrimitiveArray" (formula "120") (term "0,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "120") (term "1,1,0,0,0") (ifseqformula "84")) + (rule "wellFormedAnon" (formula "120") (term "0,1,0,0,0")) + (rule "wellFormedStorePrimitiveArray" (formula "120") (term "0,1,1,0,0,0")) + (rule "wellFormedAnon" (formula "120") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "120") (term "1")) + (rule "translateJavaSubInt" (formula "120") (term "2,1,1,0")) + (rule "replace_known_right" (formula "120") (term "0,0,0,0,0,0") (ifseqformula "143")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "83"))) + (rule "polySimp_elimSub" (formula "120") (term "2,1,1,0")) + (rule "mul_literals" (formula "120") (term "1,2,1,1,0")) + (rule "polySimp_addComm0" (formula "120") (term "2,1,1,0")) + (rule "dismissNonSelectedField" (formula "120") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "32"))) + (rule "disjointDefinition" (formula "120") (term "1,0")) + (rule "distributeIntersection_2" (formula "120") (term "0,1,0")) + (rule "intersectWithSingleton" (formula "120") (term "0,0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "120") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "120")) + (rule "inEqSimp_commuteLeq" (formula "120") (term "0,0,0,0,1,0")) + (rule "replace_known_left" (formula "120") (term "0,0,0,0,1,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "120")) + (rule "unionEqualsEmpty" (formula "120") (term "1,0")) + (builtin "One Step Simplification" (formula "120")) + (rule "disjointArrayRanges" (formula "120") (term "1,1,0")) + (rule "eqSymm" (formula "120") (term "0,0,0,0,1,1,0")) + (rule "replace_known_right" (formula "120") (term "0,0,0,0,1,1,0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "120")) + (rule "ifSplit" (formula "147")) + (branch "if x_20 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_20 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "147") (term "1")) + (rule "compound_assignment_op_plus" (formula "147") (term "1")) + (rule "compound_int_cast_expression" (formula "147") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "147") (term "1")) + (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_21")) + (rule "remove_parentheses_right" (formula "147") (term "1")) + (rule "compound_addition_2" (formula "147") (term "1") (inst "#v0=x_22") (inst "#v1=x_23")) + (rule "variableDeclarationAssign" (formula "147") (term "1")) + (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_22")) + (rule "assignment" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "variableDeclarationAssign" (formula "147") (term "1")) + (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_23")) + (rule "remove_parentheses_right" (formula "147") (term "1")) + (rule "assignment" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "assignmentAdditionInt" (formula "147") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "147")) + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "polySimp_homoEq" (formula "115") (term "1,0")) + (rule "polySimp_homoEq" (formula "119")) + (rule "polySimp_homoEq" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm0" (formula "147") (term "1,1")) + (rule "polySimp_addComm0" (formula "147") (term "0,0")) + (rule "polySimp_addComm1" (formula "119") (term "0")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "115") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "115") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "mul_literals" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "87") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "87") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "147") (term "1")) + (rule "mul_literals" (formula "147") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "147") (term "0,1")) + (rule "add_literals" (formula "147") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "147") (term "0")) + (rule "polySimp_mulComm0" (formula "147") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "147") (term "1,0,0")) + (rule "mul_literals" (formula "147") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "147") (term "0,0")) + (rule "add_literals" (formula "147") (term "0,0,0")) + (rule "jmod_axiom" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_sepPosMonomial" (formula "119")) + (rule "polySimp_mulComm0" (formula "119") (term "1")) + (rule "polySimp_rightDist" (formula "119") (term "1")) + (rule "mul_literals" (formula "119") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,1")) + (rule "polySimp_elimOne" (formula "119") (term "1,1")) + (rule "polySimp_sepPosMonomial" (formula "88") (term "1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "115") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "115") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "115") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "0")) + (rule "polySimp_elimOne" (formula "89") (term "0")) + (rule "applyEq" (formula "120") (term "0,1") (ifseqformula "89")) + (rule "polySimp_homoEq" (formula "120") (term "1")) + (rule "polySimp_mulComm0" (formula "120") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "120") (term "1,0,1")) + (rule "mul_literals" (formula "120") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "120") (term "0,1")) + (rule "polySimp_addComm0" (formula "120") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "120") (term "0,1")) + (rule "add_literals" (formula "120") (term "1,1,0,1")) + (rule "times_zero_1" (formula "120") (term "1,0,1")) + (rule "add_zero_right" (formula "120") (term "0,1")) + (rule "equal_literals" (formula "120") (term "1")) + (builtin "One Step Simplification" (formula "120")) + (rule "notLeft" (formula "120")) + (rule "polySimp_sepNegMonomial" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEqReverse" (formula "88") (term "1,3,0,1,1,1,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "82") (term "1,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "97") (term "1,0,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "84") (term "1,3,0,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "89") (term "1,3,0,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "120") (term "1,3,0,0") (ifseqformula "81")) + (rule "applyEqReverse" (formula "87") (term "1,3,0,0,1,0") (ifseqformula "81")) + (rule "hideAuxiliaryEq" (formula "81")) + (rule "replace_known_left" (formula "119") (term "0,1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "119")) + (rule "false_right" (formula "119")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "114") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "mul_literals" (formula "39") (term "0,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "145") (term "1")) + (rule "mul_literals" (formula "145") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "145") (term "0")) + (rule "polySimp_mulLiterals" (formula "145") (term "0,0")) + (rule "polySimp_elimOne" (formula "145") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "54")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "141") (term "1") (ifseqformula "66")) + (rule "leq_literals" (formula "141") (term "0,1")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_leqRight" (formula "141")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "5") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "58") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "61")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "73")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "1")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "110") (term "1,2,1,0,0,1,0,2,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "110") (term "2,1,0,0,1,0,2,0")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "65") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "65") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "106") (term "1,2,1,0,0,1,0,0,1,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "106") (term "2,1,0,0,1,0,0,1,1,1,0")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0,1,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0,1,1,1,0")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0")) + (rule "add_zero_right" (formula "43") (term "0")) + (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47")) + (rule "times_zero_1" (formula "51") (term "0,0")) + (rule "add_zero_left" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "46")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "45")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "1")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_rightDist" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_subsumption0" (formula "70") (ifseqformula "78")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_contradInEq1" (formula "77") (ifseqformula "1")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "closeFalse" (formula "77")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "147")) + (rule "translateJavaAddInt" (formula "147") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "147") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "147") (term "1")) + (rule "assignment" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "tryEmpty" (formula "147") (term "1")) + (rule "blockEmptyLabel" (formula "147") (term "1")) + (rule "blockEmpty" (formula "147") (term "1")) + (rule "methodCallEmpty" (formula "147") (term "1")) + (rule "emptyModality" (formula "147") (term "1")) + (rule "andRight" (formula "147")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "147")) + (rule "closeTrue" (formula "147")) + ) + (branch "Case 2" + (rule "andRight" (formula "147")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "91"))) + (rule "closeTrue" (formula "147")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "95"))) + (rule "closeTrue" (formula "147")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (flush)" + (builtin "One Step Simplification" (formula "111")) + (builtin "One Step Simplification" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0") (ifseqformula "84")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "87")) + (rule "notLeft" (formula "85")) + (rule "close" (formula "88") (ifseqformula "87")) + ) + (branch "Pre (flush)" + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "107")) (ifInst "" (formula "107"))) + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "109") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15") (userinteraction)) + (rule "close" (formula "109") (ifseqformula "15")) + ) + (branch "Case 2" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "wellFormedStorePrimitiveArray" (formula "109")) + (rule "close" (formula "109") (ifseqformula "68")) + ) + (branch "Case 2" + (rule "dismissNonSelectedField" (formula "109") (term "0")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "hideAuxiliaryEq" (formula "82")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "1")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "42")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "42")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "1")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "closeFalse" (formula "66")) + ) + ) + (branch "Case 2" + (rule "dismissNonSelectedField" (formula "109") (term "0")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "22"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "hideAuxiliaryEq" (formula "82")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "53")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "64")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "53")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_contradInEq0" (formula "65") (ifseqformula "1")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "closeFalse" (formula "65")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "109")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "hideAuxiliaryEq" (formula "82")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "52")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "62")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "73")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "1")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null reference (_buffers = null)" + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "105"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_11 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107"))) + (builtin "One Step Simplification" (formula "110")) + (rule "false_right" (formula "110")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "hideAuxiliaryEq" (formula "82")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "56")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "65")) + (rule "leq_literals" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "77")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "50")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "62")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "5") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "applyEq" (formula "67") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "67") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "44")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "35") (ifseqformula "1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "1,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0")) + (rule "add_zero_right" (formula "35") (term "0")) + (rule "leq_literals" (formula "35")) + (rule "closeFalse" (formula "35")) + ) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_10 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107"))) + (builtin "One Step Simplification" (formula "110")) + (rule "false_right" (formula "110")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_addComm1" (formula "40") (term "0")) + (rule "jmod_axiom" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEqReverse" (formula "83") (term "1,0") (ifseqformula "82")) + (rule "hideAuxiliaryEq" (formula "82")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "56")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "79")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "50")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "62")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "5") (term "0,0,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "5") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "57") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "60")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "66") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "66") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "67") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "67") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "9")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62")) + (rule "times_zero_1" (formula "61") (term "0,0")) + (rule "add_zero_left" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "45")) + (rule "times_zero_1" (formula "49") (term "0,0")) + (rule "add_zero_left" (formula "49") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1")) + (rule "polySimp_rightDist" (formula "49") (term "1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "44")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0")) + (rule "add_zero_right" (formula "43") (term "0")) + (rule "elimGcdGeq_antec" (formula "43") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "69")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "34")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "mul_literals" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "37")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "tryEmpty" (formula "104") (term "1")) + (rule "blockEmptyLabel" (formula "104") (term "1")) + (rule "blockEmpty" (formula "104") (term "1")) + (rule "methodCallEmpty" (formula "104") (term "1")) + (rule "emptyModality" (formula "104") (term "1")) + (rule "andRight" (formula "104")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "104")) + (rule "closeTrue" (formula "104")) + ) + (branch "Case 2" + (rule "andRight" (formula "104")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "104")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "104")) + ) + ) + ) + ) + (branch "Exceptional Post (len)" + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "14"))) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "close" (formula "74") (ifseqformula "73")) + ) + (branch "Pre (len)" + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "14")) (ifInst "" (formula "67")) (ifInst "" (formula "31"))) + (rule "expand_inInt" (formula "98")) + (rule "replace_int_MIN" (formula "98") (term "0,1")) + (rule "replace_int_MAX" (formula "98") (term "1,0")) + (rule "replace_known_left" (formula "98") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "98")) + (rule "inEqSimp_leqRight" (formula "98")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "jmod_axiom" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "mul_literals" (formula "39") (term "0,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "64")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_contradInEq0" (formula "61") (ifseqformula "1")) + (rule "qeq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "closeFalse" (formula "61")) + ) + (branch "Null reference (_buffers = null)" + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "94"))) + (rule "closeTrue" (formula "98")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "93")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "93")) + (rule "wellFormedAnon" (formula "93")) + (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "93")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "93")) + (rule "expand_inInt" (formula "93")) + (rule "replace_int_MIN" (formula "93") (term "0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0")) + (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_leqRight" (formula "93")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "jmod_axiom" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "52")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "1")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeFalse" (formula "28")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "93")) + (rule "expand_inInt" (formula "93")) + (rule "replace_int_MIN" (formula "93") (term "0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "jmod_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "51")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "60") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "51")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "newSym_eq" (formula "45") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "45") (term "1,1,1")) + (rule "times_zero_1" (formula "45") (term "0,1,1")) + (rule "add_zero_left" (formula "45") (term "1,1")) + (rule "add_zero_right" (formula "45") (term "1")) + (rule "applyEq" (formula "46") (term "0,0") (ifseqformula "45")) + (rule "polySimp_homoEq" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "46")) + (rule "applyEq" (formula "55") (term "1,2,1,0,0,1,0,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "55") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "50") (term "5,0") (ifseqformula "46")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "45") (term "1,0,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "46")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "46")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "applyEq" (formula "43") (term "0,1,1") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1")) + (rule "polySimp_rightDist" (formula "43") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "43") (term "1")) + (rule "applyEq" (formula "10") (term "0,5,0") (ifseqformula "46")) + (rule "applyEq" (formula "49") (term "0,0,2,2,0,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "55") (term "0,0,2,2,0") (ifseqformula "46")) + (rule "applyEq" (formula "11") (term "0,4,0,1,0") (ifseqformula "46")) + (rule "applyEq" (formula "11") (term "4,1,1,0") (ifseqformula "46")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "times_zero_1" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "44")) + (rule "times_zero_1" (formula "48") (term "0,0")) + (rule "add_zero_left" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "50")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "92")) + (rule "inEqSimp_geqRight" (formula "92")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "28")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "42")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "43")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "46")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_zero_right" (formula "45") (term "0")) + (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "45") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "47")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "10")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "26") (ifseqformula "1")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "93")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "94")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "93")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "30"))) + (rule "closeTrue" (formula "94")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "93")) + (rule "expand_inInt" (formula "93")) + (rule "replace_int_MIN" (formula "93") (term "0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "jmod_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "42")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "50")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "39")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "49") (ifseqformula "50")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "59")) + (rule "leq_literals" (formula "87") (term "0,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "4") (term "0,0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "1")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "42")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "46")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47")) + (rule "times_zero_1" (formula "51") (term "0,0")) + (rule "add_zero_left" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_zero_right" (formula "45") (term "0")) + (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "27")) + (rule "mul_literals" (formula "39") (term "0,0")) + (rule "add_zero_left" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "39") (term "0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "67")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "30") (term "0,0")) + (rule "mul_literals" (formula "30") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "44")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "50")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0")) + (rule "add_zero_right" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "inEqSimp_subsumption6" (formula "14") (ifseqformula "52")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "times_zero_1" (formula "14") (term "1,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "50")) + (rule "times_zero_1" (formula "43") (term "0,0")) + (rule "add_zero_left" (formula "43") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "43")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "polySimp_rightDist" (formula "10") (term "0,1")) + (rule "mul_literals" (formula "10") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "qeq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "inEqSimp_subsumption6" (formula "31") (ifseqformula "53")) + (rule "times_zero_1" (formula "31") (term "1,1,0")) + (rule "greater_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "40")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "40") (ifseqformula "1")) + (rule "qeq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "closeFalse" (formula "40")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "93")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "94")) + ) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "93")) + (branch "Case 1" + (rule "andRight" (formula "93")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "88"))) + (rule "closeTrue" (formula "93")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "93")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "93")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "67")) + (rule "expand_inInt" (formula "67") (term "1,0,0,0,1,1,1,1,1")) + (rule "expand_inInt" (formula "67") (term "1,0,1,0")) + (rule "expand_inInt" (formula "67") (term "0,0,1,0")) + (rule "expand_inInt" (formula "67") (term "0,0,0,1,1,1,1,1,1")) + (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,0,0,1,1,1,1,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,0,0,1,1,1,1,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,1,0")) + (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,1,0")) + (rule "replace_int_MAX" (formula "67") (term "1,0,0,0,0,1,1,1,1,1,1")) + (rule "replace_int_MIN" (formula "67") (term "0,1,0,0,0,1,1,1,1,1,1")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "70")) + (rule "notLeft" (formula "69")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "79")) + (rule "translateJavaSubInt" (formula "114") (term "2,1,0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "87") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "78") (term "0,0")) + (rule "translateJavaSubInt" (formula "68") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "83") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "83") (term "2,1,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "82") (term "1")) + (rule "translateJavaSubInt" (formula "82") (term "2,1,0,1,0,0")) + (rule "eqSymm" (formula "84") (term "1,0")) + (rule "translateJavaSubInt" (formula "81") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "85") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "86") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "79") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "80") (term "2,1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "83") (term "2,1,0,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,1")) + (rule "translateJavaSubInt" (formula "84") (term "2,1,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "4,0,1,0")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "polySimp_elimSub" (formula "113") (term "2,1,0,1,0,1,1,0")) + (rule "mul_literals" (formula "113") (term "1,2,1,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "86") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "86") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,0")) + (rule "polySimp_elimSub" (formula "68") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "69") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "82") (term "2,1,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "82") (term "1,2,1,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "81") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "81") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "80") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "80") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "84") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "84") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "85") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "85") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "78") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "78") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "79") (term "2,1,0,1,0,0")) + (rule "mul_literals" (formula "79") (term "1,2,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "82") (term "2,1,0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "82") (term "1,2,1,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "81") (term "1")) + (rule "polySimp_elimSub" (formula "83") (term "2,1,0,1,0,0,1,0")) + (rule "mul_literals" (formula "83") (term "1,2,1,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "113") (term "2,1,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "86") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "68") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "2,1,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "80") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "84") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "79") (term "2,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "82") (term "2,1,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "81") (term "1")) + (rule "polySimp_addComm0" (formula "83") (term "2,1,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "inEqSimp_commuteLeq" (formula "74")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "1,0,0")) + (rule "applyEq" (formula "82") (term "1,1,0,0,0") (ifseqformula "39")) + (rule "commuteUnion_2" (formula "113") (term "1,0,1,1,0")) + (rule "commuteUnion" (formula "86") (term "1,0,0")) + (rule "commuteUnion_2" (formula "68") (term "1,0")) + (rule "commuteUnion" (formula "69") (term "1,0")) + (rule "commuteUnion_2" (formula "82") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "81") (term "1,0,0")) + (rule "commuteUnion" (formula "80") (term "1,0,0")) + (rule "commuteUnion_2" (formula "84") (term "1,0")) + (rule "commuteUnion_2" (formula "85") (term "1,0")) + (rule "commuteUnion_2" (formula "78") (term "1,0,0")) + (rule "commuteUnion" (formula "79") (term "1,0,0")) + (rule "commuteUnion" (formula "82") (term "1,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "83") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "113") (term "0,1,0,1,1,0")) + (rule "commuteUnion" (formula "68") (term "0,1,0")) + (rule "commuteUnion" (formula "82") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "84") (term "0,1,0")) + (rule "commuteUnion" (formula "85") (term "0,1,0")) + (rule "commuteUnion" (formula "78") (term "0,1,0,0")) + (rule "commute_and" (formula "83") (term "0,0")) + (rule "commute_and" (formula "82") (term "1,0,0")) + (rule "commute_and" (formula "82") (term "0,0,0")) + (rule "associativeLawUnion" (formula "69") (term "1,0")) + (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_8")) + (rule "shift_paren_and" (formula "82") (term "0,0")) + (rule "commute_and_2" (formula "82") (term "0,0,0")) + (rule "associativeLawUnion" (formula "86") (term "1,0,0")) + (rule "associativeLawUnion" (formula "81") (term "1,0,0")) + (rule "associativeLawUnion" (formula "80") (term "1,0,0")) + (rule "associativeLawUnion" (formula "79") (term "1,0,0")) + (rule "inequality_comparison_simple" (formula "113") (term "1")) + (builtin "One Step Simplification" (formula "113")) + (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "113")) + (rule "associativeLawUnion" (formula "83") (term "1,0,0,1,0")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "113") (term "0,0,1,0,0,1")) (contract "de.wiesler.Buffers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "86") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "86") (term "0,1,0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "110")) (ifInst "" (formula "31")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "14"))) + (rule "disjointDefinition" (formula "86") (term "1,0")) + (rule "distributeIntersection_2" (formula "86") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "86") (term "1,0")) + (rule "disjointArrayRangeAllFields2" (formula "86") (term "1,1,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "distributeIntersection_2" (formula "86") (term "0,0,1,0")) + (rule "unionEqualsEmpty" (formula "86") (term "0,1,0")) + (rule "disjointArrayRangeAllFields2" (formula "86") (term "1,0,1,0")) + (rule "eqSymm" (formula "86") (term "0,0,1,0,1,0")) + (rule "replace_known_right" (formula "86") (term "0,0,1,0,1,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "86")) + (rule "distributeIntersection_2" (formula "86") (term "0,0,1,0")) + (rule "unionEqualsEmpty" (formula "86") (term "0,1,0")) + (rule "disjointArrayRangeAllFields2" (formula "86") (term "0,0,1,0")) + (rule "eqSymm" (formula "86") (term "0,0,0,0,1,0")) + (rule "replace_known_right" (formula "86") (term "0,0,0,0,1,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "86")) + (rule "disjointArrayRangeAllFields2" (formula "86") (term "0,1,0")) + (rule "eqSymm" (formula "86") (term "0,0,0,1,0")) + (rule "replace_known_right" (formula "86") (term "0,0,0,1,0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "86")) + (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "114") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0")) + (rule "replace_known_right" (formula "87") (term "0,0,0,0,0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "33")) (ifInst "" (formula "15")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "87")) + (rule "associativeLawUnion" (formula "82") (term "1,0,0,0,0,1,0")) + (rule "ifSplit" (formula "114")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "114") (term "1")) + (builtin "Block Contract (Internal)" (formula "114") (newnames "result_24,exc_28,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "110")) (ifInst "" (formula "18"))) + (rule "eqSymm" (formula "115") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "exc_28_1")) + (rule "assignment" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "emptyStatement" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "emptyStatement" (formula "115") (term "1")) + (rule "tryEmpty" (formula "115") (term "1")) + (rule "blockEmptyLabel" (formula "115") (term "1")) + (rule "blockEmpty" (formula "115") (term "1")) + (rule "methodCallEmpty" (formula "115") (term "1")) + (rule "emptyModality" (formula "115") (term "1")) + (rule "andRight" (formula "115")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "115")) + (rule "closeTrue" (formula "115")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "115")) + (rule "closeTrue" (formula "115")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "114")) + (branch "Case 1" + (rule "andRight" (formula "114")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "114")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "114")) + (rule "wellFormedAnon" (formula "114")) + (rule "wellFormedAnon" (formula "114") (term "0")) + (rule "replace_known_left" (formula "114") (term "1") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "114")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "114")) + (branch "Case 1" + (rule "andRight" (formula "114")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "109"))) + (rule "closeTrue" (formula "114")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "114")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "114")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "87")) + (rule "expand_inInt" (formula "87") (term "1")) + (rule "expand_inInt" (formula "87") (term "0,1,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1")) + (rule "replace_int_MAX" (formula "87") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,0,1,0")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "88")) + (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_commuteLeq" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "89")) + (rule "elim_double_block_2" (formula "119") (term "1")) + (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "119") (term "1")) + (builtin "One Step Simplification" (formula "119")) + (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "119")) + (rule "ifSplit" (formula "119")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "119") (term "1")) + (builtin "Use Operation Contract" (formula "119") (newnames "heapBefore_push,exc_29,heapAfter_push,anon_heap_push") (contract "de.wiesler.Buffers[de.wiesler.Buffers::push(int,int)].JML normal_behavior operation contract.0")) + (branch "Post (push)" + (builtin "One Step Simplification" (formula "93")) + (builtin "One Step Simplification" (formula "121")) + (builtin "Block Contract (Internal)" (formula "121") (newnames "result_25,exc_30,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "32")) (ifInst "" (formula "19")) (ifInst "" (formula "117"))) + (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "18"))) + (rule "true_left" (formula "96")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "97")) + (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "95")) + (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "97") (term "1,0,1,1,1,0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "95")) + (rule "hideAuxiliaryEq" (formula "95")) + (rule "eqSymm" (formula "128") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0")) + (rule "eqSymm" (formula "94")) + (rule "eqSymm" (formula "95")) + (rule "eqSymm" (formula "96") (term "1,0")) + (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "94") (term "0")) + (rule "translateJavaAddInt" (formula "95") (term "0")) + (rule "translateJavaAddInt" (formula "96") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "96") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "128") (term "1")) + (rule "variableDeclaration" (formula "128") (term "1") (newnames "exc_30_1")) + (rule "assignment" (formula "128") (term "1")) + (builtin "One Step Simplification" (formula "128")) + (rule "emptyStatement" (formula "128") (term "1")) + (builtin "One Step Simplification" (formula "128")) + (rule "emptyStatement" (formula "128") (term "1")) + (rule "applyEq" (formula "95") (term "1,0") (ifseqformula "81")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0")) + (rule "eqSymm" (formula "95")) + (rule "commute_and" (formula "96") (term "0,0")) + (rule "tryEmpty" (formula "128") (term "1")) + (rule "blockEmptyLabel" (formula "128") (term "1")) + (rule "blockEmpty" (formula "128") (term "1")) + (rule "methodCallEmpty" (formula "128") (term "1")) + (rule "emptyModality" (formula "128") (term "1")) + (rule "andRight" (formula "128")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "128")) + (rule "closeTrue" (formula "128")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "128")) + (rule "closeTrue" (formula "128")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "121")) + (branch "Case 1" + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "121")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121")) + (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "93")) + (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "93")) + (rule "wellFormedAnon" (formula "122") (term "0")) + (rule "wellFormedAnon" (formula "122") (term "0,0")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "97")) + (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "95")) + (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "97") (term "1,0,1,1,1,0") (ifseqformula "95")) + (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "95")) + (rule "hideAuxiliaryEq" (formula "95")) + (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0")) + (rule "eqSymm" (formula "94")) + (rule "eqSymm" (formula "95")) + (rule "eqSymm" (formula "96") (term "1,0")) + (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "94") (term "0")) + (rule "translateJavaAddInt" (formula "95") (term "0")) + (rule "translateJavaAddInt" (formula "96") (term "0,1,0")) + (rule "replace_known_left" (formula "127") (term "1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "17")) (ifInst "" (formula "70")) (ifInst "" (formula "92"))) + (rule "closeTrue" (formula "127")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "121")) + (branch "Case 1" + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "116"))) + (rule "closeTrue" (formula "121")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121")) + (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "121")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "122")) + (rule "expand_inInt" (formula "93") (term "0,0,0,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "94") (term "0,1,0")) + (rule "replace_int_MIN" (formula "93") (term "0,1,0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "93") (term "1,0,0,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "94") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,0,1,0")) + (rule "andLeft" (formula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "1,1,1,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "95")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "98")) + (rule "applyEqReverse" (formula "61") (term "2,0") (ifseqformula "96")) + (rule "applyEqReverse" (formula "3") (term "1") (ifseqformula "96")) + (rule "applyEqReverse" (formula "91") (term "0") (ifseqformula "96")) + (rule "applyEqReverse" (formula "98") (term "1,0,1,1,1,0") (ifseqformula "96")) + (rule "applyEqReverse" (formula "90") (term "0") (ifseqformula "96")) + (rule "hideAuxiliaryEq" (formula "96")) + (rule "translateJavaAddInt" (formula "93") (term "0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,3,0")) + (rule "translateJavaAddInt" (formula "105") (term "2,0")) + (rule "eqSymm" (formula "95")) + (rule "eqSymm" (formula "96")) + (rule "eqSymm" (formula "97") (term "1,0")) + (rule "translateJavaMulInt" (formula "93") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "3,0")) + (rule "translateJavaAddInt" (formula "95") (term "0")) + (rule "translateJavaAddInt" (formula "96") (term "0")) + (rule "translateJavaAddInt" (formula "97") (term "0,1,0")) + (rule "replace_known_left" (formula "103") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "polySimp_addComm1" (formula "104") (term "3,0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "polySimp_addComm0" (formula "104") (term "0,3,0")) + (rule "inEqSimp_commuteLeq" (formula "102")) + (rule "inEqSimp_commuteLeq" (formula "97") (term "1,0,0")) + (rule "applyEq" (formula "96") (term "1,0") (ifseqformula "81")) + (rule "polySimp_addAssoc" (formula "96") (term "0")) + (rule "polySimp_addAssoc" (formula "96") (term "0,0")) + (rule "eqSymm" (formula "96")) + (rule "commute_and" (formula "97") (term "0,0")) + (rule "elim_double_block_2" (formula "132") (term "1")) + (rule "ifUnfold" (formula "132") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "replace_known_left" (formula "132") (term "0,0,1,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "132")) + (rule "ifSplit" (formula "132")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "133")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "133")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "132") (term "1")) + (rule "emptyStatement" (formula "132") (term "1")) + (rule "blockEmpty" (formula "132") (term "1")) + (rule "preincrement" (formula "132") (term "1")) + (rule "compound_int_cast_expression" (formula "132") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "132") (term "1")) + (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_11")) + (rule "remove_parentheses_right" (formula "132") (term "1")) + (rule "assignmentAdditionInt" (formula "132") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "132")) + (rule "expand_inInt" (formula "132")) + (rule "replace_int_MIN" (formula "132") (term "0,1")) + (rule "replace_int_MAX" (formula "132") (term "1,0")) + (rule "polySimp_homoEq" (formula "97") (term "1,0")) + (rule "polySimp_homoEq" (formula "95")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_addComm0" (formula "132") (term "0,0")) + (rule "polySimp_addComm0" (formula "132") (term "1,1")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "mul_literals" (formula "95") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0,1,0")) + (rule "mul_literals" (formula "86") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "86") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "132") (term "0")) + (rule "polySimp_mulComm0" (formula "132") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "132") (term "1,0,0")) + (rule "mul_literals" (formula "132") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "132") (term "0,0")) + (rule "add_literals" (formula "132") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "132") (term "1")) + (rule "mul_literals" (formula "132") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "132") (term "0,1")) + (rule "add_literals" (formula "132") (term "0,0,1")) + (rule "jmod_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "97") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "97") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "polySimp_elimOne" (formula "95") (term "0")) + (rule "applyEq" (formula "93") (term "1,0,1,1,1,0") (ifseqformula "95")) + (rule "polySimp_addAssoc" (formula "93") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0,1,1,1,0")) + (rule "applyEq" (formula "61") (term "3,2,0") (ifseqformula "95")) + (rule "applyEq" (formula "91") (term "3,0") (ifseqformula "95")) + (rule "applyEq" (formula "105") (term "0") (ifseqformula "95")) + (rule "polySimp_homoEq" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "mul_literals" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "add_literals" (formula "105") (term "0,0")) + (rule "applyEq" (formula "90") (term "3,0") (ifseqformula "95")) + (rule "applyEq" (formula "97") (term "3,1,0,0,1,0") (ifseqformula "95")) + (rule "applyEq" (formula "3") (term "3,1") (ifseqformula "95")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "0,1,0")) + (rule "mul_literals" (formula "86") (term "1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "132") (term "0")) + (rule "polySimp_mulLiterals" (formula "132") (term "0,0")) + (rule "polySimp_elimOne" (formula "132") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "132") (term "1")) + (rule "mul_literals" (formula "132") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "54")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "34")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "49")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "eqSymm" (formula "3")) + (rule "applyEq" (formula "57") (term "2,0") (ifseqformula "3")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "86") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "93") (term "1,0,0,1,0") (ifseqformula "3")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "127") (term "1") (ifseqformula "7")) + (rule "leq_literals" (formula "127") (term "0,1")) + (builtin "One Step Simplification" (formula "127")) + (rule "inEqSimp_leqRight" (formula "127")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "39")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "77") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,1,0,1,0")) + (rule "applyEq" (formula "80") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,1,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,1,0,1,0")) + (rule "applyEq" (formula "79") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,1,0")) + (rule "applyEq" (formula "73") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,1,0,0")) + (rule "applyEq" (formula "64") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "64") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "74") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,1,0,0")) + (rule "applyEq" (formula "90") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "90") (term "2,1,1,0,0")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "80") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "80") (term "2,1,1,0")) + (rule "applyEq" (formula "78") (term "1,2,1,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "78") (term "2,1,1,0,0,1,0")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "88") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "88") (term "2,1,1,0,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "88") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "88") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "76") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,0")) + (rule "applyEq" (formula "90") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "90") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "75") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,1,0,0")) + (rule "applyEq" (formula "63") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "63") (term "2,1,1,0")) + (rule "applyEq" (formula "64") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "64") (term "2,1,1,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,0,0,0,1,0")) + (rule "applyEq" (formula "78") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "78") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "92") (term "1,2,1,1,0,0,1,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "92") (term "2,1,1,0,0,1,1,1,0")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "92") (term "1,2,1,0,0,1,0,0,0,1,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "92") (term "2,1,0,0,1,0,0,0,1,1,1,0")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "99") (term "1,0,3,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "99") (term "0,3,0")) + (rule "applyEq" (formula "85") (term "0,0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "86") (term "0,0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "99") (term "0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "77") (term "1,2,1,1,0,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,0,0,0,1,0")) + (rule "applyEq" (formula "76") (term "1,0,1") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "0,1")) + (rule "polySimp_addComm0" (formula "76") (term "0,0,1")) + (rule "applyEq" (formula "4") (term "0,0,2,1") (ifseqformula "47")) + (rule "applyEq" (formula "91") (term "1,0,1") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "91") (term "0,1")) + (rule "polySimp_addComm1" (formula "91") (term "0,0,1")) + (rule "applyEq" (formula "92") (term "0,0,2,1,0,0,1,0") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial0" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "71")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63")) + (rule "times_zero_1" (formula "62") (term "0,0")) + (rule "add_zero_left" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "replace_known_left" (formula "84") (term "0,1,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "73")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "132")) + (rule "translateJavaAddInt" (formula "132") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "132") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "132") (term "1")) + (rule "assignment" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "blockEmpty" (formula "132") (term "1")) + (rule "lsContinue" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "polySimp_homoEq" (formula "97") (term "1,0")) + (rule "polySimp_homoEq" (formula "95")) + (rule "polySimp_mulComm0" (formula "132") (term "0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "132") (term "0,0")) + (rule "mul_literals" (formula "132") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "mul_literals" (formula "95") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0")) + (rule "precOfInt" (formula "132")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "132") (term "1")) + (rule "polySimp_rightDist" (formula "132") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "132") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "132") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "132") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "132") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "132") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "132") (term "0,1")) + (rule "polySimp_addComm1" (formula "132") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "132") (term "0,1")) + (rule "add_literals" (formula "132") (term "1,1,0,1")) + (rule "times_zero_1" (formula "132") (term "1,0,1")) + (rule "add_zero_right" (formula "132") (term "0,1")) + (rule "polySimp_addAssoc" (formula "132") (term "0,1")) + (rule "polySimp_addComm1" (formula "132") (term "0,0,1")) + (rule "add_literals" (formula "132") (term "0,0,0,1")) + (rule "add_zero_left" (formula "132") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "132") (term "0,1")) + (rule "add_literals" (formula "132") (term "1,0,1")) + (rule "times_zero_1" (formula "132") (term "0,1")) + (rule "leq_literals" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "inEqSimp_leqRight" (formula "132")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "39")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "87") (term "0,1,0")) + (rule "times_zero_2" (formula "87") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "87") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0")) + (rule "jmod_axiom" (formula "51") (term "0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "98") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "98") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "applyEq" (formula "92") (term "3,0") (ifseqformula "96")) + (rule "applyEq" (formula "106") (term "0") (ifseqformula "96")) + (rule "polySimp_homoEq" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0")) + (rule "mul_literals" (formula "106") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "add_literals" (formula "106") (term "0,0")) + (rule "applyEq" (formula "91") (term "3,0") (ifseqformula "96")) + (rule "applyEq" (formula "62") (term "3,2,0") (ifseqformula "96")) + (rule "applyEq" (formula "94") (term "1,0,1,1,1,0") (ifseqformula "96")) + (rule "polySimp_addAssoc" (formula "94") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0,1,1,1,0")) + (rule "applyEq" (formula "98") (term "3,1,0,0,1,0") (ifseqformula "96")) + (rule "applyEq" (formula "4") (term "3,1") (ifseqformula "96")) + (rule "polySimp_sepNegMonomial" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "87") (term "0,1,0")) + (rule "mul_literals" (formula "87") (term "1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "55")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "36")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "51")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Exceptional Post (push)" + (builtin "One Step Simplification" (formula "93")) + (builtin "One Step Simplification" (formula "121")) + (rule "andLeft" (formula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "94")) + (rule "notLeft" (formula "94")) + (rule "close" (formula "97") (ifseqformula "96")) + ) + (branch "Pre (push)" + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "68")) (ifInst "" (formula "31"))) + (rule "wellFormedAnon" (formula "119") (term "0,0")) + (rule "wellFormedAnon" (formula "119") (term "0,0,0")) + (rule "expand_inInt" (formula "119") (term "1")) + (rule "expand_inInt" (formula "119") (term "1,0")) + (rule "replace_int_MIN" (formula "119") (term "0,1,1")) + (rule "replace_int_MAX" (formula "119") (term "1,0,1")) + (rule "replace_int_MAX" (formula "119") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "119") (term "0,1,1,0")) + (rule "replace_known_left" (formula "119") (term "1,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "90"))) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "119") (term "1")) + (rule "replace_known_left" (formula "119") (term "1") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "119")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0,1,0")) + (rule "times_zero_2" (formula "86") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "86") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "jmod_axiom" (formula "50") (term "0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "0,1,0")) + (rule "mul_literals" (formula "86") (term "1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "52")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_contradInEq1" (formula "3") (term "0,0,0") (ifseqformula "7")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "85") (term "0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "86") (term "0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "56") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "113") (term "1") (ifseqformula "59")) + (rule "leq_literals" (formula "113") (term "0,1")) + (builtin "One Step Simplification" (formula "113")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "1")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "newSym_eq" (formula "46") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "46") (term "1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,1")) + (rule "add_zero_left" (formula "46") (term "1,1")) + (rule "add_zero_right" (formula "46") (term "1")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "46")) + (rule "polySimp_homoEq" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1")) + (rule "polySimp_elimOne" (formula "47") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1")) + (rule "applyEq" (formula "74") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,1,0,0")) + (rule "applyEq" (formula "72") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "72") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "56") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "56") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "76") (term "1,2,1,1,0,1,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,1,0,1,0")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "70") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm0" (formula "70") (term "0,0")) + (rule "applyEq" (formula "72") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "72") (term "2,1,1,0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "47")) + (rule "applyEq" (formula "73") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "79") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "applyEq" (formula "63") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "63") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "79") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "79") (term "2,1,1,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "86") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "86") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "86") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "86") (term "2,1,1,0,0")) + (rule "applyEq" (formula "78") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "78") (term "2,1,1,0")) + (rule "applyEq" (formula "75") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "73") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "73") (term "2,1,1,0,0")) + (rule "applyEq" (formula "62") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "62") (term "2,1,1,0")) + (rule "applyEq" (formula "77") (term "1,2,1,0,0,1,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "77") (term "1,2,1,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "77") (term "2,1,1,0,0,1,0")) + (rule "applyEq" (formula "63") (term "1,2,1,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "63") (term "2,1,1,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "78") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "78") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "44") (term "0,1,1") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "44") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "44") (term "1")) + (rule "applyEq" (formula "51") (term "5,0") (ifseqformula "47")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,1,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,1,0,1,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "75") (term "1,2,1,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "2,1,1,0,0")) + (rule "applyEq" (formula "74") (term "1,2,1,0,0,1,0,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "74") (term "2,1,0,0,1,0,0,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "84") (term "0,0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "85") (term "0,0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "77") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "50") (term "0,0,2,2,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "0,4,0,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "76") (term "1,2,1,1,0,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,1,0,0,0,0,1,0")) + (rule "applyEq" (formula "76") (term "1,2,1,0,0,1,0,0,0,0,0,1,0") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "76") (term "2,1,0,0,1,0,0,0,0,0,1,0")) + (rule "applyEq" (formula "11") (term "0,5,0") (ifseqformula "47")) + (rule "applyEq" (formula "77") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "56") (term "0,0,2,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "12") (term "4,1,1,0") (ifseqformula "47")) + (rule "applyEq" (formula "75") (term "1,0,1") (ifseqformula "47")) + (rule "polySimp_addAssoc" (formula "75") (term "0,1")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "70")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "8")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "42")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "71")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "84") (term "0,1,0") (ifseqformula "1")) + (rule "leq_literals" (formula "84") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "mul_literals" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "1,1,0")) + (rule "times_zero_1" (formula "47") (term "1,0")) + (rule "add_zero_right" (formula "47") (term "0")) + (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "50")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "51")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "52")) + (rule "times_zero_1" (formula "56") (term "0,0")) + (rule "add_zero_left" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "29") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "48")) + (rule "times_zero_1" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "42")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "80") (term "0,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "29") (term "0,0")) + (rule "mul_literals" (formula "29") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_subsumption6" (formula "29") (ifseqformula "51")) + (rule "greater_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "times_zero_1" (formula "29") (term "1,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "46")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "84") (term "0,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "84") (term "0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "84") (term "0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0")) + (rule "add_zero_right" (formula "84") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "84")) + (rule "polySimp_mulLiterals" (formula "84") (term "0")) + (rule "polySimp_elimOne" (formula "84") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "84") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "84") (term "0")) + (rule "add_literals" (formula "84") (term "1,1,0")) + (rule "times_zero_1" (formula "84") (term "1,0")) + (rule "add_zero_right" (formula "84") (term "0")) + (rule "polySimp_mulComm0" (formula "84") (term "0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0")) + (rule "inEqSimp_subsumption6" (formula "84") (ifseqformula "53")) + (rule "greater_literals" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "times_zero_1" (formula "84") (term "1,0")) + (rule "leq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0")) + (rule "add_zero_right" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_subsumption6" (formula "15") (ifseqformula "54")) + (rule "greater_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "times_zero_1" (formula "15") (term "1,0")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "52")) + (rule "times_zero_1" (formula "44") (term "0,0")) + (rule "add_zero_left" (formula "44") (term "0")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "44")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "polySimp_rightDist" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1")) + (rule "mul_literals" (formula "10") (term "0,0,1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "85") (term "0,0")) + (rule "polySimp_mulComm0" (formula "85") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "85") (term "0")) + (rule "polySimp_addComm0" (formula "85") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "85")) + (rule "polySimp_mulLiterals" (formula "85") (term "0")) + (rule "polySimp_elimOne" (formula "85") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "42")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "42")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Null reference (_buffers = null)" + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "115"))) + (rule "closeTrue" (formula "119")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_5 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (builtin "One Step Simplification" (formula "82")) + (rule "orLeft" (formula "1") (userinteraction)) + (branch "values.length <= i + j_0" + (rule "false_right" (formula "82")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "49")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "49")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "44") (term "1,1,1")) + (rule "times_zero_1" (formula "44") (term "0,1,1")) + (rule "add_zero_left" (formula "44") (term "1,1")) + (rule "add_zero_right" (formula "44") (term "1")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "1")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "45")) + (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "1") (term "0,1") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "polySimp_addComm0" (formula "39") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "polySimp_rightDist" (formula "39") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "7")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "47")) + (rule "mul_literals" (formula "51") (term "0,0")) + (rule "add_zero_left" (formula "51") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "1")) + (rule "times_zero_1" (formula "40") (term "0,0")) + (rule "add_zero_left" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "26")) + (rule "times_zero_1" (formula "38") (term "0,0")) + (rule "add_zero_left" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "elimGcdLeq_antec" (formula "38") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "49")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "elimGcdGeq_antec" (formula "48") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0")) + (rule "leq_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_literals" (formula "48") (term "0,0")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "45")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "i + j_0 < 0" + (rule "false_right" (formula "82")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "50")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "47")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "37")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "newSym_eq" (formula "44") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(i, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "44") (term "1,1,1")) + (rule "times_zero_1" (formula "44") (term "0,1,1")) + (rule "add_zero_left" (formula "44") (term "1,1")) + (rule "add_zero_right" (formula "44") (term "1")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "44")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "1") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "applyEq" (formula "49") (term "5,0") (ifseqformula "45")) + (rule "applyEq" (formula "42") (term "0,1,1") (ifseqformula "45")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "1")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "1,2,1,0,0,1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "9") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "applyEq" (formula "44") (term "1,0,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0,1,0,0,1,0") (ifseqformula "45")) + (rule "polySimp_addAssoc" (formula "10") (term "2,1,0,0,1,0,0,1,0")) + (rule "applyEq" (formula "48") (term "0,0,2,2,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "4,1,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "45")) + (rule "applyEq" (formula "10") (term "0,4,0,1,0") (ifseqformula "45")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "22")) + (rule "times_zero_1" (formula "35") (term "0,0")) + (rule "add_zero_left" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "elimGcdLeq_antec" (formula "35") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(7(7(1(2(4(3(1(#))))))))))")) + (rule "neg_literal" (formula "35") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "40")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "elimGcdGeq_antec" (formula "23") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(neglit(5(5(4(5(3(4(8(6(2(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "6")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "1,1,0")) + (rule "times_zero_1" (formula "47") (term "1,0")) + (rule "add_zero_right" (formula "47") (term "0")) + (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcd=Z(6(1(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "47") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "leq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_literals" (formula "47") (term "0,0")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "47")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "49")) + (rule "times_zero_1" (formula "53") (term "0,0")) + (rule "add_zero_left" (formula "53") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "49")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "41")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "7")) + (rule "times_zero_1" (formula "39") (term "0,0")) + (rule "add_zero_left" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "39") (ifseqformula "48")) + (rule "greater_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "closeFalse" (formula "39")) + ) + ) + ) + ) + (branch "Null Reference (_indices = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_indices != null, but j Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "81"))) + (rule "false_right" (formula "82")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "jmod_axiom" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1")) + (rule "polySimp_rightDist" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1")) + (rule "polySimp_elimOne" (formula "36") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "49")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "49") (ifseqformula "50")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "39")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "81")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "81") (term "1")) + (rule "blockBreak" (formula "81") (term "1")) + (rule "lsBreak" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "methodCallReturn" (formula "81") (term "1")) + (rule "assignment" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "methodCallEmpty" (formula "81") (term "1")) + (rule "tryEmpty" (formula "81") (term "1")) + (rule "emptyModality" (formula "81") (term "1")) + (rule "andRight" (formula "81")) + (branch "Case 1" + (rule "impRight" (formula "81")) + (rule "andRight" (formula "82")) + (branch "Case 1" + (rule "andRight" (formula "82")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "82")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "82")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "82")) + (rule "closeTrue" (formula "82")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "81")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (_indices = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "80"))) + (rule "closeFalse" (formula "1")) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..520f58e --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,5134 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Sep 05 21:28:36 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Sep 05 21:28:36 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "51524") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "15")) +(rule "translateJavaSubInt" (formula "11") (term "1,1,0,0,0")) +(rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0")) +(rule "translateJavaSubInt" (formula "14") (term "1")) +(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "3")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "11") (term "1,1,0,0,0")) +(rule "mul_literals" (formula "11") (term "1,1,1,0,0,0")) +(rule "polySimp_elimSub" (formula "14") (term "1")) +(rule "mul_literals" (formula "14") (term "1,1")) +(rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0")) +(rule "polySimp_addComm0" (formula "11") (term "1,1,0,0,0")) +(rule "polySimp_addComm0" (formula "14") (term "1")) +(rule "disjointDefinition" (formula "12")) + (builtin "One Step Simplification" (formula "12")) +(rule "notLeft" (formula "12")) +(rule "eqSymm" (formula "18")) +(rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "inEqSimp_commuteLeq" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "assignment" (formula "21") (term "1")) + (builtin "One Step Simplification" (formula "21")) +(rule "applyEq" (formula "10") (term "0") (ifseqformula "16")) +(rule "inEqSimp_commuteGeq" (formula "10")) +(rule "commute_and" (formula "11") (term "0,0,0")) +(rule "commute_and" (formula "11") (term "1,0,0")) +(rule "shift_paren_and" (formula "11") (term "0,0")) +(rule "commute_and_2" (formula "11") (term "0,0,0")) +(rule "methodBodyExpand" (formula "21") (term "1") (newnames "heapBefore_from_sorted_samples,savedHeapBefore_from_sorted_samples,_num_bucketsBefore_from_sorted_samples,_num_splittersBefore_from_sorted_samples,_splittersBefore_from_sorted_samples,_treeBefore_from_sorted_samples")) + (builtin "One Step Simplification" (formula "21")) +(rule "variableDeclarationAssign" (formula "21") (term "1")) +(rule "variableDeclaration" (formula "21") (term "1") (newnames "use_equal_buckets")) +(rule "compound_greater_equal_than_comparison_1" (formula "21") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "21") (term "1")) +(rule "variableDeclaration" (formula "21") (term "1") (newnames "x")) +(rule "remove_parentheses_right" (formula "21") (term "1")) +(rule "compound_subtraction_1" (formula "21") (term "1") (inst "#v=x_1")) +(rule "variableDeclarationAssign" (formula "21") (term "1")) +(rule "variableDeclaration" (formula "21") (term "1") (newnames "x_1")) +(rule "assignmentSubtractionInt" (formula "21") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21")) + (rule "replace_int_MIN" (formula "21") (term "0,1")) + (rule "replace_int_MAX" (formula "21") (term "1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0,1")) + (rule "add_literals" (formula "21") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0")) + (rule "inEqSimp_subsumption0" (formula "21") (term "0") (ifseqformula "6")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_geqRight" (formula "21")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "11")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "1")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "closeFalse" (formula "11")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,1,0")) + (rule "assignmentSubtractionInt" (formula "21") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21")) + (rule "replace_int_MAX" (formula "21") (term "1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,1")) + (rule "polySimp_elimSub" (formula "21") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,1")) + (rule "add_literals" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "20") (term "1") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1")) + (rule "add_literals" (formula "20") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "qeq_literals" (formula "20") (term "0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_geqRight" (formula "20")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "9")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,1,0")) + (rule "greater_equal_than_comparison_simple" (formula "21") (term "1")) + (builtin "One Step Simplification" (formula "21")) + (rule "variableDeclarationAssign" (formula "21") (term "1")) + (rule "variableDeclaration" (formula "21") (term "1") (newnames "log_buckets")) + (rule "compound_addition_1" (formula "21") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "21") (term "1")) + (rule "variableDeclaration" (formula "21") (term "1") (newnames "x_2")) + (builtin "Use Operation Contract" (formula "21") (newnames "heapBefore_log2,result_21,exc_25") (contract "de.wiesler.Constants[de.wiesler.Constants::log2(int)].JML normal_behavior operation contract.0")) + (branch "Post (log2)" + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "0,1,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,0,1,0")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "assignmentAdditionInt" (formula "25") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25")) + (rule "replace_int_MIN" (formula "25") (term "0,1")) + (rule "replace_int_MAX" (formula "25") (term "1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "add_literals" (formula "25") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "13")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "23") (term "1") (ifseqformula "17")) + (rule "leq_literals" (formula "23") (term "0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_leqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "1")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "15")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "equal_literals" (formula "15") (term "0,0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "closeFalse" (formula "15")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (builtin "Block Contract (Internal)" (formula "25") (newnames "result_22,exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "8")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "22")) + (rule "eqSymm" (formula "25") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "25") (term "1")) + (rule "variableDeclaration" (formula "25") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "emptyStatement" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "emptyStatement" (formula "25") (term "1")) + (rule "tryEmpty" (formula "25") (term "1")) + (rule "blockEmptyLabel" (formula "25") (term "1")) + (rule "blockEmpty" (formula "25") (term "1")) + (rule "methodCallEmpty" (formula "25") (term "1")) + (rule "emptyModality" (formula "25") (term "1")) + (rule "andRight" (formula "25")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "25")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "25")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "25")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "22")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "translateJavaAddInt" (formula "29") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "0")) + (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "elim_double_block_2" (formula "28") (term "1")) + (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "qeq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthIsAShort" (formula "16") (term "0")) + (rule "expand_inShort" (formula "16")) + (rule "replace_short_MIN" (formula "16") (term "0,1")) + (rule "replace_short_MAX" (formula "16") (term "1,0")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "leq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "ifSplit" (formula "28")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "28") (term "1")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "actual_num_buckets")) + (rule "assignmentShiftLeftInt" (formula "28") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "0") (userinteraction)) + (rule "eqTermCut" (formula "28") (term "0,1,0") (inst "s=mod(add(Z(1(#)), + result_21<>), + Z(2(3(#))))") (userinteraction)) + (branch "Assume 1 + result_21 = (1 + result_21) % 32" + (rule "applyEqReverse" (formula "29") (term "1,0") (ifseqformula "1") (userinteraction)) + (rule "expand_inInt" (formula "29") (userinteraction)) + (rule "andRight" (formula "29") (userinteraction)) + (branch "Case 1" + (rule "powSplitFactor" (formula "29") (term "0") (userinteraction)) + (rule "impLeft" (formula "1") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "30") (term "1")) + (rule "greater_literals" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "1")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "mod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "17")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "1")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "3")) + (rule "add_zero_left" (formula "3") (term "0,0,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "add_zero_left" (formula "3") (term "0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "qeq_literals" (formula "3") (term "1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "div_literals" (formula "14") (term "0,1,1,0,0")) + (rule "times_zero_2" (formula "14") (term "1,1,0,0")) + (rule "add_zero_right" (formula "14") (term "1,0,0")) + (rule "shiftleft_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "add_literals" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "div_literals" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,1")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "0")) + (rule "translateJavaAddInt" (formula "20") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "20") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "17")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "22") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "22") (userinteraction)) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaShiftLeftInt" (formula "24") (term "0") (userinteraction)) + (rule "javaShiftLeftIntDef" (formula "24") (term "0") (userinteraction)) + (rule "eqTermCut" (formula "24") (term "0,1,0,0") (inst "s=mod(result_21, Z(2(3(#))))") (userinteraction)) + (branch "Assume result_21 = result_21 % 32" + (rule "shiftLeftDef" (formula "25") (term "0,0") (userinteraction)) + (rule "ifthenelse_split" (formula "25") (term "0,0") (userinteraction)) + (branch "result_21 % 32 < 0 TRUE" + (rule "replace_int_MAX" (formula "35") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "27") (term "1,1")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "0")) + (rule "eqSymm" (formula "24")) + (rule "eqSymm" (formula "2")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,1,1")) + (rule "polySimp_elimNeg" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1")) + (rule "shiftRightPositiveShiftDef" (formula "26") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "35")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "25")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "25")) + (rule "mod_axiom" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0")) + (rule "add_zero_left" (formula "25") (term "0")) + (rule "mod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "26")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + (branch "result_21 % 32 < 0 FALSE" + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "0,0") (userinteraction)) + (rule "polySimp_elimOneLeft0" (formula "25") (term "0,0") (userinteraction)) + (rule "applyEqReverse" (formula "25") (term "1,0,0") (ifseqformula "24") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), result_21), pow(Z(2(#)), Z(0(3(#)))))<>") (userinteraction)) + (branch "CUT: pow(2, result_21) <= pow(2, 30) TRUE" + (rule "replace_int_MAX" (formula "36") (term "1")) + (rule "pow_literals" (formula "1") (term "1")) + (rule "eqSymm" (formula "25")) + (rule "eqSymm" (formula "3")) + (rule "translateJavaShiftLeftInt" (formula "27") (term "1,1")) + (rule "translateJavaShiftLeftInt" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1,1")) + (rule "mul_literals" (formula "2") (term "1,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,1,0,0")) + (rule "add_zero_left" (formula "2") (term "1,0,0")) + (rule "eqSymm" (formula "2")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "3")) + (rule "mod_axiom" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0")) + (rule "add_zero_left" (formula "26") (term "0")) + (rule "mod_axiom" (formula "4") (term "0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_homoEq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "25")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "31")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "13")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "13")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "elimGcdEq" (formula "4") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "4")) + (rule "add_zero_left" (formula "4") (term "0,0,1")) + (rule "add_zero_left" (formula "4") (term "0,1,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "times_zero_1" (formula "4") (term "0,1,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "1,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "elimGcdEq" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(result_21, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "1,0,0")) + (rule "add_zero_left" (formula "19") (term "0,1,0")) + (rule "times_zero_1" (formula "19") (term "0,0,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_left" (formula "19") (term "0,0,0")) + (rule "qeq_literals" (formula "19") (term "1,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=pow(Z(2(#)), result_21)") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "javaShiftLeftIntConstantDef" (formula "15") (term "0")) + (rule "div_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_2" (formula "15") (term "1,1,0,0")) + (rule "add_zero_right" (formula "15") (term "1,0,0")) + (rule "shiftleft_literals" (formula "15") (term "0,0")) + (rule "javaShiftLeftIntDef" (formula "21") (term "0")) + (rule "mod_axiom" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "applyEq" (formula "21") (term "0,1,1,0,0") (ifseqformula "4")) + (rule "times_zero_2" (formula "21") (term "1,1,0,0")) + (rule "add_zero_right" (formula "21") (term "1,0,0")) + (rule "shiftLeftDef" (formula "21") (term "0,0")) + (rule "polySimp_elimNeg" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "21") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "21") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "21") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0")) + (rule "applyEq" (formula "21") (term "2,0,0") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0,0,0") (ifseqformula "18")) + (rule "qeq_literals" (formula "21") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "2") (term "0,1") (ifseqformula "1")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "div_literals" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "expand_moduloInteger" (formula "18") (term "0")) + (rule "replace_int_MIN" (formula "18") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "18") (term "1,1,0")) + (rule "add_literals" (formula "18") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "mod_axiom" (formula "18") (term "0,1,0")) + (rule "div_literals" (formula "18") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0")) + (rule "times_zero_2" (formula "18") (term "1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "17")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + (branch "CUT: pow(2, result_21) <= pow(2, 30) FALSE" + (rule "powMonoConcrete" (formula "31") (userinteraction)) + (rule "replace_int_MAX" (formula "36") (term "1")) + (rule "greater_literals" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "22"))) + (rule "translateJavaShiftLeftInt" (formula "17") (term "0")) + (rule "eqSymm" (formula "24")) + (rule "eqSymm" (formula "2")) + (rule "translateJavaShiftLeftInt" (formula "26") (term "1,1")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "4")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "27")) + (rule "mod_axiom" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0")) + (rule "add_zero_left" (formula "26") (term "0")) + (rule "mod_axiom" (formula "4") (term "0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_homoEq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradEq3" (formula "28") (term "0,0") (ifseqformula "32")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "32")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "16")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "17")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "29")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "12")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "24") (ifseqformula "1")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "closeFalse" (formula "24")) + ) + ) + ) + (branch "Assume result_21 != result_21 % 32" + (rule "replace_int_MAX" (formula "34") (term "1")) + (rule "notLeft" (formula "24")) + (rule "translateJavaShiftLeftInt" (formula "25") (term "1,1")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "0")) + (rule "eqSymm" (formula "2")) + (rule "eqSymm" (formula "30")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_leqRight" (formula "34")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "mod_axiom" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "mod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "mod_axiom" (formula "31") (term "0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,0,0")) + (rule "times_zero_1" (formula "31") (term "0,0")) + (rule "add_zero_left" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradEq3" (formula "26") (term "0,0") (ifseqformula "30")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "23")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "27")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "elimGcdEq" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(result_21, Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "24")) + (rule "add_zero_left" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,1,0")) + (rule "add_literals" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "times_zero_1" (formula "24") (term "0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "3")) + (rule "add_zero_left" (formula "3") (term "0,0,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "times_zero_1" (formula "3") (term "0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "qeq_literals" (formula "3") (term "1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(4(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=pow(Z(2(#)), result_21)") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "div_literals" (formula "14") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "add_zero_right" (formula "14") (term "1,0,0")) + (rule "shiftleft_literals" (formula "14") (term "0,0")) + (rule "shiftLeftDef" (formula "18") (term "0,0")) + (rule "polySimp_elimNeg" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "18") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "18") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "18") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "0")) + (rule "mod_axiom" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,0,0") (ifseqformula "3")) + (rule "times_zero_2" (formula "19") (term "1,1,0,0")) + (rule "add_zero_right" (formula "19") (term "1,0,0")) + (rule "shiftLeftDef" (formula "19") (term "0,0")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "applyEq" (formula "19") (term "2,0,0") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0,0") (ifseqformula "17")) + (rule "qeq_literals" (formula "19") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "0,1,0")) + (rule "div_literals" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "expand_moduloInteger" (formula "17") (term "0")) + (rule "replace_int_MIN" (formula "17") (term "0,0")) + (rule "replace_int_RANGE" (formula "17") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "expand_moduloInteger" (formula "18") (term "0")) + (rule "replace_int_RANGE" (formula "18") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "18") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "mod_axiom" (formula "18") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0")) + (rule "mul_literals" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_rightDist" (formula "18") (term "0,1")) + (rule "mul_literals" (formula "18") (term "0,0,1")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "cut_direct" (formula "21") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "17")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "arrayLengthNotNegative" (formula "15") (term "0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "16")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or" (formula "9") (term "0,0,0")) + (rule "div_axiom" (formula "23") (term "0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "1") (term "0,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "equal_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,1,1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0")) + (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mod_axiom" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_strengthen1" (formula "19") (ifseqformula "27")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "19")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "false_right" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "20")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "21")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "17")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "arrayLengthNotNegative" (formula "15") (term "0")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "16")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "commute_or" (formula "9") (term "0,0,0")) + (rule "div_axiom" (formula "24") (term "0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,1,1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "20") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,2,1,0,0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "20") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mod_axiom" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_strengthen1" (formula "19") (ifseqformula "28")) + (rule "add_zero_right" (formula "19") (term "1")) + (rule "inEqSimp_contradEq7" (formula "28") (ifseqformula "19")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "20")) + (rule "mul_literals" (formula "2") (term "1,1,0")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch "Case 2" + (rule "powPositive" (formula "29") (term "1") (userinteraction)) + (rule "replace_int_MIN" (formula "30") (term "0")) + (rule "greater_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "0")) + (rule "eqSymm" (formula "2")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "mod_axiom" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "16")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "12")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "elimGcdEq" (formula "3") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "3")) + (rule "add_zero_left" (formula "3") (term "0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,1,0")) + (rule "times_zero_1" (formula "3") (term "0,0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "times_zero_1" (formula "3") (term "0,0,0")) + (rule "qeq_literals" (formula "3") (term "1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "javaShiftLeftIntConstantDef" (formula "14") (term "0")) + (rule "div_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_2" (formula "14") (term "1,1,0,0")) + (rule "add_zero_right" (formula "14") (term "1,0,0")) + (rule "shiftleft_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "12")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "11")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "div_literals" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "14")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "translateJavaAddInt" (formula "20") (term "1,1,1")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1,1")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "20") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "16")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Assume 1 + result_21 != (1 + result_21) % 32" + (rule "expand_inInt" (formula "29")) + (rule "replace_int_MAX" (formula "29") (term "1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1")) + (rule "notLeft" (formula "1")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "0")) + (rule "eqSymm" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "29") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0")) + (rule "mod_axiom" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0")) + (rule "add_zero_left" (formula "25") (term "0")) + (rule "mod_axiom" (formula "29") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "24")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "9")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "elimGcdEq" (formula "20") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(1(#)), result_21), Z(2(3(#))))") (inst "elimGcd=Z(2(3(#)))")) + (builtin "One Step Simplification" (formula "20")) + (rule "add_zero_left" (formula "20") (term "0,0,1")) + (rule "add_zero_left" (formula "20") (term "0,1,0")) + (rule "add_literals" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "0,0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "times_zero_1" (formula "20") (term "0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0")) + (rule "qeq_literals" (formula "20") (term "1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "javaShiftLeftIntConstantDef" (formula "11") (term "0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "div_literals" (formula "11") (term "0,1,1,0,0")) + (rule "times_zero_2" (formula "11") (term "1,1,0,0")) + (rule "add_zero_right" (formula "11") (term "1,0,0")) + (rule "shiftleft_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "expand_moduloInteger" (formula "11") (term "0")) + (rule "replace_int_MIN" (formula "11") (term "0,0")) + (rule "replace_int_RANGE" (formula "11") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "mod_axiom" (formula "11") (term "0,1,0")) + (rule "div_literals" (formula "11") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "times_zero_2" (formula "11") (term "1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "1,1")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "0")) + (rule "translateJavaAddInt" (formula "17") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "17") (term "0,0") (ifseqformula "21")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "21")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0")) + (rule "mod_axiom" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0")) + (rule "mod_axiom" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "14") (term "0,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "15") (term "0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,0,0")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "commute_and" (formula "24")) + (rule "commute_or" (formula "6") (term "0,0,0")) + (rule "commute_or_2" (formula "6") (term "0,0")) + (rule "div_axiom" (formula "20") (term "0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,1,1,1")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1")) + (rule "add_literals" (formula "3") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "18") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,1,0,0")) + (rule "applyEq" (formula "18") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "27") (term "0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "27") (term "1,0,0")) + (rule "applyEq" (formula "18") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "18") (term "1,2,1,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "27") (term "0,1,1,0,1") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "27") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "18") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "mod_axiom" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0")) + (rule "mul_literals" (formula "18") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "polySimp_rightDist" (formula "18") (term "0,1")) + (rule "mul_literals" (formula "18") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "3")) + (rule "times_zero_1" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_strengthen1" (formula "16") (ifseqformula "24")) + (rule "add_zero_right" (formula "16") (term "1")) + (rule "inEqSimp_contradEq7" (formula "24") (ifseqformula "16")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "17")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "28")) + (builtin "Block Contract (Internal)" (formula "28") (newnames "result_0,exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "8")) (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "25")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "0")) + (rule "eqSymm" (formula "28") (term "0,0,1,0,1")) + (rule "translateJavaShiftLeftInt" (formula "28") (term "0,1,0,0")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (rule "javaShiftLeftIntConstantDef" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "div_literals" (formula "15") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "add_zero_right" (formula "15") (term "1,0,0")) + (rule "shiftleft_literals" (formula "15") (term "0,0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,1,0")) + (rule "tryEmpty" (formula "28") (term "1")) + (rule "blockEmptyLabel" (formula "28") (term "1")) + (rule "blockEmpty" (formula "28") (term "1")) + (rule "methodCallEmpty" (formula "28") (term "1")) + (rule "emptyModality" (formula "28") (term "1")) + (rule "andRight" (formula "28")) + (branch + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + (branch + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "28")) + (branch + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "28")) + ) + (branch + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "28")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "26")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "33") (term "0,1,0")) + (rule "translateJavaShiftLeftInt" (formula "29") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "28") (term "0")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "16")) + (rule "inEqSimp_commuteGeq" (formula "27")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0")) + (rule "javaShiftLeftIntDef" (formula "32") (term "0,1,0")) + (rule "javaShiftLeftIntDef" (formula "28") (term "1")) + (rule "javaShiftLeftIntDef" (formula "27") (term "0")) + (rule "shiftLeftDef" (formula "15") (term "0,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,0")) + (rule "shiftLeftDef" (formula "32") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "32") (term "1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "32") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "32") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "32") (term "1,0,0,1,0")) + (rule "shiftLeftDef" (formula "28") (term "0,1")) + (rule "polySimp_elimNeg" (formula "28") (term "1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "28") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "28") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "28") (term "1,0,1")) + (rule "shiftLeftDef" (formula "27") (term "0,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0")) + (rule "expand_moduloInteger" (formula "15") (term "0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,0")) + (rule "expand_moduloInteger" (formula "32") (term "0,1,0")) + (rule "replace_int_HALFRANGE" (formula "32") (term "0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "32") (term "1,1,0,1,0")) + (rule "expand_moduloInteger" (formula "28") (term "1")) + (rule "replace_int_HALFRANGE" (formula "28") (term "0,0,1,1")) + (rule "replace_int_RANGE" (formula "28") (term "1,1,1")) + (rule "replace_int_MIN" (formula "28") (term "0,1")) + (rule "expand_moduloInteger" (formula "27") (term "0")) + (rule "replace_int_MIN" (formula "27") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "27") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "27") (term "1,1,0")) + (rule "elim_double_block_2" (formula "32") (term "1")) + (rule "ifUnfold" (formula "32") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "replace_known_left" (formula "32") (term "0,0,1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "32")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "qeq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "arrayLengthIsAShort" (formula "16") (term "0")) + (rule "expand_inShort" (formula "16")) + (rule "replace_short_MIN" (formula "16") (term "0,1")) + (rule "replace_short_MAX" (formula "16") (term "1,0")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "qeq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "ifSplit" (formula "32")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "for_to_while" (formula "32") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "i")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "elim_double_block_3" (formula "32") (term "1")) + (rule "loopScopeInvDia" (formula "32") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "32")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0,0,0,0")) + (rule "impRight" (formula "33")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "40") (term "2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "40") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0,0")) + (rule "translateJavaSubInt" (formula "4") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "40") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "4") (term "0,2,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "2,1,0,1,0,1,0")) + (rule "add_literals" (formula "40") (term "0,2,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "2,1,0,0")) + (rule "add_literals" (formula "7") (term "0,2,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "4") (term "0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "3") (term "0,2,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "variableDeclaration" (formula "40") (term "1") (newnames "x_5")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "24")) + (rule "inEqSimp_commuteGeq" (formula "6")) + (rule "pullOutSelect" (formula "4") (term "1,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "40")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_and" (formula "5") (term "1,0,0")) + (rule "commute_and" (formula "5") (term "0,0,0")) + (rule "commute_and_2" (formula "5") (term "0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "shift_paren_and" (formula "5") (term "0,0,0")) + (rule "ifElseUnfold" (formula "41") (term "1") (inst "#boolv=x_6")) + (rule "variableDeclaration" (formula "41") (term "1") (newnames "x_6")) + (rule "less_than_comparison_simple" (formula "41") (term "1")) + (builtin "One Step Simplification" (formula "41")) + (rule "ifElseSplit" (formula "41")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access3" (formula "42") (term "1") (inst "#v1=x_7") (inst "#v2=x_6") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_8")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_7")) + (rule "eval_order_array_access5" (formula "42") (term "1") (inst "#v1=x_9") (inst "#ar1=x_arr_1")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_9")) + (rule "assignmentSubtractionInt" (formula "42") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42")) + (rule "replace_int_MAX" (formula "42") (term "1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1")) + (rule "polySimp_elimSub" (formula "42") (term "0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1")) + (rule "mul_literals" (formula "42") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "41") (term "0,1")) + (rule "add_literals" (formula "41") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "24") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "24")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "40") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_geqRight" (formula "40")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "18")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "42")) + (rule "translateJavaSubInt" (formula "42") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,0")) + (rule "assignment_array2" (formula "42")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "42")) + (rule "replaceKnownSelect_taclet1121121011_0" (formula "42") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "42")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "42")) + (rule "blockEmpty" (formula "42") (term "1")) + (rule "preincrement" (formula "42") (term "1")) + (rule "compound_int_cast_expression" (formula "42") (term "1") (inst "#v=x_6")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "x_10")) + (rule "remove_parentheses_right" (formula "42") (term "1")) + (rule "assignmentAdditionInt" (formula "42") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42")) + (rule "replace_int_MAX" (formula "42") (term "1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1")) + (rule "polySimp_addComm0" (formula "42") (term "1,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "38")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "41") (term "0,1")) + (rule "add_literals" (formula "41") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "24") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0")) + (rule "div_literals" (formula "24") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "39") (term "0") (ifseqformula "7")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_geqRight" (formula "39")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "20")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "42")) + (rule "translateJavaAddInt" (formula "42") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "42") (term "1")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "blockEmpty" (formula "42") (term "1")) + (rule "lsContinue" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "0,0,0")) + (rule "precOfInt" (formula "42")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "38")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,1,1")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,0,1")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,1,0,1,0,1")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0,0,1")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,1")) + (rule "add_literals" (formula "42") (term "1,1,0,1")) + (rule "times_zero_1" (formula "42") (term "1,0,1")) + (rule "add_zero_right" (formula "42") (term "0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1")) + (rule "add_literals" (formula "42") (term "0,0,0,1")) + (rule "add_zero_left" (formula "42") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "42") (term "0,1")) + (rule "add_literals" (formula "42") (term "1,0,1")) + (rule "times_zero_1" (formula "42") (term "0,1")) + (rule "leq_literals" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "mod_axiom" (formula "25") (term "1,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,0,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "25") (term "1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "0,1,0")) + (rule "div_literals" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "34")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "24")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "23")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_8 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42"))) + (builtin "One Step Simplification" (formula "43")) + (rule "false_right" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,2,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "39") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "39")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,1,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "25") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "25") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "add_literals" (formula "25") (term "0,0,1,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "26")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0")) + (rule "mod_axiom" (formula "25") (term "0,1,0")) + (rule "div_literals" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "22")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "21")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "31")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "20")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "6")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "6")) + (rule "applyEqRigid" (formula "4") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "add_literals" (formula "3") (term "1")) + (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "6") (term "3,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0,0,0") (ifseqformula "1")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "2")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_9 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42"))) + (rule "false_right" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "39")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,2,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,1,0,0,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "add_zero_left" (formula "1") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,1,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "25") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "25") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "25") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "add_literals" (formula "25") (term "0,0,1,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "mod_axiom" (formula "25") (term "0,1,0")) + (rule "div_literals" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "mod_axiom" (formula "9") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "6") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "38") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "6") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "9") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "38") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "19")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "32")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "19")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "1")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "14") (ifseqformula "1")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "closeFalse" (formula "14")) + ) + ) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "42") (term "1")) + (rule "blockBreak" (formula "42") (term "1")) + (rule "lsBreak" (formula "42") (term "1")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "classifier")) + (builtin "Use Operation Contract" (formula "42") (newnames "heapBefore_Classifier,self,exc_1,heapAfter_Classifier,anon_heap_Classifier") (contract "de.wiesler.Classifier[de.wiesler.Classifier::Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0")) + (branch "Post (Classifier)" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "44")) + (rule "andLeft" (formula "39")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "41")) + (rule "orRight" (formula "50")) + (rule "translateJavaShiftLeftInt" (formula "47") (term "1,1,1")) + (rule "translateJavaShiftLeftInt" (formula "47") (term "2,1")) + (rule "eqSymm" (formula "46")) + (rule "translateJavaMulInt" (formula "47") (term "1,1")) + (rule "eqSymm" (formula "47")) + (rule "replace_known_right" (formula "41") (term "1,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "50"))) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "assignment" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (builtin "Block Contract (Internal)" (formula "57") (newnames "result_1,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "17"))) + (builtin "One Step Simplification" (formula "58")) + (rule "eqSymm" (formula "58") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "58") (term "1")) + (rule "variableDeclaration" (formula "58") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "emptyStatement" (formula "58") (term "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "emptyStatement" (formula "58") (term "1")) + (rule "javaShiftLeftIntDef" (formula "47") (term "2,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "0,1,0")) + (rule "shiftLeftDef" (formula "47") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,2,0")) + (rule "shiftLeftDef" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0,1,0")) + (rule "expand_moduloInteger" (formula "47") (term "2,0")) + (rule "replace_int_MIN" (formula "47") (term "0,2,0")) + (rule "replace_int_RANGE" (formula "47") (term "1,1,2,0")) + (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,2,0")) + (rule "expand_moduloInteger" (formula "47") (term "0,1,0")) + (rule "replace_int_MIN" (formula "47") (term "0,0,1,0")) + (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,0,1,0")) + (rule "replace_int_RANGE" (formula "47") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0")) + (rule "tryEmpty" (formula "58") (term "1")) + (rule "blockEmptyLabel" (formula "58") (term "1")) + (rule "blockEmpty" (formula "58") (term "1")) + (rule "methodCallEmpty" (formula "58") (term "1")) + (rule "emptyModality" (formula "58") (term "1")) + (rule "andRight" (formula "58")) + (branch + (builtin "One Step Simplification" (formula "58")) + (rule "closeTrue" (formula "58")) + ) + (branch + (builtin "One Step Simplification" (formula "58")) + (rule "closeTrue" (formula "58")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "57")) + (branch + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "57")) + ) + (branch + (builtin "One Step Simplification" (formula "57")) + (rule "wellFormedAnonEQ" (formula "57") (ifseqformula "39")) + (rule "wellFormedAnon" (formula "57") (term "0")) + (rule "replace_known_left" (formula "57") (term "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "10")) (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "57")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "58")) + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,1,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "javaShiftLeftIntDef" (formula "47") (term "2,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "0,1,0")) + (rule "shiftLeftDef" (formula "47") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,2,0")) + (rule "shiftLeftDef" (formula "47") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,0,1,0")) + (rule "expand_moduloInteger" (formula "47") (term "2,0")) + (rule "replace_int_MIN" (formula "47") (term "0,2,0")) + (rule "replace_int_RANGE" (formula "47") (term "1,1,2,0")) + (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,2,0")) + (rule "expand_moduloInteger" (formula "47") (term "0,1,0")) + (rule "replace_int_MIN" (formula "47") (term "0,0,1,0")) + (rule "replace_int_HALFRANGE" (formula "47") (term "0,0,1,0,1,0")) + (rule "replace_int_RANGE" (formula "47") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0")) + (rule "commute_or_2" (formula "51") (term "1")) + (rule "shift_paren_or" (formula "51")) + (rule "shift_paren_or" (formula "51") (term "0")) + (rule "elim_double_block_2" (formula "60") (term "1")) + (rule "ifUnfold" (formula "60") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "replace_known_left" (formula "60") (term "0,0,1,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "60")) + (rule "ifSplit" (formula "60")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "methodCallReturn" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "methodCallEmpty" (formula "60") (term "1")) + (rule "tryEmpty" (formula "60") (term "1")) + (rule "emptyModality" (formula "60") (term "1")) + (rule "andRight" (formula "60")) + (branch + (rule "impRight" (formula "60")) + (rule "andRight" (formula "61")) + (branch + (rule "andRight" (formula "61")) + (branch + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "50"))) + (rule "closeTrue" (formula "61")) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "56"))) + (rule "closeTrue" (formula "61")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "closeTrue" (formula "61")) + ) + ) + (branch + (rule "impRight" (formula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Exceptional Post (Classifier)" + (builtin "One Step Simplification" (formula "44")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "40")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "40")) + (rule "close" (formula "45") (ifseqformula "44")) + ) + (branch "Pre (Classifier)" + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "41")) (ifInst "" (formula "40")) (ifInst "" (formula "41")) (ifInst "" (formula "11")) (ifInst "" (formula "40")) (ifInst "" (formula "12"))) + (rule "wellFormedAnon" (formula "42") (term "0")) + (rule "expand_inInt" (formula "42") (term "1")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1")) + (rule "replace_known_left" (formula "42") (term "1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "10"))) + (rule "inEqSimp_ltRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "38") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,1,0,1,2,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,1,2,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "41") (term "0,1")) + (rule "add_literals" (formula "41") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "mod_axiom" (formula "24") (term "1,1,0,0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "24") (term "1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "0,1,0")) + (rule "div_literals" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0")) + (rule "times_zero_2" (formula "24") (term "1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "8") (term "1,2,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,2,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,1,0,1,2,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,1,0,1,2,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,1,1,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "4") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,1,1,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "4") (term "1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "8") (term "1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,1,2,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,1,0,1,2,1,0,0")) + (rule "mod_axiom" (formula "1") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "37") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,0,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,0,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,1,0,1,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,1,0,1,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "18")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "39") (term "1") (ifseqformula "26")) + (rule "leq_literals" (formula "39") (term "0,1")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_leqRight" (formula "39")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "30")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "1")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "27")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (log2)" + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "close" (formula "20") (ifseqformula "19")) + ) + (branch "Pre (log2)" + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "21")) + (rule "replace_int_MIN" (formula "21") (term "0,1")) + (rule "replace_int_MAX" (formula "21") (term "1,0")) + (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_leqRight" (formula "21")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "10")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "12")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..f9f5949 --- /dev/null +++ b/src/main/key-overflow/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__num_buckets()).JML normal_behavior operation contract.0.proof @@ -0,0 +1,98 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 21:25:12 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 21:25:12 CEST 2022 +contract=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:num_buckets()].JML normal_behavior operation contract.0 +name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:num_buckets()].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "13") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "2")) +(rule "assignment" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_num_buckets,savedHeapBefore_num_buckets")) + (builtin "One Step Simplification" (formula "8")) +(rule "returnUnfold" (formula "8") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x")) +(rule "assignment_read_attribute_this_final" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallReturn" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "tryEmpty" (formula "8") (term "1")) +(rule "emptyModality" (formula "8") (term "1")) +(rule "andRight" (formula "8")) +(branch "Case 1" + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "5"))) + (rule "closeTrue" (formula "8")) +) +(branch "Case 2" + (builtin "One Step Simplification" (formula "8")) + (rule "closeTrue" (formula "8")) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..f353930 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__partition((I,int,int,(I,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,9307 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:52:46 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:52:46 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "62593") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "7")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "19")) +(rule "translateJavaSubInt" (formula "9") (term "0,0")) +(rule "translateJavaAddInt" (formula "14") (term "1")) +(rule "add_literals" (formula "14") (term "1")) +(rule "translateJavaSubInt" (formula "16") (term "0")) +(rule "translateJavaSubInt" (formula "17") (term "0")) +(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "8")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "9") (term "0,0")) +(rule "polySimp_elimSub" (formula "16") (term "0")) +(rule "polySimp_elimSub" (formula "17") (term "0")) +(rule "polySimp_addComm0" (formula "9") (term "0,0")) +(rule "polySimp_addComm0" (formula "16") (term "0")) +(rule "polySimp_addComm0" (formula "17") (term "0")) +(rule "disjointDefinition" (formula "21")) +(rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19")) +(rule "notLeft" (formula "19")) +(rule "disjointDefinition" (formula "19")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "applyEq" (formula "15") (term "1,1,0,0,0") (ifseqformula "14")) +(rule "commute_and" (formula "15") (term "1,0,0")) +(rule "commute_and" (formula "15") (term "0,0,0")) +(rule "shift_paren_and" (formula "15") (term "0,0")) +(rule "commute_and_2" (formula "15") (term "0,0,0")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_partition,savedHeapBefore_partition")) + (builtin "One Step Simplification" (formula "25")) + (builtin "Block Contract (Internal)" (formula "25") (newnames "anonOut_heap,result_219,exc_259,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaSubInt" (formula "21") (term "0,0")) + (rule "polySimp_elimSub" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "variableDeclarationAssign" (formula "25") (term "1")) + (rule "variableDeclaration" (formula "25") (term "1") (newnames "exc_259_1")) + (rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "emptyStatement" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "emptyStatement" (formula "25") (term "1")) + (rule "tryEmpty" (formula "25") (term "1")) + (rule "blockEmptyLabel" (formula "25") (term "1")) + (rule "blockEmpty" (formula "25") (term "1")) + (rule "methodCallEmpty" (formula "25") (term "1")) + (rule "emptyModality" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) +) +(branch "Precondition" + (rule "andRight" (formula "25")) + (branch + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "0,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "close" (formula "25") (ifseqformula "9")) + ) + (branch + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "25")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "25")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "69"))) + (rule "true_left" (formula "24")) + (rule "shift_paren_or" (formula "23")) + (rule "ifUnfold" (formula "72") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "72") (term "1") (newnames "x")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "16")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthNotNegative" (formula "13") (term "0")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inequality_comparison_simple" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "replace_known_left" (formula "75") (term "0,0,1,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "75")) + (rule "ifSplit" (formula "75")) + (branch "if x true" + (builtin "One Step Simplification" (formula "76")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "76")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "75") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "75") (term "1")) + (rule "variableDeclarationGhost" (formula "75") (term "1") (newnames "oldValues")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationFinalAssign" (formula "75") (term "1")) + (rule "variableDeclarationFinal" (formula "75") (term "1") (newnames "sample")) + (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_sample,result_220,exc_260,heapAfter_sample,anon_heap_sample") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (sample)" + (builtin "One Step Simplification" (formula "77")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,0,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "34")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "orRight" (formula "37")) + (rule "translateJavaSubInt" (formula "28") (term "2,1,1,0")) + (rule "translateJavaSubInt" (formula "31") (term "2,0")) + (rule "translateJavaAddInt" (formula "32") (term "3,0")) + (rule "replace_known_right" (formula "29") (term "1,0,1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "39")) (ifInst "" (formula "37"))) + (rule "polySimp_elimSub" (formula "28") (term "2,1,1,0")) + (rule "mul_literals" (formula "28") (term "1,2,1,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "2,0")) + (rule "polySimp_addComm0" (formula "28") (term "2,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "2,0")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_samples")) + (rule "assignment_read_attribute_final" (formula "88")) + (branch "Normal Execution (sample != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_buckets")) + (rule "assignment_read_attribute_final" (formula "88")) + (branch "Normal Execution (sample != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "step")) + (rule "assignment_read_attribute_final" (formula "88")) + (branch "Normal Execution (sample != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "splitters")) + (rule "assignment_read_attribute_final" (formula "88")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationGhostAssign" (formula "88") (term "1")) + (rule "variableDeclarationGhost" (formula "88") (term "1") (newnames "before_copy_unique")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "num_splitters")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "88") (term "1")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_1")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_2")) + (rule "assignmentAdditionInt" (formula "88") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "88")) + (rule "expand_inInt" (formula "88")) + (rule "replace_int_MAX" (formula "88") (term "1,0")) + (rule "replace_int_MIN" (formula "88") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "1")) + (rule "mul_literals" (formula "88") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "88") (term "0,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,0")) + (rule "polySimp_elimOne" (formula "88") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1")) + (rule "polySimp_rightDist" (formula "88") (term "1,1")) + (rule "mul_literals" (formula "88") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "17")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "9")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "116"))) + (rule "true_left" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "114"))) + (rule "true_left" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "86"))) + (rule "true_left" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "80"))) + (rule "true_left" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "78"))) + (rule "true_left" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "76"))) + (rule "true_left" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "74"))) + (rule "true_left" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "72"))) + (rule "true_left" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "70"))) + (rule "true_left" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "68"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "66"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "63"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "63"))) + (rule "true_left" (formula "39")) + (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "38")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "38")) + (rule "distributeIntersection" (formula "20") (term "0")) + (rule "distributeIntersection" (formula "19") (term "0")) + (rule "distributeIntersection" (formula "20") (term "0,0")) + (rule "distributeIntersection" (formula "20") (term "1,0")) + (rule "unionEqualsEmpty" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "distributeIntersection" (formula "21") (term "0,0,0")) + (rule "distributeIntersection" (formula "21") (term "1,0,0")) + (rule "distributeIntersection" (formula "21") (term "0,1,0")) + (rule "distributeIntersection" (formula "21") (term "1,1,0")) + (rule "distributeIntersection" (formula "20") (term "0")) + (rule "distributeIntersection" (formula "19") (term "0")) + (rule "unionEqualsEmpty" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "unionEqualsEmpty" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "distributeIntersection" (formula "19") (term "0,0")) + (rule "distributeIntersection" (formula "19") (term "1,0")) + (rule "unionEqualsEmpty" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "distributeIntersection" (formula "21") (term "0")) + (rule "distributeIntersection" (formula "20") (term "0")) + (rule "unionEqualsEmpty" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "47")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "46")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "45")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "45")) + (rule "eqSymm" (formula "44")) + (rule "unionEqualsEmpty" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "43")) + (rule "unionEqualsEmpty" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "unionEqualsEmpty" (formula "19")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "unionEqualsEmpty" (formula "19")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "commuteUnion_2" (formula "36") (term "0,1")) + (rule "commuteUnion" (formula "36") (term "1,1,1")) + (rule "commuteUnion" (formula "23") (term "1,1,0,1,0")) + (rule "commuteUnion_2" (formula "23") (term "0,0,1,0")) + (rule "commuteUnion" (formula "36") (term "0,0,1")) + (rule "commuteUnion" (formula "23") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "36") (term "0,1")) + (rule "commuteUnion_2" (formula "23") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "36") (term "1")) + (rule "commuteUnion_2" (formula "23") (term "0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "28")) (ifInst "" (formula "29")) (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35"))) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "114"))) + (rule "true_left" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "112"))) + (rule "true_left" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "84"))) + (rule "true_left" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "78"))) + (rule "true_left" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "76"))) + (rule "true_left" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "74"))) + (rule "true_left" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "72"))) + (rule "true_left" (formula "25")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "70"))) + (rule "true_left" (formula "24")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "68"))) + (rule "true_left" (formula "23")) + (rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "66"))) + (rule "true_left" (formula "22")) + (rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "64"))) + (rule "true_left" (formula "21")) + (rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "61"))) + (rule "true_left" (formula "19")) + (rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "61"))) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "36")) + (rule "commuteUnion_2" (formula "36") (term "0,0")) + (rule "commuteUnion" (formula "36") (term "1,1,0")) + (rule "commuteUnion" (formula "36") (term "0,0,0")) + (rule "commuteUnion_2" (formula "36") (term "0,0")) + (rule "commuteUnion_2" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "translateJavaSubInt" (formula "33") (term "0")) + (rule "translateJavaMod" (formula "32") (term "0")) + (rule "translateJavaDivInt" (formula "27") (term "1")) + (rule "translateJavaMulInt" (formula "33") (term "0,0")) + (rule "polySimp_elimSub" (formula "33") (term "0")) + (rule "mul_literals" (formula "33") (term "1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "jmod_axiom" (formula "32") (term "0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "0,1")) + (rule "mul_literals" (formula "28") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "newSym_eq" (formula "32") (inst "newSymDef=mul(int::final(result_220, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "32") (term "1,1")) + (rule "add_zero_right" (formula "32") (term "1")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "32")) + (rule "eqSymm" (formula "33")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "33")) + (rule "polySimp_mulAssoc" (formula "34") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "33")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "33")) + (rule "elimGcdGeq_antec" (formula "30") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "28")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "27")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "0,0")) + (rule "expand_inInt" (formula "46") (term "1,0")) + (rule "expand_inInt" (formula "46") (term "1")) + (rule "replace_int_MAX" (formula "46") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "34")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "30")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "27")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_subsumption6" (formula "49") (ifseqformula "31")) + (rule "mul_literals" (formula "49") (term "1,1,0")) + (rule "greater_literals" (formula "49") (term "0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "elimGcdLeq_antec" (formula "48") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "leq_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "neg_literal" (formula "48") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "48") (term "0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "qeq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "36")) + (rule "expand_inInt" (formula "36") (term "1,0,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "46")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "45")) + (rule "notLeft" (formula "44")) + (rule "commute_and" (formula "107")) + (rule "commute_or" (formula "13") (term "0,0,0")) + (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "cut_direct" (formula "20") (term "0,0")) + (branch "CUT: result_219 = null TRUE" + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "arrayLengthNotNegative" (formula "43") (term "0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthIsAShort" (formula "43") (term "0")) + (rule "expand_inShort" (formula "43")) + (rule "replace_short_MAX" (formula "43") (term "1,0")) + (rule "replace_short_MIN" (formula "43") (term "0,1")) + (rule "andLeft" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "45")) + (rule "leq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthNotNegative" (formula "42") (term "0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "qeq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthIsAShort" (formula "42") (term "0")) + (rule "expand_inShort" (formula "42")) + (rule "replace_short_MAX" (formula "42") (term "1,0")) + (rule "replace_short_MIN" (formula "42") (term "0,1")) + (rule "andLeft" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "44")) + (rule "leq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "qeq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "41") (term "0")) + (rule "expand_inShort" (formula "41")) + (rule "replace_short_MAX" (formula "41") (term "1,0")) + (rule "replace_short_MIN" (formula "41") (term "0,1")) + (rule "andLeft" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "39") (term "0")) + (rule "expand_inShort" (formula "39")) + (rule "replace_short_MIN" (formula "39") (term "0,1")) + (rule "replace_short_MAX" (formula "39") (term "1,0")) + (rule "andLeft" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "leq_literals" (formula "39")) + (rule "closeFalse" (formula "39")) + ) + (branch "CUT: result_219 = null FALSE" + (builtin "One Step Simplification" (formula "20")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "arrayLengthNotNegative" (formula "43") (term "0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthIsAShort" (formula "43") (term "0")) + (rule "expand_inShort" (formula "43")) + (rule "replace_short_MIN" (formula "43") (term "0,1")) + (rule "replace_short_MAX" (formula "43") (term "1,0")) + (rule "andLeft" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "45")) + (rule "qeq_literals" (formula "44")) + (rule "true_left" (formula "44")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "leq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthNotNegative" (formula "42") (term "0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "qeq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthIsAShort" (formula "42") (term "0")) + (rule "expand_inShort" (formula "42")) + (rule "replace_short_MIN" (formula "42") (term "0,1")) + (rule "replace_short_MAX" (formula "42") (term "1,0")) + (rule "andLeft" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthIsAShort" (formula "41") (term "0")) + (rule "expand_inShort" (formula "41")) + (rule "replace_short_MAX" (formula "41") (term "1,0")) + (rule "replace_short_MIN" (formula "41") (term "0,1")) + (rule "andLeft" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "42")) + (rule "leq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "39") (term "0")) + (rule "expand_inShort" (formula "39")) + (rule "replace_short_MAX" (formula "39") (term "1,0")) + (rule "replace_short_MIN" (formula "39") (term "0,1")) + (rule "andLeft" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "39")) + (rule "closeFalse" (formula "39")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaAddInt" (formula "88") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_3")) + (rule "assignmentSubtractionInt" (formula "88") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "88")) + (rule "expand_inInt" (formula "88")) + (rule "replace_int_MAX" (formula "88") (term "1,0")) + (rule "replace_int_MIN" (formula "88") (term "0,1")) + (rule "polySimp_elimSub" (formula "88") (term "1,1")) + (rule "mul_literals" (formula "88") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "88") (term "0,0")) + (rule "mul_literals" (formula "88") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "88") (term "1,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "1")) + (rule "mul_literals" (formula "88") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "88") (term "0,1")) + (rule "add_literals" (formula "88") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1")) + (rule "mul_literals" (formula "88") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,0")) + (rule "polySimp_elimOne" (formula "88") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "33")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "122"))) + (rule "true_left" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "120"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "92"))) + (rule "true_left" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "86"))) + (rule "true_left" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "84"))) + (rule "true_left" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "82"))) + (rule "true_left" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "80"))) + (rule "true_left" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "78"))) + (rule "true_left" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "76"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "74"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "72"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "70"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "68"))) + (rule "true_left" (formula "38")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "24") (term "0,1,0") (ifseqformula "37")) + (rule "distributeIntersection" (formula "19") (term "0")) + (rule "distributeIntersection" (formula "18") (term "0")) + (rule "unionEqualsEmpty" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "distributeIntersection" (formula "18") (term "0,0")) + (rule "distributeIntersection" (formula "18") (term "1,0")) + (rule "distributeIntersection" (formula "20") (term "0")) + (rule "distributeIntersection" (formula "19") (term "0")) + (rule "distributeIntersection" (formula "18") (term "1,0,0")) + (rule "distributeIntersection" (formula "18") (term "0,0,0")) + (rule "distributeIntersection" (formula "18") (term "1,1,0")) + (rule "distributeIntersection" (formula "18") (term "0,1,0")) + (rule "distributeIntersection" (formula "20") (term "0,0")) + (rule "distributeIntersection" (formula "20") (term "1,0")) + (rule "distributeIntersection" (formula "19") (term "1,0")) + (rule "distributeIntersection" (formula "19") (term "0,0")) + (rule "unionEqualsEmpty" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "unionEqualsEmpty" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "unionEqualsEmpty" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "unionEqualsEmpty" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "unionEqualsEmpty" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "45")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "45")) + (rule "eqSymm" (formula "44")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "43")) + (rule "unionEqualsEmpty" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "22")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "unionEqualsEmpty" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "unionEqualsEmpty" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "commuteUnion" (formula "35") (term "0,0,1")) + (rule "commuteUnion" (formula "35") (term "1,1,1")) + (rule "commuteUnion_2" (formula "22") (term "0,0,1,0")) + (rule "commuteUnion" (formula "22") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "35") (term "0,1")) + (rule "commuteUnion" (formula "22") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "22") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "22") (term "0,1,0")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "32") (term "0,0")) + (rule "translateJavaMod" (formula "31") (term "0")) + (rule "translateJavaDivInt" (formula "26") (term "1")) + (rule "translateJavaSubInt" (formula "32") (term "0")) + (rule "polySimp_elimSub" (formula "32") (term "0")) + (rule "mul_literals" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "jmod_axiom" (formula "31") (term "0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption1" (formula "104") (term "1") (ifseqformula "29")) + (rule "leq_literals" (formula "104") (term "0,1")) + (builtin "One Step Simplification" (formula "104")) + (rule "inEqSimp_leqRight" (formula "104")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "1")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "newSym_eq" (formula "31") (inst "newSymDef=mul(int::final(result_220, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "31") (term "1,1")) + (rule "add_zero_right" (formula "31") (term "1")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "31")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "32")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "32")) + (rule "polySimp_mulAssoc" (formula "33") (term "0")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "32")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "32")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(5(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "27")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "29")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "35") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "35") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,0,0,0")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "0,0")) + (rule "expand_inInt" (formula "45") (term "1,0")) + (rule "expand_inInt" (formula "45") (term "1")) + (rule "replace_int_MIN" (formula "45") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "33")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "27")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "30")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_contradInEq5" (formula "47") (ifseqformula "1")) + (rule "mul_literals" (formula "47") (term "1,1,0")) + (rule "greater_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "qeq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "closeFalse" (formula "47")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaSubInt" (formula "88") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "88") (term "0,1,0")) + (rule "mul_literals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_4")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "var_5")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_copy_unique,result_221,exc_261,heapAfter_copy_unique,anon_heap_copy_unique") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0")) + (branch "Post (copy_unique)" + (builtin "One Step Simplification" (formula "90")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "38") (term "0,1,0,1")) + (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,1,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "38") (term "2,1,0")) + (rule "translateJavaSubInt" (formula "42") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "2,1,0")) + (rule "mul_literals" (formula "38") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "2,1,0")) + (rule "add_literals" (formula "38") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "assignment" (formula "97") (term "1")) + (builtin "One Step Simplification" (formula "97")) + (rule "blockEmpty" (formula "97") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "97") (term "1")) + (rule "variableDeclarationGhost" (formula "97") (term "1") (newnames "before_from_sorted_samples")) + (rule "assignment" (formula "97") (term "1")) + (builtin "One Step Simplification" (formula "97")) + (builtin "Block Contract (Internal)" (formula "97") (newnames "anonOut_heap_0,result_222,exc_262,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "translateJavaSubInt" (formula "46") (term "0,0")) + (rule "polySimp_elimSub" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "narrowSelectArrayType" (formula "98") (term "2,0,1,0") (ifseqformula "46") (ifseqformula "97")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "exc_262_1")) + (rule "assignment" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "emptyStatement" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "emptyStatement" (formula "98") (term "1")) + (rule "commute_and" (formula "41") (term "1,0,0")) + (rule "commute_and" (formula "41") (term "0,0,0")) + (rule "commute_and" (formula "42") (term "0,0,0")) + (rule "commute_and" (formula "42") (term "1,0,0")) + (rule "commute_and" (formula "41") (term "1,0,0,1,0")) + (rule "commute_and" (formula "41") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "41") (term "0,0,1,0")) + (rule "shift_paren_and" (formula "41") (term "0,0")) + (rule "commute_and_2" (formula "41") (term "0,0,0")) + (rule "shift_paren_and" (formula "42") (term "0,0")) + (rule "commute_and_2" (formula "42") (term "0,0,0")) + (rule "tryEmpty" (formula "98") (term "1")) + (rule "blockEmptyLabel" (formula "98") (term "1")) + (rule "blockEmpty" (formula "98") (term "1")) + (rule "methodCallEmpty" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "emptyModality" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "closeTrue" (formula "98")) + ) + (branch "Precondition" + (rule "andRight" (formula "97")) + (branch + (builtin "One Step Simplification" (formula "97")) + (rule "translateJavaSubInt" (formula "97") (term "0,0")) + (rule "polySimp_elimSub" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "close" (formula "97") (ifseqformula "9")) + ) + (branch + (builtin "One Step Simplification" (formula "97")) + (rule "wellFormedAnonEQ" (formula "97") (ifseqformula "38")) + (rule "wellFormedAnonEQ" (formula "97") (term "0") (ifseqformula "28")) + (rule "wellFormedAnon" (formula "97") (term "0,0")) + (rule "replace_known_left" (formula "97") (term "1,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "37"))) + (rule "closeTrue" (formula "97")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,0,1,0") (ifseqformula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,1,1,1,0") (ifseqformula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0,1,1,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "46") (term "0,0,1,0,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "eqSymm" (formula "50")) + (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "commute_or_2" (formula "48") (term "1")) + (rule "shift_paren_or" (formula "48")) + (rule "commute_or_2" (formula "48") (term "1,0")) + (rule "shift_paren_or" (formula "48") (term "0")) + (rule "shift_paren_or" (formula "48") (term "0,0")) + (rule "commute_and" (formula "41") (term "1,0,0")) + (rule "commute_and" (formula "41") (term "0,0,0")) + (rule "commute_and" (formula "42") (term "0,0,0")) + (rule "commute_and" (formula "42") (term "1,0,0")) + (rule "shift_paren_or" (formula "48") (term "0,0,0")) + (rule "commute_or_2" (formula "48")) + (rule "commute_and" (formula "41") (term "1,0,0,1,0")) + (rule "commute_and" (formula "41") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "41") (term "0,0,1,0")) + (rule "shift_paren_and" (formula "41") (term "0,0")) + (rule "commute_and_2" (formula "41") (term "0,0,0")) + (rule "shift_paren_and" (formula "42") (term "0,0")) + (rule "commute_and_2" (formula "42") (term "0,0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "60") (term "0") (ifseqformula "1") (ifseqformula "8")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "0") (ifseqformula "2") (ifseqformula "9")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "3") (ifseqformula "10")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0") (ifseqformula "4") (ifseqformula "11")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "84") (term "1") (ifseqformula "5") (ifseqformula "12")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "87") (term "0") (ifseqformula "6") (ifseqformula "13")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "76") (term "1") (ifseqformula "7") (ifseqformula "14")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "99") (term "1") (ifseqformula "8") (ifseqformula "15")) + (rule "shift_paren_and" (formula "49") (term "0,0,0,1,0")) + (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "109")) + (rule "ifSplit" (formula "109")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "109") (term "1")) + (builtin "Block Contract (Internal)" (formula "109") (newnames "anonOut_heap_1,result_223,exc_263,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "translateJavaSubInt" (formula "58") (term "0,0")) + (rule "polySimp_elimSub" (formula "58") (term "0,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "variableDeclarationAssign" (formula "110") (term "1")) + (rule "variableDeclaration" (formula "110") (term "1") (newnames "exc_263_1")) + (rule "assignment" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "emptyStatement" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "emptyStatement" (formula "110") (term "1")) + (rule "tryEmpty" (formula "110") (term "1")) + (rule "blockEmptyLabel" (formula "110") (term "1")) + (rule "blockEmpty" (formula "110") (term "1")) + (rule "methodCallEmpty" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "emptyModality" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "closeTrue" (formula "110")) + ) + (branch "Precondition" + (rule "andRight" (formula "109")) + (branch + (builtin "One Step Simplification" (formula "109")) + (rule "translateJavaSubInt" (formula "109") (term "0,0")) + (rule "polySimp_elimSub" (formula "109") (term "0,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,0")) + (rule "close" (formula "109") (ifseqformula "17")) + ) + (branch + (builtin "One Step Simplification" (formula "109")) + (rule "wellFormedAnon" (formula "109")) + (rule "wellFormedAnonEQ" (formula "109") (term "0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "109") (term "0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "109") (term "0,0,0")) + (rule "replace_known_left" (formula "109") (term "1,0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "9")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "58")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,1,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,1,1,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,0,1,1,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "58")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "58") (term "0,0,0,1,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "58")) + (rule "replace_known_left" (formula "61") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "shift_paren_or" (formula "60")) + (rule "commute_or_2" (formula "60") (term "1,0")) + (rule "shift_paren_or" (formula "60") (term "0")) + (rule "commute_or_2" (formula "60") (term "1,0,0")) + (rule "shift_paren_or" (formula "60") (term "0,0")) + (rule "shift_paren_or" (formula "60") (term "0,0,0")) + (rule "shift_paren_or" (formula "60") (term "0,0,0,0")) + (rule "commute_or_2" (formula "60")) + (rule "commute_or_2" (formula "60") (term "0")) + (rule "commute_or_2" (formula "60")) + (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "113") (term "1")) + (builtin "One Step Simplification" (formula "113")) + (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "113")) + (rule "equalityToSeqGetAndSeqLenLeft" (formula "57") (inst "iv=iv")) + (rule "andLeft" (formula "57")) + (rule "getOfSeqDef" (formula "58") (term "1,1,0")) + (rule "castDel" (formula "58") (term "1,1,1,0")) + (rule "castDel" (formula "58") (term "2,1,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "57") (term "0")) + (rule "eqSymm" (formula "57")) + (rule "polySimp_elimSub" (formula "57") (term "1,1")) + (rule "polySimp_addComm0" (formula "57") (term "1,1")) + (rule "getOfSeqDef" (formula "58") (term "0,1,0")) + (rule "castDel" (formula "58") (term "2,0,1,0")) + (rule "castDel" (formula "58") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "1,1,0,0,1,0")) + (rule "lenOfSeqDef" (formula "58") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "58") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,0")) + (rule "lenOfSeqDef" (formula "57") (term "0")) + (rule "polySimp_elimSub" (formula "57") (term "1,0")) + (rule "polySimp_addComm0" (formula "57") (term "1,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,1,0")) + (rule "commute_and" (formula "57") (term "0,0")) + (rule "commute_and" (formula "57") (term "0,1,1,0")) + (rule "eqSymm" (formula "57") (term "1,0")) + (rule "commute_and" (formula "57") (term "0,1,1,0")) + (rule "eqSymm" (formula "57") (term "1,0")) + (builtin "Use Dependency Contract" (formula "42") (ifInst "" (formula "114") (term "0,0,1")) (ifInst "" (formula "36")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "63") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "63") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "63") (term "0,1,0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "112")) (ifInst "" (formula "16")) (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "18")) (ifInst "" (formula "42")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "63")) + (rule "ifSplit" (formula "114")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "114") (term "1")) + (rule "ifUnfold" (formula "114") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_3")) + (rule "less_equal_than_comparison_simple" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (rule "ifSplit" (formula "114")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "blockReturn" (formula "115") (term "1")) + (rule "inEqSimp_antiSymm" (formula "52") (ifseqformula "1")) + (rule "applyEq" (formula "50") (term "1,0,0,0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "116") (term "0,1,0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "51") (term "1,1,0,1,0") (ifseqformula "52")) + (rule "add_literals" (formula "51") (term "1,0,1,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "52")) + (rule "qeq_literals" (formula "53")) + (rule "true_left" (formula "53")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "52")) + (rule "qeq_literals" (formula "49")) + (rule "true_left" (formula "49")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "51")) + (rule "leq_literals" (formula "48")) + (rule "true_left" (formula "48")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "50")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "48") (term "1,0,0,0,0,0") (ifseqformula "49")) + (rule "methodCallReturn" (formula "112") (term "1")) + (builtin "One Step Simplification" (formula "112")) + (rule "assignment" (formula "112") (term "1")) + (builtin "One Step Simplification" (formula "112")) + (rule "methodCallEmpty" (formula "112") (term "1")) + (rule "tryEmpty" (formula "112") (term "1")) + (rule "emptyModality" (formula "112") (term "1")) + (rule "andRight" (formula "112")) + (branch + (builtin "One Step Simplification" (formula "112")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "48") (term "0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "48") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "mul_literals" (formula "50") (term "1,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,1,0")) + (rule "mul_literals" (formula "48") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "mul_literals" (formula "50") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "53") (term "0,1,1,0,0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,1,1,0,0,0")) + (rule "qeq_literals" (formula "53") (term "0,0,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "polySimp_addAssoc" (formula "53") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "21")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "25")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "18")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "24")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0")) + (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_and_antiSymm0" (formula "44") (term "0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "exLeft" (formula "44") (inst "sk=j_0")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "eqSymm" (formula "48")) + (rule "inEqSimp_homoInEq0" (formula "44")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_rightDist" (formula "44") (term "0,1")) + (rule "mul_literals" (formula "44") (term "0,0,1")) + (rule "pullOutSelect" (formula "48") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "10"))) + (rule "simplifySelectOfAnonEQ" (formula "49") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "0,1,1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "49")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0")) + (rule "eqSymm" (formula "48") (term "0,0,0,0")) + (rule "replace_known_right" (formula "48") (term "0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "48")) + (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "49") (term "0,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "leq_literals" (formula "49") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0,0,0")) + (rule "times_zero_2" (formula "49") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0")) + (rule "replace_known_left" (formula "49") (term "0,0,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "49")) + (rule "applyEqReverse" (formula "48") (term "1") (ifseqformula "49")) + (rule "hideAuxiliaryEq" (formula "49")) + (rule "elementOfUnion" (formula "48") (term "0,0")) + (rule "disjointAllFields" (formula "48") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "48")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0")) + (rule "replace_known_left" (formula "48") (term "0,0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0")) + (rule "polySimp_addComm0" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption0" (formula "47") (ifseqformula "23")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "pullOutSelect" (formula "48") (term "2,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "48")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "113")) (ifInst "" (formula "10"))) + (rule "applyEqReverse" (formula "49") (term "2,0") (ifseqformula "48")) + (rule "hideAuxiliaryEq" (formula "48")) + (rule "inEqSimp_and_antiSymm0" (formula "49") (term "0,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "replaceKnownSelect_taclet0012120110000012_1" (formula "49") (term "1,1,1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012120110000012_3" (formula "49") (term "1,1,1,1")) + (rule "add_literals" (formula "49") (term "0,2,0,1,1")) + (rule "leq_literals" (formula "49") (term "0,1")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "112")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "15")) + (rule "close" (formula "112") (ifseqformula "15")) + ) + (branch + (builtin "One Step Simplification" (formula "112")) + (rule "closeTrue" (formula "112")) + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationFinalAssign" (formula "115") (term "1")) + (rule "variableDeclarationFinal" (formula "115") (term "1") (newnames "classifier")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "115") (term "1")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_6")) + (rule "assignment" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_7")) + (rule "assignment_read_attribute_final" (formula "115")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "115")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_8")) + (rule "assignment" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "var_9")) + (rule "assignment" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (builtin "Use Operation Contract" (formula "115") (newnames "heapBefore_from_sorted_samples,result_224,exc_264,heapAfter_from_sorted_samples,anon_heap_from_sorted_samples") (contract "de.wiesler.Classifier[de.wiesler.Classifier::from_sorted_samples([I,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (from_sorted_samples)" + (builtin "One Step Simplification" (formula "64")) + (builtin "One Step Simplification" (formula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,0,1,1,0,1") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,0,0,1,1,0,1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "65")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,1,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,0,1,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "68")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "69")) + (rule "notLeft" (formula "67")) + (rule "notLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "69")) + (rule "orRight" (formula "73")) + (rule "andLeft" (formula "70")) + (rule "orRight" (formula "74")) + (rule "andLeft" (formula "70")) + (rule "notLeft" (formula "72")) + (rule "orRight" (formula "75")) + (rule "orRight" (formula "75")) + (rule "orRight" (formula "75")) + (rule "eqSymm" (formula "67")) + (rule "translateJavaMod" (formula "69") (term "0")) + (rule "eqSymm" (formula "71")) + (rule "eqSymm" (formula "70")) + (rule "eqSymm" (formula "74")) + (rule "replace_known_right" (formula "65") (term "1,0,0,1") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "81")) (ifInst "" (formula "75")) (ifInst "" (formula "76")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "80"))) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "blockEmpty" (formula "134") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "134") (term "1")) + (rule "variableDeclarationFinal" (formula "134") (term "1") (newnames "r")) + (rule "applyEq" (formula "71") (term "1,1") (ifseqformula "67")) + (rule "applyEq" (formula "70") (term "1,1") (ifseqformula "67")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "67")) + (rule "applyEq" (formula "46") (term "0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "95") (term "0") (ifseqformula "67")) + (rule "applyEq" (formula "102") (term "1") (ifseqformula "67")) + (rule "applyEq" (formula "109") (term "0") (ifseqformula "67")) + (rule "eqSymm" (formula "109")) + (rule "applyEq" (formula "70") (term "1,0") (ifseqformula "67")) + (rule "applyEq" (formula "113") (term "1") (ifseqformula "67")) + (rule "applyEq" (formula "4") (term "1,0,1") (ifseqformula "67")) + (rule "applyEq" (formula "64") (term "0,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "111") (term "0") (ifseqformula "67")) + (rule "eqSymm" (formula "111")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "67")) + (rule "applyEq" (formula "114") (term "0") (ifseqformula "67")) + (rule "eqSymm" (formula "114")) + (rule "applyEq" (formula "50") (term "1,1,1,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "110") (term "0") (ifseqformula "67")) + (rule "eqSymm" (formula "110")) + (rule "applyEq" (formula "50") (term "1,0,1,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "49") (term "1,1,1,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "74") (term "1,2,1") (ifseqformula "67")) + (rule "applyEq" (formula "74") (term "1,2,0") (ifseqformula "67")) + (rule "applyEq" (formula "4") (term "0,0") (ifseqformula "67")) + (rule "applyEq" (formula "112") (term "1") (ifseqformula "67")) + (rule "pullOutSelect" (formula "71") (term "1") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "75") (term "2,0") (ifseqformula "71")) + (rule "simplifySelectOfAnon" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,0,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,0,0,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "72")) + (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "71")) + (rule "replaceKnownSelect_taclet00112120110000012_0" (formula "71") (term "2,0")) + (builtin "One Step Simplification" (formula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,1,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,0,1,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "71")) + (rule "eqSymm" (formula "75")) + (rule "elementOfUnion" (formula "71") (term "0,0,0")) + (builtin "One Step Simplification" (formula "71")) + (rule "applyEqReverse" (formula "75") (term "2,1") (ifseqformula "71")) + (rule "applyEqReverse" (formula "72") (term "1") (ifseqformula "71")) + (rule "hideAuxiliaryEq" (formula "71")) + (rule "pullOutSelect" (formula "70") (term "1") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "75") (term "2,0") (ifseqformula "70")) + (rule "simplifySelectOfAnon" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,0,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "71")) + (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "70")) + (rule "replaceKnownSelect_taclet00112120110000012_3" (formula "70") (term "2,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,0,1,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,0,0,1,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "70")) + (rule "eqSymm" (formula "75")) + (rule "elementOfUnion" (formula "70") (term "0,0,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "70")) + (rule "applyEqReverse" (formula "75") (term "2,1") (ifseqformula "70")) + (rule "hideAuxiliaryEq" (formula "70")) + (rule "pullOutSelect" (formula "71") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,0,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "71")) + (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,0,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "70")) + (rule "pullOutSelect" (formula "72") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "72")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,1,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "72")) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "leq_literals" (formula "72") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "0,1,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "70")) + (rule "elementOfArrayRangeConcrete" (formula "70") (term "0,0,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "leq_literals" (formula "70") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "pullOutSelect" (formula "73") (term "2,0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnonEQ" (formula "73") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "73")) + (rule "elementOfUnion" (formula "73") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "73") (term "1,0,0,0")) + (rule "replace_known_right" (formula "73") (term "0,0,1,0,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "73")) + (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnonEQ" (formula "70") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "70")) + (rule "elementOfUnion" (formula "70") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "70") (term "1,0,0,0")) + (rule "replace_known_right" (formula "70") (term "0,0,1,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "70")) + (rule "pullOutSelect" (formula "74") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "pullOutSelect" (formula "70") (term "2,0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "commute_or_2" (formula "79") (term "0,1,0,0")) + (rule "commute_or_2" (formula "74") (term "0,1,0,0")) + (rule "commute_or_2" (formula "78") (term "0,1,0,0")) + (rule "commute_or_2" (formula "73") (term "0,1,0,0")) + (rule "commute_or_2" (formula "79") (term "0,0,1,0,0")) + (rule "commute_or_2" (formula "79") (term "0,1,0,0")) + (rule "commute_or_2" (formula "74") (term "0,0,1,0,0")) + (rule "commute_or_2" (formula "74") (term "0,1,0,0")) + (rule "instanceCreationAssignmentUnfoldArguments" (formula "142") (term "1")) + (rule "variableDeclarationAssign" (formula "142") (term "1")) + (rule "variableDeclaration" (formula "142") (term "1") (newnames "var_10")) + (builtin "Use Operation Contract" (formula "142") (newnames "heapBefore_num_buckets,result_225,exc_265") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0")) + (branch "Post (num_buckets)" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "66")) (ifInst "" (formula "80"))) + (rule "expand_inInt" (formula "82") (term "0,1,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,0,1,0")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "eqSymm" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "83")) + (rule "assignment" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "variableDeclarationAssign" (formula "146") (term "1")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "var_11")) + (rule "applyEq" (formula "69") (term "0,0") (ifseqformula "84")) + (builtin "Use Operation Contract" (formula "146") (newnames "heapBefore_equal_buckets,result_226,exc_266") (contract "de.wiesler.Classifier[de.wiesler.Classifier::equal_buckets()].JML normal_behavior operation contract.0")) + (branch "Post (equal_buckets)" + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "66")) (ifInst "" (formula "80"))) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "eqSymm" (formula "86")) + (rule "assignment" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (builtin "Use Operation Contract" (formula "148") (newnames "heapBefore_PartitionResult,self_259,exc_267,heapAfter_PartitionResult,anon_heap_PartitionResult") (contract "de.wiesler.PartitionResult[de.wiesler.PartitionResult::PartitionResult(int,boolean)].JML normal_behavior operation contract.0")) + (branch "Post (PartitionResult)" + (builtin "One Step Simplification" (formula "150")) + (builtin "One Step Simplification" (formula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0,1,0,1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0,0,1,0") (ifseqformula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0,0,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,1,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,1,0,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "92")) + (rule "notLeft" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "orRight" (formula "97")) + (rule "orRight" (formula "97")) + (rule "orRight" (formula "97")) + (rule "orRight" (formula "97")) + (rule "orRight" (formula "97")) + (rule "orRight" (formula "97")) + (rule "replace_known_right" (formula "91") (term "1,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "100")) (ifInst "" (formula "101")) (ifInst "" (formula "102"))) + (rule "assignment" (formula "165") (term "1")) + (builtin "One Step Simplification" (formula "165")) + (rule "blockEmpty" (formula "165") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "165") (term "1")) + (rule "variableDeclarationGhost" (formula "165") (term "1") (newnames "valuesBeforePartition")) + (rule "assignment" (formula "165") (term "1")) + (builtin "One Step Simplification" (formula "165")) + (builtin "Block Contract (Internal)" (formula "165") (newnames "anonOut_heap_2,result_227,exc_268,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "97")) + (builtin "One Step Simplification" (formula "166")) + (rule "andLeft" (formula "97")) + (rule "translateJavaSubInt" (formula "97") (term "0,0")) + (rule "polySimp_elimSub" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "narrowSelectArrayType" (formula "166") (term "2,0,1,0") (ifseqformula "97") (ifseqformula "165")) + (rule "variableDeclarationAssign" (formula "166") (term "1")) + (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_268_1")) + (rule "assignment" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (rule "tryEmpty" (formula "166") (term "1")) + (rule "blockEmptyLabel" (formula "166") (term "1")) + (rule "blockEmpty" (formula "166") (term "1")) + (rule "methodCallEmpty" (formula "166") (term "1")) + (rule "emptyModality" (formula "166") (term "1")) + (rule "andRight" (formula "166")) + (branch + (builtin "One Step Simplification" (formula "166")) + (rule "closeTrue" (formula "166")) + ) + (branch + (builtin "One Step Simplification" (formula "166")) + (rule "inEqSimp_leqRight" (formula "114")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73") (term "0,0,0")) + (rule "times_zero_2" (formula "73") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "jmod_axiom" (formula "70") (term "0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73") (term "0,0,0")) + (rule "mul_literals" (formula "73") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "57") (term "0,1,1,0,0,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "57") (term "1,1,0,0,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "57") (term "1,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,1,0,0,0")) + (rule "qeq_literals" (formula "57") (term "0,0,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "polySimp_addAssoc" (formula "57") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "1")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "newSym_eq" (formula "65") (inst "newSymDef=mul(result_225, Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "65") (term "1,1")) + (rule "add_zero_right" (formula "65") (term "1")) + (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "65")) + (rule "eqSymm" (formula "66")) + (rule "applyEq" (formula "80") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "66")) + (rule "applyEq" (formula "79") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "81") (term "1") (ifseqformula "66")) + (rule "applyEq" (formula "90") (term "1") (ifseqformula "66")) + (rule "elimGcdLeq_antec" (formula "79") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "neg_literal" (formula "79") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "79") (term "0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "79") (term "0,0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "80") (term "0,0,0,0")) + (rule "add_literals" (formula "80") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0")) + (rule "add_zero_right" (formula "80") (term "0,0")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "26")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "19")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "25")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "47") (term "0,0,0")) + (rule "leq_literals" (formula "47") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "nnf_imp2or" (formula "53") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "64") (term "1,1")) + (rule "eqSymm" (formula "67")) + (rule "eqSymm" (formula "64")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,1")) + (rule "mul_literals" (formula "67") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,0")) + (rule "mul_literals" (formula "67") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "64") (term "0,0,0") (ifseqformula "89")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "87")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "87")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "87")) + (rule "elimGcdLeq_antec" (formula "63") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "neg_literal" (formula "63") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "63") (term "0,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "elimGcdGeq_antec" (formula "62") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "62") (term "0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "62") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "85") (ifseqformula "62")) + (rule "leq_literals" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "pullOutSelect" (formula "66") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "66")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,0,0,1,1,0,0") (ifseqformula "44")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,0,0,0,1,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "66")) + (rule "eqSymm" (formula "67")) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,0,0,1,1,0,0") (ifseqformula "44")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,0,0,0,1,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "66") (term "0,0,0")) + (builtin "One Step Simplification" (formula "66")) + (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "66")) + (rule "hideAuxiliaryEq" (formula "66")) + (rule "elementOfUnion" (formula "66") (term "0,0,0")) + (builtin "One Step Simplification" (formula "66")) + (rule "eqSymm" (formula "66")) + (rule "nnf_imp2or" (formula "47") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "53") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "53") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "53") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "53") (term "1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "53") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "47") (term "1,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "1,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "47") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "47") (term "1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "mul_literals" (formula "47") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "47") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaMulInt" (formula "44") (term "0,0")) + (rule "translateJavaMod" (formula "43") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "42") (term "1")) + (rule "translateJavaDivInt" (formula "38") (term "1")) + (rule "translateJavaSubInt" (formula "44") (term "0")) + (rule "polySimp_elimSub" (formula "44") (term "0")) + (rule "mul_literals" (formula "44") (term "1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "39")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEqReverse" (formula "82") (term "2,0") (ifseqformula "81")) + (rule "hideAuxiliaryEq" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_homoInEq0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "jmod_axiom" (formula "43") (term "0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "polySimp_rightDist" (formula "39") (term "0,1")) + (rule "mul_literals" (formula "39") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "javaShiftLeftIntConstantDef" (formula "42") (term "1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1")) + (rule "div_literals" (formula "42") (term "0,1,1,0,1")) + (rule "times_zero_2" (formula "42") (term "1,1,0,1")) + (rule "add_zero_right" (formula "42") (term "1,0,1")) + (rule "shiftleft_literals" (formula "42") (term "0,1")) + (rule "newSym_eq" (formula "43") (inst "l=l_1") (inst "newSymDef=mul(int::final(result_220, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "43") (term "1,1")) + (rule "add_zero_right" (formula "43") (term "1")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "43")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "52") (term "1,2,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "44")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "86") (term "0,0,0,0") (ifseqformula "44")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "44")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "44")) + (rule "polySimp_mulAssoc" (formula "45") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "44")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "44")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "41") (term "0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "elimGcdGeq" (formula "86") (term "0,0,0") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "86") (term "0,0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "86") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "86") (term "0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "86") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "86") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "86") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "86") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "86") (term "0,1,0,0,0,0")) + (rule "leq_literals" (formula "86") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "polySimp_pullOutFactor0" (formula "86") (term "0,0,0,0,0")) + (rule "add_literals" (formula "86") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "86") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "86") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "39")) + (rule "mul_literals" (formula "37") (term "0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "38")) + (rule "mul_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "57")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "88") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "89") (term "2,0") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "1")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "expand_moduloInteger" (formula "43") (term "0")) + (rule "replace_int_RANGE" (formula "43") (term "1,1,0")) + (rule "replace_int_MIN" (formula "43") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "43") (term "0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "mod_axiom" (formula "43") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "div_literals" (formula "43") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "43") (term "1,0,1,0")) + (rule "add_literals" (formula "43") (term "0,1,0")) + (rule "mul_literals" (formula "43") (term "1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "elimGcdLeq_antec" (formula "43") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,0")) + (rule "neg_literal" (formula "43") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0")) + (rule "qeq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "114") (term "1")) + (rule "eqSymm" (formula "114")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "74") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "74")) + (rule "expand_inInt" (formula "74") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "74") (term "1,0,0")) + (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "173")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "translateJavaMulInt" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "204"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "202"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "139")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "138")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "137")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "136")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "135")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "134")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "133")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "132")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "131")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "130")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "129")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "128")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "127")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "125")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "124")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "168"))) + (rule "true_left" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "166"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "164"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "162"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "160"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "158"))) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1") (ifseqformula "85")) + (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "85")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "85")) + (rule "eqSymm" (formula "120")) + (rule "applyEq" (formula "119") (term "1") (ifseqformula "85")) + (rule "applyEq" (formula "116") (term "0") (ifseqformula "85")) + (rule "eqSymm" (formula "116")) + (rule "applyEq" (formula "116") (term "0") (ifseqformula "85")) + (rule "eqSymm" (formula "116")) + (rule "applyEq" (formula "115") (term "0") (ifseqformula "85")) + (rule "eqSymm" (formula "115")) + (rule "applyEq" (formula "114") (term "1") (ifseqformula "85")) + (rule "applyEq" (formula "114") (term "1") (ifseqformula "85")) + (rule "applyEq" (formula "43") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "94") (term "2,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "36")) + (rule "applyEq" (formula "90") (term "2,0,0,0") (ifseqformula "36")) + (rule "elementOfUnion" (formula "94") (term "0,0,0")) + (rule "distributeIntersection" (formula "37") (term "0")) + (rule "distributeIntersection" (formula "38") (term "0")) + (rule "elementOfUnion" (formula "90") (term "0,0,0")) + (rule "elementOfUnion" (formula "94") (term "1,0,0,0")) + (rule "elementOfUnion" (formula "94") (term "0,0,0,0")) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "unionEqualsEmpty" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "elementOfUnion" (formula "92") (term "0,0,0,0")) + (rule "elementOfUnion" (formula "92") (term "1,0,0,0")) + (rule "elementOfUnion" (formula "96") (term "1,1,0,0,0")) + (builtin "One Step Simplification" (formula "96")) + (rule "eqSymm" (formula "96") (term "1,1,1,0,0,0")) + (rule "eqSymm" (formula "96") (term "0,1,1,0,0,0")) + (rule "replace_known_right" (formula "96") (term "1,1,1,0,0,0") (ifseqformula "163")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "162"))) + (rule "distributeIntersection" (formula "37") (term "0")) + (rule "distributeIntersection" (formula "38") (term "0")) + (rule "distributeIntersection" (formula "40") (term "0")) + (rule "distributeIntersection" (formula "39") (term "0")) + (rule "elementOfUnion" (formula "92") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "92")) + (rule "hideAuxiliaryEq" (formula "92")) + (rule "elementOfUnion" (formula "95") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "95")) + (rule "eqSymm" (formula "95") (term "0,1,0,0,0,0")) + (rule "eqSymm" (formula "95") (term "1,1,0,0,0,0")) + (rule "replace_known_right" (formula "95") (term "0,1,0,0,0,0") (ifseqformula "157")) + (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "158"))) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "distributeIntersection" (formula "39") (term "0,0")) + (rule "distributeIntersection" (formula "39") (term "1,0")) + (rule "distributeIntersection" (formula "41") (term "0,0")) + (rule "distributeIntersection" (formula "41") (term "1,0")) + (rule "distributeIntersection" (formula "40") (term "1,0")) + (rule "distributeIntersection" (formula "40") (term "0,0")) + (rule "elementOfUnion" (formula "96") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "96")) + (rule "hideAuxiliaryEq" (formula "96")) + (rule "distributeIntersection" (formula "38") (term "0")) + (rule "distributeIntersection" (formula "37") (term "0")) + (rule "unionEqualsEmpty" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "unionEqualsEmpty" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "118")) + (rule "eqSymm" (formula "117")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "117")) + (rule "eqSymm" (formula "116")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "116")) + (rule "eqSymm" (formula "115")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "115")) + (rule "eqSymm" (formula "114")) + (rule "unionEqualsEmpty" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "114")) + (rule "eqSymm" (formula "113")) + (rule "unionEqualsEmpty" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "113")) + (rule "eqSymm" (formula "112")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "112")) + (rule "eqSymm" (formula "111")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "111")) + (rule "eqSymm" (formula "110")) + (rule "commuteUnion" (formula "36") (term "1,1,1")) + (rule "commuteUnion" (formula "36") (term "0,0,1")) + (rule "commuteUnion" (formula "41") (term "0,0,0,1,0")) + (rule "commuteUnion" (formula "41") (term "1,1,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "109") (term "0") (ifseqformula "82")) + (rule "replace_known_right" (formula "90") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "90")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "91")) + (rule "replace_known_right" (formula "89") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "89")) + (rule "replace_known_right" (formula "87") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "87")) + (rule "replace_known_right" (formula "86") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "86")) + (rule "replace_known_right" (formula "88") (term "0,0,0,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "88")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_left" (formula "86") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "86")) + (rule "hideAuxiliaryEq" (formula "86")) + (rule "replace_known_left" (formula "87") (term "0,0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "87")) + (rule "eqSymm" (formula "87")) + (rule "applyEqReverse" (formula "86") (term "1") (ifseqformula "87")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "87")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "replace_known_left" (formula "88") (term "0,0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "88")) + (rule "replace_known_left" (formula "86") (term "0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "86")) + (rule "replace_known_left" (formula "87") (term "0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEqReverse" (formula "88") (term "0") (ifseqformula "87")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "eqSymm" (formula "86")) + (rule "eqSymm" (formula "87")) + (rule "replace_known_right" (formula "180") (term "0,1") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "180")) + (rule "notRight" (formula "180")) + (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "78") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "81") (term "0,1,0,2,1") (ifseqformula "1")) + (rule "applyEq" (formula "79") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "81") (term "0,1,0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "122") (term "2,0") (ifseqformula "87")) + (rule "applyEq" (formula "78") (term "0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "122") (term "2,1") (ifseqformula "88")) + (rule "Class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "104")) + (rule "true_left" (formula "104")) + (rule "Free_class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "103")) + (rule "true_left" (formula "103")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "55")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "29")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "36"))) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "translateJavaMulInt" (formula "57") (term "1")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "translateJavaMulInt" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "203"))) + (rule "true_left" (formula "84")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "201"))) + (rule "true_left" (formula "83")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "130")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "129")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "128")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "127")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "eqSymm" (formula "126")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "125")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "124")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "eqSymm" (formula "123")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "122")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "121")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "120")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "119")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "118")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "116")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "115")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "167"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "165"))) + (rule "true_left" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "163"))) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "161"))) + (rule "true_left" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "159"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "157"))) + (rule "true_left" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "applyEq" (formula "111") (term "0") (ifseqformula "84")) + (rule "eqSymm" (formula "111")) + (rule "applyEq" (formula "108") (term "0") (ifseqformula "84")) + (rule "eqSymm" (formula "108")) + (rule "applyEq" (formula "108") (term "1") (ifseqformula "84")) + (rule "applyEq" (formula "108") (term "1") (ifseqformula "84")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "105") (term "1") (ifseqformula "84")) + (rule "applyEq" (formula "106") (term "0") (ifseqformula "84")) + (rule "eqSymm" (formula "106")) + (rule "applyEq" (formula "105") (term "0") (ifseqformula "84")) + (rule "eqSymm" (formula "105")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "84")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1") (ifseqformula "83")) + (rule "applyEq" (formula "37") (term "0,1,0,0,0") (ifseqformula "83")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "37")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1")) + (rule "expand_inInt" (formula "56") (term "0,0")) + (rule "expand_inInt" (formula "56") (term "1,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "52")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "46")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "49")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_subsumption4" (formula "58") (ifseqformula "50")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "2")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "mul_literals" (formula "58") (term "1,0")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "20")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "20")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "applyEq" (formula "104") (term "0") (ifseqformula "83")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "notLeft" (formula "90")) + (rule "notLeft" (formula "89")) + (rule "close" (formula "103") (ifseqformula "1")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "165")) + (branch + (builtin "One Step Simplification" (formula "165")) + (rule "translateJavaSubInt" (formula "165") (term "0,0")) + (rule "polySimp_elimSub" (formula "165") (term "0,0")) + (rule "polySimp_addComm0" (formula "165") (term "0,0")) + (rule "close" (formula "165") (ifseqformula "17")) + ) + (branch + (builtin "One Step Simplification" (formula "165")) + (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "89")) + (rule "wellFormedAnonEQ" (formula "165") (term "0") (ifseqformula "64")) + (rule "wellFormedAnon" (formula "165") (term "0,0")) + (rule "wellFormedAnon" (formula "165") (term "0,0,0")) + (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "165") (term "0,0,0,0,0,0")) + (rule "replace_known_left" (formula "165") (term "1,0,0,0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63")) (ifInst "" (formula "88"))) + (rule "closeTrue" (formula "165")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "166")) + (builtin "One Step Simplification" (formula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,0,1,0") (ifseqformula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,1,1,0") (ifseqformula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,1,0,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,1,1,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "97")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "97")) + (rule "eqSymm" (formula "102")) + (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "shift_paren_or" (formula "100")) + (rule "commute_or_2" (formula "100") (term "1,0")) + (rule "shift_paren_or" (formula "100") (term "0")) + (rule "shift_paren_or" (formula "100") (term "0,0")) + (rule "shift_paren_or" (formula "100") (term "0,0,0")) + (rule "shift_paren_or" (formula "100") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0")) + (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "100") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "100")) + (rule "commute_or_2" (formula "100") (term "0")) + (rule "commute_or_2" (formula "100") (term "0,0,0,0")) + (rule "commute_or_2" (formula "100") (term "0,0,0")) + (rule "commute_or_2" (formula "100") (term "0,0")) + (rule "commute_or_2" (formula "100") (term "0")) + (rule "commute_or_2" (formula "100") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "100") (term "0,0,0,0")) + (rule "commute_or_2" (formula "100") (term "0,0,0")) + (rule "commute_or_2" (formula "100") (term "0,0")) + (rule "commute_or_2" (formula "100") (term "0")) + (rule "commute_or_2" (formula "100")) + (builtin "Use Dependency Contract" (formula "42") (ifInst "" (formula "171") (term "0,0,1")) (ifInst "" (formula "36")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "103") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "103") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "103") (term "0,1") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "169")) (ifInst "" (formula "16")) (ifInst "" (formula "9")) (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "18")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "103")) + (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "171") (term "1")) + (builtin "One Step Simplification" (formula "171")) + (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "171")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "46") (term "0,1,0") (ifseqformula "63") (ifseqformula "65")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0,0") (ifseqformula "64") (ifseqformula "66")) + (rule "ifSplit" (formula "173")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "173") (term "1")) + (builtin "Block Contract (Internal)" (formula "173") (newnames "anonOut_heap_3,result_228,exc_269,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "174")) + (builtin "One Step Simplification" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "translateJavaSubInt" (formula "105") (term "0,0")) + (rule "polySimp_elimSub" (formula "105") (term "0,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "variableDeclarationAssign" (formula "174") (term "1")) + (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_269_1")) + (rule "assignment" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (rule "tryEmpty" (formula "174") (term "1")) + (rule "blockEmptyLabel" (formula "174") (term "1")) + (rule "blockEmpty" (formula "174") (term "1")) + (rule "methodCallEmpty" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyModality" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "closeTrue" (formula "174")) + ) + (branch "Precondition" + (rule "andRight" (formula "173")) + (branch + (builtin "One Step Simplification" (formula "173")) + (rule "translateJavaSubInt" (formula "173") (term "0,0")) + (rule "polySimp_elimSub" (formula "173") (term "0,0")) + (rule "polySimp_addComm0" (formula "173") (term "0,0")) + (rule "close" (formula "173") (ifseqformula "17")) + ) + (branch + (builtin "One Step Simplification" (formula "173")) + (rule "wellFormedAnon" (formula "173")) + (rule "wellFormedAnonEQ" (formula "173") (term "0") (ifseqformula "91")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0") (ifseqformula "65")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "173") (term "1,0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "56")) (ifInst "" (formula "61")) (ifInst "" (formula "64")) (ifInst "" (formula "101"))) + (rule "closeTrue" (formula "173")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "174")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,0,1,0") (ifseqformula "91")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,1,1,0") (ifseqformula "91")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,1,1,0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "105")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,0,1,0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "105")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "105")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "105")) + (rule "expand_inInt" (formula "105") (term "1,0,0,1,1")) + (rule "expand_inInt" (formula "105") (term "1,0,0,1,0,1,1")) + (rule "replace_int_MIN" (formula "105") (term "0,1,1,0,0,1,1")) + (rule "replace_int_MAX" (formula "105") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "105") (term "0,1,1,0,0,1,0,1,1")) + (rule "replace_int_MAX" (formula "105") (term "1,0,1,0,0,1,0,1,1")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "105")) + (rule "exLeft" (formula "110") (inst "sk=i_0")) + (rule "andLeft" (formula "110")) + (rule "andLeft" (formula "110")) + (rule "andLeft" (formula "111")) + (rule "andLeft" (formula "110")) + (rule "exLeft" (formula "114") (inst "sk=j_0")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "notLeft" (formula "116")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "114")) + (rule "eqSymm" (formula "118")) + (rule "replace_known_left" (formula "108") (term "0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "108")) + (rule "true_left" (formula "108")) + (rule "inEqSimp_commuteLeq" (formula "112")) + (rule "inEqSimp_commuteLeq" (formula "109")) + (rule "inEqSimp_commuteLeq" (formula "116")) + (rule "inEqSimp_commuteLeq" (formula "113")) + (rule "pullOutSelect" (formula "117") (term "2,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "92")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "92")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "139")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "140"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "186")) (ifInst "" (formula "11"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "118") (term "2,0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "141"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "187")) (ifInst "" (formula "12"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "188")) (ifInst "" (formula "13"))) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "188")) (ifInst "" (formula "13"))) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "shift_paren_or" (formula "109")) + (rule "shift_paren_or" (formula "109") (term "0")) + (rule "commute_or_2" (formula "109") (term "1,0,0")) + (rule "shift_paren_or" (formula "109") (term "0,0")) + (rule "ifUnfold" (formula "188") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "188") (term "1") (newnames "x_5")) + (rule "shift_paren_or" (formula "109") (term "0,0,0")) + (rule "shift_paren_or" (formula "109") (term "0,0,0,0")) + (rule "equalityToSeqGetAndSeqLenLeft" (formula "105") (inst "iv=iv")) + (rule "andLeft" (formula "105")) + (rule "lenOfSeqDef" (formula "105") (term "0")) + (rule "eqSymm" (formula "105")) + (rule "polySimp_elimSub" (formula "105") (term "1,1")) + (rule "polySimp_addComm0" (formula "105") (term "1,1")) + (rule "getOfSeqDef" (formula "106") (term "1,1,0")) + (rule "castDel" (formula "106") (term "2,1,1,0")) + (rule "castDel" (formula "106") (term "1,1,1,0")) + (rule "polySimp_elimSub" (formula "106") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDefEQ" (formula "106") (term "1,1,0,0") (ifseqformula "61")) + (rule "polySimp_elimSub" (formula "106") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "106") (term "1,1,1,0,0")) + (rule "getOfSeqDef" (formula "106") (term "0,1,0")) + (rule "castDel" (formula "106") (term "2,0,1,0")) + (rule "castDel" (formula "106") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "106") (term "1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "1,1,0,0,1,0")) + (rule "lenOfSeqDef" (formula "105") (term "0")) + (rule "polySimp_elimSub" (formula "105") (term "1,0")) + (rule "polySimp_addComm0" (formula "105") (term "1,0")) + (builtin "One Step Simplification" (formula "105")) + (rule "true_left" (formula "105")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,1,1,0,0")) + (rule "replace_known_left" (formula "105") (term "0,1,1,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "105")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,1,0")) + (rule "commute_and" (formula "105") (term "0,0")) + (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0")) + (rule "inequality_comparison_simple" (formula "189") (term "1")) + (builtin "One Step Simplification" (formula "189")) + (rule "replace_known_left" (formula "189") (term "0,0,1,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "189")) + (rule "commute_and" (formula "105") (term "0,1,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "commute_and" (formula "105") (term "0,1,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "commute_or_2" (formula "110") (term "1,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "110") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0")) + (rule "commute_or_2" (formula "110")) + (rule "commute_or_2" (formula "110") (term "0,0")) + (rule "commute_or_2" (formula "110") (term "0")) + (rule "commute_or_2" (formula "110") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0")) + (rule "commute_or_2" (formula "110") (term "0")) + (rule "commute_or_2" (formula "110")) + (rule "commute_or_2" (formula "110") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0,0")) + (rule "commute_or_2" (formula "110") (term "0,0")) + (builtin "Use Dependency Contract" (formula "44") (ifInst "" (formula "189") (term "0,0,1")) (ifInst "" (formula "38")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "120") (term "1,1,0,0,0") (ifseqformula "38")) + (rule "wellFormedAnon" (formula "120") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "120") (term "0,1") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "187")) (ifInst "" (formula "18")) (ifInst "" (formula "11")) (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "20")) (ifInst "" (formula "20"))) + (rule "true_left" (formula "120")) + (rule "ifSplit" (formula "189")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "190")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "190")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "189") (term "1")) + (builtin "Use Operation Contract" (formula "189") (newnames "heapBefore_partition_0,exc_270,heapAfter_partition,anon_heap_partition") (contract "de.wiesler.Partition[de.wiesler.Partition::partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (partition)" + (builtin "One Step Simplification" (formula "191")) + (builtin "One Step Simplification" (formula "121")) + (rule "andLeft" (formula "121")) + (rule "andLeft" (formula "122")) + (rule "andLeft" (formula "122")) + (rule "andLeft" (formula "124")) + (rule "andLeft" (formula "123")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "124")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "126")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "128")) + (rule "translateJavaSubInt" (formula "121") (term "2,0,0,0,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "125") (term "1")) + (rule "polySimp_elimSub" (formula "121") (term "2,0,0,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "121") (term "1,2,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "125") (term "1")) + (rule "polySimp_addComm0" (formula "121") (term "2,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "125") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "201") (term "1")) + (rule "variableDeclarationGhost" (formula "201") (term "1") (newnames "valuesAfterPartition")) + (rule "assignment" (formula "201") (term "1")) + (builtin "One Step Simplification" (formula "201")) + (builtin "Block Contract (Internal)" (formula "201") (newnames "anonOut_heap_4,result_229,exc_271,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "132")) + (builtin "One Step Simplification" (formula "202")) + (rule "andLeft" (formula "132")) + (rule "translateJavaSubInt" (formula "132") (term "0,0")) + (rule "polySimp_elimSub" (formula "132") (term "0,0")) + (rule "polySimp_addComm0" (formula "132") (term "0,0")) + (rule "narrowSelectArrayType" (formula "123") (term "2,0") (ifseqformula "132") (ifseqformula "201")) + (rule "narrowSelectArrayType" (formula "202") (term "2,0,1,0") (ifseqformula "132") (ifseqformula "201")) + (rule "variableDeclarationAssign" (formula "202") (term "1")) + (rule "variableDeclaration" (formula "202") (term "1") (newnames "exc_271_1")) + (rule "assignment" (formula "202") (term "1")) + (builtin "One Step Simplification" (formula "202")) + (rule "emptyStatement" (formula "202") (term "1")) + (builtin "One Step Simplification" (formula "202")) + (rule "emptyStatement" (formula "202") (term "1")) + (rule "applyEq" (formula "127") (term "7,0") (ifseqformula "88")) + (rule "applyEq" (formula "125") (term "0,2,0") (ifseqformula "88")) + (rule "applyEq" (formula "124") (term "2,0") (ifseqformula "88")) + (rule "applyEq" (formula "127") (term "5,0") (ifseqformula "88")) + (rule "pullOutSelect" (formula "125") (term "0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnonEQ" (formula "125") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "201"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,1,0,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,1,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "17"))) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "169")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "168")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "167")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "166")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "eqSymm" (formula "125") (term "1,0,0")) + (rule "replace_known_right" (formula "125") (term "1,0,0") (ifseqformula "165")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfUnion" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "applyEqReverse" (formula "126") (term "0") (ifseqformula "125")) + (rule "hideAuxiliaryEq" (formula "125")) + (rule "commuteUnion_2" (formula "121") (term "1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,1,0")) + (rule "commuteUnion" (formula "121") (term "0,0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "0,1,0")) + (rule "commuteUnion_2" (formula "121") (term "1,0")) + (rule "tryEmpty" (formula "202") (term "1")) + (rule "blockEmptyLabel" (formula "202") (term "1")) + (rule "blockEmpty" (formula "202") (term "1")) + (rule "methodCallEmpty" (formula "202") (term "1")) + (builtin "One Step Simplification" (formula "202")) + (rule "emptyModality" (formula "202") (term "1")) + (builtin "One Step Simplification" (formula "202")) + (rule "closeTrue" (formula "202")) + ) + (branch "Precondition" + (rule "andRight" (formula "201")) + (branch + (builtin "One Step Simplification" (formula "201")) + (rule "translateJavaSubInt" (formula "201") (term "0,0")) + (rule "polySimp_elimSub" (formula "201") (term "0,0")) + (rule "polySimp_addComm0" (formula "201") (term "0,0")) + (rule "close" (formula "201") (ifseqformula "19")) + ) + (branch + (builtin "One Step Simplification" (formula "201")) + (rule "wellFormedAnonEQ" (formula "201") (ifseqformula "121")) + (rule "wellFormedAnon" (formula "201") (term "0")) + (rule "wellFormedAnon" (formula "201") (term "0,0")) + (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0") (ifseqformula "93")) + (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0") (ifseqformula "67")) + (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0,0,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "201") (term "0,0,0,0,0,0,0,0") (ifseqformula "38")) + (rule "wellFormedAnon" (formula "201") (term "0,0,0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "201") (term "1,0,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "201") (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "47")) (ifInst "" (formula "58")) (ifInst "" (formula "63")) (ifInst "" (formula "66")) (ifInst "" (formula "92")) (ifInst "" (formula "109")) (ifInst "" (formula "120"))) + (rule "closeTrue" (formula "201")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "132")) + (builtin "One Step Simplification" (formula "202")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,1,1,1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,1,0,1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,1,0,1,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,1,1,1,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "132") (term "0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "132")) + (rule "expand_inInt" (formula "132") (term "1,0,0,1,1")) + (rule "expand_inInt" (formula "132") (term "1,0,0,1,0,1,1")) + (rule "replace_int_MAX" (formula "132") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "132") (term "0,1,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "132") (term "0,1,1,0,0,1,0,1,1")) + (rule "replace_int_MAX" (formula "132") (term "1,0,1,0,0,1,0,1,1")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "134")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "134")) + (rule "exLeft" (formula "137") (inst "sk=i_1")) + (rule "andLeft" (formula "137")) + (rule "andLeft" (formula "137")) + (rule "andLeft" (formula "137")) + (rule "andLeft" (formula "139")) + (rule "exLeft" (formula "141") (inst "sk=j_1")) + (rule "andLeft" (formula "141")) + (rule "notLeft" (formula "142")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "142")) + (rule "andLeft" (formula "141")) + (rule "translateJavaSubInt" (formula "136") (term "3,0")) + (rule "eqSymm" (formula "145")) + (rule "translateJavaCastInt" (formula "145") (term "2,1")) + (rule "translateJavaCastInt" (formula "145") (term "2,0")) + (rule "replace_known_left" (formula "135") (term "0") (ifseqformula "132")) + (builtin "One Step Simplification" (formula "135")) + (rule "true_left" (formula "135")) + (rule "polySimp_elimSub" (formula "135") (term "3,0")) + (rule "polySimp_addComm0" (formula "135") (term "3,0")) + (rule "lenOfSeqDef" (formula "137") (term "1")) + (rule "polySimp_elimSub" (formula "137") (term "1,1")) + (rule "polySimp_addComm0" (formula "137") (term "1,1")) + (rule "lenOfSeqDef" (formula "141") (term "1")) + (rule "polySimp_elimSub" (formula "141") (term "1,1")) + (rule "polySimp_addComm0" (formula "141") (term "1,1")) + (rule "getOfSeqDef" (formula "144") (term "0,2,1")) + (rule "castDel" (formula "144") (term "1,0,2,1")) + (rule "castDel" (formula "144") (term "2,0,2,1")) + (rule "replace_known_left" (formula "144") (term "0,0,0,2,1") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "144")) + (rule "polySimp_elimSub" (formula "144") (term "1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "144") (term "0,2,1,0,2,1")) + (rule "polySimp_addComm0" (formula "144") (term "1,0,0,2,1")) + (rule "castedGetAny" (formula "144") (term "2,0")) + (rule "getOfSeqDef" (formula "144") (term "2,0")) + (rule "replace_known_left" (formula "144") (term "0,0,2,0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "144")) + (rule "polySimp_elimSub" (formula "144") (term "1,0,2,0")) + (rule "polySimp_addComm0" (formula "144") (term "0,2,0,1,2,0")) + (rule "polySimp_addComm0" (formula "144") (term "1,0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "136")) + (rule "inEqSimp_commuteLeq" (formula "139")) + (rule "inEqSimp_commuteLeq" (formula "143")) + (rule "inEqSimp_commuteLeq" (formula "140")) + (rule "applyEq" (formula "127") (term "7,0") (ifseqformula "88")) + (rule "applyEq" (formula "127") (term "5,0") (ifseqformula "88")) + (rule "applyEq" (formula "135") (term "2,0") (ifseqformula "88")) + (rule "applyEq" (formula "125") (term "0,2,0") (ifseqformula "88")) + (rule "applyEq" (formula "124") (term "2,0") (ifseqformula "88")) + (rule "pullOutSelect" (formula "144") (term "1,0,2,1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "214"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "94")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "13"))) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "121") (ifseqformula "214")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "172")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "171")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "169")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "211"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "145") (term "0,1,2,0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "215"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14"))) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "122") (ifseqformula "215")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "175")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "172")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "171")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "212"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "127") (term "0") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnonEQ" (formula "127") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "215"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,1,0,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,1,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "127")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "19"))) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "184")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "183")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "182")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "181")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "180")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "1,0,0")) + (rule "replace_known_right" (formula "127") (term "1,0,0") (ifseqformula "179")) + (builtin "One Step Simplification" (formula "127")) + (rule "elementOfUnion" (formula "127") (term "0,0")) + (builtin "One Step Simplification" (formula "127")) + (rule "applyEqReverse" (formula "128") (term "0") (ifseqformula "127")) + (rule "hideAuxiliaryEq" (formula "127")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "96")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "96")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,1,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,1,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "69") (ifseqformula "216")) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "eqSymm" (formula "2") (term "0,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "169"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,1,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (rule "eqSymm" (formula "2") (term "0,0,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "216")) (ifInst "" (formula "15"))) + (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "40") (ifseqformula "216")) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (rule "disjointAllFields" (formula "2") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "2")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "70") (ifseqformula "217")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "170")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "171"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "171")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "217")) (ifInst "" (formula "16"))) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "41") (ifseqformula "217")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_19")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "218")) (ifInst "" (formula "17"))) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "narrowSelectArrayType" (formula "3") (term "2,0") (ifseqformula "15") (ifseqformula "217")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_20")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "218")) (ifInst "" (formula "17"))) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "15") (ifseqformula "217")) + (rule "commuteUnion_2" (formula "125") (term "1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,1,0")) + (rule "commuteUnion" (formula "125") (term "0,0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "0,1,0")) + (rule "commuteUnion_2" (formula "125") (term "1,0")) + (rule "commute_or_2" (formula "138") (term "1")) + (rule "ifUnfold" (formula "218") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "218") (term "1") (newnames "x_6")) + (builtin "Use Dependency Contract" (formula "149") (term "1") (ifInst "" (formula "149") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "166")) (ifInst "" (formula "106"))) + (rule "wellFormedAnon" (formula "148") (term "1,1,0,0")) + (rule "wellFormedAnon" (formula "148") (term "0,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,0,0,0") (ifseqformula "97")) + (rule "wellFormedAnon" (formula "148") (term "0,1,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "107")) (ifInst "" (formula "113"))) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0") (ifseqformula "97")) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0") (ifseqformula "71")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "148") (term "1,0")) + (rule "replace_int_MAX" (formula "148") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "148") (term "0,1,1,0")) + (rule "replace_known_left" (formula "148") (term "1,0,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70"))) + (rule "inEqSimp_commuteLeq" (formula "148") (term "1,0")) + (builtin "Use Dependency Contract" (formula "150") (term "0") (ifInst "" (formula "150") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "167")) (ifInst "" (formula "106"))) + (rule "wellFormedAnon" (formula "149") (term "0,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0,0,0") (ifseqformula "97")) + (rule "wellFormedAnon" (formula "149") (term "1,1,0,0")) + (rule "wellFormedAnon" (formula "149") (term "0,1,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "107")) (ifInst "" (formula "113"))) + (rule "wellFormedAnonEQ" (formula "149") (term "0,0") (ifseqformula "97")) + (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0") (ifseqformula "71")) + (rule "wellFormedAnon" (formula "149") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "149") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0,0,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "149") (term "0,0,0,0,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "149") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "149") (term "1,0")) + (rule "replace_int_MAX" (formula "149") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "149") (term "0,1,1,0")) + (rule "replace_known_left" (formula "149") (term "1,0,0,0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")) (ifInst "" (formula "96"))) + (rule "inEqSimp_commuteLeq" (formula "149") (term "1,0")) + (rule "shift_paren_or" (formula "138")) + (rule "commute_and" (formula "148") (term "0")) + (rule "shift_paren_or" (formula "138") (term "0")) + (rule "commute_and" (formula "149") (term "0")) + (rule "shift_paren_or" (formula "138") (term "0,0")) + (builtin "Use Dependency Contract" (formula "48") (ifInst "" (formula "220") (term "0,0,1")) (ifInst "" (formula "42")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "150") (term "1,1,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "150") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "150") (term "0,1,0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "218")) (ifInst "" (formula "22")) (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "24")) (ifInst "" (formula "48")) (ifInst "" (formula "24"))) + (rule "true_left" (formula "150")) + (rule "commute_or_2" (formula "138") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0")) + (rule "inequality_comparison_simple" (formula "220") (term "1")) + (builtin "One Step Simplification" (formula "220")) + (rule "replace_known_left" (formula "220") (term "0,0,1,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "220")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0,0")) + (builtin "Use Dependency Contract" (formula "150") (term "1") (ifInst "" (formula "150") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "150") (term "1,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "1,0,0,0,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "168")) (ifInst "" (formula "137")) (ifInst "" (formula "135"))) + (rule "wellFormedAnonEQ" (formula "150") (term "1,0,0") (ifseqformula "125")) + (rule "wellFormedAnon" (formula "150") (term "0,1,0,0")) + (rule "wellFormedAnon" (formula "150") (term "0,0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,1,0,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0,0,0,0,0") (ifseqformula "97")) + (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0,1,0,0") (ifseqformula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0,0,0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "72")) (ifInst "" (formula "70")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124"))) + (rule "wellFormedAnon" (formula "150") (term "0,0")) + (rule "wellFormedAnon" (formula "150") (term "0,0,0")) + (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "150") (term "0,0,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "150") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "150") (term "1,0")) + (rule "replace_int_MIN" (formula "150") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "150") (term "1,0,1,0")) + (rule "replace_known_left" (formula "150") (term "1,0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67"))) + (rule "inEqSimp_commuteLeq" (formula "150") (term "1,0")) + (rule "commute_and" (formula "150") (term "0")) + (builtin "Use Dependency Contract" (formula "151") (term "0") (ifInst "" (formula "151") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "151") (term "1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,1,0,0,0") (ifseqformula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "1,0,0,0,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "169")) (ifInst "" (formula "124")) (ifInst "" (formula "137")) (ifInst "" (formula "135"))) + (rule "wellFormedAnon" (formula "151") (term "0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "1,1,0,0") (ifseqformula "125")) + (rule "wellFormedAnon" (formula "151") (term "0,0,1,0,0")) + (rule "wellFormedAnon" (formula "151") (term "0,1,1,0,0")) + (rule "wellFormedAnon" (formula "151") (term "0,0,1,1,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,1,0,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "0,0,0,0,0,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (term "0,0,0,0,0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "72")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124"))) + (rule "wellFormedAnonEQ" (formula "151") (term "1,0,0") (ifseqformula "97")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0") (ifseqformula "71")) + (rule "wellFormedAnon" (formula "151") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,1,0,0") (ifseqformula "71")) + (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "151") (term "0,0,1,0,0")) + (rule "wellFormedAnon" (formula "151") (term "0,0,0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,1,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "151") (term "0,0,0,0,0,1,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "151") (term "0,0,0,0,0,0,1,0,0")) + (rule "expand_inInt" (formula "151") (term "1,0")) + (rule "replace_int_MIN" (formula "151") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "151") (term "1,0,1,0")) + (rule "replace_known_left" (formula "151") (term "1,1,0,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70")) (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "67")) (ifInst "" (formula "70"))) + (rule "inEqSimp_commuteLeq" (formula "151") (term "1,0")) + (rule "commute_and" (formula "151") (term "0")) + (rule "shift_paren_or" (formula "138") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0")) + (rule "commute_or_2" (formula "138") (term "0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0")) + (rule "commute_or_2" (formula "138") (term "0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0,0")) + (rule "commute_or_2" (formula "138") (term "0,0")) + (rule "commute_or_2" (formula "138") (term "0")) + (rule "commute_or_2" (formula "138")) + (rule "ifSplit" (formula "222")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "223")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "222") (term "1")) + (builtin "Block Contract (Internal)" (formula "222") (newnames "anonOut_heap_5,result_230,exc_272,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "152")) + (builtin "One Step Simplification" (formula "223")) + (rule "andLeft" (formula "152")) + (rule "translateJavaSubInt" (formula "152") (term "0,0")) + (rule "polySimp_elimSub" (formula "152") (term "0,0")) + (rule "polySimp_addComm0" (formula "152") (term "0,0")) + (rule "variableDeclarationAssign" (formula "223") (term "1")) + (rule "variableDeclaration" (formula "223") (term "1") (newnames "exc_272_1")) + (rule "assignment" (formula "223") (term "1")) + (builtin "One Step Simplification" (formula "223")) + (rule "emptyStatement" (formula "223") (term "1")) + (builtin "One Step Simplification" (formula "223")) + (rule "emptyStatement" (formula "223") (term "1")) + (rule "tryEmpty" (formula "223") (term "1")) + (rule "blockEmptyLabel" (formula "223") (term "1")) + (rule "blockEmpty" (formula "223") (term "1")) + (rule "methodCallEmpty" (formula "223") (term "1")) + (builtin "One Step Simplification" (formula "223")) + (rule "emptyModality" (formula "223") (term "1")) + (builtin "One Step Simplification" (formula "223")) + (rule "closeTrue" (formula "223")) + ) + (branch "Precondition" + (rule "andRight" (formula "222")) + (branch + (builtin "One Step Simplification" (formula "222")) + (rule "translateJavaSubInt" (formula "222") (term "0,0")) + (rule "polySimp_elimSub" (formula "222") (term "0,0")) + (rule "polySimp_addComm0" (formula "222") (term "0,0")) + (rule "close" (formula "222") (ifseqformula "23")) + ) + (branch + (builtin "One Step Simplification" (formula "222")) + (rule "wellFormedAnon" (formula "222")) + (rule "wellFormedAnonEQ" (formula "222") (term "0") (ifseqformula "125")) + (rule "wellFormedAnon" (formula "222") (term "0,0")) + (rule "wellFormedAnon" (formula "222") (term "0,0,0")) + (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0") (ifseqformula "97")) + (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0") (ifseqformula "71")) + (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0,0,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "222") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "222") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "222") (term "1,0,0,0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "222") (ifInst "" (formula "15")) (ifInst "" (formula "39")) (ifInst "" (formula "41")) (ifInst "" (formula "51")) (ifInst "" (formula "62")) (ifInst "" (formula "70")) (ifInst "" (formula "96")) (ifInst "" (formula "107")) (ifInst "" (formula "113")) (ifInst "" (formula "124")) (ifInst "" (formula "137"))) + (rule "closeTrue" (formula "222")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "152")) + (builtin "One Step Simplification" (formula "223")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,1,0,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "152")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,1,1,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "152")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "97")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "152")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "152")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "152")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "152") (term "0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "152")) + (rule "expand_inInt" (formula "152") (term "1,0,0,1,0,0,1")) + (rule "expand_inInt" (formula "152") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "152") (term "0,1,1,0,0,1,0,0,1")) + (rule "replace_int_MAX" (formula "152") (term "1,0,1,0,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "152") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "152") (term "1,0,1,0,0,0,1")) + (rule "andLeft" (formula "152")) + (rule "andLeft" (formula "152")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "152")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "157")) + (rule "exLeft" (formula "156") (inst "sk=i_2")) + (rule "andLeft" (formula "156")) + (rule "andLeft" (formula "156")) + (rule "andLeft" (formula "157")) + (rule "andLeft" (formula "156")) + (rule "exLeft" (formula "160") (inst "sk=j_2")) + (rule "andLeft" (formula "160")) + (rule "andLeft" (formula "160")) + (rule "notLeft" (formula "162")) + (rule "andLeft" (formula "161")) + (rule "andLeft" (formula "160")) + (rule "eqSymm" (formula "166")) + (rule "replace_known_left" (formula "155") (term "0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "155")) + (rule "true_left" (formula "155")) + (rule "inEqSimp_commuteLeq" (formula "158")) + (rule "inEqSimp_commuteLeq" (formula "155")) + (rule "inEqSimp_commuteLeq" (formula "162")) + (rule "inEqSimp_commuteLeq" (formula "159")) + (rule "pullOutSelect" (formula "165") (term "2,0") (inst "selectSK=arr_21")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "98")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "54")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "98")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "54")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "236"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "98")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "54")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "eqSymm" (formula "166")) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "160")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "195")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "196")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "193")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "192")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "233"))) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "191")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "166") (term "2,0") (inst "selectSK=arr_22")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "55")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "55")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "237"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,1,0,0") (ifseqformula "55")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "157")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "196")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "195")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "197")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0,0") (ifseqformula "193")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfUnion" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "234"))) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "192")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_23")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "100")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "100")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,1,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,1,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "eqSymm" (formula "2") (term "0,0,0")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "191")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "192"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0") (ifseqformula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "0,1,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (rule "eqSymm" (formula "2") (term "0,0,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "192")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "238")) (ifInst "" (formula "19"))) + (rule "elementOfUnion" (formula "2") (term "0,0")) + (rule "disjointAllFields" (formula "2") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "2")) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "162")) + (builtin "One Step Simplification" (formula "2")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_24")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,1,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,1,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "192")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "193"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "193")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "239")) (ifInst "" (formula "20"))) + (rule "elementOfUnion" (formula "1") (term "0,0")) + (rule "disjointAllFields" (formula "1") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "159")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_25")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "240")) (ifInst "" (formula "21"))) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_26")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "240")) (ifInst "" (formula "21"))) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "shift_paren_or" (formula "158")) + (rule "ifUnfold" (formula "240") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "240") (term "1") (newnames "x_7")) + (rule "commute_or_2" (formula "158") (term "1,0")) + (rule "shift_paren_or" (formula "158") (term "0")) + (rule "shift_paren_or" (formula "158") (term "0,0")) + (builtin "Use Dependency Contract" (formula "152") (term "1,1") (ifInst "" (formula "152") (term "0,1,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "169") (term "1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,1,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "169") (term "1,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,1,1,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,0,1,0,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "169") (term "0,1,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "188")) (ifInst "" (formula "76")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "100")) (ifInst "" (formula "111"))) + (rule "wellFormedAnon" (formula "169") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "169") (term "1,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "169") (term "0,1,0,0,0")) + (rule "wellFormedAnon" (formula "169") (term "0,0,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,1,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "169") (term "0,0,0,0,1,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "169") (term "0,0,0,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "169") (term "1,0,0")) + (rule "replace_int_MAX" (formula "169") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "169") (term "0,1,1,0,0")) + (rule "replace_known_left" (formula "169") (term "1,0,0,0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "169") (term "1,0,0")) + (builtin "Use Dependency Contract" (formula "152") (term "0,1") (ifInst "" (formula "152") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "189")) (ifInst "" (formula "110"))) + (rule "wellFormedAnon" (formula "170") (term "1,1,0,0")) + (rule "wellFormedAnon" (formula "170") (term "0,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "170") (term "0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnon" (formula "170") (term "0,1,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "170") (term "0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "76")) (ifInst "" (formula "111")) (ifInst "" (formula "111")) (ifInst "" (formula "117"))) + (rule "wellFormedAnonEQ" (formula "170") (term "0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "170") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "170") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "170") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "170") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "170") (term "1,0")) + (rule "replace_int_MAX" (formula "170") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "170") (term "0,1,1,0")) + (rule "replace_known_left" (formula "170") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "100"))) + (rule "inEqSimp_commuteLeq" (formula "170") (term "1,0")) + (builtin "Use Dependency Contract" (formula "153") (term "1,1") (ifInst "" (formula "153") (term "0,1,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "1,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,1,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,1,1,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,1,0,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,1,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "190")) (ifInst "" (formula "76")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "100")) (ifInst "" (formula "111"))) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "1,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,1,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,0,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,1,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "171") (term "1,0,0")) + (rule "replace_int_MAX" (formula "171") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "171") (term "0,1,1,0,0")) + (rule "replace_known_left" (formula "171") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "171") (term "1,0,0")) + (builtin "Use Dependency Contract" (formula "153") (term "0,1") (ifInst "" (formula "153") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191")) (ifInst "" (formula "110"))) + (rule "wellFormedAnon" (formula "172") (term "0,1,0,0")) + (rule "wellFormedAnon" (formula "172") (term "1,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnon" (formula "172") (term "0,1,1,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,1,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "111")) (ifInst "" (formula "117"))) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "172") (term "1,0,0") (ifseqformula "101")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0") (ifseqformula "57")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,1,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,1,0,0")) + (rule "expand_inInt" (formula "172") (term "1,0")) + (rule "replace_int_MAX" (formula "172") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "172") (term "0,1,1,0")) + (rule "replace_known_left" (formula "172") (term "1,1,0,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0")) + (builtin "Use Dependency Contract" (formula "52") (ifInst "" (formula "244") (term "0,0,1")) (ifInst "" (formula "46")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "173") (term "1,1,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "173") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "173") (term "1,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "242")) (ifInst "" (formula "26")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "28")) (ifInst "" (formula "52"))) + (rule "true_left" (formula "173")) + (rule "shift_paren_or" (formula "158") (term "0,0,0")) + (rule "commute_and_2" (formula "169") (term "0")) + (rule "commute_and" (formula "170") (term "0")) + (builtin "Use Dependency Contract" (formula "154") (term "0,1") (ifInst "" (formula "154") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0,0") (ifseqformula "129")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "1,0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191")) (ifInst "" (formula "128")) (ifInst "" (formula "141")) (ifInst "" (formula "139"))) + (rule "wellFormedAnon" (formula "172") (term "0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "1,1,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,1,1,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,1,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,1,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128"))) + (rule "wellFormedAnonEQ" (formula "172") (term "1,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0") (ifseqformula "57")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,1,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,1,0,0")) + (rule "expand_inInt" (formula "172") (term "1,0")) + (rule "replace_int_MIN" (formula "172") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "172") (term "1,0,1,0")) + (rule "replace_known_left" (formula "172") (term "1,0,0,1,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "74")) (ifInst "" (formula "100"))) + (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0")) + (rule "commute_and_2" (formula "170") (term "0")) + (rule "inequality_comparison_simple" (formula "244") (term "1")) + (builtin "One Step Simplification" (formula "244")) + (rule "replace_known_left" (formula "244") (term "0,0,1,0") (ifseqformula "156")) + (builtin "One Step Simplification" (formula "244")) + (builtin "Use Dependency Contract" (formula "155") (term "0,1") (ifInst "" (formula "155") (term "0,0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "1,0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "192")) (ifInst "" (formula "141")) (ifInst "" (formula "139"))) + (rule "wellFormedAnonEQ" (formula "173") (term "1,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "173") (term "0,1,0,0")) + (rule "wellFormedAnon" (formula "173") (term "0,0,1,0,0")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,1,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128"))) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "173") (term "0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "173") (term "0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "173") (term "1,0")) + (rule "replace_int_MIN" (formula "173") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "173") (term "1,0,1,0")) + (rule "replace_known_left" (formula "173") (term "1,0,0,0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "173") (term "1,0")) + (rule "commute_and" (formula "171") (term "0")) + (rule "commute_and" (formula "169") (term "0,0")) + (rule "commute_and" (formula "171") (term "0")) + (rule "commute_or_2" (formula "158") (term "1,0,0,0,0")) + (rule "commute_and" (formula "170") (term "0,0")) + (rule "commute_and" (formula "171") (term "0")) + (rule "commute_and_2" (formula "169") (term "0")) + (rule "commute_and_2" (formula "170") (term "0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0")) + (builtin "Use Dependency Contract" (formula "171") (term "1") (ifInst "" (formula "171") (term "0,1")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "190"))) + (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "141")) (ifInst "" (formula "157"))) + (rule "wellFormedAnon" (formula "171") (term "1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,1,0,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "171") (term "0,0,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,1,1,0,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,1,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,0,1,1,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,1,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,1,1,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "171") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "141"))) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "171") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "171") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "171") (term "1,0,0")) + (rule "replace_int_MIN" (formula "171") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "171") (term "1,0,1,0,0")) + (rule "replace_known_left" (formula "171") (term "1,0,0,0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "171") (term "1,0,0")) + (rule "commute_and_2" (formula "171") (term "0")) + (rule "commute_and" (formula "171") (term "0,0")) + (rule "commute_and_2" (formula "171") (term "0")) + (builtin "Use Dependency Contract" (formula "172") (term "0") (ifInst "" (formula "172") (term "0,0")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "191"))) + (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,1,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "141")) (ifInst "" (formula "157"))) + (rule "wellFormedAnon" (formula "172") (term "1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,1,0,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,1,1,0,0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,1,1,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,1,1,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,1,1,0,0,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "172") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "76")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "141"))) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "172") (term "0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "172") (term "0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "172") (term "1,0,0")) + (rule "replace_int_MIN" (formula "172") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "172") (term "1,0,1,0,0")) + (rule "replace_known_left" (formula "172") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74"))) + (rule "inEqSimp_commuteLeq" (formula "172") (term "1,0,0")) + (rule "commute_or_2" (formula "158") (term "1,0,0,0,0,0")) + (rule "commute_and_2" (formula "172") (term "0")) + (rule "commute_and" (formula "172") (term "0,0")) + (rule "commute_and_2" (formula "172") (term "0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0")) + (rule "ifSplit" (formula "244")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "245")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "244") (term "1")) + (builtin "Block Contract (Internal)" (formula "244") (newnames "anonOut_heap_6,result_231,exc_273,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "173")) + (builtin "One Step Simplification" (formula "245")) + (rule "andLeft" (formula "173")) + (rule "translateJavaSubInt" (formula "173") (term "0,0")) + (rule "polySimp_elimSub" (formula "173") (term "0,0")) + (rule "polySimp_addComm0" (formula "173") (term "0,0")) + (rule "variableDeclarationAssign" (formula "245") (term "1")) + (rule "variableDeclaration" (formula "245") (term "1") (newnames "exc_273_1")) + (rule "assignment" (formula "245") (term "1")) + (builtin "One Step Simplification" (formula "245")) + (rule "emptyStatement" (formula "245") (term "1")) + (builtin "One Step Simplification" (formula "245")) + (rule "emptyStatement" (formula "245") (term "1")) + (rule "tryEmpty" (formula "245") (term "1")) + (rule "blockEmptyLabel" (formula "245") (term "1")) + (rule "blockEmpty" (formula "245") (term "1")) + (rule "methodCallEmpty" (formula "245") (term "1")) + (builtin "One Step Simplification" (formula "245")) + (rule "emptyModality" (formula "245") (term "1")) + (builtin "One Step Simplification" (formula "245")) + (rule "closeTrue" (formula "245")) + ) + (branch "Precondition" + (rule "andRight" (formula "244")) + (branch + (builtin "One Step Simplification" (formula "244")) + (rule "translateJavaSubInt" (formula "244") (term "0,0")) + (rule "polySimp_elimSub" (formula "244") (term "0,0")) + (rule "polySimp_addComm0" (formula "244") (term "0,0")) + (rule "close" (formula "244") (ifseqformula "27")) + ) + (branch + (builtin "One Step Simplification" (formula "244")) + (rule "wellFormedAnon" (formula "244")) + (rule "wellFormedAnon" (formula "244") (term "0")) + (rule "wellFormedAnonEQ" (formula "244") (term "0,0") (ifseqformula "129")) + (rule "wellFormedAnon" (formula "244") (term "0,0,0")) + (rule "wellFormedAnon" (formula "244") (term "0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0") (ifseqformula "101")) + (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0,0,0,0") (ifseqformula "57")) + (rule "wellFormedAnonEQ" (formula "244") (term "0,0,0,0,0,0,0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "244") (term "0,0,0,0,0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "244") (term "1,0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "244") (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "66")) (ifInst "" (formula "71")) (ifInst "" (formula "74")) (ifInst "" (formula "100")) (ifInst "" (formula "111")) (ifInst "" (formula "117")) (ifInst "" (formula "128")) (ifInst "" (formula "157"))) + (rule "closeTrue" (formula "244")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "173")) + (builtin "One Step Simplification" (formula "245")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,1,1,1,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,1,0,1,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,1,0,1,0") (ifseqformula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,1,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,1,1,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "173")) + (rule "andLeft" (formula "173")) + (rule "andLeft" (formula "174")) + (rule "andLeft" (formula "173")) + (rule "andLeft" (formula "174")) + (rule "andLeft" (formula "173")) + (rule "translateJavaSubInt" (formula "177") (term "3,0")) + (rule "replace_known_left" (formula "176") (term "0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "176")) + (rule "true_left" (formula "176")) + (rule "polySimp_elimSub" (formula "176") (term "3,0")) + (rule "polySimp_addComm0" (formula "176") (term "3,0")) + (rule "applyEq" (formula "176") (term "2,0") (ifseqformula "96")) + (rule "shift_paren_or" (formula "175")) + (rule "shift_paren_or" (formula "175") (term "0")) + (rule "shift_paren_or" (formula "175") (term "0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0")) + (rule "ifUnfold" (formula "249") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "249") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "249") (term "1")) + (builtin "One Step Simplification" (formula "249")) + (rule "replace_known_left" (formula "249") (term "0,0,1,0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "249")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "1,0,0,0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "158") (term "0,0,0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158")) + (rule "commute_or_2" (formula "158") (term "0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0")) + (rule "commute_or_2" (formula "158") (term "0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0")) + (rule "commute_or_2" (formula "158") (term "0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0")) + (rule "commute_or_2" (formula "158") (term "0")) + (rule "commute_or_2" (formula "158")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0,0")) + (rule "commute_or_2" (formula "158") (term "0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0,0")) + (rule "shift_paren_or" (formula "175") (term "0,0,0,0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0")) + (rule "commute_or_2" (formula "175") (term "0")) + (rule "commute_or_2" (formula "175")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0")) + (rule "commute_or_2" (formula "175") (term "0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0")) + (rule "commute_or_2" (formula "175") (term "0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0,0")) + (rule "commute_or_2" (formula "175") (term "0,0")) + (rule "commute_or_2" (formula "175") (term "0")) + (rule "commute_or_2" (formula "175")) + (builtin "Use Dependency Contract" (formula "52") (ifInst "" (formula "249") (term "0,0,1")) (ifInst "" (formula "46")) (contract "de.wiesler.Storage[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "178") (term "1,1,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnon" (formula "178") (term "0,1,1,0,0,0")) + (rule "replace_known_left" (formula "178") (term "1,0,0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "178") (ifInst "" (formula "247")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "43")) (ifInst "" (formula "45")) (ifInst "" (formula "28")) (ifInst "" (formula "52")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "178")) + (rule "ifSplit" (formula "249")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "250")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "249") (term "1")) + (rule "methodCallReturn" (formula "249") (term "1")) + (rule "assignment" (formula "249") (term "1")) + (builtin "One Step Simplification" (formula "249")) + (rule "methodCallEmpty" (formula "249") (term "1")) + (rule "tryEmpty" (formula "249") (term "1")) + (rule "emptyModality" (formula "249") (term "1")) + (rule "andRight" (formula "249")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "249")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "249") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "52") (userinteraction)) + (rule "close" (formula "249") (ifseqformula "52")) + ) + (branch + (builtin "One Step Simplification" (formula "249")) + (rule "closeTrue" (formula "249")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (partition)" + (builtin "One Step Simplification" (formula "121")) + (builtin "One Step Simplification" (formula "191")) + (rule "andLeft" (formula "121")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "122")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,1,0") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,1,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "122")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "122")) + (rule "andLeft" (formula "122")) + (rule "andLeft" (formula "122")) + (rule "andLeft" (formula "124")) + (rule "notLeft" (formula "122")) + (rule "close" (formula "125") (ifseqformula "124")) + ) + (branch "Pre (partition)" + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "188")) (ifInst "" (formula "187")) (ifInst "" (formula "136")) (ifInst "" (formula "186")) (ifInst "" (formula "188")) (ifInst "" (formula "187")) (ifInst "" (formula "136")) (ifInst "" (formula "186"))) + (rule "andRight" (formula "189")) + (branch "Case 1" + (rule "andRight" (formula "189")) + (branch "Case 1" + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "189") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "44") (userinteraction)) + (rule "close" (formula "189") (ifseqformula "44")) + ) + (branch "Case 2" + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "189") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "84") (userinteraction)) + (rule "close" (formula "189") (ifseqformula "84")) + ) + ) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "andRight" (formula "189")) + (branch + (rule "wellFormedAnon" (formula "189")) + (rule "wellFormedAnon" (formula "189") (term "0")) + (rule "wellFormedAnonEQ" (formula "189") (term "0,0") (ifseqformula "93")) + (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0") (ifseqformula "67")) + (rule "wellFormedAnon" (formula "189") (term "0,0,0,0")) + (rule "wellFormedAnon" (formula "189") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0,0,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "189") (term "0,0,0,0,0,0,0") (ifseqformula "38")) + (rule "wellFormedAnon" (formula "189") (term "0,0,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "189") (term "1,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "11")) (ifInst "" (formula "35")) (ifInst "" (formula "37")) (ifInst "" (formula "47")) (ifInst "" (formula "58")) (ifInst "" (formula "63")) (ifInst "" (formula "66")) (ifInst "" (formula "103")) (ifInst "" (formula "109"))) + (rule "closeTrue" (formula "189")) + ) + (branch + (rule "orRight" (formula "189")) + (rule "orRight" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "189")) + ) + ) + (branch + (rule "expand_inInt" (formula "189")) + (rule "replace_int_MAX" (formula "189") (term "1,0")) + (rule "replace_int_MIN" (formula "189") (term "0,1")) + (rule "replace_known_left" (formula "189") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "189")) + (rule "inEqSimp_leqRight" (formula "137")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "189")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "115")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "119")) + (rule "polySimp_mulComm0" (formula "119") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0")) + (rule "jmod_axiom" (formula "75") (term "0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "115")) + (rule "polySimp_mulComm0" (formula "115") (term "1")) + (rule "polySimp_rightDist" (formula "115") (term "1")) + (rule "mul_literals" (formula "115") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "115") (term "1,1")) + (rule "polySimp_elimOne" (formula "115") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "122") (term "2,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "eqSymm" (formula "121")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "118")) + (rule "polySimp_mulComm0" (formula "118") (term "1")) + (rule "polySimp_rightDist" (formula "118") (term "1")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,1")) + (rule "mul_literals" (formula "118") (term "0,1")) + (rule "polySimp_elimOne" (formula "118") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "121") (term "2,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "120")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76") (term "0,0,0")) + (rule "mul_literals" (formula "76") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "0,0,0")) + (rule "mul_literals" (formula "81") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "1")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + (branch + (rule "expand_inInt" (formula "189")) + (rule "replace_int_MAX" (formula "189") (term "1,0")) + (rule "replace_int_MIN" (formula "189") (term "0,1")) + (rule "replace_known_left" (formula "189") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "189")) + (rule "inEqSimp_leqRight" (formula "137")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "189")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "119")) + (rule "polySimp_mulComm0" (formula "119") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "115")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "107") (term "1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0")) + (rule "jmod_axiom" (formula "75") (term "0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "119")) + (rule "polySimp_mulComm0" (formula "119") (term "1")) + (rule "polySimp_rightDist" (formula "119") (term "1")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,1")) + (rule "mul_literals" (formula "119") (term "0,1")) + (rule "polySimp_elimOne" (formula "119") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "122") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "114")) + (rule "polySimp_mulComm0" (formula "114") (term "1")) + (rule "polySimp_rightDist" (formula "114") (term "1")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,1")) + (rule "mul_literals" (formula "114") (term "0,1")) + (rule "polySimp_elimOne" (formula "114") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "121") (term "2,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76") (term "0,0,0")) + (rule "mul_literals" (formula "76") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "0,0,0")) + (rule "mul_literals" (formula "81") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "105") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "53")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch + (rule "orRight" (formula "189")) + (rule "orRight" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "189")) + ) + ) + (branch + (rule "orRight" (formula "189")) + (rule "orRight" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "68"))) + (rule "closeTrue" (formula "189")) + ) + ) + (branch + (rule "orRight" (formula "189")) + (rule "orRight" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (ifseqformula "93")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "189")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "189") (term "0,0,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "189") (ifInst "" (formula "18"))) + (rule "closeTrue" (formula "189")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (PartitionResult)" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "150")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0,1,0,1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,0,0,0,0,1,0,0,1,0,1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,0,0") (ifseqformula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0,0,1,0") (ifseqformula "89")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,0,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0,0,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,1,1,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,0,0,0,1,1,0,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "92")) + (rule "notLeft" (formula "90")) + (rule "close" (formula "95") (ifseqformula "94")) + ) + (branch "Pre (PartitionResult)" + (builtin "One Step Simplification" (formula "148")) + (rule "wellFormedAnonEQ" (formula "148") (term "0") (ifseqformula "64")) + (rule "wellFormedAnon" (formula "148") (term "0,0")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0")) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "148") (term "1")) + (rule "replace_int_MAX" (formula "148") (term "1,0,1")) + (rule "replace_int_MIN" (formula "148") (term "0,1,1")) + (rule "replace_known_left" (formula "148") (term "0,0,0,0,0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63")) (ifInst "" (formula "82"))) + (rule "inEqSimp_leqRight" (formula "96")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,1,0,0,0")) + (rule "inEqSimp_leqRight" (formula "148")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "59") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "59") (term "1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0,0,0")) + (rule "times_zero_2" (formula "74") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0,0,0")) + (rule "jmod_axiom" (formula "71") (term "0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0,0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1")) + (rule "mul_literals" (formula "54") (term "0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "74") (term "0,0,0")) + (rule "mul_literals" (formula "74") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "53")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "23")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "21")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "55") (term "0,1,1,0,0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,1,1,0,0,0")) + (rule "qeq_literals" (formula "55") (term "0,0,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "polySimp_addAssoc" (formula "55") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "81") (ifseqformula "1")) + (rule "qeq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "closeFalse" (formula "81")) + ) + ) + (branch "Exceptional Post (equal_buckets)" + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "80"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "86")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,0,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "close" (formula "88") (ifseqformula "87")) + ) + (branch "Pre (equal_buckets)" + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "80"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "146") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "65"))) + (rule "wellFormedAnonEQ" (formula "146") (ifseqformula "64")) + (rule "wellFormedAnon" (formula "146") (term "0")) + (rule "wellFormedAnon" (formula "146") (term "0,0")) + (rule "wellFormedAnonEQ" (formula "146") (term "0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "146") (term "0,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "146") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "146") (term "1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60"))) + (rule "closeTrue" (formula "146")) + ) + (branch "Null reference (classifier = null)" + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "93"))) + (rule "closeTrue" (formula "146")) + ) + ) + (branch "Exceptional Post (num_buckets)" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "80"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "82")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,0,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "close" (formula "84") (ifseqformula "83")) + ) + (branch "Pre (num_buckets)" + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "80"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "65"))) + (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "64")) + (rule "wellFormedAnon" (formula "142") (term "0")) + (rule "wellFormedAnon" (formula "142") (term "0,0")) + (rule "wellFormedAnonEQ" (formula "142") (term "0,0,0") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "142") (term "0,0,0,0") (ifseqformula "36")) + (rule "wellFormedAnon" (formula "142") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "142") (term "1,0,0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "9")) (ifInst "" (formula "33")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60")) (ifInst "" (formula "63"))) + (rule "closeTrue" (formula "142")) + ) + (branch "Null reference (classifier = null)" + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "89"))) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Exceptional Post (from_sorted_samples)" + (builtin "One Step Simplification" (formula "117")) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "65")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,0,0,0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "notLeft" (formula "65")) + (rule "close" (formula "69") (ifseqformula "68")) + ) + (branch "Pre (from_sorted_samples)" + (builtin "One Step Simplification" (formula "115")) + (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,1")) + (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,0,1")) + (rule "wellFormedAnonEQ" (formula "115") (term "0,0,0,0,0,0,1") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,1,1,0,0,1") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,1,1,0,0,0,1") (ifseqformula "46")) + (rule "wellFormedAnonEQ" (formula "115") (term "0,0,0,0,0,0,0,1") (ifseqformula "36")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0,1,1,0,0,1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "35")) (ifInst "" (formula "45")) (ifInst "" (formula "55")) (ifInst "" (formula "60"))) + (rule "wellFormedAnon" (formula "115") (term "0,0,0,0,1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0,1,1,0,0,0,1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "9")) (ifInst "" (formula "33"))) + (rule "expand_inInt" (formula "115") (term "1,0,1")) + (rule "expand_inInt" (formula "115") (term "1,1")) + (rule "replace_int_MAX" (formula "115") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "115") (term "0,1,1,0,1")) + (rule "replace_int_MIN" (formula "115") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "115") (term "1,0,1,1")) + (rule "replace_known_left" (formula "115") (term "0,1,0,1") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "115")) + (rule "inEqSimp_leqRight" (formula "63")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,0,0,0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,1")) + (rule "replace_known_left" (formula "115") (term "1,0,1") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "115")) + (rule "inEqSimp_homoInEq0" (formula "53")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,0,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_rightDist" (formula "53") (term "1")) + (rule "mul_literals" (formula "53") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1")) + (rule "polySimp_elimOne" (formula "53") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "58") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "1")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "54") (term "0,1,1,0,0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,1,1,0,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0,0,1,1,0,0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,1,1,0,0,0")) + (rule "qeq_literals" (formula "54") (term "0,0,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_addAssoc" (formula "54") (term "1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "1")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "25")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "21")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "26")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "18")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "47") (term "0,0,0")) + (rule "leq_literals" (formula "47") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "nnf_imp2or" (formula "53") (term "0")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaMulInt" (formula "44") (term "0,0")) + (rule "translateJavaMod" (formula "43") (term "0")) + (rule "translateJavaDivInt" (formula "38") (term "1")) + (rule "translateJavaSubInt" (formula "44") (term "0")) + (rule "polySimp_elimSub" (formula "44") (term "0")) + (rule "mul_literals" (formula "44") (term "1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "39")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_homoInEq0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "jmod_axiom" (formula "43") (term "0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "polySimp_rightDist" (formula "39") (term "1")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1")) + (rule "polySimp_elimOne" (formula "39") (term "1,1")) + (rule "polySimp_rightDist" (formula "39") (term "0,1")) + (rule "mul_literals" (formula "39") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption1" (formula "117") (term "1,1,1") (ifseqformula "41")) + (rule "leq_literals" (formula "117") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "117")) + (rule "newSym_eq" (formula "43") (inst "newSymDef=mul(int::final(result_220, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "43") (term "1,1")) + (rule "add_zero_right" (formula "43") (term "1")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "43")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "44")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "52") (term "1,2,1,0") (ifseqformula "44")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "44")) + (rule "applyEq" (formula "118") (term "0,1,1") (ifseqformula "44")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "44")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "44")) + (rule "polySimp_mulAssoc" (formula "45") (term "0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "44")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "elimGcdGeq_antec" (formula "41") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_literals" (formula "41") (term "0,0")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "elimGcdLeq" (formula "118") (term "1,1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0,0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,0,0,0,1,0,1,1")) + (rule "sub_literals" (formula "118") (term "0,0,0,0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0,0,1,1")) + (rule "mul_literals" (formula "118") (term "1,0,0,0,0,0,0,1,1")) + (rule "mul_literals" (formula "118") (term "0,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "118") (term "0,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "118") (term "0,0,0,1,0,1,1")) + (rule "add_literals" (formula "118") (term "0,0,0,0,0,1,1")) + (rule "add_zero_left" (formula "118") (term "0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0b" (formula "118") (term "0,1,0,1,1")) + (rule "add_literals" (formula "118") (term "1,1,0,1,0,1,1")) + (rule "times_zero_1" (formula "118") (term "1,0,1,0,1,1")) + (rule "add_zero_right" (formula "118") (term "0,1,0,1,1")) + (rule "qeq_literals" (formula "118") (term "1,0,1,1")) + (builtin "One Step Simplification" (formula "118")) + (rule "polySimp_pullOutFactor0" (formula "118") (term "0,0,1,1")) + (rule "add_literals" (formula "118") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "118") (term "0,0,1,1")) + (rule "leq_literals" (formula "118") (term "0,1,1")) + (builtin "One Step Simplification" (formula "118")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "38")) + (rule "mul_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "40")) + (rule "mul_literals" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "57")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "1")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "47") (term "0")) + (rule "wellFormedAnonEQ" (formula "47") (term "1,0") (ifseqformula "35")) + (rule "wellFormedAnon" (formula "47") (term "0,1,0")) + (rule "replace_known_right" (formula "47") (term "0,0,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "11")) (ifInst "" (formula "32")) (ifInst "" (formula "34")) (ifInst "" (formula "48"))) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "translateJavaMulInt" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "translateJavaMulInt" (formula "51") (term "1")) + (rule "mul_literals" (formula "51") (term "1")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "151"))) + (rule "true_left" (formula "85")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "149"))) + (rule "true_left" (formula "84")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "121"))) + (rule "true_left" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "115"))) + (rule "true_left" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "113"))) + (rule "true_left" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "111"))) + (rule "true_left" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "109"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "107"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "105"))) + (rule "true_left" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "103"))) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "101"))) + (rule "true_left" (formula "60")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "98"))) + (rule "true_left" (formula "58")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "98"))) + (rule "true_left" (formula "58")) + (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "57")) + (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "57")) + (rule "applyEq" (formula "35") (term "0,1,0") (ifseqformula "57")) + (rule "distributeIntersection" (formula "30") (term "0")) + (rule "distributeIntersection" (formula "29") (term "0")) + (rule "distributeIntersection" (formula "30") (term "0,0")) + (rule "distributeIntersection" (formula "30") (term "1,0")) + (rule "distributeIntersection" (formula "29") (term "1,0")) + (rule "distributeIntersection" (formula "29") (term "0,0")) + (rule "distributeIntersection" (formula "30") (term "1,0,0")) + (rule "distributeIntersection" (formula "30") (term "0,0,0")) + (rule "distributeIntersection" (formula "30") (term "1,1,0")) + (rule "distributeIntersection" (formula "30") (term "0,1,0")) + (rule "distributeIntersection" (formula "29") (term "1,1,0")) + (rule "distributeIntersection" (formula "29") (term "0,1,0")) + (rule "distributeIntersection" (formula "29") (term "1,0,0")) + (rule "distributeIntersection" (formula "29") (term "0,0,0")) + (rule "unionEqualsEmpty" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "unionEqualsEmpty" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "83")) + (rule "eqSymm" (formula "82")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "82")) + (rule "eqSymm" (formula "81")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "81")) + (rule "eqSymm" (formula "80")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "80")) + (rule "eqSymm" (formula "79")) + (rule "unionEqualsEmpty" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "79")) + (rule "eqSymm" (formula "78")) + (rule "unionEqualsEmpty" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "unionEqualsEmpty" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "77")) + (rule "eqSymm" (formula "76")) + (rule "unionEqualsEmpty" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "76")) + (rule "eqSymm" (formula "75")) + (rule "commuteUnion" (formula "55") (term "1,1,1")) + (rule "commuteUnion" (formula "55") (term "0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "47")) (ifInst "" (formula "48")) (ifInst "" (formula "51")) (ifInst "" (formula "52")) (ifInst "" (formula "53")) (ifInst "" (formula "54"))) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "translateJavaMulInt" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "translateJavaMulInt" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "149"))) + (rule "true_left" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "147"))) + (rule "true_left" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "119"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "113"))) + (rule "true_left" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "111"))) + (rule "true_left" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "109"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "107"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "105"))) + (rule "true_left" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "103"))) + (rule "true_left" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "101"))) + (rule "true_left" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "99"))) + (rule "true_left" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "97"))) + (rule "true_left" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "95"))) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "55")) + (rule "eqSymm" (formula "28")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "28")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_left" (formula "133") (term "0,0,0,0,0,1,1,0,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "75")) (ifInst "" (formula "74")) (ifInst "" (formula "75")) (ifInst "" (formula "6")) (ifInst "" (formula "74"))) + (rule "inEqSimp_leqRight" (formula "133")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "1")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "45") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "45") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "56")) + (rule "notLeft" (formula "55")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1")) + (rule "expand_inInt" (formula "55") (term "1,0")) + (rule "expand_inInt" (formula "55") (term "0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,0,0")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "42")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "39")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "36")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "1")) + (rule "mul_literals" (formula "58") (term "1,1,0")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_contradInEq5" (formula "57") (ifseqformula "1")) + (rule "mul_literals" (formula "57") (term "1,1,0")) + (rule "greater_literals" (formula "57") (term "0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "qeq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "closeFalse" (formula "57")) + ) + ) + (branch "Null Reference (_storage = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "113"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_unique)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "1,0") (ifseqformula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "0,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "close" (formula "41") (ifseqformula "40")) + ) + (branch "Pre (copy_unique)" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "87")) (ifInst "" (formula "87"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "88")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,0,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "2"))) + (rule "wellFormedAnonEQ" (formula "88") (term "0,0,0,0,0,1") (ifseqformula "28")) + (rule "wellFormedAnon" (formula "88") (term "0,0,0,0,0,0,1")) + (rule "expand_inInt" (formula "88") (term "1,0,1")) + (rule "expand_inInt" (formula "88") (term "1,0,0,0,0,1")) + (rule "expand_inInt" (formula "88") (term "1,0,0,1")) + (rule "expand_inInt" (formula "88") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,1")) + (rule "replace_known_left" (formula "88") (term "0,0,0,0,0,0,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "25")) (ifInst "" (formula "27")) (ifInst "" (formula "3"))) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "88") (term "0,0,0,0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "88")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "88") (term "1,0,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,1,0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "88") (term "0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0,0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "88") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "88") (term "0,0,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "88") (term "1,0,1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,1,0,0,1")) + (rule "add_literals" (formula "88") (term "0,0,1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "88") (term "0,0,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "88") (term "0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "88") (term "1,1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "0,0")) + (rule "expand_inInt" (formula "32") (term "1,0")) + (rule "expand_inInt" (formula "32") (term "1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "34")) + (rule "replace_known_left" (formula "90") (term "0,1,0,1") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "replace_known_left" (formula "90") (term "1,0,1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_subsumption0" (formula "90") (term "0,1,0,1") (ifseqformula "36")) + (rule "leq_literals" (formula "90") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "90")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "translateJavaMulInt" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "translateJavaMulInt" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "121"))) + (rule "true_left" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "119"))) + (rule "true_left" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "91"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "85"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "83"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "81"))) + (rule "true_left" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "79"))) + (rule "true_left" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "77"))) + (rule "true_left" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "75"))) + (rule "true_left" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "73"))) + (rule "true_left" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "71"))) + (rule "true_left" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "69"))) + (rule "true_left" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "67"))) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "26")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "26")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "26")) + (rule "distributeIntersection" (formula "28") (term "0")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "28") (term "0,0")) + (rule "distributeIntersection" (formula "28") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "0,0")) + (rule "distributeIntersection" (formula "28") (term "0,0,0")) + (rule "distributeIntersection" (formula "28") (term "1,0,0")) + (rule "distributeIntersection" (formula "28") (term "1,1,0")) + (rule "distributeIntersection" (formula "28") (term "0,1,0")) + (rule "distributeIntersection" (formula "27") (term "0,1,0")) + (rule "distributeIntersection" (formula "27") (term "1,1,0")) + (rule "distributeIntersection" (formula "27") (term "0,0,0")) + (rule "distributeIntersection" (formula "27") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "53")) + (rule "eqSymm" (formula "52")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "52")) + (rule "eqSymm" (formula "51")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "51")) + (rule "eqSymm" (formula "50")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "49")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "49")) + (rule "eqSymm" (formula "48")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "47")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "46")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "45")) + (rule "commuteUnion_2" (formula "26") (term "0,1")) + (rule "commuteUnion" (formula "26") (term "1,1,1")) + (rule "commuteUnion" (formula "31") (term "0,0,0,1,0")) + (rule "commuteUnion" (formula "31") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "26") (term "0,0,1")) + (rule "commuteUnion_2" (formula "31") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "26") (term "0,1")) + (rule "commuteUnion" (formula "31") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "26") (term "1")) + (rule "commuteUnion_2" (formula "31") (term "0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "22")) (ifInst "" (formula "23")) (ifInst "" (formula "24")) (ifInst "" (formula "25"))) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "translateJavaMulInt" (formula "36") (term "1")) + (rule "mul_literals" (formula "36") (term "1")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "119"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "117"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "89"))) + (rule "true_left" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "83"))) + (rule "true_left" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "81"))) + (rule "true_left" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "79"))) + (rule "true_left" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "77"))) + (rule "true_left" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "75"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "73"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "71"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "69"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "67"))) + (rule "true_left" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "65"))) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "26")) + (rule "eqSymm" (formula "36")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "replace_known_right" (formula "103") (term "0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "44"))) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "translateJavaMulInt" (formula "40") (term "0,0")) + (rule "translateJavaMod" (formula "39") (term "0")) + (rule "translateJavaDivInt" (formula "34") (term "1")) + (rule "translateJavaSubInt" (formula "40") (term "0")) + (rule "polySimp_elimSub" (formula "40") (term "0")) + (rule "mul_literals" (formula "40") (term "1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "35")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "jmod_axiom" (formula "39") (term "0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "polySimp_rightDist" (formula "35") (term "0,1")) + (rule "mul_literals" (formula "35") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_subsumption1" (formula "110") (term "1,0") (ifseqformula "37")) + (rule "leq_literals" (formula "110") (term "0,1,0")) + (builtin "One Step Simplification" (formula "110")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "33")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "36")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "37")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "newSym_eq" (formula "39") (inst "newSymDef=mul(int::final(result_220, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "39") (term "1,1")) + (rule "add_zero_right" (formula "39") (term "1")) + (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "39")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "40")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "39") (term "0,0") (ifseqformula "40")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "40")) + (rule "polySimp_mulAssoc" (formula "41") (term "0")) + (rule "elimGcdGeq_antec" (formula "37") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "elimGcdLeq_antec" (formula "47") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))")) + (rule "neg_literal" (formula "47") (term "0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "leq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_literals" (formula "47") (term "0,0")) + (rule "qeq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "35")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "mul_literals" (formula "33") (term "0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "34")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "43") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "commuteUnion_2" (formula "44") (term "0,0")) + (rule "commuteUnion" (formula "44") (term "1,1,0")) + (rule "commuteUnion" (formula "44") (term "0,0,0")) + (rule "commuteUnion_2" (formula "44") (term "0,0")) + (rule "commuteUnion_2" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "commute_or" (formula "13") (term "0,0,0")) + (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "cut_direct" (formula "28") (term "0,0")) + (branch "CUT: result_219 = null TRUE" + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "26")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "24")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthNotNegative" (formula "22") (term "0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "23")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + (branch "CUT: result_219 = null FALSE" + (builtin "One Step Simplification" (formula "28")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_notAnd" (formula "43") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "26")) + (rule "qeq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "leq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthNotNegative" (formula "22") (term "0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "23")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + ) + ) + (branch "Null Reference (_storage = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (sample = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (sample = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (sample = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (sample)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "28")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "29")) + (rule "close" (formula "33") (ifseqformula "32")) + ) + (branch "Pre (sample)" + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "74")) (ifInst "" (formula "72")) (ifInst "" (formula "74")) (ifInst "" (formula "2")) (ifInst "" (formula "72")) (ifInst "" (formula "8"))) + (rule "wellFormedAnon" (formula "75") (term "0,0,1,0")) + (rule "expand_inInt" (formula "75") (term "1,0,1,0")) + (rule "expand_inInt" (formula "75") (term "1,1,0")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,1,0")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,1,0")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,1,0")) + (rule "translateJavaSubInt" (formula "75") (term "0,0,1")) + (rule "replace_known_left" (formula "75") (term "0,1,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "1")) (ifInst "" (formula "25")) (ifInst "" (formula "3"))) + (rule "polySimp_elimSub" (formula "75") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,1")) + (rule "measuredByCheck" (formula "75") (term "1") (ifseqformula "9")) + (rule "precOfPair" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "precOfInt" (formula "75") (term "0,1")) + (rule "precOfInt" (formula "75") (term "1,1")) + (rule "leq_literals" (formula "75") (term "0,1,1")) + (builtin "One Step Simplification" (formula "75")) + (rule "less_literals" (formula "75") (term "1,1")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1")) + (rule "replace_known_left" (formula "75") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1")) + (rule "replace_known_left" (formula "75") (term "1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "16")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "translateJavaMulInt" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "translateJavaMulInt" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "103"))) + (rule "true_left" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "101"))) + (rule "true_left" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "45")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "73"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "43")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "42")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "67"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "65"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "63"))) + (rule "true_left" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "61"))) + (rule "true_left" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "59"))) + (rule "true_left" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "57"))) + (rule "true_left" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "55"))) + (rule "true_left" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "53"))) + (rule "true_left" (formula "29")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "50"))) + (rule "true_left" (formula "27")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "50"))) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "26")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "26")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "28") (term "0")) + (rule "distributeIntersection" (formula "27") (term "0,0")) + (rule "distributeIntersection" (formula "27") (term "1,0")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "distributeIntersection" (formula "27") (term "0,0,0")) + (rule "distributeIntersection" (formula "27") (term "1,0,0")) + (rule "distributeIntersection" (formula "27") (term "0,1,0")) + (rule "distributeIntersection" (formula "27") (term "1,1,0")) + (rule "distributeIntersection" (formula "28") (term "0")) + (rule "distributeIntersection" (formula "29") (term "0")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "distributeIntersection" (formula "29") (term "0,0")) + (rule "distributeIntersection" (formula "29") (term "1,0")) + (rule "distributeIntersection" (formula "30") (term "0,0")) + (rule "distributeIntersection" (formula "30") (term "1,0")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "unionEqualsEmpty" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "unionEqualsEmpty" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "36")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "36")) + (rule "eqSymm" (formula "35")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "34")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "34")) + (rule "eqSymm" (formula "33")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "33")) + (rule "eqSymm" (formula "32")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "32")) + (rule "eqSymm" (formula "31")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "31")) + (rule "eqSymm" (formula "30")) + (rule "commuteUnion" (formula "26") (term "0,0,1")) + (rule "commuteUnion" (formula "26") (term "1,1,1")) + (rule "commuteUnion_2" (formula "26") (term "0,1")) + (rule "commuteUnion" (formula "26") (term "0,0,1")) + (rule "commuteUnion_2" (formula "26") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "85")) + (rule "replace_known_right" (formula "85") (term "0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "30")) (ifInst "" (formula "29")) (ifInst "" (formula "31")) (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "35")) (ifInst "" (formula "36"))) + (rule "closeTrue" (formula "85")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..1d42530 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,3713 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 21:45:21 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 21:45:21 CEST 2022 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "5899") + +(branch "dummy ID" +(rule "eqSymm" (formula "1") (term "1,0,0,1,0,1,1") (newnames "heapAtPre_0,o,f")) + (builtin "One Step Simplification" (formula "1")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "6")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "8") (term "0,0")) +(rule "translateJavaSubInt" (formula "13") (term "1")) +(rule "translateJavaSubInt" (formula "14") (term "0")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "0,0")) +(rule "polySimp_elimSub" (formula "13") (term "1")) +(rule "polySimp_elimSub" (formula "14") (term "0")) +(rule "polySimp_addComm0" (formula "8") (term "0,0")) +(rule "polySimp_addComm0" (formula "13") (term "1")) +(rule "polySimp_addComm0" (formula "14") (term "0")) +(rule "disjointDefinition" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) +(rule "commuteIntersection" (formula "16") (term "0")) +(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_sample,savedHeapBefore_sample,savedHeapBefore_sample_0")) + (builtin "One Step Simplification" (formula "19")) +(rule "variableDeclarationAssign" (formula "19") (term "1")) +(rule "variableDeclaration" (formula "19") (term "1") (newnames "parameters")) +(rule "instanceCreationAssignmentUnfoldArguments" (formula "19") (term "1")) +(rule "variableDeclarationAssign" (formula "19") (term "1")) +(rule "variableDeclaration" (formula "19") (term "1") (newnames "var")) +(rule "assignmentSubtractionInt" (formula "19") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "17") (term "1") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,1")) + (rule "add_literals" (formula "17") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,1")) + (rule "add_literals" (formula "17") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,1")) + (rule "qeq_literals" (formula "17") (term "0,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_leqRight" (formula "17")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "13") (ifseqformula "1")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "1,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0")) + (rule "add_zero_right" (formula "13") (term "0")) + (rule "leq_literals" (formula "13")) + (rule "closeFalse" (formula "13")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaSubInt" (formula "19") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_SampleParameters,self_77,exc_77,heapAfter_SampleParameters,anon_heap_SampleParameters") (contract "de.wiesler.SampleParameters[de.wiesler.SampleParameters::SampleParameters(int)].JML normal_behavior operation contract.0")) + (branch "Post (SampleParameters)" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "replace_known_right" (formula "20") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "20")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "blockEmpty" (formula "30") (term "1")) + (builtin "Block Contract (Internal)" (formula "30") (newnames "anonOut_heap,result_65,exc_78,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "26")) + (rule "translateJavaSubInt" (formula "26") (term "0,0")) + (rule "polySimp_elimSub" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "variableDeclarationAssign" (formula "31") (term "1")) + (rule "variableDeclaration" (formula "31") (term "1") (newnames "exc_78_1")) + (rule "assignment" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "emptyStatement" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "emptyStatement" (formula "31") (term "1")) + (rule "tryEmpty" (formula "31") (term "1")) + (rule "blockEmptyLabel" (formula "31") (term "1")) + (rule "blockEmpty" (formula "31") (term "1")) + (rule "methodCallEmpty" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "emptyModality" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeTrue" (formula "31")) + ) + (branch "Precondition" + (rule "andRight" (formula "30")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaSubInt" (formula "30") (term "0,0")) + (rule "polySimp_elimSub" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "close" (formula "30") (ifseqformula "8")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "30")) + (rule "wellFormedAnonEQ" (formula "30") (ifseqformula "18")) + (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "30")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "0,1,1,1,0") (ifseqformula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "0,1,0,1,0") (ifseqformula "18")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "26")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "narrowSelectArrayType" (formula "29") (term "2,1") (ifseqformula "1") (ifseqformula "33")) + (rule "shift_paren_or" (formula "28")) + (rule "shift_paren_or" (formula "28") (term "0")) + (rule "commute_or_2" (formula "28")) + (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "34")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "ifSplit" (formula "37")) + (branch "if x true" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "37") (term "1")) + (rule "methodCallUnfoldArguments" (formula "37") (term "1")) + (rule "variableDeclarationAssign" (formula "37") (term "1")) + (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_1")) + (rule "assignment" (formula "37") (term "1")) + (builtin "One Step Simplification" (formula "37")) + (rule "variableDeclarationAssign" (formula "37") (term "1")) + (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_2")) + (rule "assignment" (formula "37") (term "1")) + (builtin "One Step Simplification" (formula "37")) + (rule "variableDeclarationAssign" (formula "37") (term "1")) + (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_3")) + (rule "assignment" (formula "37") (term "1")) + (builtin "One Step Simplification" (formula "37")) + (rule "variableDeclarationAssign" (formula "37") (term "1")) + (rule "variableDeclaration" (formula "37") (term "1") (newnames "var_4")) + (rule "assignment_read_attribute_final" (formula "37")) + (branch "Normal Execution (parameters != null)" + (builtin "One Step Simplification" (formula "37")) + (builtin "Use Operation Contract" (formula "37") (newnames "heapBefore_select_n,exc_79,heapAfter_select_n,anon_heap_select_n") (contract "de.wiesler.Functions[de.wiesler.Functions::select_n([I,int,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (select_n)" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaSubInt" (formula "34") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "2,1,0")) + (rule "mul_literals" (formula "34") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "2,1,0")) + (rule "blockEmpty" (formula "41") (term "1")) + (builtin "Block Contract (Internal)" (formula "41") (newnames "anonOut_heap_0,result_66,exc_80,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "37")) + (rule "translateJavaSubInt" (formula "37") (term "0,0")) + (rule "polySimp_elimSub" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,0")) + (rule "narrowSelectArrayType" (formula "35") (term "2,0") (ifseqformula "37") (ifseqformula "41")) + (rule "variableDeclarationAssign" (formula "42") (term "1")) + (rule "variableDeclaration" (formula "42") (term "1") (newnames "exc_80_1")) + (rule "assignment" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyStatement" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyStatement" (formula "42") (term "1")) + (rule "tryEmpty" (formula "42") (term "1")) + (rule "blockEmptyLabel" (formula "42") (term "1")) + (rule "blockEmpty" (formula "42") (term "1")) + (rule "methodCallEmpty" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "emptyModality" (formula "42") (term "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "closeTrue" (formula "42")) + ) + (branch "Precondition" + (rule "andRight" (formula "41")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "41")) + (rule "translateJavaSubInt" (formula "41") (term "0,0")) + (rule "polySimp_elimSub" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0")) + (rule "close" (formula "41") (ifseqformula "8")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "41")) + (rule "wellFormedAnonEQ" (formula "41") (ifseqformula "34")) + (rule "wellFormedAnon" (formula "41") (term "0")) + (rule "replace_known_left" (formula "41") (term "1,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "33"))) + (rule "wellFormedAnonEQ" (formula "41") (ifseqformula "21")) + (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "41")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "42")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,1,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "37")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "37")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,0,0,1,1,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,0,0,1,0,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "39")) + (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "narrowSelectArrayType" (formula "40") (term "2,1") (ifseqformula "1") (ifseqformula "44")) + (rule "shift_paren_or" (formula "39")) + (rule "shift_paren_or" (formula "39") (term "0")) + (rule "commute_or_2" (formula "39") (term "1,0,0")) + (rule "shift_paren_or" (formula "39") (term "0,0")) + (rule "shift_paren_or" (formula "39") (term "0,0,0")) + (rule "commute_or_2" (formula "39")) + (rule "commute_or_2" (formula "39") (term "0")) + (rule "ifUnfold" (formula "45") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "replace_known_left" (formula "45") (term "0,0,1,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "45")) + (rule "ifSplit" (formula "45")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "45") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "45") (term "1")) + (rule "variableDeclarationGhost" (formula "45") (term "1") (newnames "before_sort")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "methodCallUnfoldArguments" (formula "45") (term "1")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_5")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_6")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_7")) + (rule "compound_addition_2" (formula "45") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_2")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "x_3")) + (rule "assignment_read_attribute_final" (formula "45")) + (branch "Normal Execution (parameters != null)" + (builtin "One Step Simplification" (formula "45")) + (rule "assignmentAdditionInt" (formula "45") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (userinteraction)) + (rule "andRight" (formula "45") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "45") (term "1")) + (rule "inEqSimp_leqRight" (formula "45")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "15")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaSubInt" (formula "29") (term "0")) + (rule "translateJavaMod" (formula "28") (term "0")) + (rule "translateJavaDivInt" (formula "23") (term "1")) + (rule "translateJavaMulInt" (formula "29") (term "0,0")) + (rule "polySimp_elimSub" (formula "29") (term "0")) + (rule "mul_literals" (formula "29") (term "1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "jmod_axiom" (formula "28") (term "0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "newSym_eq" (formula "28") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "28") (term "1,1")) + (rule "add_zero_right" (formula "28") (term "1")) + (rule "applyEq" (formula "29") (term "0,0") (ifseqformula "28")) + (rule "eqSymm" (formula "29")) + (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "29")) + (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "29")) + (rule "polySimp_mulAssoc" (formula "30") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "29")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "29")) + (rule "elimGcdGeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "24")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "11")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "45") (term "0")) + (rule "inEqSimp_leqRight" (formula "45")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "15")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "24")) + (rule "distributeIntersection" (formula "25") (term "0")) + (rule "distributeIntersection" (formula "25") (term "1,0")) + (rule "distributeIntersection" (formula "25") (term "0,0")) + (rule "distributeIntersection" (formula "25") (term "0,1,0")) + (rule "distributeIntersection" (formula "25") (term "1,1,0")) + (rule "distributeIntersection" (formula "25") (term "0,0,0")) + (rule "distributeIntersection" (formula "25") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "49")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "49")) + (rule "eqSymm" (formula "48")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "47")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "46")) + (rule "commuteUnion_2" (formula "24") (term "0,1")) + (rule "commuteUnion" (formula "24") (term "1,1,1")) + (rule "commuteUnion" (formula "24") (term "0,0,1")) + (rule "commuteUnion_2" (formula "24") (term "0,1")) + (rule "commuteUnion_2" (formula "24") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30") (term "1,0")) + (rule "expand_inInt" (formula "30") (term "0,0")) + (rule "expand_inInt" (formula "30") (term "1")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "31")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_contradInEq1" (formula "30") (ifseqformula "7")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "closeFalse" (formula "30")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "45")) + (rule "translateJavaAddInt" (formula "45") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "var_8")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (builtin "Use Operation Contract" (formula "45") (newnames "heapBefore_sort,exc_81,heapAfter_sort,anon_heap_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (sort)" + (builtin "One Step Simplification" (formula "47")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "45")) + (rule "translateJavaSubInt" (formula "42") (term "2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "2,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,0")) + (rule "blockEmpty" (formula "52") (term "1")) + (builtin "Block Contract (Internal)" (formula "52") (newnames "anonOut_heap_1,result_67,exc_82,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "53")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaSubInt" (formula "48") (term "0,0")) + (rule "polySimp_elimSub" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "narrowSelectArrayType" (formula "44") (term "2,0") (ifseqformula "48") (ifseqformula "52")) + (rule "variableDeclarationAssign" (formula "53") (term "1")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "exc_82_1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "emptyStatement" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "emptyStatement" (formula "53") (term "1")) + (rule "commuteUnion" (formula "42") (term "1,0")) + (rule "tryEmpty" (formula "53") (term "1")) + (rule "blockEmptyLabel" (formula "53") (term "1")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "methodCallEmpty" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "emptyModality" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "closeTrue" (formula "53")) + ) + (branch "Precondition" + (rule "andRight" (formula "52")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaSubInt" (formula "52") (term "0,0")) + (rule "polySimp_elimSub" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "close" (formula "52") (ifseqformula "8")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "52")) + (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "42")) + (rule "wellFormedAnon" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "41"))) + (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "34")) + (rule "wellFormedAnon" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "1,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "33"))) + (rule "wellFormedAnonEQ" (formula "52") (ifseqformula "21")) + (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "20"))) + (rule "closeTrue" (formula "52")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "48")) + (builtin "One Step Simplification" (formula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,1,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,1,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,1,1,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "48")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,0,0,1,0,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,0,0,0,0,1,1,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "48")) + (rule "replace_known_left" (formula "51") (term "0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "commuteUnion" (formula "42") (term "1,0")) + (rule "shift_paren_or" (formula "50")) + (rule "shift_paren_or" (formula "50") (term "0")) + (rule "shift_paren_or" (formula "50") (term "0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0,0,0,0")) + (rule "commute_or_2" (formula "50")) + (rule "commute_or_2" (formula "50") (term "0,0")) + (rule "commute_or_2" (formula "50") (term "0")) + (rule "commute_or_2" (formula "50") (term "0,0,0,0")) + (rule "commute_or_2" (formula "50") (term "0,0,0")) + (rule "commute_or_2" (formula "50") (term "0,0")) + (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "56")) + (rule "ifSplit" (formula "56")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "56") (term "1")) + (rule "methodCallReturn" (formula "56") (term "1")) + (rule "assignment" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "methodCallEmpty" (formula "56") (term "1")) + (rule "tryEmpty" (formula "56") (term "1")) + (rule "emptyModality" (formula "56") (term "1")) + (rule "andRight" (formula "56")) + (branch "Case 1" + (rule "andRight" (formula "56")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18")) + (rule "replace_known_left" (formula "22") (term "0,0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "49")) (ifInst "" (formula "20")) (ifInst "" (formula "50")) (ifInst "" (formula "25"))) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "translateJavaMulInt" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "translateJavaMulInt" (formula "43") (term "1")) + (rule "mul_literals" (formula "43") (term "1")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "49")) + (rule "applyEq" (formula "37") (term "0,1,0") (ifseqformula "49")) + (rule "distributeIntersection" (formula "15") (term "0")) + (rule "unionEqualsEmpty" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "distributeIntersection" (formula "16") (term "0")) + (rule "distributeIntersection" (formula "15") (term "0")) + (rule "distributeIntersection" (formula "16") (term "1,0")) + (rule "distributeIntersection" (formula "16") (term "0,0")) + (rule "distributeIntersection" (formula "15") (term "1,0")) + (rule "distributeIntersection" (formula "15") (term "0,0")) + (rule "unionEqualsEmpty" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "unionEqualsEmpty" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "unionEqualsEmpty" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "eqSymm" (formula "58")) + (rule "eqSymm" (formula "57")) + (rule "unionEqualsEmpty" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "eqSymm" (formula "57")) + (rule "eqSymm" (formula "56")) + (rule "unionEqualsEmpty" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "55")) + (rule "unionEqualsEmpty" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "55")) + (rule "eqSymm" (formula "54")) + (rule "commuteUnion" (formula "48") (term "0,1")) + (rule "commuteUnion" (formula "48") (term "1,1,1")) + (rule "commuteUnion" (formula "36") (term "1,1,0,1,0")) + (rule "commuteUnion_2" (formula "36") (term "0,0,1,0")) + (rule "commuteUnion" (formula "48") (term "1,0,1")) + (rule "commuteUnion" (formula "36") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "36") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "36") (term "0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102")) + (rule "replace_known_right" (formula "102") (term "0,1") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "91")) (ifInst "" (formula "90")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96"))) + (rule "closeTrue" (formula "102")) + ) + (branch "Case 2" + (rule "andRight" (formula "56")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "14")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "9")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18")) + (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "50")) (ifInst "" (formula "20")) (ifInst "" (formula "51")) (ifInst "" (formula "25"))) + (rule "true_left" (formula "22")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1")) + (rule "expand_inInt" (formula "22") (term "1,0")) + (rule "expand_inInt" (formula "22") (term "0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,0")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "applyEq" (formula "51") (term "0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "1,0") (ifseqformula "22")) + (rule "distributeIntersection" (formula "23") (term "0")) + (rule "distributeIntersection" (formula "23") (term "1,0")) + (rule "distributeIntersection" (formula "23") (term "0,0")) + (rule "distributeIntersection" (formula "23") (term "0,1,0")) + (rule "distributeIntersection" (formula "23") (term "1,1,0")) + (rule "distributeIntersection" (formula "23") (term "0,0,0")) + (rule "distributeIntersection" (formula "23") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "unionEqualsEmpty" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "64")) + (rule "eqSymm" (formula "63")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "63")) + (rule "eqSymm" (formula "62")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "62")) + (rule "eqSymm" (formula "61")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "61")) + (rule "eqSymm" (formula "60")) + (rule "commuteUnion" (formula "22") (term "1,1,1")) + (rule "commuteUnion" (formula "22") (term "0,1")) + (rule "commuteUnion_2" (formula "50") (term "0,0,1,0")) + (rule "commuteUnion" (formula "50") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "22") (term "1,0,1")) + (rule "commuteUnion" (formula "50") (term "0,0,0,1,0")) + (rule "commuteUnion_2" (formula "50") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "50") (term "0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "53") (term "0")) + (rule "replace_known_right" (formula "53") (term "0,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "54"))) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "36")) + (rule "true_left" (formula "36")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "14")) (ifInst "" (formula "15")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21"))) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "translateJavaMulInt" (formula "54") (term "1")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "translateJavaMulInt" (formula "54") (term "1")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "122"))) + (rule "true_left" (formula "82")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "120"))) + (rule "true_left" (formula "81")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "92"))) + (rule "true_left" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "86"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "84"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "82"))) + (rule "true_left" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "80"))) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "78"))) + (rule "true_left" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "76"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "74"))) + (rule "true_left" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "72"))) + (rule "true_left" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "69"))) + (rule "true_left" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "69"))) + (rule "true_left" (formula "55")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "22")) + (rule "eqSymm" (formula "54")) + (rule "commuteUnion" (formula "54") (term "0,0,0")) + (rule "commuteUnion" (formula "54") (term "1,1,0")) + (rule "commuteUnion_2" (formula "54") (term "0,0")) + (rule "commuteUnion" (formula "54") (term "0,0,0")) + (rule "commuteUnion_2" (formula "54") (term "0")) + (rule "eqSymm" (formula "54")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "54")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "53") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "53") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "53") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "0,1,1,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,0,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "translateJavaSubInt" (formula "35") (term "0")) + (rule "translateJavaMod" (formula "34") (term "0")) + (rule "translateJavaDivInt" (formula "29") (term "1")) + (rule "translateJavaMulInt" (formula "35") (term "0,0")) + (rule "polySimp_elimSub" (formula "35") (term "0")) + (rule "mul_literals" (formula "35") (term "1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "jmod_axiom" (formula "34") (term "0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "32")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "28")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "31")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "newSym_eq" (formula "34") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "34") (term "1,1")) + (rule "add_zero_right" (formula "34") (term "1")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "34")) + (rule "eqSymm" (formula "35")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "35")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "35")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "35")) + (rule "polySimp_mulAssoc" (formula "36") (term "0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "35")) + (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0")) + (rule "leq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "elimGcdLeq_antec" (formula "39") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "leq_literals" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0")) + (rule "neg_literal" (formula "39") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "30")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "29")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "112") (term "0")) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "112") (term "1,0")) + (rule "expand_inInt" (formula "112") (term "1")) + (rule "expand_inInt" (formula "112") (term "0,0")) + (rule "replace_int_MIN" (formula "112") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "112") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "112") (term "0,1,1")) + (rule "replace_int_MAX" (formula "112") (term "1,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "112") (term "1,0,0,0")) + (rule "replace_known_left" (formula "112") (term "0,1,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "38"))) + (rule "inEqSimp_commuteLeq" (formula "112") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "112") (term "1,1")) + (rule "inEqSimp_commuteLeq" (formula "112") (term "0,0")) + (rule "applyEq" (formula "112") (term "0,1,1") (ifseqformula "36")) + (rule "applyEq" (formula "112") (term "0,0,1") (ifseqformula "36")) + (rule "inEqSimp_subsumption1" (formula "112") (term "0,0") (ifseqformula "29")) + (rule "leq_literals" (formula "112") (term "0,0,0")) + (builtin "One Step Simplification" (formula "112")) + (rule "inEqSimp_subsumption1" (formula "112") (term "0") (ifseqformula "32")) + (rule "leq_literals" (formula "112") (term "0,0")) + (builtin "One Step Simplification" (formula "112")) + (rule "inEqSimp_subsumption6" (formula "112") (term "1") (ifseqformula "33")) + (rule "mul_literals" (formula "112") (term "1,1,0,1")) + (rule "greater_literals" (formula "112") (term "0,0,1")) + (builtin "One Step Simplification" (formula "112")) + (rule "leq_literals" (formula "112") (term "0,1")) + (builtin "One Step Simplification" (formula "112")) + (rule "inEqSimp_leqRight" (formula "112")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "41")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53"))) + (rule "closeTrue" (formula "56")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "56")) + (rule "closeTrue" (formula "56")) + ) + ) + ) + ) + (branch "Exceptional Post (sort)" + (builtin "One Step Simplification" (formula "47")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,0,0,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "close" (formula "46") (ifseqformula "45")) + ) + (branch "Pre (sort)" + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "44")) (ifInst "" (formula "43")) (ifInst "" (formula "44")) (ifInst "" (formula "43"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "45")) + (rule "wellFormedAnon" (formula "45") (term "0,0,0,0,1,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,0,0,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "38")) (ifInst "" (formula "7"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,0,0,1,0") (ifseqformula "21")) + (rule "expand_inInt" (formula "45") (term "1,1,0")) + (rule "expand_inInt" (formula "45") (term "1,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "45") (term "0,0,1")) + (rule "replace_known_left" (formula "45") (term "0,1,0,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "2"))) + (rule "polySimp_elimSub" (formula "45") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "45") (term "0,0,0,1")) + (rule "add_literals" (formula "45") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "45") (term "0,0,0,1")) + (rule "add_zero_left" (formula "45") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "measuredByCheck" (formula "45") (term "1") (ifseqformula "8")) + (rule "precOfPair" (formula "45") (term "1")) + (rule "precOfInt" (formula "45") (term "1,1,1")) + (rule "less_literals" (formula "45") (term "1,1,1,1")) + (builtin "One Step Simplification" (formula "45")) + (rule "precOfInt" (formula "45") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,1")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0")) + (rule "replace_known_left" (formula "45") (term "1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1,1,1,0")) + (rule "mul_literals" (formula "45") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,1,1")) + (rule "mul_literals" (formula "45") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Contract_axiom_for_isValidForLen_in_SampleParameters" (formula "22") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (term "1,0,0") (ifseqformula "18")) + (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "39")) (ifInst "" (formula "20")) (ifInst "" (formula "40")) (ifInst "" (formula "25"))) + (rule "true_left" (formula "22")) + (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "translateJavaMulInt" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "applyEq" (formula "23") (term "1,0") (ifseqformula "22")) + (rule "distributeIntersection" (formula "23") (term "0")) + (rule "unionEqualsEmpty" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "distributeIntersection" (formula "23") (term "0")) + (rule "distributeIntersection" (formula "24") (term "0")) + (rule "distributeIntersection" (formula "23") (term "1,0")) + (rule "distributeIntersection" (formula "23") (term "0,0")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "distributeIntersection" (formula "26") (term "0")) + (rule "distributeIntersection" (formula "25") (term "0")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "45")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "45")) + (rule "eqSymm" (formula "44")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "43")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "commuteUnion" (formula "22") (term "0,0,1")) + (rule "commuteUnion" (formula "22") (term "1,1,1")) + (rule "commuteUnion_2" (formula "22") (term "0,1")) + (rule "commuteUnion" (formula "22") (term "0,0,1")) + (rule "commuteUnion_2" (formula "22") (term "1")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "translateJavaSubInt" (formula "35") (term "0")) + (rule "translateJavaMod" (formula "34") (term "0")) + (rule "translateJavaDivInt" (formula "29") (term "1")) + (rule "translateJavaMulInt" (formula "35") (term "0,0")) + (rule "polySimp_elimSub" (formula "35") (term "0")) + (rule "mul_literals" (formula "35") (term "1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "jmod_axiom" (formula "34") (term "0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1")) + (rule "replace_known_left" (formula "97") (term "1,1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "97")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption1" (formula "97") (term "1") (ifseqformula "28")) + (rule "leq_literals" (formula "97") (term "0,1")) + (builtin "One Step Simplification" (formula "97")) + (rule "newSym_eq" (formula "34") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "34") (term "1,1")) + (rule "add_zero_right" (formula "34") (term "1")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "34")) + (rule "eqSymm" (formula "35")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "35")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "35")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "35")) + (rule "polySimp_mulAssoc" (formula "36") (term "0")) + (rule "elimGcdGeq_antec" (formula "32") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "30")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "29")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0")) + (rule "expand_inInt" (formula "38") (term "1")) + (rule "expand_inInt" (formula "38") (term "0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,0")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "36")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "29")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption6" (formula "42") (ifseqformula "33")) + (rule "greater_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "mul_literals" (formula "42") (term "1,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "32")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "elimGcdLeq_antec" (formula "40") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "40") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0")) + (rule "leq_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "40") (term "0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,0")) + (rule "qeq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "cut_direct" (formula "51") (term "0,0,0,0,0")) + (branch "CUT: result_66 = null TRUE" + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "cut_direct" (formula "43") (term "0,0,0")) + (branch "CUT: result_65 = null TRUE" + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "101") (term "0")) + (rule "replace_known_right" (formula "101") (term "0,1,0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "89")) (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96"))) + (rule "associativeLawUnion" (formula "22") (term "0,1")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + (branch "CUT: result_65 = null FALSE" + (builtin "One Step Simplification" (formula "43")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102") (term "0")) + (rule "replace_known_right" (formula "102") (term "0,1,0,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "97"))) + (rule "associativeLawUnion" (formula "22") (term "0,1")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + ) + (branch "CUT: result_66 = null FALSE" + (builtin "One Step Simplification" (formula "51")) + (rule "cut_direct" (formula "43") (term "0,0,0")) + (branch "CUT: result_65 = null TRUE" + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "102") (term "0")) + (rule "replace_known_right" (formula "102") (term "0,1,0,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "93")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "97"))) + (rule "associativeLawUnion" (formula "22") (term "0,1")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "23")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "19")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + (branch "CUT: result_65 = null FALSE" + (builtin "One Step Simplification" (formula "43")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "103") (term "0")) + (rule "replace_known_right" (formula "103") (term "0,1,0,0,0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "91")) (ifInst "" (formula "92")) (ifInst "" (formula "94")) (ifInst "" (formula "95")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98"))) + (rule "associativeLawUnion" (formula "22") (term "0,1")) + (rule "arrayLengthIsAShort" (formula "21") (term "0")) + (rule "expand_inShort" (formula "21")) + (rule "replace_short_MAX" (formula "21") (term "1,0")) + (rule "replace_short_MIN" (formula "21") (term "0,1")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "23")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + ) + ) + ) + ) + (branch "Null Reference (parameters = null)" + (rule "false_right" (formula "46")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Exceptional Post (select_n)" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "0,0,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "close" (formula "37") (ifseqformula "36")) + ) + (branch "Pre (select_n)" + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "36")) (ifInst "" (formula "36"))) + (rule "wellFormedAnon" (formula "37") (term "0,0,0,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "37") (term "0,1,0,0,0") (ifseqformula "21")) + (rule "expand_inInt" (formula "37") (term "1")) + (rule "expand_inInt" (formula "37") (term "1,0,0")) + (rule "expand_inInt" (formula "37") (term "1,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0")) + (rule "replace_known_left" (formula "37") (term "1,0,0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5"))) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0")) + (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0")) + (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23")) + (rule "distributeIntersection" (formula "24") (term "0")) + (rule "distributeIntersection" (formula "24") (term "1,0")) + (rule "distributeIntersection" (formula "24") (term "0,0")) + (rule "distributeIntersection" (formula "24") (term "0,1,0")) + (rule "distributeIntersection" (formula "24") (term "1,1,0")) + (rule "distributeIntersection" (formula "24") (term "1,0,0")) + (rule "distributeIntersection" (formula "24") (term "0,0,0")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "commuteUnion" (formula "23") (term "0,0,1")) + (rule "commuteUnion" (formula "23") (term "1,1,1")) + (rule "commuteUnion" (formula "23") (term "0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "31")) + (rule "true_left" (formula "31")) + (rule "Definition_axiom_for_isValidForLen_in_de_wiesler_SampleParameters" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "translateJavaSubInt" (formula "36") (term "0")) + (rule "translateJavaMod" (formula "35") (term "0")) + (rule "translateJavaDivInt" (formula "30") (term "1")) + (rule "translateJavaMulInt" (formula "36") (term "0,0")) + (rule "polySimp_elimSub" (formula "36") (term "0")) + (rule "mul_literals" (formula "36") (term "1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0")) + (rule "jmod_axiom" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_rightDist" (formula "31") (term "0,1")) + (rule "mul_literals" (formula "31") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption1" (formula "83") (term "1,1") (ifseqformula "29")) + (rule "leq_literals" (formula "83") (term "0,1,1")) + (builtin "One Step Simplification" (formula "83")) + (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(self_77, + de.wiesler.SampleParameters::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "35") (term "1,1")) + (rule "add_zero_right" (formula "35") (term "1")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "36")) + (rule "polySimp_mulAssoc" (formula "37") (term "0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "elimGcdGeq_antec" (formula "33") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "31")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "30")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_SampleParameters" (formula "40")) + (rule "true_left" (formula "40")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Definition_axiom_for_isInInt_in_de_wiesler_SampleParameters" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0")) + (rule "expand_inInt" (formula "38") (term "1")) + (rule "expand_inInt" (formula "38") (term "0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,0")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "38")) + (rule "replace_known_left" (formula "96") (term "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "96")) + (rule "wellFormedAnonEQ" (formula "96") (ifseqformula "24")) + (rule "replace_known_left" (formula "96") (term "1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "96")) + ) + ) + (branch "Null Reference (parameters = null)" + (rule "false_right" (formula "38")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Exceptional Post (SampleParameters)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0,0") (ifseqformula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "26") (ifseqformula "25")) + ) + (branch "Pre (SampleParameters)" + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "19")) + (rule "replace_int_MAX" (formula "19") (term "1,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1")) + (rule "mul_literals" (formula "19") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (term "1") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,1")) + (rule "add_literals" (formula "19") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,1")) + (rule "add_literals" (formula "19") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1")) + (rule "add_zero_right" (formula "19") (term "0,0,1")) + (rule "qeq_literals" (formula "19") (term "0,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..630c320 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,10928 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:54:41 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:54:41 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "99441") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "12")) +(rule "notLeft" (formula "6")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "8") (term "0,0")) +(rule "translateJavaSubInt" (formula "13") (term "0")) +(rule "translateJavaSubInt" (formula "14") (term "0")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "0,0")) +(rule "polySimp_elimSub" (formula "13") (term "0")) +(rule "polySimp_elimSub" (formula "14") (term "0")) +(rule "polySimp_addComm0" (formula "8") (term "0,0")) +(rule "polySimp_addComm0" (formula "13") (term "0")) +(rule "polySimp_addComm0" (formula "14") (term "0")) +(rule "disjointDefinition" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) +(rule "commuteIntersection" (formula "16") (term "0")) +(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_sample_sort,savedHeapBefore_sample_sort,_beginBefore_sample_sort,_endBefore_sample_sort,_storageBefore_sample_sort,_valuesBefore_sample_sort,bucket_startsBefore_sample_sort,equal_bucketsBefore_sample_sort,num_bucketsBefore_sample_sort,num_bucketsBefore_sample_sort_0")) + (builtin "One Step Simplification" (formula "19")) +(rule "variableDeclarationAssign" (formula "19") (term "1")) +(rule "variableDeclaration" (formula "19") (term "1") (newnames "bucket_starts")) +(rule "methodCallWithAssignmentUnfoldArguments" (formula "19") (term "1")) +(rule "variableDeclarationAssign" (formula "19") (term "1")) +(rule "variableDeclaration" (formula "19") (term "1") (newnames "var")) +(rule "assignmentAdditionInt" (formula "19") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "19")) + (rule "add_literals" (formula "19") (term "0")) + (rule "expand_inInt" (formula "19")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0")) + (rule "leq_literals" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "leq_literals" (formula "19")) + (rule "closeTrue" (formula "19")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,1,0")) + (rule "add_literals" (formula "19") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_createArray,result_241,exc_285,heapAfter_createArray,anon_heap_createArray") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0,1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "replace_known_right" (formula "19") (term "0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "24"))) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "blockEmpty" (formula "27") (term "1")) + (builtin "Block Contract (Internal)" (formula "27") (newnames "anonOut_heap,exc_286,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "0,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "exc_286_1")) + (rule "assignment" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyStatement" (formula "28") (term "1")) + (rule "commute_and" (formula "21") (term "1,0,0")) + (rule "commute_and" (formula "21") (term "0,0,0")) + (rule "shift_paren_and" (formula "21") (term "0,0")) + (rule "commute_and_2" (formula "21") (term "0,0,0")) + (rule "tryEmpty" (formula "28") (term "1")) + (rule "blockEmptyLabel" (formula "28") (term "1")) + (rule "blockEmpty" (formula "28") (term "1")) + (rule "methodCallEmpty" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "emptyModality" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + (branch "Precondition" + (rule "andRight" (formula "27")) + (branch + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaSubInt" (formula "27") (term "0,0")) + (rule "polySimp_elimSub" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0")) + (rule "close" (formula "27") (ifseqformula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "27")) + (rule "wellFormedAnonEQ" (formula "27") (ifseqformula "18")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "27")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "0,1,1,0") (ifseqformula "18")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "disjointDefinition" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "narrowSelectArrayType" (formula "25") (term "2,1") (ifseqformula "1") (ifseqformula "32")) + (rule "commute_and" (formula "21") (term "1,0,0")) + (rule "commute_and" (formula "21") (term "0,0,0")) + (rule "shift_paren_and" (formula "21") (term "0,0")) + (rule "commute_and_2" (formula "21") (term "0,0,0")) + (rule "ifUnfold" (formula "33") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "replace_known_left" (formula "33") (term "0,0,1,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "33")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "ifSplit" (formula "36")) + (branch "if x true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "partition")) + (builtin "Use Operation Contract" (formula "36") (newnames "heapBefore_partition,result_242,exc_287,heapAfter_partition,anon_heap_partition") (contract "de.wiesler.Sorter[de.wiesler.Sorter::partition([I,int,int,[I,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (partition)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1,0,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "33")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "0,0,1,0,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "translateJavaSubInt" (formula "32") (term "2,0,0,1,0")) + (rule "translateJavaMod" (formula "35") (term "0,0,0,0,0,0,0,1")) + (rule "translateJavaSubInt" (formula "35") (term "3,0,1,1")) + (rule "translateJavaSubInt" (formula "35") (term "7,0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "35") (term "1,1,0,0,0,0,1")) + (rule "polySimp_elimSub" (formula "32") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "3,0,1,1")) + (rule "polySimp_elimSub" (formula "35") (term "7,0,1,1,0,1")) + (rule "mul_literals" (formula "35") (term "1,7,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "3,0,1,1")) + (rule "polySimp_addComm0" (formula "35") (term "7,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "35") (term "1,1,0,0,0,0,1")) + (rule "assignment" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "pullOutSelect" (formula "35") (term "0,1,0,0,0,0,1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "35") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "42"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "35") (term "0,0,1,0,0") (ifseqformula "21")) + (rule "replace_known_right" (formula "35") (term "0,0,0,1,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "22"))) + (rule "elementOfUnion" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "0,1,0,0,0,0,1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "commuteUnion_2" (formula "32") (term "1,0")) + (rule "commuteUnion" (formula "32") (term "0,1,0")) + (rule "commuteUnion_2" (formula "32") (term "1,0")) + (rule "shift_paren_or" (formula "33")) + (rule "shift_paren_or" (formula "33") (term "0")) + (rule "shift_paren_or" (formula "33") (term "0,0")) + (rule "commute_or_2" (formula "33") (term "0")) + (rule "commute_and_2" (formula "35") (term "0,0,0,1")) + (rule "commute_and_2" (formula "35") (term "0,0,1")) + (rule "commute_and" (formula "35") (term "0,0,0,0,0,1")) + (rule "commute_and_2" (formula "35") (term "0,0,0,0,1")) + (rule "commute_and_2" (formula "35") (term "0,0,0,1")) + (rule "ifUnfold" (formula "44") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_1")) + (rule "equality_comparison_simple" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "ifSplit" (formula "44")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "replace_known_left" (formula "36") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "replace_known_left" (formula "34") (term "0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "applyEq" (formula "43") (term "0,1,0") (ifseqformula "1")) + (builtin "Use Operation Contract" (formula "43") (newnames "heapBefore_fallback_sort,exc_288,heapAfter_fallback_sort,anon_heap_fallback_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (fallback_sort)" + (builtin "One Step Simplification" (formula "39")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "39") (term "0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "41")) + (rule "translateJavaSubInt" (formula "39") (term "2,1,0")) + (rule "eqSymm" (formula "41") (term "1,0")) + (rule "polySimp_elimSub" (formula "39") (term "2,1,0")) + (rule "mul_literals" (formula "39") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,0")) + (rule "blockReturnNoValue" (formula "49") (term "1")) + (rule "commute_and" (formula "41") (term "0,0")) + (rule "methodCallEmptyReturn" (formula "49") (term "1")) + (builtin "One Step Simplification" (formula "49")) + (rule "tryEmpty" (formula "49") (term "1")) + (rule "emptyModality" (formula "49") (term "1")) + (rule "andRight" (formula "49")) + (branch + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_gtToGeq" (formula "17")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "15")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "14")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "24")) + (rule "applyEq" (formula "38") (term "1,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "24")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "24")) + (rule "distributeIntersection" (formula "25") (term "0")) + (rule "distributeIntersection" (formula "36") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "25") (term "0,0")) + (rule "distributeIntersection" (formula "25") (term "1,0")) + (rule "distributeIntersection" (formula "36") (term "0,0")) + (rule "distributeIntersection" (formula "36") (term "1,0")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "distributeIntersection" (formula "25") (term "0,0,0")) + (rule "distributeIntersection" (formula "25") (term "1,0,0")) + (rule "distributeIntersection" (formula "25") (term "1,1,0")) + (rule "distributeIntersection" (formula "25") (term "0,1,0")) + (rule "distributeIntersection" (formula "37") (term "1,0,0")) + (rule "distributeIntersection" (formula "37") (term "0,0,0")) + (rule "distributeIntersection" (formula "37") (term "0,1,0")) + (rule "distributeIntersection" (formula "37") (term "1,1,0")) + (rule "distributeIntersection" (formula "36") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "distributeIntersection" (formula "37") (term "0,0")) + (rule "distributeIntersection" (formula "37") (term "1,0")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "unionEqualsEmpty" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "distributeIntersection" (formula "39") (term "0")) + (rule "distributeIntersection" (formula "38") (term "0")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "58")) + (rule "eqSymm" (formula "57")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "57")) + (rule "eqSymm" (formula "56")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "55")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "55")) + (rule "eqSymm" (formula "54")) + (rule "unionEqualsEmpty" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "54")) + (rule "eqSymm" (formula "53")) + (rule "sortsDisjointModuloNull" (formula "54")) + (rule "replace_known_right" (formula "54") (term "1") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "54")) + (rule "false_right" (formula "54")) + (rule "sortsDisjointModuloNull" (formula "53")) + (rule "replace_known_right" (formula "53") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "53")) + (rule "false_right" (formula "53")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "53")) + (rule "eqSymm" (formula "52")) + (rule "sortsDisjointModuloNull" (formula "53")) + (rule "replace_known_right" (formula "53") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "53")) + (rule "false_right" (formula "53")) + (rule "sortsDisjointModuloNull" (formula "52")) + (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "52")) + (rule "false_right" (formula "52")) + (rule "unionEqualsEmpty" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "52")) + (rule "eqSymm" (formula "51")) + (rule "sortsDisjointModuloNull" (formula "52")) + (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "52")) + (rule "false_right" (formula "52")) + (rule "sortsDisjointModuloNull" (formula "51")) + (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "51")) + (rule "false_right" (formula "51")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "51")) + (rule "eqSymm" (formula "50")) + (rule "sortsDisjointModuloNull" (formula "51")) + (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "51")) + (rule "false_right" (formula "51")) + (rule "sortsDisjointModuloNull" (formula "50")) + (rule "replace_known_right" (formula "50") (term "1") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "50")) + (rule "false_right" (formula "50")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "49")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "49")) + (rule "eqSymm" (formula "48")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "47")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "46")) + (rule "commuteUnion" (formula "24") (term "0,0,1")) + (rule "commuteUnion" (formula "24") (term "1,1,1")) + (rule "commuteUnion" (formula "35") (term "0,1,0,1,0")) + (rule "commuteUnion" (formula "35") (term "1,1,1,0,1,0")) + (rule "commuteUnion_2" (formula "24") (term "0,1")) + (rule "commuteUnion" (formula "35") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "24") (term "0,0,1")) + (rule "commuteUnion_2" (formula "24") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "95")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "44") (term "0")) + (rule "wellFormedAnonEQ" (formula "44") (term "1,0") (ifseqformula "41")) + (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "95")) (ifInst "" (formula "40"))) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "7")) + (rule "close" (formula "96") (ifseqformula "7")) + ) + (branch + (builtin "One Step Simplification" (formula "49")) + (rule "closeTrue" (formula "49")) + ) + ) + (branch "Exceptional Post (fallback_sort)" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0") (ifseqformula "39")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "40")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "0,0,0,1,0") (ifseqformula "22")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "close" (formula "42") (ifseqformula "41")) + ) + (branch "Pre (fallback_sort)" + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "42")) (ifInst "" (formula "42"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "0,0,1,0,0") (ifseqformula "22")) + (rule "expand_inInt" (formula "43") (term "1")) + (rule "expand_inInt" (formula "43") (term "1,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0")) + (rule "replace_known_left" (formula "43") (term "0,0,0,1,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "4")) (ifInst "" (formula "6"))) + (rule "inEqSimp_gtToGeq" (formula "17")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1")) + (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1")) + (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "43")) + (rule "wellFormedAnonEQ" (formula "43") (ifseqformula "33")) + (rule "wellFormedAnon" (formula "43") (term "0")) + (rule "wellFormedAnonEQ" (formula "43") (term "0,0") (ifseqformula "22")) + (rule "replace_known_left" (formula "43") (term "1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "2")) (ifInst "" (formula "21")) (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "43")) + ) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "35") (term "0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "replace_known_right" (formula "33") (term "0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "33")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "num_buckets")) + (rule "assignment_read_attribute_final" (formula "51")) + (branch "Normal Execution (partition != null)" + (builtin "One Step Simplification" (formula "51")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "equal_buckets")) + (rule "assignment_read_attribute_final" (formula "51")) + (branch "Normal Execution (partition != null)" + (builtin "One Step Simplification" (formula "51")) + (builtin "Block Contract (Internal)" (formula "51") (newnames "anonOut_heap_0,exc_288,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f,f,anonOut_bucket")) + (branch "Validity" + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "50")) (ifInst "" (formula "51"))) + (builtin "One Step Simplification" (formula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "45")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,1,0,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,0,0,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "2"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,0,0,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "45")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,1,0,0,0,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,0,0,0,1,0") (ifseqformula "21")) + (rule "expand_inInt" (formula "45") (term "1,0,1,0")) + (rule "expand_inInt" (formula "45") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "45") (term "1,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,1,0")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "translateJavaSubInt" (formula "45") (term "0,0")) + (rule "replace_known_left" (formula "47") (term "1,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "61"))) + (rule "true_left" (formula "47")) + (rule "replace_known_left" (formula "47") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polySimp_elimSub" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "disjointDefinition" (formula "55")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "56"))) + (rule "true_left" (formula "50")) + (rule "disjointDefinition" (formula "50")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "narrowSelectArrayType" (formula "34") (term "2,0") (ifseqformula "45") (ifseqformula "58")) + (rule "sortsDisjointModuloNull" (formula "52")) + (rule "replace_known_right" (formula "52") (term "1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "57"))) + (rule "false_right" (formula "52")) + (rule "sortsDisjointModuloNull" (formula "51")) + (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "56"))) + (rule "false_right" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "variableDeclarationAssign" (formula "55") (term "1")) + (rule "variableDeclaration" (formula "55") (term "1") (newnames "exc_288_1")) + (rule "assignment" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "jmod_axiom" (formula "38") (term "0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(result_242, + de.wiesler.PartitionResult::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "35") (term "1,1")) + (rule "add_zero_right" (formula "35") (term "1")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36")) + (rule "applyEq" (formula "53") (term "0,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36")) + (rule "elimGcdLeq_antec" (formula "44") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "neg_literal" (formula "44") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "44") (term "0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "elimGcdGeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "14")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "9")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "commuteIntersection" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "for_to_while" (formula "52") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "bucket")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "commute_or" (formula "21") (term "0,0,0")) + (rule "inEqSimp_or_subsumption3" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "arrayLengthIsAShort" (formula "8") (term "0")) + (rule "expand_inShort" (formula "8")) + (rule "replace_short_MIN" (formula "8") (term "0,1")) + (rule "replace_short_MAX" (formula "8") (term "1,0")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "9")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "elim_double_block_3" (formula "52") (term "1")) + (rule "jdiv_axiom" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,2,1")) + (rule "eqSymm" (formula "35")) + (rule "applyEqRigid" (formula "35") (term "1") (ifseqformula "36")) + (rule "polyDiv_pullOut" (formula "35") (term "1,0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,2,1,0")) + (rule "equal_literals" (formula "35") (term "0,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,1,0")) + (rule "add_literals" (formula "35") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "35") (term "0,0,1,0")) + (rule "div_literals" (formula "35") (term "0,1,0")) + (rule "add_zero_left" (formula "35") (term "1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_homoEq" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1")) + (rule "polySimp_sepPosMonomial" (formula "35") (term "1")) + (rule "polyDiv_pullOut" (formula "35") (term "0,1") (inst "polyDivCoeff=mul(l_0, Z(neglit(1(#))))")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,2,0,1")) + (rule "equal_literals" (formula "35") (term "0,0,1")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "35") (term "1")) + (rule "polySimp_pullOutFactor0" (formula "35") (term "0,0,0,1,0,1")) + (rule "add_literals" (formula "35") (term "1,0,0,0,1,0,1")) + (rule "times_zero_1" (formula "35") (term "0,0,0,1,0,1")) + (rule "div_literals" (formula "35") (term "0,0,1,0,1")) + (rule "add_zero_left" (formula "35") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1")) + (rule "polySimp_pullOutFactor2" (formula "35") (term "0,1")) + (rule "add_literals" (formula "35") (term "1,0,1")) + (rule "times_zero_1" (formula "35") (term "0,1")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "loopScopeInvDia" (formula "52") (term "1") (newnames "bucket_0,o_0,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "52")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "53")) + (rule "impRight" (formula "53")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "61") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "61") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "2,0,1,0,1,0,1,0")) + (rule "eqSymm" (formula "8") (term "0,1,0,1")) + (rule "translateJavaSubInt" (formula "8") (term "7,0,1,1")) + (rule "translateJavaSubInt" (formula "8") (term "2,0,1,0,0,1,1")) + (rule "translateJavaMod" (formula "8") (term "0,0,0,1")) + (rule "translateJavaAddInt" (formula "8") (term "6,0,1,1")) + (rule "translateJavaSubInt" (formula "7") (term "2,6,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,0,1,0,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,1,0,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,7,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,0,1,0,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,1,0,2,0")) + (rule "translateJavaMod" (formula "3") (term "0,1")) + (rule "translateJavaSubInt" (formula "8") (term "0,0,1,0,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "2,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,2,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "7,0,1,1")) + (rule "mul_literals" (formula "8") (term "1,7,0,1,1")) + (rule "polySimp_elimSub" (formula "8") (term "2,0,1,0,0,1,1")) + (rule "mul_literals" (formula "8") (term "1,2,0,1,0,0,1,1")) + (rule "polySimp_elimSub" (formula "7") (term "2,6,0")) + (rule "mul_literals" (formula "7") (term "1,2,6,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,0,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,1,0,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,7,0")) + (rule "mul_literals" (formula "5") (term "1,2,7,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,2,0,1,0,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,1,0,2,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,1,0,2,0")) + (rule "polySimp_elimSub" (formula "8") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,1")) + (rule "eqSymm" (formula "8") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "8") (term "6,0,1,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "2,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "7,0,1,1")) + (rule "polySimp_addComm0" (formula "8") (term "2,0,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "7") (term "2,6,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,7,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "8") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,6,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "1,0,0,0,0,6,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,0,0,0,6,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0,6,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,7,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "1,0,0,0,0,7,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0,0,7,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,7,0")) + (rule "narrowSelectArrayType" (formula "4") (term "2,1") (ifseqformula "10") (ifseqformula "60")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_2")) + (rule "jmod_axiom" (formula "8") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,1")) + (rule "jmod_axiom" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1")) + (rule "polySimp_sepNegMonomial" (formula "8") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,6,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,6,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,6,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,6,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,6,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,7,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,7,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,7,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,7,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,7,0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "1")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "commuteUnion" (formula "9") (term "1,0,0,1,1")) + (rule "commuteUnion" (formula "8") (term "1,0,0")) + (rule "commuteUnion" (formula "7") (term "1,0,0")) + (rule "commuteUnion" (formula "6") (term "1,0,0")) + (rule "commuteUnion" (formula "5") (term "1,0,2,0")) + (rule "commuteUnion" (formula "61") (term "1,0,1,0,1,0")) + (rule "commute_or" (formula "8") (term "0,6,0")) + (rule "commute_or" (formula "6") (term "0,7,0")) + (rule "commute_and" (formula "9") (term "0,1")) + (rule "commute_and_2" (formula "9") (term "1")) + (rule "commute_and" (formula "9") (term "0,1")) + (rule "ifElseUnfold" (formula "61") (term "1") (inst "#boolv=x_3")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_3")) + (rule "less_than_comparison_simple" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0")) + (rule "jdiv_axiom" (formula "4") (term "0,0,1")) + (rule "eqSymm" (formula "4")) + (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "4")) + (rule "eqSymm" (formula "4")) + (rule "applyEqRigid" (formula "5") (term "0,0,1") (ifseqformula "4")) + (rule "applyEqRigid" (formula "10") (term "0,0,1,1") (ifseqformula "4")) + (rule "div_axiom" (formula "4") (term "1") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,1,1,1")) + (rule "qeq_literals" (formula "4") (term "0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "polySimp_addComm1" (formula "6") (term "1")) + (rule "add_literals" (formula "6") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "applyEqRigid" (formula "8") (term "0,0,1") (ifseqformula "4")) + (rule "eqSymm" (formula "8") (term "1")) + (rule "applyEqRigid" (formula "13") (term "0,0,1,1") (ifseqformula "4")) + (rule "eqSymm" (formula "13") (term "1,1")) + (rule "applyEq" (formula "7") (term "1") (ifseqformula "4")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "6")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "4")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "1")) + (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=quotient_0") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "applyEq_and_gen3" (formula "16") (term "1")) + (rule "polySimp_homoEq" (formula "16") (term "0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,1")) + (rule "elimGcdEq" (formula "16") (term "0,1,0,1") (inst "elimGcdRightDiv=add(Z(0(#)), quotient_0)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,1,0,1")) + (rule "add_zero_left" (formula "16") (term "1,1,1,0,1,0,1")) + (rule "add_literals" (formula "16") (term "1,0,0,0,1,0,1")) + (rule "add_zero_left" (formula "16") (term "1,1,0,0,1,0,1,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "16") (term "1,1,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,1,0,1")) + (rule "add_zero_left" (formula "16") (term "1,1,0,0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,1,0,1,0,1")) + (rule "add_literals" (formula "16") (term "1,1,0,0,1,0,1,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,1,0,1")) + (rule "add_literals" (formula "16") (term "0,0,1,0,1,0,1")) + (rule "equal_literals" (formula "16") (term "0,1,0,1,0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,1,0,0,1,0,1")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0,0,1,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0,0,1,0,1")) + (rule "add_zero_right" (formula "16") (term "0,1,0,0,1,0,1")) + (rule "qeq_literals" (formula "16") (term "1,0,0,1,0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,1")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,1")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,1")) + (rule "leq_literals" (formula "16") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "ifElseSplit" (formula "68")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "14") (term "1,0,7,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "replace_known_left" (formula "16") (term "1,0,6,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "4")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=add(Z(1(#)), quotient_0)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (builtin "Use Operation Contract" (formula "68") (newnames "heapBefore_sample_sort_recurse_on,exc_0,heapAfter_sample_sort_recurse_on,anon_heap_sample_sort_recurse_on") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0")) + (branch "Post (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "70")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "69")) + (rule "translateJavaSubInt" (formula "63") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "66") (term "7,0")) + (rule "translateJavaAddInt" (formula "68") (term "6,0")) + (rule "translateJavaAddInt" (formula "69") (term "6,0,1")) + (rule "translateJavaSubInt" (formula "69") (term "7,0,1")) + (rule "polySimp_elimSub" (formula "63") (term "2,0,1,0")) + (rule "mul_literals" (formula "63") (term "1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "7,0,1")) + (rule "mul_literals" (formula "69") (term "1,7,0,1")) + (rule "polySimp_addComm0" (formula "66") (term "7,0")) + (rule "polySimp_addComm0" (formula "68") (term "6,0")) + (rule "polySimp_addComm0" (formula "69") (term "6,0,1")) + (rule "polySimp_addComm0" (formula "63") (term "2,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "7,0,1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "commuteUnion" (formula "63") (term "1,0")) + (rule "compound_assignment_op_plus" (formula "78") (term "1")) + (rule "compound_int_cast_expression" (formula "78") (term "1") (inst "#v=x_3")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_4")) + (rule "remove_parentheses_right" (formula "78") (term "1")) + (rule "compound_addition_2" (formula "78") (term "1") (inst "#v1=x_6") (inst "#v0=x_5")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_5")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_6")) + (rule "remove_parentheses_right" (formula "78") (term "1")) + (rule "compound_addition_2" (formula "78") (term "1") (inst "#v1=x_8") (inst "#v0=x_7")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_7")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_8")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "78") (term "1") (inst "#v0=x_9")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_9")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "b")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodBodyExpand" (formula "78") (term "1") (newnames "heapBefore_toInt,savedHeapBefore_toInt")) + (builtin "One Step Simplification" (formula "78")) + (rule "returnUnfold" (formula "78") (term "1") (inst "#v0=x_10")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "x_10")) + (rule "condition_simple" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallReturn" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "assignmentAdditionInt" (formula "78") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "78")) + (rule "expand_inInt" (formula "78")) + (rule "replace_int_MAX" (formula "78") (term "1,0")) + (rule "replace_int_MIN" (formula "78") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,1")) + (rule "add_literals" (formula "78") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "1,1")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "nnf_notAnd" (formula "50") (term "0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "50") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "translateJavaMulInt" (formula "60") (term "1")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "translateJavaMulInt" (formula "59") (term "1")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "105")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "104")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "103")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "notLeft" (formula "85")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "73") (term "0,1,0,2,1") (ifseqformula "65")) + (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "65")) + (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "71") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "65")) + (rule "distributeIntersection" (formula "43") (term "0")) + (rule "distributeIntersection" (formula "44") (term "0")) + (rule "distributeIntersection" (formula "33") (term "0")) + (rule "distributeIntersection" (formula "43") (term "0,0")) + (rule "distributeIntersection" (formula "43") (term "1,0")) + (rule "unionEqualsEmpty" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "distributeIntersection" (formula "44") (term "1,0,0")) + (rule "distributeIntersection" (formula "44") (term "0,0,0")) + (rule "distributeIntersection" (formula "44") (term "0,1,0")) + (rule "distributeIntersection" (formula "44") (term "1,1,0")) + (rule "distributeIntersection" (formula "45") (term "0")) + (rule "distributeIntersection" (formula "46") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "33") (term "0")) + (rule "unionEqualsEmpty" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "distributeIntersection" (formula "46") (term "1,0")) + (rule "distributeIntersection" (formula "46") (term "0,0")) + (rule "distributeIntersection" (formula "47") (term "0,0")) + (rule "distributeIntersection" (formula "47") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0")) + (rule "distributeIntersection" (formula "33") (term "0,0")) + (rule "distributeIntersection" (formula "33") (term "1,0")) + (rule "unionEqualsEmpty" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "unionEqualsEmpty" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "unionEqualsEmpty" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "unionEqualsEmpty" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "89")) + (rule "eqSymm" (formula "88")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "88")) + (rule "eqSymm" (formula "87")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "87")) + (rule "eqSymm" (formula "86")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "86")) + (rule "eqSymm" (formula "85")) + (rule "unionEqualsEmpty" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "85")) + (rule "eqSymm" (formula "84")) + (rule "sortsDisjointModuloNull" (formula "85")) + (rule "replace_known_right" (formula "85") (term "1") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "85")) + (rule "false_right" (formula "85")) + (rule "sortsDisjointModuloNull" (formula "84")) + (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "84")) + (rule "false_right" (formula "84")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "84")) + (rule "eqSymm" (formula "83")) + (rule "sortsDisjointModuloNull" (formula "84")) + (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "84")) + (rule "false_right" (formula "84")) + (rule "sortsDisjointModuloNull" (formula "83")) + (rule "replace_known_right" (formula "83") (term "1") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "83")) + (rule "false_right" (formula "83")) + (rule "unionEqualsEmpty" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "83")) + (rule "eqSymm" (formula "82")) + (rule "sortsDisjointModuloNull" (formula "83")) + (rule "replace_known_right" (formula "83") (term "1") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "83")) + (rule "false_right" (formula "83")) + (rule "sortsDisjointModuloNull" (formula "82")) + (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "82")) + (rule "false_right" (formula "82")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "82")) + (rule "eqSymm" (formula "81")) + (rule "sortsDisjointModuloNull" (formula "82")) + (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "82")) + (rule "false_right" (formula "82")) + (rule "sortsDisjointModuloNull" (formula "81")) + (rule "replace_known_right" (formula "81") (term "1") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "81")) + (rule "false_right" (formula "81")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "81")) + (rule "eqSymm" (formula "80")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "80")) + (rule "eqSymm" (formula "79")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "79")) + (rule "eqSymm" (formula "78")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "commuteUnion_2" (formula "62") (term "0,1")) + (rule "commuteUnion" (formula "62") (term "1,1,1")) + (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "70") (term "0,0,1,0,2,1")) + (rule "commuteUnion" (formula "70") (term "1,1,0,1,0,2,1")) + (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "15") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0")) + (rule "commuteUnion" (formula "43") (term "1,1,1,0,1,0")) + (rule "commuteUnion" (formula "68") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "68") (term "0,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0")) + (rule "commuteUnion_2" (formula "68") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "68") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "16") (term "0,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "62") (term "0,0,1")) + (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "70") (term "1,0,0,1,0,2,1")) + (rule "commuteUnion" (formula "15") (term "1,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "43") (term "0,1,0,1,0")) + (rule "commuteUnion" (formula "68") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "68") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "16") (term "1,0,0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "62") (term "0,1")) + (rule "commuteUnion_2" (formula "14") (term "0,1,0,0")) + (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "68") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "62") (term "1")) + (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "43") (term "1,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,1,0,2,0")) + (rule "commuteUnion_2" (formula "13") (term "0,1,0,0")) + (rule "commuteUnion_2" (formula "68") (term "0,1,0,0")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "73") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "73")) + (rule "expand_inInt" (formula "73") (term "1,0,0")) + (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "73") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "73") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "74") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "74")) + (rule "expand_inInt" (formula "74") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "3,0,1,0,1")) + (rule "translateJavaMod" (formula "74") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "0,2,1,3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "74") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "74") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "74") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "74") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,0,1")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "71") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "71")) + (rule "expand_inInt" (formula "71") (term "1,0,0")) + (rule "replace_int_MAX" (formula "71") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "71") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "71") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "71") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "71") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "71") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "54")) (ifInst "" (formula "55")) (ifInst "" (formula "58")) (ifInst "" (formula "59")) (ifInst "" (formula "60")) (ifInst "" (formula "61"))) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaMulInt" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "148"))) + (rule "true_left" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "146"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "118"))) + (rule "true_left" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "112"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "110"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "108"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "106"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "104"))) + (rule "true_left" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "102"))) + (rule "true_left" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "100"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "98"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "96"))) + (rule "true_left" (formula "33")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "94"))) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "62")) + (rule "eqSymm" (formula "32")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "64")) + (rule "notLeft" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "73")) + (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "53")) (ifInst "" (formula "54")) (ifInst "" (formula "57")) (ifInst "" (formula "58")) (ifInst "" (formula "59")) (ifInst "" (formula "60"))) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "translateJavaMulInt" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "1")) + (rule "translateJavaMulInt" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "1")) + (rule "disjointDefinition" (formula "101")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "154"))) + (rule "true_left" (formula "101")) + (rule "disjointDefinition" (formula "100")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "152"))) + (rule "true_left" (formula "100")) + (rule "disjointDefinition" (formula "99")) + (builtin "One Step Simplification" (formula "99")) + (rule "notLeft" (formula "99")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "98")) + (builtin "One Step Simplification" (formula "98")) + (rule "notLeft" (formula "98")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "97")) + (builtin "One Step Simplification" (formula "97")) + (rule "notLeft" (formula "97")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "96")) + (builtin "One Step Simplification" (formula "96")) + (rule "notLeft" (formula "96")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "95")) + (builtin "One Step Simplification" (formula "95")) + (rule "notLeft" (formula "95")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "94")) + (builtin "One Step Simplification" (formula "94")) + (rule "notLeft" (formula "94")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "124"))) + (rule "true_left" (formula "86")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "notLeft" (formula "85")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "118"))) + (rule "true_left" (formula "83")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "116"))) + (rule "true_left" (formula "82")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "114"))) + (rule "true_left" (formula "81")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "112"))) + (rule "true_left" (formula "80")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "110"))) + (rule "true_left" (formula "79")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "108"))) + (rule "true_left" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "106"))) + (rule "true_left" (formula "77")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "104"))) + (rule "true_left" (formula "76")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "102"))) + (rule "true_left" (formula "74")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "100"))) + (rule "true_left" (formula "74")) + (rule "applyEq" (formula "73") (term "1") (ifseqformula "31")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "52") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52") (term "1,0,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "52") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "52") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "52") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "52") (term "0,0,0,1,1,0")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "47") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "70") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "1,0,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "70") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "70") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "74")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "75")) + (rule "notLeft" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "translateJavaAddInt" (formula "47") (term "3,0")) + (rule "translateJavaAddInt" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "3,0")) + (rule "polySimp_addComm0" (formula "46") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_subsumption6" (formula "45") (ifseqformula "3")) + (rule "mul_literals" (formula "45") (term "1,1,0")) + (rule "greater_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "elimGcdLeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "45") (term "0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "45")) + (rule "leq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "pullOutSelect" (formula "47") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "47") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "130"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,0,1,0,0") (ifseqformula "33")) + (rule "replace_known_left" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "129"))) + (rule "applyEqRigid" (formula "47") (term "1") (ifseqformula "48")) + (rule "ifEqualsInteger" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0")) + (rule "eqSymm" (formula "47") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "47") (term "0,0,1,0,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0,1")) + (rule "eqSymm" (formula "47") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "47") (term "0,0,1,0,0,1") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0,1")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "54")) + (rule "expand_inInt" (formula "54") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1")) + (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0,1,0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,0,0,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1,0,0,0,1,0")) + (rule "commute_and" (formula "133")) + (rule "commuteUnion" (formula "31") (term "0,0")) + (rule "commuteUnion" (formula "31") (term "1,1,0")) + (rule "nnf_imp2or" (formula "73") (term "0")) + (rule "nnf_imp2or" (formula "74") (term "0,1")) + (rule "nnf_imp2or" (formula "71") (term "0")) + (rule "cut_direct" (formula "11") (term "0")) + (branch "CUT: result_242.equal_buckets = TRUE TRUE" + (builtin "One Step Simplification" (formula "12")) + (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12"))) + (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11"))) + (rule "qeq_literals" (formula "134") (term "0")) + (builtin "One Step Simplification" (formula "134")) + (rule "leq_literals" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + (branch "CUT: result_242.equal_buckets = TRUE FALSE" + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "replace_known_right" (formula "133") (term "0,0,1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "74"))) + (rule "leq_literals" (formula "133") (term "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "qeq_literals" (formula "133")) + (rule "closeTrue" (formula "133")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaAddInt" (formula "78") (term "0,1,0")) + (rule "assignmentAdditionInt" (formula "78") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "78")) + (rule "expand_inInt" (formula "78")) + (rule "replace_int_MIN" (formula "78") (term "0,1")) + (rule "replace_int_MAX" (formula "78") (term "1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "1,1")) + (rule "polySimp_addComm0" (formula "78") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,1,0,0")) + (rule "mul_literals" (formula "78") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,1")) + (rule "add_literals" (formula "78") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1")) + (rule "polySimp_mulComm0" (formula "78") (term "1,1")) + (rule "polySimp_rightDist" (formula "78") (term "1,1")) + (rule "mul_literals" (formula "78") (term "0,1,1")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "16") (term "0,0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,3,0,1,0,0,1")) + (rule "translateJavaMod" (formula "16") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "16") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "16") (term "3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "16") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "16") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,0,1")) + (rule "nnf_imp2or" (formula "16") (term "0,0,1")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0,1")) + (rule "nnf_notAnd" (formula "16") (term "1,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,1,0,0,0,1")) + (rule "add_literals" (formula "16") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,1,0,0,0,1")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "1,0,1,0,0,0,1")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0,0,1")) + (rule "nnf_notAnd" (formula "16") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "15") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "65") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65") (term "1,0,0")) + (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "65") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "65") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "65") (term "0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "55") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1,0,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "55") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "55") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "59")) + (rule "notLeft" (formula "58")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "58")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "59")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "59")) + (rule "andLeft" (formula "57")) + (rule "notLeft" (formula "59")) + (rule "notLeft" (formula "58")) + (rule "notLeft" (formula "57")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "66") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "1,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "66") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaAddInt" (formula "50") (term "3,0")) + (rule "translateJavaAddInt" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "3,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "36")) + (rule "inEqSimp_homoInEq1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "add_literals" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "inEqSimp_subsumption6" (formula "48") (ifseqformula "3")) + (rule "mul_literals" (formula "48") (term "1,1,0")) + (rule "greater_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "elimGcdLeq_antec" (formula "48") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0")) + (rule "leq_literals" (formula "48") (term "0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "mul_literals" (formula "48") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "48") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "48") (term "0,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "qeq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "48")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "pullOutSelect" (formula "50") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "50") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "83"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "50") (term "1,0,0,1,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "82"))) + (rule "applyEq" (formula "50") (term "1") (ifseqformula "51")) + (rule "ifEqualsInteger" (formula "50")) + (rule "elementOfUnion" (formula "50") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "50") (term "1,0,0,1")) + (rule "eqSymm" (formula "50") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "50") (term "0,0,1,0,0,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "50")) + (rule "elementOfUnion" (formula "50") (term "0,0,1")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "elementOfUnion" (formula "50")) + (rule "elementOfArrayRangeConcrete" (formula "50") (term "1")) + (rule "eqSymm" (formula "50") (term "0,0,1")) + (rule "replace_known_right" (formula "50") (term "0,0,1") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "50")) + (rule "elementOfUnion" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "translateJavaMulInt" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "translateJavaMulInt" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "disjointDefinition" (formula "95")) + (builtin "One Step Simplification" (formula "95")) + (rule "notLeft" (formula "95")) + (rule "disjointDefinition" (formula "94")) + (builtin "One Step Simplification" (formula "94")) + (rule "notLeft" (formula "94")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "eqSymm" (formula "105")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "eqSymm" (formula "104")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "103")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "notLeft" (formula "85")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "67")) + (rule "applyEq" (formula "16") (term "0,1,0,0,1,0,0,1") (ifseqformula "67")) + (rule "applyEq" (formula "14") (term "0,1,0,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "16") (term "0,1,0,1,3,0,1,0,0,1") (ifseqformula "67")) + (rule "applyEq" (formula "13") (term "0,1,0,1,2,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "67")) + (rule "applyEq" (formula "71") (term "0,1,0,0") (ifseqformula "67")) + (rule "applyEq" (formula "16") (term "0,1,0,1,2,0,1,0,0,1") (ifseqformula "67")) + (rule "applyEq" (formula "32") (term "1,0") (ifseqformula "67")) + (rule "applyEq" (formula "73") (term "0,1,0,2,1") (ifseqformula "67")) + (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "13") (term "0,1,0,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "45") (term "1,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "14") (term "0,1,0,4,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "13") (term "0,1,0,1,3,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "67")) + (rule "applyEq" (formula "14") (term "0,1,0,5,0,1,0") (ifseqformula "67")) + (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "67")) + (rule "distributeIntersection" (formula "42") (term "0")) + (rule "distributeIntersection" (formula "43") (term "0")) + (rule "distributeIntersection" (formula "32") (term "0")) + (rule "unionEqualsEmpty" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "distributeIntersection" (formula "44") (term "0,0")) + (rule "distributeIntersection" (formula "44") (term "1,0")) + (rule "distributeIntersection" (formula "32") (term "1,0")) + (rule "distributeIntersection" (formula "32") (term "0,0")) + (rule "distributeIntersection" (formula "43") (term "0")) + (rule "distributeIntersection" (formula "42") (term "0")) + (rule "distributeIntersection" (formula "44") (term "0,0,0")) + (rule "distributeIntersection" (formula "44") (term "1,0,0")) + (rule "distributeIntersection" (formula "44") (term "0,1,0")) + (rule "distributeIntersection" (formula "44") (term "1,1,0")) + (rule "distributeIntersection" (formula "32") (term "0,1,0")) + (rule "distributeIntersection" (formula "32") (term "1,1,0")) + (rule "distributeIntersection" (formula "32") (term "1,0,0")) + (rule "distributeIntersection" (formula "32") (term "0,0,0")) + (rule "distributeIntersection" (formula "43") (term "1,0")) + (rule "distributeIntersection" (formula "43") (term "0,0")) + (rule "distributeIntersection" (formula "42") (term "1,0")) + (rule "distributeIntersection" (formula "42") (term "0,0")) + (rule "unionEqualsEmpty" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "unionEqualsEmpty" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "unionEqualsEmpty" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "unionEqualsEmpty" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "unionEqualsEmpty" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "unionEqualsEmpty" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "unionEqualsEmpty" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "89")) + (rule "eqSymm" (formula "88")) + (rule "unionEqualsEmpty" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "88")) + (rule "eqSymm" (formula "87")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "87")) + (rule "eqSymm" (formula "86")) + (rule "unionEqualsEmpty" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "86")) + (rule "eqSymm" (formula "85")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "85")) + (rule "eqSymm" (formula "84")) + (rule "sortsDisjointModuloNull" (formula "85")) + (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "134"))) + (rule "false_right" (formula "85")) + (rule "sortsDisjointModuloNull" (formula "84")) + (rule "replace_known_right" (formula "84") (term "0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "133"))) + (rule "false_right" (formula "84")) + (rule "unionEqualsEmpty" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "84")) + (rule "eqSymm" (formula "83")) + (rule "sortsDisjointModuloNull" (formula "84")) + (rule "replace_known_right" (formula "84") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "133"))) + (rule "false_right" (formula "84")) + (rule "sortsDisjointModuloNull" (formula "83")) + (rule "replace_known_right" (formula "83") (term "0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "132"))) + (rule "false_right" (formula "83")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "47")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "83")) + (rule "eqSymm" (formula "82")) + (rule "sortsDisjointModuloNull" (formula "83")) + (rule "replace_known_right" (formula "83") (term "0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "132"))) + (rule "false_right" (formula "83")) + (rule "sortsDisjointModuloNull" (formula "82")) + (rule "replace_known_right" (formula "82") (term "0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "131"))) + (rule "false_right" (formula "82")) + (rule "unionEqualsEmpty" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "82")) + (rule "eqSymm" (formula "81")) + (rule "sortsDisjointModuloNull" (formula "82")) + (rule "replace_known_right" (formula "82") (term "1") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "119"))) + (rule "false_right" (formula "82")) + (rule "sortsDisjointModuloNull" (formula "81")) + (rule "replace_known_right" (formula "81") (term "1") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "119"))) + (rule "false_right" (formula "81")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "81")) + (rule "eqSymm" (formula "80")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "80")) + (rule "eqSymm" (formula "79")) + (rule "unionEqualsEmpty" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "79")) + (rule "eqSymm" (formula "78")) + (rule "unionEqualsEmpty" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "commuteUnion_2" (formula "64") (term "0,1")) + (rule "commuteUnion" (formula "64") (term "1,1,1")) + (rule "commuteUnion" (formula "16") (term "0,0,1,0,0,1,0,0,1")) + (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,1,0,0,1")) + (rule "commuteUnion" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0,1,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "54")) + (rule "expand_inInt" (formula "54") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1")) + (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63"))) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "148"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "146"))) + (rule "true_left" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "118"))) + (rule "true_left" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "112"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "110"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "108"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "106"))) + (rule "true_left" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "104"))) + (rule "true_left" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "102"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "100"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "98"))) + (rule "true_left" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "96"))) + (rule "true_left" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "94"))) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "64")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "13") (term "0,1,0,1,2,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "14") (term "0,1,0,4,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "42") (term "1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "31")) + (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "13") (term "0,1,0,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "14") (term "0,1,0,5,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "16") (term "0,1,0,1,3,0,1,0,0,1") (ifseqformula "31")) + (rule "applyEq" (formula "16") (term "0,1,0,1,2,0,1,0,0,1") (ifseqformula "31")) + (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "13") (term "0,1,0,1,3,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "70") (term "0,1,0,2,1") (ifseqformula "31")) + (rule "applyEq" (formula "68") (term "0,1,0,0") (ifseqformula "31")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "72") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "72")) + (rule "expand_inInt" (formula "72") (term "1,0,0")) + (rule "replace_int_MIN" (formula "72") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "72") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "72") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "77")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "78")) + (rule "notLeft" (formula "77")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "74") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "74")) + (rule "expand_inInt" (formula "74") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "74") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "74") (term "0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "0,2,1,3,0,1,0,1")) + (rule "translateJavaMod" (formula "74") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "74") (term "3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "74") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "74") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "74") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "74") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "75")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63"))) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "78")) + (rule "translateJavaMulInt" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "translateJavaMulInt" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "disjointDefinition" (formula "103")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "147"))) + (rule "true_left" (formula "103")) + (rule "disjointDefinition" (formula "102")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "145"))) + (rule "true_left" (formula "102")) + (rule "disjointDefinition" (formula "101")) + (builtin "One Step Simplification" (formula "101")) + (rule "notLeft" (formula "101")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "100")) + (builtin "One Step Simplification" (formula "100")) + (rule "notLeft" (formula "100")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "99")) + (builtin "One Step Simplification" (formula "99")) + (rule "notLeft" (formula "99")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "98")) + (builtin "One Step Simplification" (formula "98")) + (rule "notLeft" (formula "98")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "97")) + (builtin "One Step Simplification" (formula "97")) + (rule "notLeft" (formula "97")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "96")) + (builtin "One Step Simplification" (formula "96")) + (rule "notLeft" (formula "96")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "95")) + (builtin "One Step Simplification" (formula "95")) + (rule "notLeft" (formula "95")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "94")) + (builtin "One Step Simplification" (formula "94")) + (rule "notLeft" (formula "94")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "117"))) + (rule "true_left" (formula "88")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "111"))) + (rule "true_left" (formula "85")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "109"))) + (rule "true_left" (formula "84")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "107"))) + (rule "true_left" (formula "83")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "105"))) + (rule "true_left" (formula "82")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "103"))) + (rule "true_left" (formula "81")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "101"))) + (rule "true_left" (formula "80")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "99"))) + (rule "true_left" (formula "79")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "97"))) + (rule "true_left" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "95"))) + (rule "true_left" (formula "77")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "93"))) + (rule "true_left" (formula "76")) + (rule "applyEq" (formula "75") (term "0") (ifseqformula "64")) + (rule "eqSymm" (formula "75")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "71") (term "0,0")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "commute_and" (formula "133")) + (rule "nnf_imp2or" (formula "73") (term "0")) + (rule "commuteUnion" (formula "64") (term "0,0,1")) + (rule "commuteUnion" (formula "16") (term "1,0,0,1,0,0,1,0,0,1")) + (rule "commuteUnion" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "commute_or" (formula "16") (term "1,0,0,0,1")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "71") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "71")) + (rule "expand_inInt" (formula "71") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "71") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "71") (term "1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "71") (term "1,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "71") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "71") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,2,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "71") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "71") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "71") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "71") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "71") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "cut_direct" (formula "11") (term "0")) + (branch "CUT: result_242.equal_buckets = TRUE TRUE" + (builtin "One Step Simplification" (formula "12")) + (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11"))) + (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12"))) + (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "55")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_homoInEq0" (formula "134") (term "1")) + (rule "mul_literals" (formula "134") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "134") (term "0,1")) + (rule "add_literals" (formula "134") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "134") (term "0")) + (rule "mul_literals" (formula "134") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "134") (term "0,0")) + (rule "add_literals" (formula "134") (term "0,0,0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "12")) + (rule "applyEqRigid" (formula "72") (term "1,1,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "74") (term "1,1,0,0,0,0,0") (ifseqformula "12")) + (rule "applyEqRigid" (formula "14") (term "1,1,1,0,0,0") (ifseqformula "12")) + (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "11")) + (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "qeq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEqRigid" (formula "5") (term "0,0") (ifseqformula "10")) + (rule "applyEqRigid" (formula "14") (term "1,1,0,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "15") (term "1,0,0,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "73") (term "1,1,0,0,0,0,0") (ifseqformula "10")) + (rule "applyEqRigid" (formula "132") (term "0,1,0,0") (ifseqformula "10")) + (rule "polySimp_mulLiterals" (formula "132") (term "1,0,0")) + (rule "applyEqRigid" (formula "132") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulLiterals" (formula "132") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "132") (term "0")) + (rule "polySimp_mulLiterals" (formula "132") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "132") (term "1")) + (rule "polySimp_mulLiterals" (formula "132") (term "0,1")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "1,1,0")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption6" (formula "1") (ifseqformula "6")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "130") (term "0") (ifseqformula "1")) + (rule "greater_literals" (formula "130") (term "0,0,0")) + (builtin "One Step Simplification" (formula "130")) + (rule "times_zero_1" (formula "130") (term "1,0,0")) + (rule "leq_literals" (formula "130") (term "0,0")) + (builtin "One Step Simplification" (formula "130")) + (rule "inEqSimp_leqRight" (formula "130")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: result_242.equal_buckets = TRUE FALSE" + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "replace_known_right" (formula "73") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "replace_known_right" (formula "132") (term "0,0,1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "73"))) + (rule "replace_known_right" (formula "53") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "130") (term "1")) + (rule "times_zero_2" (formula "130") (term "1,0,1")) + (rule "add_zero_right" (formula "130") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "130") (term "0")) + (rule "times_zero_2" (formula "130") (term "1,0,0")) + (rule "add_zero_right" (formula "130") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "130") (term "1")) + (rule "polySimp_mulLiterals" (formula "130") (term "0,1")) + (rule "polySimp_elimOne" (formula "130") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "130") (term "0")) + (rule "polySimp_mulLiterals" (formula "130") (term "0,0")) + (rule "polySimp_elimOne" (formula "130") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "130") (term "0") (ifseqformula "4")) + (rule "leq_literals" (formula "130") (term "0,0")) + (builtin "One Step Simplification" (formula "130")) + (rule "inEqSimp_leqRight" (formula "130")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "44")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaAddInt" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,1,0")) + (rule "widening_identity_cast_5" (formula "78") (term "1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "lsContinue" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_rightDist" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0")) + (rule "precOfInt" (formula "78")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0,1")) + (rule "add_literals" (formula "78") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "78") (term "1,0,0,1")) + (rule "add_zero_right" (formula "78") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1")) + (rule "add_literals" (formula "78") (term "0,0,0,0,1")) + (rule "add_zero_left" (formula "78") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "78") (term "0,0,1")) + (rule "add_literals" (formula "78") (term "1,0,0,1")) + (rule "times_zero_1" (formula "78") (term "0,0,1")) + (rule "add_zero_left" (formula "78") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "times_zero_2" (formula "78") (term "1,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0")) + (rule "inEqSimp_invertInEq0" (formula "78") (term "1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1")) + (rule "times_zero_2" (formula "78") (term "1,1")) + (rule "polySimp_elimOne" (formula "78") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "78") (term "0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "66") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "1,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "66") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "66") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "66") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "66") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "66") (term "0")) + (rule "nnf_notAnd" (formula "66") (term "0,0")) + (rule "nnf_notAnd" (formula "66") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "66") (term "0,1,0,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "0,1,0,0")) + (rule "mul_literals" (formula "66") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "66") (term "1,1,0,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "66") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,1,0,0")) + (rule "mul_literals" (formula "66") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "66") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "66") (term "0,0,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "66") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0,0,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "nnf_notAnd" (formula "50") (term "0,0")) + (rule "nnf_notAnd" (formula "50") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "0,1,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "50") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "59")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "60")) + (rule "notLeft" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "55") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "55") (term "3,0,1,0,1")) + (rule "translateJavaAddInt" (formula "55") (term "2,0,1,0,1")) + (rule "translateJavaMod" (formula "55") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "55") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "55") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "55") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0,1")) + (rule "nnf_imp2or" (formula "55") (term "0,1")) + (rule "nnf_notAnd" (formula "55") (term "0,0,1")) + (rule "nnf_notAnd" (formula "55") (term "0,0,0,1")) + (rule "nnf_notAnd" (formula "55") (term "1,0,0,1")) + (rule "inEqSimp_notLeq" (formula "55") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,1,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "55") (term "1,0,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "55") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "55") (term "1,0,0,1,1,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "55") (term "1,1,1,0,0,1")) + (rule "nnf_notAnd" (formula "55") (term "0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "55") (term "0,0,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "55") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "55") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "55") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "translateJavaMulInt" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "translateJavaMulInt" (formula "34") (term "1")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "104")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "103")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "applyEq" (formula "52") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "72") (term "0,1,0,2,1") (ifseqformula "40")) + (rule "applyEq" (formula "51") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "54") (term "1,0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "15") (term "0,1,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "70") (term "0,1,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "40")) + (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "40")) + (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "40")) + (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "40")) + (rule "distributeIntersection" (formula "52") (term "0")) + (rule "distributeIntersection" (formula "51") (term "0")) + (rule "distributeIntersection" (formula "41") (term "0")) + (rule "distributeIntersection" (formula "52") (term "0,0")) + (rule "distributeIntersection" (formula "52") (term "1,0")) + (rule "unionEqualsEmpty" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "distributeIntersection" (formula "41") (term "1,0")) + (rule "distributeIntersection" (formula "41") (term "0,0")) + (rule "distributeIntersection" (formula "53") (term "0,0,0")) + (rule "distributeIntersection" (formula "53") (term "1,0,0")) + (rule "distributeIntersection" (formula "53") (term "1,1,0")) + (rule "distributeIntersection" (formula "53") (term "0,1,0")) + (rule "distributeIntersection" (formula "52") (term "0")) + (rule "distributeIntersection" (formula "51") (term "0")) + (rule "distributeIntersection" (formula "41") (term "0,1,0")) + (rule "distributeIntersection" (formula "41") (term "1,1,0")) + (rule "distributeIntersection" (formula "41") (term "0,0,0")) + (rule "distributeIntersection" (formula "41") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "distributeIntersection" (formula "52") (term "0,0")) + (rule "distributeIntersection" (formula "52") (term "1,0")) + (rule "distributeIntersection" (formula "51") (term "0,0")) + (rule "distributeIntersection" (formula "51") (term "1,0")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "unionEqualsEmpty" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "unionEqualsEmpty" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "unionEqualsEmpty" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "unionEqualsEmpty" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "88")) + (rule "eqSymm" (formula "87")) + (rule "sortsDisjointModuloNull" (formula "88")) + (rule "replace_known_right" (formula "88") (term "1") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "123"))) + (rule "false_right" (formula "88")) + (rule "sortsDisjointModuloNull" (formula "87")) + (rule "replace_known_right" (formula "87") (term "0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "128"))) + (rule "false_right" (formula "87")) + (rule "unionEqualsEmpty" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "87")) + (rule "eqSymm" (formula "86")) + (rule "sortsDisjointModuloNull" (formula "87")) + (rule "replace_known_right" (formula "87") (term "1") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "120"))) + (rule "false_right" (formula "87")) + (rule "sortsDisjointModuloNull" (formula "86")) + (rule "replace_known_right" (formula "86") (term "1") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "120"))) + (rule "false_right" (formula "86")) + (rule "unionEqualsEmpty" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "86")) + (rule "eqSymm" (formula "85")) + (rule "sortsDisjointModuloNull" (formula "86")) + (rule "replace_known_right" (formula "86") (term "0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "127"))) + (rule "false_right" (formula "86")) + (rule "sortsDisjointModuloNull" (formula "85")) + (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "126"))) + (rule "false_right" (formula "85")) + (rule "unionEqualsEmpty" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "85")) + (rule "eqSymm" (formula "84")) + (rule "sortsDisjointModuloNull" (formula "85")) + (rule "replace_known_right" (formula "85") (term "0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "126"))) + (rule "false_right" (formula "85")) + (rule "sortsDisjointModuloNull" (formula "84")) + (rule "replace_known_right" (formula "84") (term "1") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "113"))) + (rule "false_right" (formula "84")) + (rule "unionEqualsEmpty" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "84")) + (rule "eqSymm" (formula "83")) + (rule "unionEqualsEmpty" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "notLeft" (formula "57")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "83")) + (rule "eqSymm" (formula "82")) + (rule "unionEqualsEmpty" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "82")) + (rule "eqSymm" (formula "81")) + (rule "unionEqualsEmpty" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "notLeft" (formula "55")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "81")) + (rule "eqSymm" (formula "80")) + (rule "unionEqualsEmpty" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "80")) + (rule "eqSymm" (formula "79")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "79")) + (rule "eqSymm" (formula "78")) + (rule "unionEqualsEmpty" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "77")) + (rule "eqSymm" (formula "76")) + (rule "commuteUnion_2" (formula "40") (term "0,1")) + (rule "commuteUnion" (formula "40") (term "1,1,1")) + (rule "commuteUnion_2" (formula "69") (term "0,0,1,0,2,1")) + (rule "commuteUnion" (formula "69") (term "1,1,0,1,0,2,1")) + (rule "commuteUnion" (formula "51") (term "0,0,1,0,1,0")) + (rule "commuteUnion" (formula "51") (term "1,1,1,0,1,0")) + (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0")) + (rule "commuteUnion_2" (formula "67") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "67") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "16") (term "0,0,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "13") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "67") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "67") (term "0,0,1,0")) + (rule "commuteUnion" (formula "40") (term "0,0,1")) + (rule "commuteUnion" (formula "69") (term "0,0,0,1,0,2,1")) + (rule "commuteUnion" (formula "51") (term "0,1,0,1,0")) + (rule "commuteUnion" (formula "15") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "67") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion" (formula "13") (term "1,0,0,1,0,0")) + (rule "commuteUnion" (formula "67") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "40") (term "0,1")) + (rule "commuteUnion_2" (formula "69") (term "0,0,1,0,2,1")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "72") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "72")) + (rule "expand_inInt" (formula "72") (term "1,0,0")) + (rule "replace_int_MIN" (formula "72") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "72") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "72") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "translateJavaAddInt" (formula "56") (term "3,0")) + (rule "translateJavaAddInt" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "3,0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "44")) + (rule "inEqSimp_homoInEq1" (formula "55")) + (rule "mul_literals" (formula "55") (term "1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55")) + (rule "mul_literals" (formula "55") (term "1")) + (rule "inEqSimp_subsumption6" (formula "54") (ifseqformula "3")) + (rule "mul_literals" (formula "54") (term "1,1,0")) + (rule "greater_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "elimGcdLeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "neg_literal" (formula "54") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0")) + (rule "leq_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_literals" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_subsumption0" (formula "67") (ifseqformula "54")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "pullOutSelect" (formula "56") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "56") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "133"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "0,0,1,0,0") (ifseqformula "42")) + (rule "replace_known_right" (formula "56") (term "0,0,0,1,0,0") (ifseqformula "132")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "43"))) + (rule "applyEq" (formula "56") (term "1") (ifseqformula "57")) + (rule "ifEqualsInteger" (formula "56")) + (rule "elementOfUnion" (formula "56") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "56") (term "1,0,0")) + (rule "eqSymm" (formula "56") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "56") (term "0,0,1,0,0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "56")) + (rule "elementOfUnion" (formula "56") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "56") (term "1,0,0,1")) + (rule "eqSymm" (formula "56") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "56") (term "0,0,1,0,0,1") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "56")) + (rule "elementOfUnion" (formula "56") (term "0,0,1")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "elementOfUnion" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "75") (term "0,1") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "75")) + (rule "expand_inInt" (formula "75") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "75") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "75") (term "3,0,1,0,1")) + (rule "translateJavaMod" (formula "75") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "75") (term "0,2,1,3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "75") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "75") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "75") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "75") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "75") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "75") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "75") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "75") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "notLeft" (formula "79")) + (rule "notLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "notLeft" (formula "79")) + (rule "notLeft" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "76")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "38")) (ifInst "" (formula "39"))) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "translateJavaMulInt" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "translateJavaMulInt" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "disjointDefinition" (formula "104")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "148"))) + (rule "true_left" (formula "104")) + (rule "disjointDefinition" (formula "103")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "146"))) + (rule "true_left" (formula "103")) + (rule "disjointDefinition" (formula "102")) + (builtin "One Step Simplification" (formula "102")) + (rule "notLeft" (formula "102")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "101")) + (builtin "One Step Simplification" (formula "101")) + (rule "notLeft" (formula "101")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "100")) + (builtin "One Step Simplification" (formula "100")) + (rule "notLeft" (formula "100")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "99")) + (builtin "One Step Simplification" (formula "99")) + (rule "notLeft" (formula "99")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "98")) + (builtin "One Step Simplification" (formula "98")) + (rule "notLeft" (formula "98")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "97")) + (builtin "One Step Simplification" (formula "97")) + (rule "notLeft" (formula "97")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "96")) + (builtin "One Step Simplification" (formula "96")) + (rule "notLeft" (formula "96")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "95")) + (builtin "One Step Simplification" (formula "95")) + (rule "notLeft" (formula "95")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "94")) + (builtin "One Step Simplification" (formula "94")) + (rule "notLeft" (formula "94")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "118"))) + (rule "true_left" (formula "89")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "112"))) + (rule "true_left" (formula "86")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "110"))) + (rule "true_left" (formula "85")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "108"))) + (rule "true_left" (formula "84")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "106"))) + (rule "true_left" (formula "83")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "104"))) + (rule "true_left" (formula "82")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "102"))) + (rule "true_left" (formula "81")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "100"))) + (rule "true_left" (formula "80")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "98"))) + (rule "true_left" (formula "79")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "96"))) + (rule "true_left" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "94"))) + (rule "true_left" (formula "77")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "40")) + (rule "eqSymm" (formula "76")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "59") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "59")) + (rule "expand_inInt" (formula "59") (term "1,0,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "73") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "73")) + (rule "expand_inInt" (formula "73") (term "1,0,0")) + (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "73") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "73") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "73") (term "0,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "38")) (ifInst "" (formula "39"))) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "translateJavaMulInt" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "translateJavaMulInt" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "148"))) + (rule "true_left" (formula "93")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "146"))) + (rule "true_left" (formula "92")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "102")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "101")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "100")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "99")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "98")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "notLeft" (formula "85")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "118"))) + (rule "true_left" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "112"))) + (rule "true_left" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "110"))) + (rule "true_left" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "108"))) + (rule "true_left" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "106"))) + (rule "true_left" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "104"))) + (rule "true_left" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "102"))) + (rule "true_left" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "100"))) + (rule "true_left" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "98"))) + (rule "true_left" (formula "68")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "96"))) + (rule "true_left" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "94"))) + (rule "true_left" (formula "66")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "65")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "75")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "63") (term "0") (inst "b=b_1")) + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63") (term "1,0,0")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "63") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "63") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "63") (term "0,0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "commuteUnion_2" (formula "67") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "16") (term "0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "69") (term "0,1,0,2,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "70") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "70") (term "0,2,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "70") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,2,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "70") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "70") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,1,0,0,0,1,0")) + (rule "commute_and" (formula "133")) + (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "56") (term "0,1,0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1,0,1,0")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0,1,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "1,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,0,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "56") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "61") (term "0,1,0,1") (inst "i=i")) + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,1")) + (rule "eqSymm" (formula "61") (term "1,0,1,0,1")) + (rule "translateJavaSubInt" (formula "61") (term "1,1,0,0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "61") (term "0,2,0,1,0,1,0,1")) + (rule "polySimp_elimSub" (formula "61") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "61") (term "1,1,1,0,0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,2,0,1,0,1,0,1")) + (rule "polySimp_addComm1" (formula "61") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "61") (term "0,0,1,0,0,1,0,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0,0,0,1,0,1")) + (rule "add_literals" (formula "61") (term "0,0,0,0,1,0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "61") (term "0,0,1,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,1,1,0,0,0,1,0,1")) + (rule "cut_direct" (formula "11") (term "0")) + (branch "CUT: result_242.equal_buckets = TRUE TRUE" + (builtin "One Step Simplification" (formula "12")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "62")) + (rule "replace_known_left" (formula "17") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12"))) + (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "11"))) + (rule "qeq_literals" (formula "134") (term "0")) + (builtin "One Step Simplification" (formula "134")) + (rule "replace_known_left" (formula "74") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "74")) + (rule "inEqSimp_leqRight" (formula "134")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "applyEq" (formula "75") (term "1,1,0,0,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "17") (term "6,0") (ifseqformula "13")) + (rule "applyEq" (formula "72") (term "1,1,1,0,0,0") (ifseqformula "13")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "qeq_literals" (formula "10")) + (rule "true_left" (formula "10")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "12")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "12")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,0")) + (rule "times_zero_1" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "true_left" (formula "9")) + (rule "applyEq" (formula "9") (term "0,0") (ifseqformula "11")) + (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEqRigid" (formula "13") (term "7,0") (ifseqformula "11")) + (rule "applyEq" (formula "72") (term "1,1,0,0,0,0") (ifseqformula "11")) + (rule "applyEqRigid" (formula "6") (term "0,0") (ifseqformula "11")) + (rule "applyEq" (formula "16") (term "1,6,0") (ifseqformula "11")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption6" (formula "5") (ifseqformula "3")) + (rule "times_zero_1" (formula "5") (term "1,1,0")) + (rule "greater_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption6" (formula "2") (ifseqformula "7")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "6")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: result_242.equal_buckets = TRUE FALSE" + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "replace_known_right" (formula "72") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "replace_known_right" (formula "59") (term "0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "replace_known_right" (formula "130") (term "0,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "71"))) + (rule "qeq_literals" (formula "130") (term "0")) + (builtin "One Step Simplification" (formula "130")) + (rule "inEqSimp_leqRight" (formula "130")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch "Exceptional Post (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "70")) + (rule "andLeft" (formula "63")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "64")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "64")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "0,0,0,0,1,0") (ifseqformula "35")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "66")) + (rule "notLeft" (formula "64")) + (rule "close" (formula "67") (ifseqformula "66")) + ) + (branch "Pre (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "65")) (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "65"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0") (ifseqformula "35")) + (rule "wellFormedAnon" (formula "68") (term "0,0,0,0,0,0,0,1,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,0,1,0") (ifseqformula "35")) + (rule "wellFormedAnonEQ" (formula "68") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "46")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,0,0,0,0,0,0,1,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "45")) (ifInst "" (formula "17")) (ifInst "" (formula "21")) (ifInst "" (formula "64")) (ifInst "" (formula "36"))) + (rule "wellFormedAnon" (formula "68") (term "0,0,0,0,0,1,0")) + (rule "wellFormedAnonEQ" (formula "68") (term "0,0,0,0,0,0,1,0") (ifseqformula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,0,0,1,0") (ifseqformula "35")) + (rule "expand_inInt" (formula "68") (term "1,0,1,0")) + (rule "expand_inInt" (formula "68") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "68") (term "1,1,0")) + (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,1,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "0,0,1")) + (rule "replace_known_left" (formula "68") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "34")) (ifInst "" (formula "41")) (ifInst "" (formula "19"))) + (rule "polySimp_elimSub" (formula "68") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "68") (term "0,0,1")) + (rule "measuredByCheck" (formula "68") (term "1") (ifseqformula "22")) + (rule "precOfPair" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "precOfInt" (formula "68") (term "0,1")) + (rule "precOfInt" (formula "68") (term "1,1")) + (rule "leq_literals" (formula "68") (term "0,1,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "less_literals" (formula "68") (term "1,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,0,1")) + (rule "replace_known_left" (formula "68") (term "1,1,0,0,1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,0,0,1")) + (rule "inEqSimp_subsumption4" (formula "68") (term "0,1,0,1") (ifseqformula "61")) + (rule "mul_literals" (formula "68") (term "0,1,0,0,1,0,1")) + (rule "greater_literals" (formula "68") (term "0,0,0,1,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "leq_literals" (formula "68") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_subsumption1" (formula "68") (term "1,0,0,0,1") (ifseqformula "24")) + (rule "leq_literals" (formula "68") (term "0,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_subsumption0" (formula "68") (term "0,0,0,1") (ifseqformula "29")) + (rule "leq_literals" (formula "68") (term "0,0,0,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_subsumption6" (formula "68") (term "1,0,1") (ifseqformula "3")) + (rule "greater_literals" (formula "68") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0,1,0,1")) + (rule "leq_literals" (formula "68") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_subsumption0" (formula "68") (term "0,1") (ifseqformula "27")) + (rule "leq_literals" (formula "68") (term "0,0,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_subsumption1" (formula "68") (term "1,1") (ifseqformula "4")) + (rule "leq_literals" (formula "68") (term "0,1,1")) + (builtin "One Step Simplification" (formula "68")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "15") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "56") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1,0,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "56") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "56") (term "0,0,0,1,1,0")) + (rule "nnf_imp2or" (formula "56") (term "0")) + (rule "nnf_notAnd" (formula "56") (term "0,0")) + (rule "nnf_notAnd" (formula "56") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "56") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "translateJavaMulInt" (formula "60") (term "1")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "translateJavaMulInt" (formula "59") (term "1")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "disjointDefinition" (formula "93")) + (builtin "One Step Simplification" (formula "93")) + (rule "notLeft" (formula "93")) + (rule "disjointDefinition" (formula "92")) + (builtin "One Step Simplification" (formula "92")) + (rule "notLeft" (formula "92")) + (rule "disjointDefinition" (formula "91")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "89")) + (builtin "One Step Simplification" (formula "89")) + (rule "notLeft" (formula "89")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "87")) + (builtin "One Step Simplification" (formula "87")) + (rule "notLeft" (formula "87")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85")) + (rule "notLeft" (formula "85")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "applyEq" (formula "15") (term "0,1,0,5,0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "12") (term "0,1,0,2,0") (ifseqformula "65")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "14") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "15") (term "0,1,0,4,0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "13") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "16") (term "0,1,0,0,0,1") (ifseqformula "65")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "104") (term "0,1,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "15") (term "0,1,0,0,1,0") (ifseqformula "65")) + (rule "distributeIntersection" (formula "33") (term "0")) + (rule "distributeIntersection" (formula "44") (term "0")) + (rule "distributeIntersection" (formula "43") (term "0")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "unionEqualsEmpty" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "distributeIntersection" (formula "44") (term "1,0")) + (rule "distributeIntersection" (formula "44") (term "0,0")) + (rule "distributeIntersection" (formula "33") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "45") (term "0")) + (rule "distributeIntersection" (formula "46") (term "0")) + (rule "distributeIntersection" (formula "44") (term "0,1,0")) + (rule "distributeIntersection" (formula "44") (term "1,1,0")) + (rule "distributeIntersection" (formula "44") (term "0,0,0")) + (rule "distributeIntersection" (formula "44") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "46") (term "0,0")) + (rule "distributeIntersection" (formula "46") (term "1,0")) + (rule "distributeIntersection" (formula "47") (term "1,0")) + (rule "distributeIntersection" (formula "47") (term "0,0")) + (rule "unionEqualsEmpty" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "distributeIntersection" (formula "33") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "unionEqualsEmpty" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "unionEqualsEmpty" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "unionEqualsEmpty" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "79")) + (rule "eqSymm" (formula "78")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "77")) + (rule "eqSymm" (formula "76")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "76")) + (rule "eqSymm" (formula "75")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "75")) + (rule "eqSymm" (formula "74")) + (rule "sortsDisjointModuloNull" (formula "75")) + (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "75")) + (rule "false_right" (formula "75")) + (rule "sortsDisjointModuloNull" (formula "74")) + (rule "replace_known_right" (formula "74") (term "1") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "74")) + (rule "false_right" (formula "74")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "74")) + (rule "eqSymm" (formula "73")) + (rule "sortsDisjointModuloNull" (formula "74")) + (rule "replace_known_right" (formula "74") (term "1") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "74")) + (rule "false_right" (formula "74")) + (rule "sortsDisjointModuloNull" (formula "73")) + (rule "replace_known_right" (formula "73") (term "1") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "73")) + (rule "false_right" (formula "73")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "73")) + (rule "eqSymm" (formula "72")) + (rule "sortsDisjointModuloNull" (formula "73")) + (rule "replace_known_right" (formula "73") (term "1") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "73")) + (rule "false_right" (formula "73")) + (rule "sortsDisjointModuloNull" (formula "72")) + (rule "replace_known_right" (formula "72") (term "1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "unionEqualsEmpty" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "71")) + (rule "sortsDisjointModuloNull" (formula "72")) + (rule "replace_known_right" (formula "72") (term "1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "sortsDisjointModuloNull" (formula "71")) + (rule "replace_known_right" (formula "71") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "71")) + (rule "false_right" (formula "71")) + (rule "unionEqualsEmpty" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "45")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "71")) + (rule "eqSymm" (formula "70")) + (rule "unionEqualsEmpty" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "70")) + (rule "eqSymm" (formula "69")) + (rule "unionEqualsEmpty" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "notLeft" (formula "44")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "69")) + (rule "eqSymm" (formula "68")) + (rule "unionEqualsEmpty" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "43")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "68")) + (rule "eqSymm" (formula "67")) + (rule "commuteUnion" (formula "62") (term "1,1,1")) + (rule "commuteUnion_2" (formula "62") (term "0,1")) + (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,5,0,1,0")) + (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,5,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "12") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion" (formula "14") (term "1,1,0,1,0,0")) + (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,4,0,1,0")) + (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,4,0,1,0")) + (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "13") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0")) + (rule "commuteUnion" (formula "43") (term "1,1,1,0,1,0")) + (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "16") (term "1,1,0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "117") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "117") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "15") (term "1,1,0,1,0,0,1,0")) + (rule "commuteUnion" (formula "62") (term "0,0,1")) + (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,5,0,1,0")) + (rule "commuteUnion" (formula "12") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion" (formula "14") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "15") (term "0,0,0,1,0,4,0,1,0")) + (rule "commuteUnion" (formula "13") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "43") (term "0,1,0,1,0")) + (rule "commuteUnion" (formula "16") (term "0,0,0,1,0,0,0,1")) + (rule "commuteUnion" (formula "117") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "62") (term "0,1")) + (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,5,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "14") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "15") (term "0,0,1,0,4,0,1,0")) + (rule "commuteUnion_2" (formula "13") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "43") (term "1,0,1,0")) + (rule "commuteUnion_2" (formula "16") (term "0,0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "117") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "62") (term "1")) + (rule "commuteUnion_2" (formula "15") (term "0,1,0,5,0,1,0")) + (rule "commuteUnion_2" (formula "12") (term "0,1,0,2,0")) + (rule "commuteUnion_2" (formula "14") (term "0,1,0,0")) + (rule "commuteUnion_2" (formula "15") (term "0,1,0,4,0,1,0")) + (rule "commuteUnion_2" (formula "13") (term "0,1,0,0")) + (rule "commuteUnion" (formula "43") (term "0,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "16") (term "0,1,0,0,0,1")) + (rule "commuteUnion_2" (formula "117") (term "0,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "47") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "translateJavaAddInt" (formula "47") (term "3,0")) + (rule "translateJavaAddInt" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "3,0")) + (rule "polySimp_addComm0" (formula "46") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq1" (formula "46")) + (rule "mul_literals" (formula "46") (term "1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46")) + (rule "mul_literals" (formula "46") (term "1")) + (rule "inEqSimp_subsumption6" (formula "45") (ifseqformula "3")) + (rule "mul_literals" (formula "45") (term "1,1,0")) + (rule "greater_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "elimGcdLeq_antec" (formula "45") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "45") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "45") (term "0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_subsumption0" (formula "67") (ifseqformula "45")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "pullOutSelect" (formula "47") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "47") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "123"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "47") (term "0,0,1,0,0") (ifseqformula "33")) + (rule "replace_known_left" (formula "47") (term "1,0,0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "122"))) + (rule "applyEqRigid" (formula "47") (term "1") (ifseqformula "48")) + (rule "ifEqualsInteger" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "47") (term "1,0,0,1")) + (rule "eqSymm" (formula "47") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "47") (term "0,0,1,0,0,1") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "47")) + (rule "elementOfUnion" (formula "47") (term "0,0,1")) + (builtin "One Step Simplification" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "elementOfUnion" (formula "47")) + (rule "elementOfArrayRangeConcrete" (formula "47") (term "1")) + (rule "eqSymm" (formula "47") (term "0,0,1")) + (rule "replace_known_right" (formula "47") (term "0,0,1") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "47")) + (rule "elementOfUnion" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "67")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "67")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "67")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "67")) + (rule "notLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "54") (term "0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "54")) + (rule "expand_inInt" (formula "54") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1")) + (rule "translateJavaMod" (formula "54") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "54") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "54") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "54") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "56")) (ifInst "" (formula "57")) (ifInst "" (formula "60")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63"))) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "146"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "144"))) + (rule "true_left" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "116"))) + (rule "true_left" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "110"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "108"))) + (rule "true_left" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "106"))) + (rule "true_left" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "104"))) + (rule "true_left" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "102"))) + (rule "true_left" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "100"))) + (rule "true_left" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "98"))) + (rule "true_left" (formula "35")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "96"))) + (rule "true_left" (formula "34")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "94"))) + (rule "true_left" (formula "32")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "92"))) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "64")) + (rule "eqSymm" (formula "31")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "cut_direct" (formula "16") (term "0")) + (branch "CUT: result_242.equal_buckets = TRUE TRUE" + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "replace_known_left" (formula "11") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "18"))) + (rule "true_left" (formula "11")) + (rule "replace_known_left" (formula "55") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "55")) + (rule "applyEqRigid" (formula "16") (term "1,6,0") (ifseqformula "17")) + (rule "applyEqRigid" (formula "8") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "13") (term "1,1,0,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "11") (term "7,0") (ifseqformula "16")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "qeq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "15")) + (rule "applyEqRigid" (formula "124") (term "0,1") (ifseqformula "15")) + (rule "applyEqRigid" (formula "8") (term "0,0") (ifseqformula "15")) + (rule "applyEq" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption6" (formula "4") (ifseqformula "2")) + (rule "times_zero_1" (formula "4") (term "1,1,0")) + (rule "greater_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption4" (formula "123") (term "1") (ifseqformula "5")) + (rule "greater_literals" (formula "123") (term "0,0,1")) + (builtin "One Step Simplification" (formula "123")) + (rule "mul_literals" (formula "123") (term "0,0,1")) + (rule "leq_literals" (formula "123") (term "0,1")) + (builtin "One Step Simplification" (formula "123")) + (rule "inEqSimp_subsumption6" (formula "1") (ifseqformula "6")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=quotient_0")) + (rule "equal_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,1,0")) + (rule "div_literals" (formula "3") (term "0,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "commute_or_2" (formula "51") (term "0,0")) + (rule "commuteUnion" (formula "27") (term "0,0")) + (rule "commuteUnion" (formula "27") (term "1,1,0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "cut_direct" (formula "39") (term "0,0,0")) + (branch "CUT: result_242. = TRUE TRUE" + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "commuteUnion" (formula "27") (term "1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,0,0,1,0") (ifseqformula "27")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "8") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "8")) + (rule "expand_inInt" (formula "8") (term "1,0,0")) + (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0")) + (rule "arrayLengthIsAShort" (formula "59") (term "0")) + (rule "expand_inShort" (formula "59")) + (rule "replace_short_MAX" (formula "59") (term "1,0")) + (rule "replace_short_MIN" (formula "59") (term "0,1")) + (rule "andLeft" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "qeq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "leq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthNotNegative" (formula "59") (term "0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthIsAShort" (formula "58") (term "0")) + (rule "expand_inShort" (formula "58")) + (rule "replace_short_MAX" (formula "58") (term "1,0")) + (rule "replace_short_MIN" (formula "58") (term "0,1")) + (rule "andLeft" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "leq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "58") (term "0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthIsAShort" (formula "57") (term "0")) + (rule "expand_inShort" (formula "57")) + (rule "replace_short_MAX" (formula "57") (term "1,0")) + (rule "replace_short_MIN" (formula "57") (term "0,1")) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "leq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthNotNegative" (formula "57") (term "0")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthIsAShort" (formula "56") (term "0")) + (rule "expand_inShort" (formula "56")) + (rule "replace_short_MAX" (formula "56") (term "1,0")) + (rule "replace_short_MIN" (formula "56") (term "0,1")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "57")) + (rule "leq_literals" (formula "56")) + (rule "true_left" (formula "56")) + (rule "arrayLengthNotNegative" (formula "56") (term "0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "57")) + (rule "qeq_literals" (formula "56")) + (rule "true_left" (formula "56")) + (rule "arrayLengthNotNegative" (formula "55") (term "0")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "56")) + (rule "qeq_literals" (formula "55")) + (rule "true_left" (formula "55")) + (rule "arrayLengthIsAShort" (formula "55") (term "0")) + (rule "expand_inShort" (formula "55")) + (rule "replace_short_MIN" (formula "55") (term "0,1")) + (rule "replace_short_MAX" (formula "55") (term "1,0")) + (rule "andLeft" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "57")) + (rule "leq_literals" (formula "55")) + (rule "closeFalse" (formula "55")) + ) + (branch "CUT: result_242. = TRUE FALSE" + (builtin "One Step Simplification" (formula "39")) + (rule "commuteUnion" (formula "27") (term "1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,0,0,1,0") (ifseqformula "27")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "8") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "8")) + (rule "expand_inInt" (formula "8") (term "1,0,0")) + (rule "replace_int_MIN" (formula "8") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "8") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0,0")) + (rule "arrayLengthNotNegative" (formula "59") (term "0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthIsAShort" (formula "59") (term "0")) + (rule "expand_inShort" (formula "59")) + (rule "replace_short_MAX" (formula "59") (term "1,0")) + (rule "replace_short_MIN" (formula "59") (term "0,1")) + (rule "andLeft" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "qeq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "leq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthNotNegative" (formula "58") (term "0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthIsAShort" (formula "58") (term "0")) + (rule "expand_inShort" (formula "58")) + (rule "replace_short_MAX" (formula "58") (term "1,0")) + (rule "replace_short_MIN" (formula "58") (term "0,1")) + (rule "andLeft" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "leq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "57") (term "0")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthIsAShort" (formula "57") (term "0")) + (rule "expand_inShort" (formula "57")) + (rule "replace_short_MAX" (formula "57") (term "1,0")) + (rule "replace_short_MIN" (formula "57") (term "0,1")) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "leq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthIsAShort" (formula "56") (term "0")) + (rule "expand_inShort" (formula "56")) + (rule "replace_short_MIN" (formula "56") (term "0,1")) + (rule "replace_short_MAX" (formula "56") (term "1,0")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "57")) + (rule "leq_literals" (formula "56")) + (rule "true_left" (formula "56")) + (rule "arrayLengthNotNegative" (formula "56") (term "0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "57")) + (rule "qeq_literals" (formula "56")) + (rule "true_left" (formula "56")) + (rule "arrayLengthNotNegative" (formula "55") (term "0")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "56")) + (rule "qeq_literals" (formula "55")) + (rule "true_left" (formula "55")) + (rule "arrayLengthIsAShort" (formula "55") (term "0")) + (rule "expand_inShort" (formula "55")) + (rule "replace_short_MAX" (formula "55") (term "1,0")) + (rule "replace_short_MIN" (formula "55") (term "0,1")) + (rule "andLeft" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "57")) + (rule "leq_literals" (formula "55")) + (rule "closeFalse" (formula "55")) + ) + ) + (branch "CUT: result_242.equal_buckets = TRUE FALSE" + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "replace_known_right" (formula "11") (term "0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "replace_known_right" (formula "52") (term "0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "commute_or_2" (formula "52") (term "0,0")) + (rule "commuteUnion" (formula "29") (term "0,0,0")) + (rule "commuteUnion" (formula "29") (term "1,1,0")) + (rule "commuteUnion" (formula "29") (term "0,0")) + (rule "applyEq" (formula "14") (term "0,1,0,0,1,0") (ifseqformula "29")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "cut_direct" (formula "41") (term "0,0,0")) + (branch "CUT: result_242. = TRUE TRUE" + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "cut_direct" (formula "123") (term "1")) + (branch "CUT: bucket_0 <= 2147483647 TRUE" + (builtin "One Step Simplification" (formula "124")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "inEqSimp_subsumption4" (formula "9") (ifseqformula "7")) + (rule "greater_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "arrayLengthIsAShort" (formula "61") (term "0")) + (rule "expand_inShort" (formula "61")) + (rule "replace_short_MAX" (formula "61") (term "1,0")) + (rule "replace_short_MIN" (formula "61") (term "0,1")) + (rule "andLeft" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "63")) + (rule "qeq_literals" (formula "62")) + (rule "true_left" (formula "62")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "62")) + (rule "leq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthNotNegative" (formula "61") (term "0")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "62")) + (rule "qeq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthIsAShort" (formula "60") (term "0")) + (rule "expand_inShort" (formula "60")) + (rule "replace_short_MAX" (formula "60") (term "1,0")) + (rule "replace_short_MIN" (formula "60") (term "0,1")) + (rule "andLeft" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "62")) + (rule "qeq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "leq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthNotNegative" (formula "60") (term "0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "qeq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthNotNegative" (formula "59") (term "0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthIsAShort" (formula "59") (term "0")) + (rule "expand_inShort" (formula "59")) + (rule "replace_short_MIN" (formula "59") (term "0,1")) + (rule "replace_short_MAX" (formula "59") (term "1,0")) + (rule "andLeft" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "61")) + (rule "leq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthIsAShort" (formula "58") (term "0")) + (rule "expand_inShort" (formula "58")) + (rule "replace_short_MAX" (formula "58") (term "1,0")) + (rule "replace_short_MIN" (formula "58") (term "0,1")) + (rule "andLeft" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "leq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "58") (term "0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "57") (term "0")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthIsAShort" (formula "57") (term "0")) + (rule "expand_inShort" (formula "57")) + (rule "replace_short_MIN" (formula "57") (term "0,1")) + (rule "replace_short_MAX" (formula "57") (term "1,0")) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "59")) + (rule "leq_literals" (formula "57")) + (rule "closeFalse" (formula "57")) + ) + (branch "CUT: bucket_0 <= 2147483647 FALSE" + (builtin "One Step Simplification" (formula "124")) + (rule "false_right" (formula "124")) + (rule "inEqSimp_leqRight" (formula "123")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "44")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: result_242. = TRUE FALSE" + (builtin "One Step Simplification" (formula "41")) + (rule "cut_direct" (formula "124") (term "1")) + (branch "CUT: bucket_0 <= 2147483647 TRUE" + (builtin "One Step Simplification" (formula "125")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "inEqSimp_subsumption4" (formula "9") (ifseqformula "7")) + (rule "greater_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "14") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "13") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "arrayLengthIsAShort" (formula "61") (term "0")) + (rule "expand_inShort" (formula "61")) + (rule "replace_short_MIN" (formula "61") (term "0,1")) + (rule "replace_short_MAX" (formula "61") (term "1,0")) + (rule "andLeft" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "63")) + (rule "leq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "62")) + (rule "qeq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthNotNegative" (formula "61") (term "0")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "62")) + (rule "qeq_literals" (formula "61")) + (rule "true_left" (formula "61")) + (rule "arrayLengthIsAShort" (formula "60") (term "0")) + (rule "expand_inShort" (formula "60")) + (rule "replace_short_MIN" (formula "60") (term "0,1")) + (rule "replace_short_MAX" (formula "60") (term "1,0")) + (rule "andLeft" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "62")) + (rule "leq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "qeq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthNotNegative" (formula "60") (term "0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "61")) + (rule "qeq_literals" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthIsAShort" (formula "59") (term "0")) + (rule "expand_inShort" (formula "59")) + (rule "replace_short_MIN" (formula "59") (term "0,1")) + (rule "replace_short_MAX" (formula "59") (term "1,0")) + (rule "andLeft" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "61")) + (rule "leq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthNotNegative" (formula "59") (term "0")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "60")) + (rule "qeq_literals" (formula "59")) + (rule "true_left" (formula "59")) + (rule "arrayLengthIsAShort" (formula "58") (term "0")) + (rule "expand_inShort" (formula "58")) + (rule "replace_short_MIN" (formula "58") (term "0,1")) + (rule "replace_short_MAX" (formula "58") (term "1,0")) + (rule "andLeft" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "60")) + (rule "leq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "58") (term "0")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "59")) + (rule "qeq_literals" (formula "58")) + (rule "true_left" (formula "58")) + (rule "arrayLengthNotNegative" (formula "57") (term "0")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "58")) + (rule "qeq_literals" (formula "57")) + (rule "true_left" (formula "57")) + (rule "arrayLengthIsAShort" (formula "57") (term "0")) + (rule "expand_inShort" (formula "57")) + (rule "replace_short_MAX" (formula "57") (term "1,0")) + (rule "replace_short_MIN" (formula "57") (term "0,1")) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "59")) + (rule "leq_literals" (formula "57")) + (rule "closeFalse" (formula "57")) + ) + (branch "CUT: bucket_0 <= 2147483647 FALSE" + (builtin "One Step Simplification" (formula "125")) + (rule "false_right" (formula "125")) + (rule "inEqSimp_leqRight" (formula "124")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "7")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "15") (term "1,0,6,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_right" (formula "13") (term "1,0,7,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "13")) + (rule "ifthenelse_negated" (formula "15") (term "6,0")) + (rule "ifthenelse_negated" (formula "13") (term "7,0")) + (rule "inEqSimp_leqRight" (formula "62")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "5")) + (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "1")) + (rule "applyEq" (formula "70") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,1,0")) + (rule "polySimp_pullOutFactor0" (formula "70") (term "0,1,1,0")) + (rule "add_literals" (formula "70") (term "1,0,1,1,0")) + (rule "times_zero_1" (formula "70") (term "0,1,1,0")) + (rule "applyEqRigid" (formula "17") (term "2,6,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,0")) + (rule "times_zero_1" (formula "6") (term "0")) + (rule "qeq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEqRigid" (formula "12") (term "0,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "6") (term "0,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "17") (term "1,6,0,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "69") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "11") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "2,7,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "52")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "67") (term "0,0,1,0,0,0,0") (ifseqformula "9")) + (rule "applyEq" (formula "49") (term "0,5,0") (ifseqformula "9")) + (rule "applyEq" (formula "12") (term "0,1,1,7,0") (ifseqformula "9")) + (rule "applyEq" (formula "55") (term "0,2,0") (ifseqformula "9")) + (rule "applyEq" (formula "14") (term "0,5,0") (ifseqformula "9")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "12") (term "0,2,7,0") (ifseqformula "9")) + (rule "applyEqRigid" (formula "15") (term "0,5,0,0,1") (ifseqformula "9")) + (rule "applyEqRigid" (formula "7") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor0" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "7") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0")) + (rule "add_zero_right" (formula "7") (term "0")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "13") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "13")) + (rule "applyEqRigid" (formula "5") (term "0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "12") (term "0,2,6,0") (ifseqformula "7")) + (rule "applyEqRigid" (formula "4") (term "0,0") (ifseqformula "7")) + (rule "applyEq" (formula "8") (term "0,0,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEqRigid" (formula "9") (term "0,5,0") (ifseqformula "7")) + (rule "applyEq" (formula "47") (term "0,5,0") (ifseqformula "7")) + (rule "applyEqRigid" (formula "45") (term "0,2,0") (ifseqformula "7")) + (rule "applyEq" (formula "63") (term "0,0,0,0,1,0") (ifseqformula "7")) + (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "7")) + (rule "applyEq" (formula "10") (term "0,7,0") (ifseqformula "6")) + (rule "applyEq" (formula "46") (term "0,7,0") (ifseqformula "6")) + (rule "applyEqRigid" (formula "10") (term "0,1,1,6,0") (ifseqformula "6")) + (rule "applyEqRigid" (formula "50") (term "0,5,0,1") (ifseqformula "6")) + (rule "applyEqRigid" (formula "47") (term "0,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "9") (term "0,5,0") (ifseqformula "6")) + (rule "applyEqRigid" (formula "50") (term "0,1,7,0,1") (ifseqformula "6")) + (rule "applyEqRigid" (formula "49") (term "0,0,2,0") (ifseqformula "6")) + (rule "applyEq" (formula "11") (term "0,1,6,0,1") (ifseqformula "6")) + (rule "applyEqRigid" (formula "11") (term "0,1,7,0,1") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "0,1") (ifseqformula "6")) + (rule "applyEq" (formula "47") (term "1") (ifseqformula "6")) + (rule "applyEq" (formula "48") (term "0,1") (ifseqformula "6")) + (rule "inEqSimp_subsumption6" (formula "3") (ifseqformula "2")) + (rule "times_zero_1" (formula "3") (term "1,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "polyDiv_pullOut" (formula "3") (term "0") (inst "polyDivCoeff=quotient_0")) + (rule "equal_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "3")) + (rule "polySimp_pullOutFactor0" (formula "3") (term "0,0,0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,1,0")) + (rule "div_literals" (formula "3") (term "0,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "blockBreak" (formula "60") (term "1")) + (rule "lsBreak" (formula "60") (term "1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "jdiv_axiom" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,2,1")) + (rule "eqSymm" (formula "45")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "46")) + (rule "inEqSimp_subsumption6" (formula "45") (term "0,0") (ifseqformula "2")) + (rule "times_zero_1" (formula "45") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "45") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "leq_literals" (formula "45") (term "0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polyDiv_pullOut" (formula "45") (term "0") (inst "polyDivCoeff=quotient_0")) + (rule "equal_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "45")) + (rule "polySimp_pullOutFactor0" (formula "45") (term "0,0,0,1,0")) + (rule "add_literals" (formula "45") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "45") (term "0,0,0,1,0")) + (rule "div_literals" (formula "45") (term "0,0,1,0")) + (rule "add_zero_left" (formula "45") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,0")) + (rule "times_zero_1" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "ifSplit" (formula "60")) + (branch "if equal_buckets true" + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "7") (term "0,7,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_left" (formula "9") (term "0,6,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "49")) + (rule "replace_known_left" (formula "10") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "applyEq" (formula "61") (term "0,1,0,0,0,0") (ifseqformula "1")) + (rule "methodCallUnfoldArguments" (formula "61") (term "1")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_1")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_2")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_3")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_4")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_5")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_6")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_7")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "var_8")) + (rule "assignmentSubtractionInt" (formula "61") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61")) + (rule "replace_int_MAX" (formula "61") (term "1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1")) + (rule "polySimp_elimSub" (formula "61") (term "1,1")) + (rule "mul_literals" (formula "61") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "61") (term "1,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "61") (term "0,1")) + (rule "add_literals" (formula "61") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "inEqSimp_subsumption6" (formula "61") (term "1") (ifseqformula "3")) + (rule "times_zero_1" (formula "61") (term "1,1,0,1")) + (rule "greater_literals" (formula "61") (term "0,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "leq_literals" (formula "61") (term "0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_leqRight" (formula "61")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "61")) + (rule "translateJavaSubInt" (formula "61") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "61") (newnames "heapBefore_sample_sort_recurse_on,exc_0,heapAfter_sample_sort_recurse_on,anon_heap_sample_sort_recurse_on") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0")) + (branch "Post (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "62")) + (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "7,0")) + (rule "translateJavaAddInt" (formula "61") (term "6,0")) + (rule "translateJavaSubInt" (formula "62") (term "7,0")) + (rule "translateJavaAddInt" (formula "62") (term "6,0")) + (rule "polySimp_elimSub" (formula "56") (term "2,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "7,0")) + (rule "mul_literals" (formula "62") (term "1,7,0")) + (rule "polySimp_addComm1" (formula "59") (term "7,0")) + (rule "add_literals" (formula "59") (term "0,7,0")) + (rule "add_zero_left" (formula "59") (term "7,0")) + (rule "polySimp_addComm1" (formula "61") (term "6,0")) + (rule "add_literals" (formula "61") (term "0,6,0")) + (rule "add_zero_left" (formula "61") (term "6,0")) + (rule "polySimp_addComm1" (formula "62") (term "6,0")) + (rule "add_literals" (formula "62") (term "0,6,0")) + (rule "add_zero_left" (formula "62") (term "6,0")) + (rule "polySimp_addComm0" (formula "56") (term "2,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "7,0")) + (rule "commuteUnion" (formula "56") (term "1,0")) + (rule "tryEmpty" (formula "71") (term "1")) + (rule "blockEmptyLabel" (formula "71") (term "1")) + (rule "blockEmpty" (formula "71") (term "1")) + (rule "methodCallEmpty" (formula "71") (term "1")) + (builtin "One Step Simplification" (formula "71")) + (rule "emptyModality" (formula "71") (term "1")) + (builtin "One Step Simplification" (formula "71")) + (rule "closeTrue" (formula "71")) + ) + (branch "Exceptional Post (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "57")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "0,0,0,0,1,0") (ifseqformula "29")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "57")) + (rule "close" (formula "60") (ifseqformula "59")) + ) + (branch "Pre (sample_sort_recurse_on)" + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "58")) (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "58"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "61")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "61")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,1,0,0,1,0") (ifseqformula "29")) + (rule "wellFormedAnon" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,1,0,0,0,1,0") (ifseqformula "29")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,1,0,0,0,0,0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "54")) (ifInst "" (formula "11")) (ifInst "" (formula "15")) (ifInst "" (formula "57")) (ifInst "" (formula "30"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "61") (term "0,0,0,0,0,0,0,1,0") (ifseqformula "29")) + (rule "expand_inInt" (formula "61") (term "1,0,1,0")) + (rule "expand_inInt" (formula "61") (term "1,1,0")) + (rule "expand_inInt" (formula "61") (term "1,0,0,0,1,0")) + (rule "expand_inInt" (formula "61") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,1")) + (rule "replace_known_left" (formula "61") (term "0,0,0,0,0,0,0,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "61")) + (rule "polySimp_elimSub" (formula "61") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1")) + (rule "measuredByCheck" (formula "61") (term "1") (ifseqformula "16")) + (rule "precOfPair" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "precOfInt" (formula "61") (term "0,1")) + (rule "precOfInt" (formula "61") (term "1,1")) + (rule "leq_literals" (formula "61") (term "0,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "less_literals" (formula "61") (term "1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1")) + (rule "replace_known_left" (formula "61") (term "1,1,0,0,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,1")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1")) + (rule "add_literals" (formula "61") (term "0,0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1,1,1")) + (rule "mul_literals" (formula "61") (term "1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "61") (term "0,1,1,1")) + (rule "add_literals" (formula "61") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,1,1")) + (rule "mul_literals" (formula "61") (term "1,1,1,1")) + (rule "inEqSimp_subsumption4" (formula "61") (term "0,1,0,1") (ifseqformula "4")) + (rule "greater_literals" (formula "61") (term "0,0,0,1,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "mul_literals" (formula "61") (term "0,0,0,1,0,1")) + (rule "leq_literals" (formula "61") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption6" (formula "61") (term "1,1,1") (ifseqformula "3")) + (rule "greater_literals" (formula "61") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "times_zero_1" (formula "61") (term "1,0,1,1,1")) + (rule "leq_literals" (formula "61") (term "0,1,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption4" (formula "61") (term "1,1") (ifseqformula "4")) + (rule "mul_literals" (formula "61") (term "0,1,0,1,1")) + (rule "greater_literals" (formula "61") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "leq_literals" (formula "61") (term "0,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption0" (formula "61") (term "1,0,1") (ifseqformula "21")) + (rule "leq_literals" (formula "61") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption1" (formula "61") (term "1,0,1") (ifseqformula "18")) + (rule "leq_literals" (formula "61") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption6" (formula "61") (term "1,1") (ifseqformula "3")) + (rule "times_zero_1" (formula "61") (term "1,1,0,1,1")) + (rule "greater_literals" (formula "61") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "leq_literals" (formula "61") (term "0,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption0" (formula "61") (term "1") (ifseqformula "23")) + (rule "leq_literals" (formula "61") (term "0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "49") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "translateJavaMod" (formula "49") (term "0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "jmod_axiom" (formula "49") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,0,0")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0,0")) + (rule "nnf_notAnd" (formula "49") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "49") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaMulInt" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "translateJavaMulInt" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "97") (term "0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "6") (term "0,1,0,2,0") (ifseqformula "34")) + (rule "applyEq" (formula "10") (term "0,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "9") (term "0,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "34")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "34")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "34")) + (rule "applyEq" (formula "48") (term "1,0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "8") (term "0,1,0,0") (ifseqformula "34")) + (rule "distributeIntersection" (formula "45") (term "0")) + (rule "distributeIntersection" (formula "46") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "unionEqualsEmpty" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "distributeIntersection" (formula "47") (term "0,0")) + (rule "distributeIntersection" (formula "47") (term "1,0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "46") (term "0")) + (rule "distributeIntersection" (formula "45") (term "0")) + (rule "distributeIntersection" (formula "47") (term "1,0,0")) + (rule "distributeIntersection" (formula "47") (term "0,0,0")) + (rule "distributeIntersection" (formula "47") (term "0,1,0")) + (rule "distributeIntersection" (formula "47") (term "1,1,0")) + (rule "distributeIntersection" (formula "35") (term "0,0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0,0")) + (rule "distributeIntersection" (formula "35") (term "1,1,0")) + (rule "distributeIntersection" (formula "35") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "distributeIntersection" (formula "45") (term "1,0")) + (rule "distributeIntersection" (formula "45") (term "0,0")) + (rule "unionEqualsEmpty" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "distributeIntersection" (formula "47") (term "0")) + (rule "distributeIntersection" (formula "48") (term "0")) + (rule "unionEqualsEmpty" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "unionEqualsEmpty" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "unionEqualsEmpty" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "71")) + (rule "unionEqualsEmpty" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "71")) + (rule "eqSymm" (formula "70")) + (rule "unionEqualsEmpty" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "70")) + (rule "eqSymm" (formula "69")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "69")) + (rule "eqSymm" (formula "68")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "68")) + (rule "eqSymm" (formula "67")) + (rule "sortsDisjointModuloNull" (formula "68")) + (rule "replace_known_right" (formula "68") (term "1") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "68")) + (rule "false_right" (formula "68")) + (rule "sortsDisjointModuloNull" (formula "67")) + (rule "replace_known_right" (formula "67") (term "1") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "67")) + (rule "false_right" (formula "67")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "67")) + (rule "eqSymm" (formula "66")) + (rule "sortsDisjointModuloNull" (formula "67")) + (rule "replace_known_right" (formula "67") (term "1") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "67")) + (rule "false_right" (formula "67")) + (rule "sortsDisjointModuloNull" (formula "66")) + (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "66")) + (rule "false_right" (formula "66")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "65")) + (rule "sortsDisjointModuloNull" (formula "66")) + (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "66")) + (rule "false_right" (formula "66")) + (rule "sortsDisjointModuloNull" (formula "65")) + (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "65")) + (rule "false_right" (formula "65")) + (rule "unionEqualsEmpty" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "65")) + (rule "eqSymm" (formula "64")) + (rule "sortsDisjointModuloNull" (formula "65")) + (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "65")) + (rule "false_right" (formula "65")) + (rule "sortsDisjointModuloNull" (formula "64")) + (rule "replace_known_right" (formula "64") (term "1") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "64")) + (rule "false_right" (formula "64")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "64")) + (rule "eqSymm" (formula "63")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "63")) + (rule "eqSymm" (formula "62")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "62")) + (rule "eqSymm" (formula "61")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "61")) + (rule "eqSymm" (formula "60")) + (rule "commuteUnion" (formula "34") (term "1,1,1")) + (rule "commuteUnion" (formula "34") (term "0,1")) + (rule "commuteUnion" (formula "7") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "7") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "110") (term "0,0,1,0")) + (rule "commuteUnion" (formula "110") (term "1,1,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion" (formula "6") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion" (formula "10") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "10") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "45") (term "1,1,1,0,1,0")) + (rule "commuteUnion" (formula "45") (term "0,1,0,1,0")) + (rule "commuteUnion_2" (formula "8") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "8") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "34") (term "1,0,1")) + (rule "commuteUnion" (formula "7") (term "1,0,0,1,0,0")) + (rule "commuteUnion" (formula "110") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "6") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "10") (term "1,0,0,1,0,0")) + (rule "commuteUnion" (formula "9") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "45") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "6") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "8") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "6") (term "0,1,0,2,0")) + (rule "commuteUnion_2" (formula "8") (term "0,1,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaAddInt" (formula "50") (term "3,0")) + (rule "translateJavaAddInt" (formula "49") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "3,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "38")) + (rule "inEqSimp_homoInEq1" (formula "49")) + (rule "mul_literals" (formula "49") (term "1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0")) + (rule "add_literals" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49")) + (rule "mul_literals" (formula "49") (term "1")) + (rule "elimGcdLeq_antec" (formula "49") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "49") (term "0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "neg_literal" (formula "49") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "qeq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "49")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "elimGcdGeq_antec" (formula "47") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,1,0")) + (rule "leq_literals" (formula "47") (term "0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "47") (term "0,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "47")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "pullOutSelect" (formula "49") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "49") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "109"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "replace_known_right" (formula "49") (term "0,0,0,1,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "35"))) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "50")) + (rule "ifEqualsInteger" (formula "49")) + (rule "elementOfUnion" (formula "49") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "49") (term "1,0,0,1")) + (rule "eqSymm" (formula "49") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "49") (term "0,0,1,0,0,1") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "49")) + (rule "elementOfUnion" (formula "49") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "49") (term "1,0,0")) + (rule "eqSymm" (formula "49") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "49") (term "0,0,1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "49")) + (rule "elementOfUnion" (formula "49") (term "0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "elementOfUnion" (formula "49") (term "0,0,1")) + (builtin "One Step Simplification" (formula "49")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "57") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "57") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "57") (term "0,0,0,1,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "58")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "24")) (ifInst "" (formula "25")) (ifInst "" (formula "28")) (ifInst "" (formula "29")) (ifInst "" (formula "30")) (ifInst "" (formula "31"))) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "translateJavaMulInt" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "1")) + (rule "translateJavaMulInt" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "1")) + (rule "disjointDefinition" (formula "86")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "133"))) + (rule "true_left" (formula "86")) + (rule "disjointDefinition" (formula "85")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "131"))) + (rule "true_left" (formula "85")) + (rule "disjointDefinition" (formula "84")) + (builtin "One Step Simplification" (formula "84")) + (rule "notLeft" (formula "84")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "83")) + (builtin "One Step Simplification" (formula "83")) + (rule "notLeft" (formula "83")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "82")) + (builtin "One Step Simplification" (formula "82")) + (rule "notLeft" (formula "82")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "81")) + (builtin "One Step Simplification" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "80")) + (builtin "One Step Simplification" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "79")) + (builtin "One Step Simplification" (formula "79")) + (rule "notLeft" (formula "79")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "78")) + (builtin "One Step Simplification" (formula "78")) + (rule "notLeft" (formula "78")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "77")) + (builtin "One Step Simplification" (formula "77")) + (rule "notLeft" (formula "77")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "76")) + (builtin "One Step Simplification" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "103"))) + (rule "true_left" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "97"))) + (rule "true_left" (formula "68")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "95"))) + (rule "true_left" (formula "67")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "93"))) + (rule "true_left" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "91"))) + (rule "true_left" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "89"))) + (rule "true_left" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "87"))) + (rule "true_left" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "85"))) + (rule "true_left" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "83"))) + (rule "true_left" (formula "61")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "81"))) + (rule "true_left" (formula "59")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "79"))) + (rule "true_left" (formula "59")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "32")) + (rule "eqSymm" (formula "58")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "61")) + (rule "notLeft" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "17")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "51") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51") (term "1,0,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "50") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "55") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "eqSymm" (formula "55") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,0,1,1,0,0,0,1,0")) + (rule "commuteUnion" (formula "57") (term "0,0,0")) + (rule "commuteUnion" (formula "57") (term "1,1,0")) + (rule "cut_direct" (formula "43") (term "0,0,0")) + (branch "CUT: result_242. = TRUE TRUE" + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "commuteUnion" (formula "57") (term "0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "nnf_imp2or" (formula "56") (term "0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "5") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "5")) + (rule "expand_inInt" (formula "5") (term "1,0,0")) + (rule "replace_int_MAX" (formula "5") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "5") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "5") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "5") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "5") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "117")) + (rule "replace_known_right" (formula "117") (term "0,1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "60")) (ifInst "" (formula "59")) (ifInst "" (formula "61")) (ifInst "" (formula "62")) (ifInst "" (formula "63")) (ifInst "" (formula "65")) (ifInst "" (formula "66"))) + (rule "closeTrue" (formula "117")) + ) + (branch "CUT: result_242. = TRUE FALSE" + (builtin "One Step Simplification" (formula "43")) + (rule "commuteUnion_2" (formula "57") (term "0,0")) + (rule "commuteUnion_2" (formula "57") (term "0")) + (rule "eqSymm" (formula "57")) + (rule "applyEq" (formula "119") (term "0,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "8") (term "0,1,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "42") (term "1,0,1,0") (ifseqformula "57")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "57")) + (rule "applyEq" (formula "5") (term "0,1,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "57")) + (rule "commuteUnion" (formula "57") (term "0,0,1")) + (rule "commuteUnion" (formula "119") (term "0,0,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "42") (term "0,0,1,0,1,0")) + (rule "commuteUnion" (formula "31") (term "0,0,1")) + (rule "commuteUnion" (formula "5") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "7") (term "0,0,0,1,0,0")) + (rule "nnf_imp2or" (formula "56") (term "0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "6") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "6")) + (rule "expand_inInt" (formula "6") (term "1,0,0")) + (rule "replace_int_MIN" (formula "6") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "6") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "6") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "47") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "leq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "30") (term "0")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "leq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "leq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "26") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "arrayLengthIsAShort" (formula "26") (term "0")) + (rule "expand_inShort" (formula "26")) + (rule "replace_short_MAX" (formula "26") (term "1,0")) + (rule "replace_short_MIN" (formula "26") (term "0,1")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + ) + ) + (branch "if equal_buckets false" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "6") (term "0,7,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "8") (term "0,6,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "tryEmpty" (formula "59") (term "1")) + (rule "blockEmptyLabel" (formula "59") (term "1")) + (rule "blockEmpty" (formula "59") (term "1")) + (rule "methodCallEmpty" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "emptyModality" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "closeTrue" (formula "59")) + ) + ) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "51")) + (branch + (rule "andRight" (formula "51")) + (branch + (builtin "One Step Simplification" (formula "51")) + (rule "translateJavaSubInt" (formula "51") (term "0,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0")) + (rule "close" (formula "51") (ifseqformula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "51")) + (rule "wellFormedAnonEQ" (formula "51") (ifseqformula "32")) + (rule "wellFormedAnon" (formula "51") (term "0")) + (rule "wellFormedAnonEQ" (formula "51") (term "0,0") (ifseqformula "21")) + (rule "replace_known_left" (formula "51") (term "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "51")) + ) + ) + (branch + (rule "andRight" (formula "51")) + (branch + (rule "andRight" (formula "51")) + (branch + (rule "andRight" (formula "51")) + (branch + (rule "andRight" (formula "51")) + (branch + (rule "andRight" (formula "51")) + (branch + (rule "orRight" (formula "51")) + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "48"))) + (rule "false_right" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "close" (formula "51") (ifseqformula "22")) + ) + (branch + (rule "orRight" (formula "51")) + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "49"))) + (rule "false_right" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "close" (formula "51") (ifseqformula "7")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51")) + (rule "replace_int_MAX" (formula "51") (term "1,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1")) + (rule "replace_known_left" (formula "51") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_leqRight" (formula "51")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "17")) + (rule "mul_literals" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "jmod_axiom" (formula "39") (term "0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51")) + (rule "replace_int_MAX" (formula "51") (term "1,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1")) + (rule "inEqSimp_gtToGeq" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "38") (term "0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "newSym_eq" (formula "35") (inst "newSymDef=mul(int::final(result_242, + de.wiesler.PartitionResult::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "35") (term "1,1")) + (rule "add_zero_right" (formula "35") (term "1")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36")) + (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "49") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_geqRight" (formula "49")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "applyEq" (formula "40") (term "2,0") (ifseqformula "37")) + (rule "applyEq" (formula "35") (term "5,0") (ifseqformula "37")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "37")) + (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "50"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "51") (term "0,0") (ifseqformula "21")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "orRight" (formula "51")) + (rule "close" (formula "51") (ifseqformula "2")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51")) + (rule "replace_int_MAX" (formula "51") (term "1,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1")) + (rule "inEqSimp_gtToGeq" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "38") (term "0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "newSym_eq" (formula "35") (inst "l=l_0") (inst "newSymDef=mul(int::final(result_242, + de.wiesler.PartitionResult::$num_buckets), + Z(0(#)))")) + (rule "times_zero_1" (formula "35") (term "1,1")) + (rule "add_zero_right" (formula "35") (term "1")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36")) + (rule "applyEq" (formula "49") (term "0,1") (ifseqformula "36")) + (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36")) + (rule "elimGcdGeq" (formula "49") (term "1") (inst "elimGcdRightDiv=Z(neglit(4(2(8(1(4(7(3(7(0(1(#))))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0,1")) + (rule "sub_literals" (formula "49") (term "0,0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,1")) + (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0,0,1")) + (rule "add_zero_left" (formula "49") (term "0,0,1,0,1")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "49") (term "0,1,0,1")) + (rule "add_literals" (formula "49") (term "1,0,1,0,1")) + (rule "times_zero_1" (formula "49") (term "0,1,0,1")) + (rule "leq_literals" (formula "49") (term "1,0,1")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0,1")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "49") (term "1,0,0,1")) + (rule "add_literals" (formula "49") (term "0,0,1")) + (rule "qeq_literals" (formula "49") (term "0,1")) + (builtin "One Step Simplification" (formula "49")) + (rule "elimGcdLeq" (formula "49") (term "0") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,0,0")) + (rule "sub_literals" (formula "49") (term "0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,0,0,0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,1,0,0")) + (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "49") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,1,0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,1,0,0")) + (rule "qeq_literals" (formula "49") (term "1,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_pullOutFactor0" (formula "49") (term "0,0,0")) + (rule "add_literals" (formula "49") (term "1,0,0,0")) + (rule "times_zero_1" (formula "49") (term "0,0,0")) + (rule "leq_literals" (formula "49") (term "0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "43")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "43")) + (rule "notLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "43")) + (rule "notLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "37") (term "1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "23")) + (rule "distributeIntersection" (formula "24") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "24") (term "0,0")) + (rule "distributeIntersection" (formula "24") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0")) + (rule "distributeIntersection" (formula "34") (term "1,0")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "24") (term "0,0,0")) + (rule "distributeIntersection" (formula "24") (term "1,0,0")) + (rule "distributeIntersection" (formula "24") (term "0,1,0")) + (rule "distributeIntersection" (formula "24") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "1,0,0")) + (rule "distributeIntersection" (formula "34") (term "0,0,0")) + (rule "distributeIntersection" (formula "34") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "0,1,0")) + (rule "distributeIntersection" (formula "35") (term "1,1,0")) + (rule "distributeIntersection" (formula "35") (term "0,1,0")) + (rule "distributeIntersection" (formula "35") (term "0,0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "unionEqualsEmpty" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "59")) + (rule "eqSymm" (formula "58")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "58")) + (rule "eqSymm" (formula "57")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "57")) + (rule "eqSymm" (formula "56")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "55")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "55")) + (rule "eqSymm" (formula "54")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "54")) + (rule "eqSymm" (formula "53")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "53")) + (rule "eqSymm" (formula "52")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "52")) + (rule "eqSymm" (formula "51")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "51")) + (rule "eqSymm" (formula "50")) + (rule "sortsDisjointModuloNull" (formula "51")) + (rule "replace_known_right" (formula "51") (term "1") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "102"))) + (rule "false_right" (formula "51")) + (rule "sortsDisjointModuloNull" (formula "50")) + (rule "replace_known_right" (formula "50") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "107"))) + (rule "false_right" (formula "50")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "50")) + (rule "eqSymm" (formula "49")) + (rule "sortsDisjointModuloNull" (formula "50")) + (rule "replace_known_right" (formula "50") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "107"))) + (rule "false_right" (formula "50")) + (rule "sortsDisjointModuloNull" (formula "49")) + (rule "replace_known_right" (formula "49") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "106"))) + (rule "false_right" (formula "49")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "49")) + (rule "eqSymm" (formula "48")) + (rule "sortsDisjointModuloNull" (formula "49")) + (rule "replace_known_right" (formula "49") (term "1") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "95"))) + (rule "false_right" (formula "49")) + (rule "sortsDisjointModuloNull" (formula "48")) + (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105"))) + (rule "false_right" (formula "48")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "47")) + (rule "sortsDisjointModuloNull" (formula "48")) + (rule "replace_known_right" (formula "48") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105"))) + (rule "false_right" (formula "48")) + (rule "sortsDisjointModuloNull" (formula "47")) + (rule "replace_known_right" (formula "47") (term "1") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "95"))) + (rule "false_right" (formula "47")) + (rule "commuteUnion_2" (formula "23") (term "0,1")) + (rule "commuteUnion" (formula "23") (term "1,1,1")) + (rule "commuteUnion" (formula "34") (term "1,1,1,0,1,0")) + (rule "commuteUnion_2" (formula "34") (term "0,1,0,1,0")) + (rule "commuteUnion" (formula "23") (term "0,0,1")) + (rule "commuteUnion" (formula "34") (term "0,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "23") (term "0,1")) + (rule "commuteUnion_2" (formula "34") (term "0,1,0,1,0")) + (rule "commuteUnion_2" (formula "23") (term "1")) + (rule "commuteUnion_2" (formula "34") (term "1,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "14")) (ifInst "" (formula "15")) (ifInst "" (formula "18")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "21"))) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "translateJavaMulInt" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "translateJavaMulInt" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "117"))) + (rule "true_left" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "115"))) + (rule "true_left" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "87"))) + (rule "true_left" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "81"))) + (rule "true_left" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "79"))) + (rule "true_left" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "77"))) + (rule "true_left" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "75"))) + (rule "true_left" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "73"))) + (rule "true_left" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "71"))) + (rule "true_left" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "69"))) + (rule "true_left" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "67"))) + (rule "true_left" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "64"))) + (rule "true_left" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "64"))) + (rule "true_left" (formula "45")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "22")) + (rule "eqSymm" (formula "44")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "37") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "37") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "translateJavaAddInt" (formula "38") (term "3,0")) + (rule "translateJavaAddInt" (formula "37") (term "0")) + (rule "polySimp_addComm0" (formula "38") (term "3,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "elimGcdLeq_antec" (formula "37") (inst "elimGcdRightDiv=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "37") (term "0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_subsumption0" (formula "107") (term "0") (ifseqformula "37")) + (rule "leq_literals" (formula "107") (term "0,0")) + (builtin "One Step Simplification" (formula "107")) + (rule "inEqSimp_geqRight" (formula "107")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "37") (ifseqformula "1")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "greater_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,1,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "45")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "0,0,0,1,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "45")) + (rule "translateJavaSubInt" (formula "57") (term "2,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "48") (term "2,0,1,0,2,0")) + (rule "translateJavaSubInt" (formula "49") (term "2,0,1,0,0")) + (rule "translateJavaSubInt" (formula "50") (term "2,0,1,0,0")) + (rule "replace_known_left" (formula "47") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "polySimp_elimSub" (formula "56") (term "2,0,1,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,2,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "47") (term "2,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,2,0,1,0,2,0")) + (rule "polySimp_elimSub" (formula "48") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "48") (term "1,2,0,1,0,0")) + (rule "polySimp_elimSub" (formula "49") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "49") (term "1,2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "56") (term "2,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "48") (term "2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "49") (term "2,0,1,0,0")) + (rule "narrowSelectArrayType" (formula "47") (term "2,1") (ifseqformula "1") (ifseqformula "55")) + (rule "commuteUnion" (formula "56") (term "1,0,1,0")) + (rule "commuteUnion" (formula "47") (term "1,0,2,0")) + (rule "commuteUnion" (formula "48") (term "1,0,0")) + (rule "commuteUnion" (formula "49") (term "1,0,0")) + (rule "ifUnfold" (formula "56") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "56")) + (rule "ifSplit" (formula "56")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "56") (term "1")) + (builtin "Block Contract (Internal)" (formula "56") (newnames "anonOut_heap_1,exc_289,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "translateJavaSubInt" (formula "50") (term "0,0")) + (rule "polySimp_elimSub" (formula "50") (term "0,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "narrowSelectArrayType" (formula "47") (term "2,0") (ifseqformula "50") (ifseqformula "56")) + (rule "variableDeclarationAssign" (formula "57") (term "1")) + (rule "variableDeclaration" (formula "57") (term "1") (newnames "exc_289_1")) + (rule "assignment" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyStatement" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyStatement" (formula "57") (term "1")) + (rule "tryEmpty" (formula "57") (term "1")) + (rule "blockEmptyLabel" (formula "57") (term "1")) + (rule "blockEmpty" (formula "57") (term "1")) + (rule "methodCallEmpty" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "emptyModality" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "closeTrue" (formula "57")) + ) + (branch "Precondition" + (rule "andRight" (formula "56")) + (branch + (builtin "One Step Simplification" (formula "56")) + (rule "translateJavaSubInt" (formula "56") (term "0,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "close" (formula "56") (ifseqformula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedAnon" (formula "56")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "32")) + (rule "wellFormedAnon" (formula "56") (term "0,0")) + (rule "wellFormedAnonEQ" (formula "56") (term "0,0,0") (ifseqformula "21")) + (rule "replace_known_left" (formula "56") (term "1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "31")) (ifInst "" (formula "46"))) + (rule "closeTrue" (formula "56")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,1,1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "0,0,0,0,1,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "replace_known_left" (formula "52") (term "0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "ifUnfold" (formula "59") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "59") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "59") (term "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "replace_known_left" (formula "59") (term "0,0,1,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "59")) + (rule "ifSplit" (formula "59")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "methodCallEmpty" (formula "59") (term "1")) + (rule "tryEmpty" (formula "59") (term "1")) + (rule "emptyModality" (formula "59") (term "1")) + (rule "andRight" (formula "59")) + (branch + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_gtToGeq" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "jmod_axiom" (formula "38") (term "0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "newSym_eq" (formula "35") (inst "newSymDef=mul(int::final(result_242, + de.wiesler.PartitionResult::$num_buckets), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "35") (term "1,1")) + (rule "add_zero_right" (formula "35") (term "1")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "35")) + (rule "eqSymm" (formula "36")) + (rule "applyEq" (formula "34") (term "7,0") (ifseqformula "36")) + (rule "applyEq" (formula "34") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "1,7,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "39") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "38") (term "5,0,1") (ifseqformula "36")) + (rule "applyEq" (formula "33") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "50") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "37") (term "0,2,0") (ifseqformula "36")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "36")) + (rule "applyEq" (formula "46") (term "7,0") (ifseqformula "36")) + (rule "applyEq" (formula "46") (term "5,0") (ifseqformula "36")) + (rule "applyEq" (formula "47") (term "5,0") (ifseqformula "36")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "notLeft" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "translateJavaMulInt" (formula "42") (term "1")) + (rule "mul_literals" (formula "42") (term "1")) + (rule "translateJavaMulInt" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "disjointDefinition" (formula "75")) + (builtin "One Step Simplification" (formula "75")) + (rule "notLeft" (formula "75")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "applyEq" (formula "52") (term "0,1,0,0") (ifseqformula "47")) + (rule "applyEq" (formula "56") (term "0,1,0,0,0") (ifseqformula "47")) + (rule "applyEq" (formula "53") (term "0,1,0,0") (ifseqformula "47")) + (rule "applyEq" (formula "51") (term "0,1,0,2,0") (ifseqformula "47")) + (rule "applyEq" (formula "99") (term "0,1,0,0") (ifseqformula "47")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "47")) + (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "47")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "47")) + (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "47")) + (rule "distributeIntersection" (formula "26") (term "0")) + (rule "distributeIntersection" (formula "15") (term "0")) + (rule "distributeIntersection" (formula "25") (term "0")) + (rule "distributeIntersection" (formula "26") (term "0,0")) + (rule "distributeIntersection" (formula "26") (term "1,0")) + (rule "unionEqualsEmpty" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "distributeIntersection" (formula "26") (term "0,0")) + (rule "distributeIntersection" (formula "26") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "1,0,0")) + (rule "distributeIntersection" (formula "27") (term "0,0,0")) + (rule "distributeIntersection" (formula "27") (term "0,1,0")) + (rule "distributeIntersection" (formula "27") (term "1,1,0")) + (rule "distributeIntersection" (formula "15") (term "0")) + (rule "distributeIntersection" (formula "16") (term "0")) + (rule "distributeIntersection" (formula "26") (term "0,0,0")) + (rule "distributeIntersection" (formula "26") (term "1,0,0")) + (rule "distributeIntersection" (formula "26") (term "1,1,0")) + (rule "distributeIntersection" (formula "26") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "distributeIntersection" (formula "15") (term "0,0")) + (rule "distributeIntersection" (formula "15") (term "1,0")) + (rule "distributeIntersection" (formula "16") (term "1,0")) + (rule "distributeIntersection" (formula "16") (term "0,0")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "unionEqualsEmpty" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "65")) + (rule "sortsDisjointModuloNull" (formula "66")) + (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "102"))) + (rule "false_right" (formula "66")) + (rule "sortsDisjointModuloNull" (formula "65")) + (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "106"))) + (rule "false_right" (formula "65")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "65")) + (rule "eqSymm" (formula "64")) + (rule "sortsDisjointModuloNull" (formula "65")) + (rule "replace_known_right" (formula "65") (term "1") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "98"))) + (rule "false_right" (formula "65")) + (rule "sortsDisjointModuloNull" (formula "64")) + (rule "replace_known_right" (formula "64") (term "0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "105"))) + (rule "false_right" (formula "64")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "64")) + (rule "eqSymm" (formula "63")) + (rule "sortsDisjointModuloNull" (formula "64")) + (rule "replace_known_right" (formula "64") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "105"))) + (rule "false_right" (formula "64")) + (rule "sortsDisjointModuloNull" (formula "63")) + (rule "replace_known_right" (formula "63") (term "1") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "95"))) + (rule "false_right" (formula "63")) + (rule "unionEqualsEmpty" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "63")) + (rule "eqSymm" (formula "62")) + (rule "sortsDisjointModuloNull" (formula "63")) + (rule "replace_known_right" (formula "63") (term "1") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "93"))) + (rule "false_right" (formula "63")) + (rule "sortsDisjointModuloNull" (formula "62")) + (rule "replace_known_right" (formula "62") (term "1") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "91"))) + (rule "false_right" (formula "62")) + (rule "unionEqualsEmpty" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "17")) + (rule "notLeft" (formula "16")) + (rule "eqSymm" (formula "62")) + (rule "eqSymm" (formula "61")) + (rule "unionEqualsEmpty" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "61")) + (rule "eqSymm" (formula "60")) + (rule "unionEqualsEmpty" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "60")) + (rule "eqSymm" (formula "59")) + (rule "unionEqualsEmpty" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "59")) + (rule "eqSymm" (formula "58")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "58")) + (rule "eqSymm" (formula "57")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "57")) + (rule "eqSymm" (formula "56")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "55")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "55")) + (rule "eqSymm" (formula "54")) + (rule "commuteUnion" (formula "44") (term "1,1,1")) + (rule "commuteUnion" (formula "44") (term "0,0,1")) + (rule "commuteUnion" (formula "49") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "49") (term "0,0,0,1,0,0")) + (rule "commuteUnion" (formula "53") (term "1,1,0,1,0,0,0")) + (rule "commuteUnion" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "commuteUnion" (formula "50") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "50") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "48") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "48") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "112") (term "1,1,0,1,0,0")) + (rule "commuteUnion_2" (formula "112") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "25") (term "0,0,1,0,1,0")) + (rule "commuteUnion" (formula "25") (term "1,1,1,0,1,0")) + (rule "commuteUnion_2" (formula "44") (term "0,1")) + (rule "commuteUnion_2" (formula "49") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "53") (term "0,0,1,0,0,0")) + (rule "commuteUnion" (formula "50") (term "1,0,0,1,0,0")) + (rule "commuteUnion" (formula "48") (term "0,0,0,1,0,2,0")) + (rule "commuteUnion" (formula "112") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "25") (term "0,1,0,1,0")) + (rule "commuteUnion_2" (formula "44") (term "1")) + (rule "commuteUnion_2" (formula "49") (term "0,1,0,0")) + (rule "commuteUnion" (formula "53") (term "0,0,0,1,0,0,0")) + (rule "commuteUnion_2" (formula "48") (term "0,0,1,0,2,0")) + (rule "commuteUnion_2" (formula "112") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "25") (term "1,0,1,0")) + (rule "commuteUnion" (formula "44") (term "0,0,1")) + (rule "commuteUnion" (formula "49") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "53") (term "0,1,0,0,0")) + (rule "commuteUnion_2" (formula "48") (term "0,1,0,2,0")) + (rule "commuteUnion_2" (formula "112") (term "0,1,0,0")) + (rule "commuteUnion" (formula "25") (term "0,0,1,0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "40")) (ifInst "" (formula "41")) (ifInst "" (formula "42")) (ifInst "" (formula "43"))) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "translateJavaMulInt" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "translateJavaMulInt" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "125"))) + (rule "true_left" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "123"))) + (rule "true_left" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "95"))) + (rule "true_left" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "89"))) + (rule "true_left" (formula "24")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "87"))) + (rule "true_left" (formula "23")) + (rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "85"))) + (rule "true_left" (formula "22")) + (rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "83"))) + (rule "true_left" (formula "21")) + (rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "81"))) + (rule "true_left" (formula "20")) + (rule "disjointDefinition" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "79"))) + (rule "true_left" (formula "19")) + (rule "disjointDefinition" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "77"))) + (rule "true_left" (formula "18")) + (rule "disjointDefinition" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "75"))) + (rule "true_left" (formula "17")) + (rule "disjointDefinition" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "72"))) + (rule "true_left" (formula "16")) + (rule "disjointDefinition" (formula "15")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "72"))) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "44")) + (rule "eqSymm" (formula "14")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "30") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30") (term "1,0,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "30") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "35") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "35") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "35") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,0,1,1,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "34") (term "0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1")) + (rule "translateJavaMod" (formula "34") (term "0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "3,0,1,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "2,0,1,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "0,2,1,3,0,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,3,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1")) + (rule "jmod_axiom" (formula "34") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,1")) + (rule "polySimp_homoEq" (formula "34") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "34") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,1")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "29") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "29") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "translateJavaAddInt" (formula "30") (term "3,0")) + (rule "translateJavaAddInt" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "3,0")) + (rule "polySimp_addComm0" (formula "29") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "elimGcdLeq_antec" (formula "29") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(4(6(#)))")) + (rule "neg_literal" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "30") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "112"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "0,0,1,0,0") (ifseqformula "16")) + (rule "replace_known_right" (formula "30") (term "0,0,0,1,0,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "17"))) + (rule "applyEqRigid" (formula "30") (term "1") (ifseqformula "31")) + (rule "ifEqualsInteger" (formula "30")) + (rule "elementOfUnion" (formula "30") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "30") (term "1,0,0,1")) + (rule "eqSymm" (formula "30") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "30") (term "0,0,1,0,0,1") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "30")) + (rule "elementOfUnion" (formula "30") (term "0,0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "elementOfUnion" (formula "30")) + (rule "elementOfArrayRangeConcrete" (formula "30") (term "1")) + (rule "eqSymm" (formula "30") (term "0,0,1")) + (rule "replace_known_right" (formula "30") (term "0,0,1") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "30")) + (rule "elementOfUnion" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "commuteUnion" (formula "14") (term "1,1,0")) + (rule "commuteUnion_2" (formula "14") (term "0,0")) + (rule "commuteUnion" (formula "14") (term "0,0,0")) + (rule "commuteUnion_2" (formula "14") (term "0,0")) + (rule "commuteUnion_2" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0")) + (rule "nnf_imp2or" (formula "36") (term "0,1")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,1")) + (rule "nnf_notAnd" (formula "32") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "32") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,1,0,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "37") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0,1")) + (rule "nnf_notAnd" (formula "36") (term "1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "36") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notLeq" (formula "36") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,0,1")) + (rule "nnf_notAnd" (formula "36") (term "0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,0,0,0,0,1")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,0,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,0,0,1")) + (rule "Contract_axiom_for_sortednessFromPartitionSorted_in_Sorter" (formula "55") (term "0")) + (rule "wellFormedAnon" (formula "55") (term "1,0")) + (rule "wellFormedAnon" (formula "55") (term "0,1,0")) + (rule "wellFormedAnonEQ" (formula "55") (term "0,0,1,0") (ifseqformula "24")) + (rule "wellFormedAnon" (formula "55") (term "0,0,0,1,0")) + (rule "wellFormedAnonEQ" (formula "55") (term "0,0,0,0,1,0") (ifseqformula "15")) + (rule "translateJavaSubInt" (formula "55") (term "1,0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "55") (term "3,0,0,1,1,1,1,1,0,0")) + (rule "replace_known_left" (formula "55") (term "1,1,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "114")) (ifInst "" (formula "112")) (ifInst "" (formula "1")) (ifInst "" (formula "14")) (ifInst "" (formula "21")) (ifInst "" (formula "23")) (ifInst "" (formula "49")) (ifInst "" (formula "56"))) + (rule "true_left" (formula "55")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "51") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51") (term "1,0,0")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "51") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "51") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "51") (term "0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "51") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "51") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_sortednessFromPartitionSorted_in_de_wiesler_Sorter" (formula "55") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "28")) + (rule "expand_inInt" (formula "28") (term "1,0,0")) + (rule "expand_inInt" (formula "28") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "114")) + (rule "replace_known_right" (formula "114") (term "0,1") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "101")) (ifInst "" (formula "100")) (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "104")) (ifInst "" (formula "105")) (ifInst "" (formula "106"))) + (rule "closeTrue" (formula "114")) + ) + (branch + (builtin "One Step Simplification" (formula "59")) + (rule "closeTrue" (formula "59")) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (partition = null)" + (rule "false_right" (formula "52")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "46"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (partition = null)" + (rule "false_right" (formula "52")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "46"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Exceptional Post (partition)" + (builtin "One Step Simplification" (formula "32")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "32")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "33")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "0,0,1,0") (ifseqformula "21")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "close" (formula "36") (ifseqformula "35")) + ) + (branch "Pre (partition)" + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,0,1,0") (ifseqformula "21")) + (rule "wellFormedAnon" (formula "36") (term "0,0,0,0,0,1,0")) + (rule "wellFormedAnonEQ" (formula "36") (term "0,0,0,0,0,0,1,0") (ifseqformula "21")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "0,1,0,0,0,0,1,0") (ifseqformula "21")) + (rule "expand_inInt" (formula "36") (term "1,0,0,0,1,0")) + (rule "expand_inInt" (formula "36") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "36") (term "1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,0,1")) + (rule "replace_known_left" (formula "36") (term "0,0,1,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "1")) (ifInst "" (formula "20")) (ifInst "" (formula "27")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5")) (ifInst "" (formula "32")) (ifInst "" (formula "22"))) + (rule "polySimp_elimSub" (formula "36") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,1")) + (rule "measuredByCheck" (formula "36") (term "1") (ifseqformula "8")) + (rule "precOfPair" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_gtToGeq" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "precOfInt" (formula "36") (term "1,1")) + (rule "less_literals" (formula "36") (term "1,1,1")) + (builtin "One Step Simplification" (formula "36")) + (rule "leq_literals" (formula "36") (term "1,1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,1")) + (rule "replace_known_left" (formula "36") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1")) + (rule "replace_known_left" (formula "36") (term "1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "13")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "translateJavaMulInt" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "23")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "24") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "24") (term "1,0")) + (rule "distributeIntersection" (formula "24") (term "0,0")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "distributeIntersection" (formula "36") (term "0,0,0")) + (rule "distributeIntersection" (formula "36") (term "1,0,0")) + (rule "distributeIntersection" (formula "36") (term "1,1,0")) + (rule "distributeIntersection" (formula "36") (term "0,1,0")) + (rule "distributeIntersection" (formula "24") (term "0,1,0")) + (rule "distributeIntersection" (formula "24") (term "1,1,0")) + (rule "distributeIntersection" (formula "24") (term "1,0,0")) + (rule "distributeIntersection" (formula "24") (term "0,0,0")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "distributeIntersection" (formula "36") (term "1,0")) + (rule "distributeIntersection" (formula "36") (term "0,0")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "unionEqualsEmpty" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "distributeIntersection" (formula "38") (term "0")) + (rule "distributeIntersection" (formula "37") (term "0")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "45")) + (rule "eqSymm" (formula "44")) + (rule "sortsDisjointModuloNull" (formula "45")) + (rule "replace_known_right" (formula "45") (term "1") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "45")) + (rule "false_right" (formula "45")) + (rule "sortsDisjointModuloNull" (formula "44")) + (rule "replace_known_right" (formula "44") (term "1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "44")) + (rule "false_right" (formula "44")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "43")) + (rule "sortsDisjointModuloNull" (formula "44")) + (rule "replace_known_right" (formula "44") (term "1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "44")) + (rule "false_right" (formula "44")) + (rule "sortsDisjointModuloNull" (formula "43")) + (rule "replace_known_right" (formula "43") (term "1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "43")) + (rule "false_right" (formula "43")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "sortsDisjointModuloNull" (formula "43")) + (rule "replace_known_right" (formula "43") (term "1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "43")) + (rule "false_right" (formula "43")) + (rule "sortsDisjointModuloNull" (formula "42")) + (rule "replace_known_right" (formula "42") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "sortsDisjointModuloNull" (formula "42")) + (rule "replace_known_right" (formula "42") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "sortsDisjointModuloNull" (formula "41")) + (rule "replace_known_right" (formula "41") (term "1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "41")) + (rule "false_right" (formula "41")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "unionEqualsEmpty" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "36")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "36")) + (rule "eqSymm" (formula "35")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "34")) + (rule "unionEqualsEmpty" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "34")) + (rule "eqSymm" (formula "33")) + (rule "commuteUnion" (formula "23") (term "0,1")) + (rule "commuteUnion" (formula "23") (term "1,1,1")) + (rule "commuteUnion" (formula "23") (term "1,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "7")) + (rule "notLeft" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "89")) + (rule "replace_known_right" (formula "89") (term "0,1,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "32")) (ifInst "" (formula "33")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "36")) (ifInst "" (formula "37")) (ifInst "" (formula "39"))) + (rule "closeTrue" (formula "89")) + ) + ) + ) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "21") (ifseqformula "20")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "19")) + (rule "replace_int_MAX" (formula "19") (term "1,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "leq_literals" (formula "19")) + (rule "closeTrue" (formula "19")) + ) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..52782b7 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sample_sort_recurse_on((I,int,int,de.wiesler.Storage,(I,int,boolean,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,7251 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:55:45 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:55:45 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sample_sort_recurse_on([I,int,int,de.wiesler.Storage,[I,int,boolean,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "60802") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "notLeft" (formula "8")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "notLeft" (formula "11")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "26")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "28")) +(rule "translateJavaSubInt" (formula "13") (term "0,0")) +(rule "translateJavaSubInt" (formula "18") (term "0")) +(rule "translateJavaSubInt" (formula "22") (term "1")) +(rule "translateJavaAddInt" (formula "26") (term "6,0,1,1")) +(rule "translateJavaSubInt" (formula "26") (term "7,0,1,1")) +(rule "translateJavaMod" (formula "26") (term "0,0,0,1")) +(rule "eqSymm" (formula "26") (term "1,0,1")) +(rule "translateJavaSubInt" (formula "27") (term "3,0")) +(rule "translateJavaSubInt" (formula "26") (term "0,1,0,1")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "8")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "13") (term "0,0")) +(rule "polySimp_elimSub" (formula "18") (term "0")) +(rule "polySimp_elimSub" (formula "22") (term "1")) +(rule "polySimp_elimSub" (formula "26") (term "7,0,1,1")) +(rule "mul_literals" (formula "26") (term "1,7,0,1,1")) +(rule "polySimp_elimSub" (formula "27") (term "3,0")) +(rule "polySimp_elimSub" (formula "26") (term "0,1,0,1")) +(rule "mul_literals" (formula "26") (term "1,0,1,0,1")) +(rule "polySimp_addComm0" (formula "26") (term "6,0,1,1")) +(rule "polySimp_addComm0" (formula "13") (term "0,0")) +(rule "polySimp_addComm0" (formula "18") (term "0")) +(rule "polySimp_addComm0" (formula "22") (term "1")) +(rule "polySimp_addComm0" (formula "26") (term "7,0,1,1")) +(rule "polySimp_addComm0" (formula "27") (term "3,0")) +(rule "polySimp_addComm0" (formula "26") (term "0,1,0,1")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "disjointDefinition" (formula "28")) +(rule "disjointDefinition" (formula "29")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "19")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) +(rule "commuteIntersection" (formula "28") (term "0")) +(rule "commuteIntersection" (formula "29") (term "0")) +(rule "commute_or" (formula "26") (term "0,1")) +(rule "commute_and" (formula "26") (term "1")) +(rule "methodBodyExpand" (formula "35") (term "1") (newnames "heapBefore_sample_sort_recurse_on,savedHeapBefore_sample_sort_recurse_on,_storageBefore_sample_sort_recurse_on,_valuesBefore_sample_sort_recurse_on,inner_beginBefore_sample_sort_recurse_on,inner_endBefore_sample_sort_recurse_on")) + (builtin "One Step Simplification" (formula "35")) +(rule "variableDeclarationAssign" (formula "35") (term "1")) +(rule "variableDeclaration" (formula "35") (term "1") (newnames "inner_begin")) +(rule "compound_addition_2" (formula "35") (term "1") (inst "#v0=x") (inst "#v1=x_1")) +(rule "variableDeclarationAssign" (formula "35") (term "1")) +(rule "variableDeclaration" (formula "35") (term "1") (newnames "x")) +(rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) +(rule "variableDeclarationAssign" (formula "35") (term "1")) +(rule "variableDeclaration" (formula "35") (term "1") (newnames "x_1")) +(rule "assignment_array2" (formula "35")) +(branch "Normal Execution (_bucket_starts != null)" + (builtin "One Step Simplification" (formula "35")) + (rule "assignmentAdditionInt" (formula "35") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35")) + (rule "replace_int_MIN" (formula "35") (term "0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0")) + (rule "jmod_axiom" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "translateJavaMulInt" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "translateJavaMulInt" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "35")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "35")) + (rule "distributeIntersection" (formula "26") (term "0")) + (rule "distributeIntersection" (formula "25") (term "0")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "distributeIntersection" (formula "25") (term "0,0")) + (rule "distributeIntersection" (formula "25") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "26") (term "0")) + (rule "distributeIntersection" (formula "25") (term "1,0,0")) + (rule "distributeIntersection" (formula "25") (term "0,0,0")) + (rule "distributeIntersection" (formula "25") (term "0,1,0")) + (rule "distributeIntersection" (formula "25") (term "1,1,0")) + (rule "distributeIntersection" (formula "27") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "0,0")) + (rule "distributeIntersection" (formula "26") (term "0,0")) + (rule "distributeIntersection" (formula "26") (term "1,0")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "36")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "36")) + (rule "eqSymm" (formula "35")) + (rule "unionEqualsEmpty" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "34")) + (rule "commuteUnion" (formula "33") (term "0,0,1")) + (rule "commuteUnion" (formula "33") (term "1,1,1")) + (rule "commuteUnion_2" (formula "33") (term "0,1")) + (rule "commuteUnion" (formula "33") (term "0,0,1")) + (rule "commuteUnion_2" (formula "33") (term "1")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "translateJavaAddInt" (formula "20") (term "3,0")) + (rule "translateJavaAddInt" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "25") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "3,0,1,0,0,1")) + (rule "translateJavaMod" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "25") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "25") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "26") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,0,1,1,0")) + (rule "commute_and" (formula "92")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0,0,1")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,1")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (rule "expand_inShort" (formula "13")) + (rule "replace_short_MIN" (formula "13") (term "0,1")) + (rule "replace_short_MAX" (formula "13") (term "1,0")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "10")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0,0,1")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "commute_or" (formula "27") (term "1,1")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "leq_literals" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "qeq_literals" (formula "36")) + (rule "true_left" (formula "36")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "qeq_literals" (formula "36")) + (rule "true_left" (formula "36")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "leq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "leq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "arrayLengthNotNegative" (formula "33") (term "0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,0,0,1")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "33")) + (rule "leq_literals" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "35")) + (rule "translateJavaAddInt" (formula "35") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "inner_end")) + (rule "compound_addition_2" (formula "35") (term "1") (inst "#v0=x") (inst "#v1=x_1")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_2")) + (rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_3")) + (rule "eval_order_array_access5" (formula "35") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_4")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_4")) + (rule "assignmentAdditionInt" (formula "35") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35")) + (rule "replace_int_MIN" (formula "35") (term "0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "35") (term "1,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,1")) + (rule "add_literals" (formula "35") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "jmod_axiom" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "33") (term "1") (ifseqformula "17")) + (rule "leq_literals" (formula "33") (term "0,1")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "1")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "11")) + (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "1")) + (rule "add_literals" (formula "19") (term "1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "23") (term "0,0,0,1,1,1") (ifseqformula "1")) + (rule "eqSymm" (formula "23") (term "1,1,1")) + (rule "jdiv_axiom_inline" (formula "23") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "23") (term "0,0,2,0,1,1,1,1")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "div_literals" (formula "23") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "23") (term "1,1,1,1")) + (rule "applyEq" (formula "20") (term "7,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "1,6,0,0,1") (ifseqformula "1")) + (rule "add_literals" (formula "23") (term "6,0,0,1")) + (rule "applyEq" (formula "23") (term "0,1,1,1") (ifseqformula "1")) + (rule "equal_literals" (formula "23") (term "1,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEq" (formula "23") (term "1,1,1,1") (ifseqformula "1")) + (rule "add_literals" (formula "23") (term "1,1,1")) + (rule "inEqSimp_contradEq3" (formula "23") (term "1,1") (ifseqformula "9")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1")) + (rule "add_literals" (formula "23") (term "0,0,1,1")) + (rule "qeq_literals" (formula "23") (term "0,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "17")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "35")) + (rule "translateJavaAddInt" (formula "35") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,1,0")) + (rule "assignment_array2" (formula "35")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "35")) + (rule "assignmentAdditionInt" (formula "35") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35")) + (rule "replace_int_MIN" (formula "35") (term "0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1")) + (rule "mul_literals" (formula "35") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0")) + (rule "jmod_axiom" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "21") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "21") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "21") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "21") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "24") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0,0,1")) + (rule "translateJavaMod" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "24") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "nnf_imp2or" (formula "24") (term "0,0,1")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,0,1,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "translateJavaMulInt" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "36")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "36")) + (rule "distributeIntersection" (formula "26") (term "0")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "26") (term "1,0")) + (rule "distributeIntersection" (formula "26") (term "0,0")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "distributeIntersection" (formula "26") (term "1,1,0")) + (rule "distributeIntersection" (formula "26") (term "0,1,0")) + (rule "distributeIntersection" (formula "26") (term "0,0,0")) + (rule "distributeIntersection" (formula "26") (term "1,0,0")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "28") (term "0")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "distributeIntersection" (formula "28") (term "0,0")) + (rule "distributeIntersection" (formula "28") (term "1,0")) + (rule "distributeIntersection" (formula "29") (term "0,0")) + (rule "distributeIntersection" (formula "29") (term "1,0")) + (rule "unionEqualsEmpty" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "unionEqualsEmpty" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "36")) + (rule "unionEqualsEmpty" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "eqSymm" (formula "36")) + (rule "eqSymm" (formula "35")) + (rule "commuteUnion" (formula "34") (term "1,1,1")) + (rule "commuteUnion_2" (formula "34") (term "0,1")) + (rule "commuteUnion" (formula "34") (term "0,0,1")) + (rule "commuteUnion_2" (formula "34") (term "0,1")) + (rule "commuteUnion_2" (formula "34") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "translateJavaAddInt" (formula "20") (term "3,0")) + (rule "translateJavaAddInt" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,1")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "commute_and" (formula "92")) + (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0,0,1")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0,0,1")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0,0,0,0,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19") (term "1,0,0")) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "Definition_axiom_for_isEqualityBucket_in_de_wiesler_Sorter" (formula "24") (term "0,1,0,0,1") (inst "i=i")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1,0,0,1")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,1,0,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "eqSymm" (formula "24") (term "1,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,0,1,0,1,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,0,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1")) + (rule "Definition_axiom_for_isBucketPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0,1,0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "23") (term "1,0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,0,1,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,0,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0,0,1")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0,0,1")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0,1,0")) + (rule "associativeLawUnion" (formula "34") (term "0,1")) + (rule "commute_or_2" (formula "19") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1,0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0,1,0,0,1")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0,1,0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,0,0,0,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,0,0,0,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,0,0,1,0,0,1")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,0,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,0,0,1,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "1,0,0,1,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,1,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,0,0,1,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "commute_or" (formula "24") (term "1,1")) + (rule "commute_or_2" (formula "19") (term "0,0,1,0")) + (rule "commute_or_2" (formula "23") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0,0,0,1")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthNotNegative" (formula "18") (term "0")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "cut_direct" (formula "93") (term "1")) + (branch "CUT: bucket_starts[1 + bucket] <= 2147483647 + begin * -1 TRUE" + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_geqRight" (formula "94")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "39")) + (rule "leq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "37")) + (rule "leq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "23")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "33")) + (rule "qeq_literals" (formula "32")) + (rule "true_left" (formula "32")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "39")) + (rule "leq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "36")) + (rule "leq_literals" (formula "34")) + (rule "closeFalse" (formula "34")) + ) + (branch "CUT: bucket_starts[1 + bucket] <= 2147483647 + begin * -1 FALSE" + (builtin "One Step Simplification" (formula "94")) + (rule "false_right" (formula "94")) + (rule "inEqSimp_leqRight" (formula "93")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "39")) + (rule "leq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "37")) + (rule "leq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthNotNegative" (formula "30") (term "0")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthIsAShort" (formula "22") (term "0")) + (rule "expand_inShort" (formula "22")) + (rule "replace_short_MIN" (formula "22") (term "0,1")) + (rule "replace_short_MAX" (formula "22") (term "1,0")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "23")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "36")) + (rule "leq_literals" (formula "34")) + (rule "closeFalse" (formula "34")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "35")) + (rule "translateJavaAddInt" (formula "35") (term "0,1,0")) + (builtin "Block Contract (Internal)" (formula "35") (newnames "anonOut_heap,exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "36")) + (rule "translateJavaSubInt" (formula "31") (term "0,0")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "31") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "emptyStatement" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "emptyStatement" (formula "35") (term "1")) + (rule "jmod_axiom" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "14")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "commute_or" (formula "24") (term "1,1")) + (rule "tryEmpty" (formula "33") (term "1")) + (rule "blockEmptyLabel" (formula "33") (term "1")) + (rule "blockEmpty" (formula "33") (term "1")) + (rule "methodCallEmpty" (formula "33") (term "1")) + (rule "emptyModality" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "1"))) + (rule "translateJavaSubInt" (formula "35") (term "0,0")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "close" (formula "35") (ifseqformula "13")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "replace_known_left" (formula "33") (term "0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "polySimp_homoEq" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "jmod_axiom" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "commute_or" (formula "24") (term "1,1")) + (rule "ifUnfold" (formula "36") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "replace_known_left" (formula "36") (term "0,0,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "36")) + (rule "jdiv_axiom" (formula "24") (term "0,0,0,1,1")) + (rule "eqSymm" (formula "24")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24")) + (rule "applyEq" (formula "25") (term "0,0,0,1,1") (ifseqformula "24")) + (rule "div_axiom" (formula "24") (term "1") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "24") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "24") (term "0,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "equal_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "polySimp_addComm1" (formula "26") (term "1")) + (rule "add_literals" (formula "26") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "applyEq" (formula "28") (term "0,0,0,1,1") (ifseqformula "24")) + (rule "eqSymm" (formula "28") (term "0,1,1")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26")) + (rule "times_zero_1" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "18")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "elimGcdLeq_antec" (formula "26") (inst "elimGcdRightDiv=Z(3(2(8(1(4(7(3(7(0(1(#)))))))))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "16")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "ifSplit" (formula "44")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "44") (term "1")) + (builtin "Block Contract (Internal)" (formula "44") (newnames "anonOut_heap_0,exc_1,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "40") (term "0,0")) + (rule "polySimp_elimSub" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "variableDeclarationAssign" (formula "45") (term "1")) + (rule "variableDeclaration" (formula "45") (term "1") (newnames "exc_1_1")) + (rule "assignment" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "emptyStatement" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "emptyStatement" (formula "45") (term "1")) + (rule "tryEmpty" (formula "45") (term "1")) + (rule "blockEmptyLabel" (formula "45") (term "1")) + (rule "blockEmpty" (formula "45") (term "1")) + (rule "methodCallEmpty" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "emptyModality" (formula "45") (term "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "closeTrue" (formula "45")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedAnon" (formula "44") (term "1")) + (rule "translateJavaSubInt" (formula "44") (term "0,0,0")) + (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "38"))) + (rule "polySimp_elimSub" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "close" (formula "44") (ifseqformula "8")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "40")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1,1")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "45") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "44") (term "0,2,1")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "45") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,1,1,0")) + (rule "pullOutSelect" (formula "45") (term "1,1,1,0,1,0") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "45")) + (rule "applyEq" (formula "43") (term "1") (ifseqformula "45")) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "applyEqReverse" (formula "46") (term "1,1,1,0,1,0") (ifseqformula "45")) + (rule "applyEqReverse" (formula "42") (term "0") (ifseqformula "45")) + (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "45")) + (rule "hideAuxiliaryEq" (formula "45")) + (rule "pullOutSelect" (formula "45") (term "1,1,1,1,1,0") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "45")) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "applyEqReverse" (formula "46") (term "1,1,1,1,1,0") (ifseqformula "45")) + (rule "applyEqReverse" (formula "44") (term "0") (ifseqformula "45")) + (rule "hideAuxiliaryEq" (formula "45")) + (rule "inEqSimp_commuteGeq" (formula "44")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "23")) + (rule "applyEq" (formula "45") (term "1,1,1,1,1,0") (ifseqformula "23")) + (rule "pullOutSelect" (formula "45") (term "1,0,0,1,1,1,0") (inst "selectSK=arr_2")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "45")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "45")) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "49")) (ifInst "" (formula "5"))) + (rule "applyEqReverse" (formula "46") (term "1,0,0,1,1,1,0") (ifseqformula "45")) + (rule "applyEqReverse" (formula "44") (term "0") (ifseqformula "45")) + (rule "applyEqReverse" (formula "43") (term "0") (ifseqformula "45")) + (rule "hideAuxiliaryEq" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "44")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43")) + (rule "mul_literals" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "1")) + (rule "polySimp_elimOne" (formula "42") (term "1")) + (rule "nnf_imp2or" (formula "46") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0")) + (rule "nnf_imp2or" (formula "46") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,1,0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_notAnd" (formula "46") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,1,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "commute_or_2" (formula "46") (term "0,0,0")) + (rule "cnf_rightDist" (formula "46") (term "1,1,0")) + (rule "commute_or" (formula "46") (term "1,1,1,0")) + (rule "cnf_rightDist" (formula "46") (term "0,1,0")) + (rule "commute_or" (formula "46") (term "1,0,1,0")) + (rule "ifUnfold" (formula "51") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_6")) + (rule "shift_paren_or" (formula "46") (term "0,0,0,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "commute_or_2" (formula "46") (term "0,0,0,0")) + (rule "commute_or" (formula "46") (term "0,0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "46") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "cnf_rightDist" (formula "46") (term "0,1,1,0")) + (rule "commute_or" (formula "46") (term "1,0,1,1,0")) + (rule "cnf_rightDist" (formula "46") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "46") (term "0")) + (rule "distr_forallAnd" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "commute_or" (formula "47") (term "0")) + (rule "cnf_rightDist" (formula "46") (term "0")) + (rule "distr_forallAnd" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "commute_or_2" (formula "47") (term "0")) + (rule "commute_or" (formula "46") (term "1,1,0")) + (rule "shift_paren_or" (formula "47") (term "0,0")) + (rule "cnf_rightDist" (formula "48") (term "0")) + (rule "distr_forallAnd" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "commute_or_2" (formula "49") (term "0")) + (rule "shift_paren_or" (formula "49") (term "0,0")) + (rule "cnf_rightDist" (formula "46") (term "0")) + (rule "distr_forallAnd" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "commute_or_2" (formula "47") (term "0")) + (rule "shift_paren_or" (formula "46") (term "0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "shift_paren_or" (formula "47") (term "0,0")) + (rule "commute_or_2" (formula "46") (term "0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "46") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "46") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "cnf_rightDist" (formula "49") (term "0")) + (rule "distr_forallAnd" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "commute_or_2" (formula "50") (term "0")) + (rule "shift_paren_or" (formula "49") (term "0")) + (rule "commute_or_2" (formula "49") (term "0,0")) + (rule "inEqSimp_or_subsumption5" (formula "49") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,1,0,0,0,0")) + (rule "qeq_literals" (formula "49") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "shift_paren_or" (formula "48") (term "0,0,0")) + (rule "shift_paren_or" (formula "51") (term "0,0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0")) + (rule "shift_paren_or" (formula "47") (term "0,0,0")) + (rule "commute_or" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "48") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "48") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "48") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "commute_or" (formula "51") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0,0")) + (rule "commute_or" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "47") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "47") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "47") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "47")) + (rule "inequality_comparison_simple" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "replace_known_left" (formula "56") (term "0,0,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "56")) + (rule "commute_or" (formula "50") (term "0,0,0,0")) + (rule "ifSplit" (formula "56")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "56") (term "1")) + (builtin "Block Contract (Internal)" (formula "56") (newnames "anonOut_heap_1,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "54")) (ifInst "" (formula "4")) (ifInst "" (formula "56")) (ifInst "" (formula "2"))) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "52") (term "0,1")) + (rule "expand_inInt" (formula "52") (term "1,1")) + (rule "replace_int_MIN" (formula "52") (term "0,1,0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,1")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "56")) + (rule "translateJavaSubInt" (formula "52") (term "0,0")) + (rule "polySimp_elimSub" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "mul_literals" (formula "54") (term "1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "56")) + (rule "mul_literals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1")) + (rule "polySimp_rightDist" (formula "54") (term "1")) + (rule "mul_literals" (formula "54") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "43")) + (rule "polySimp_rightDist" (formula "54") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0")) + (rule "mul_literals" (formula "54") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "56") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0")) + (rule "mul_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "mul_literals" (formula "56") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "53")) + (rule "mul_literals" (formula "42") (term "0,0")) + (rule "add_zero_left" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "11")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "ifElseUnfold" (formula "61") (term "1") (inst "#boolv=x")) + (builtin "One Step Simplification" (formula "61")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_7")) + (rule "compound_greater_than_comparison_1" (formula "61") (term "1") (inst "#v0=x_8")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "x_8")) + (rule "assignmentSubtractionInt" (formula "61") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61")) + (rule "replace_int_MAX" (formula "61") (term "1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,0")) + (rule "polySimp_elimSub" (formula "61") (term "1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "61") (term "1,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0")) + (rule "add_literals" (formula "61") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "61") (term "0,0,0,0")) + (rule "add_zero_left" (formula "61") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,1,1")) + (rule "add_literals" (formula "61") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "61") (term "0,0,1,1")) + (rule "add_zero_left" (formula "61") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "61") (term "0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1")) + (rule "mul_literals" (formula "61") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "61") (term "1") (ifseqformula "44")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,1")) + (rule "add_literals" (formula "61") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "61") (term "1,0,0,1")) + (rule "add_zero_right" (formula "61") (term "0,0,1")) + (rule "qeq_literals" (formula "61") (term "0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_leqRight" (formula "61")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "46") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,0")) + (rule "mul_literals" (formula "46") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "qeq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1")) + (rule "mul_literals" (formula "45") (term "0,0")) + (rule "add_zero_left" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "45")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "44")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "closeFalse" (formula "13")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "61")) + (rule "translateJavaSubInt" (formula "61") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "61") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "61") (term "0,0,1,0")) + (rule "greater_than_comparison_simple" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_gtToGeq" (formula "61") (term "0,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,1,0")) + (rule "ifElseSplit" (formula "61")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "62")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "45") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0")) + (rule "qeq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "1")) + (rule "mul_literals" (formula "45") (term "0,0")) + (rule "add_zero_left" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "mul_literals" (formula "45") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "54") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0")) + (rule "mul_literals" (formula "54") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "54")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "2")) + (rule "mul_literals" (formula "44") (term "0,0")) + (rule "add_zero_left" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "44") (ifseqformula "13")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "18")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "mul_literals" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "12")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "43") (term "0,0")) + (rule "mul_literals" (formula "43") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "43")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (builtin "Use Operation Contract" (formula "61") (newnames "heapBefore_sample_sort,exc_3,heapAfter_sample_sort,anon_heap_sample_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (sample_sort)" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "translateJavaSubInt" (formula "58") (term "2,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "2,0,1,0")) + (rule "mul_literals" (formula "58") (term "1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "2,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,0,1,0")) + (rule "narrowSelectArrayType" (formula "59") (term "2,1") (ifseqformula "52") (ifseqformula "67")) + (rule "commuteUnion" (formula "58") (term "1,0")) + (rule "tryEmpty" (formula "68") (term "1")) + (rule "blockEmptyLabel" (formula "68") (term "1")) + (rule "blockEmpty" (formula "68") (term "1")) + (rule "methodCallEmpty" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "emptyModality" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "closeTrue" (formula "68")) + ) + (branch "Exceptional Post (sample_sort)" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "close" (formula "62") (ifseqformula "61")) + ) + (branch "Pre (sample_sort)" + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "60")) (ifInst "" (formula "58")) (ifInst "" (formula "52")) (ifInst "" (formula "60")) (ifInst "" (formula "5")) (ifInst "" (formula "58")) (ifInst "" (formula "6"))) + (rule "expand_inInt" (formula "61") (term "1,1,0")) + (rule "expand_inInt" (formula "61") (term "0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,1")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0,0,0,0,1")) + (rule "add_literals" (formula "61") (term "1,0,0,0,0,1")) + (rule "times_zero_1" (formula "61") (term "0,0,0,0,1")) + (rule "add_zero_left" (formula "61") (term "0,0,0,1")) + (rule "measuredByCheck" (formula "61") (term "1") (ifseqformula "10")) + (rule "precOfPair" (formula "61") (term "1")) + (rule "polySimp_homoEq" (formula "61") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1")) + (rule "precOfInt" (formula "61") (term "0,1")) + (rule "precOfInt" (formula "61") (term "1,1,1")) + (rule "less_literals" (formula "61") (term "1,1,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1")) + (rule "mul_literals" (formula "61") (term "1,0,0,1")) + (rule "add_zero_right" (formula "61") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1,1,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,0,1,1,1")) + (rule "mul_literals" (formula "61") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,1,0,1,0")) + (rule "replace_known_left" (formula "61") (term "1,0,1,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,1,1,1,0")) + (rule "replace_known_left" (formula "61") (term "1,1,1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_sepNegMonomial1" (formula "61") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,1,0")) + (rule "replace_known_left" (formula "61") (term "1,1,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption1" (formula "61") (term "0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,1")) + (rule "add_literals" (formula "61") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "61") (term "0,0,0,1")) + (rule "qeq_literals" (formula "61") (term "0,0,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption0" (formula "61") (term "1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0,1,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "61") (term "0,0,1,0")) + (rule "qeq_literals" (formula "61") (term "0,1,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaAddInt" (formula "24") (term "3,0")) + (rule "translateJavaAddInt" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "3,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "22")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "translateJavaMulInt" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "translateJavaMulInt" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "disjointDefinition" (formula "74")) + (builtin "One Step Simplification" (formula "74")) + (rule "notLeft" (formula "74")) + (rule "disjointDefinition" (formula "73")) + (builtin "One Step Simplification" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "46")) + (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "46")) + (rule "distributeIntersection" (formula "36") (term "0")) + (rule "distributeIntersection" (formula "37") (term "0")) + (rule "distributeIntersection" (formula "36") (term "1,0")) + (rule "distributeIntersection" (formula "36") (term "0,0")) + (rule "distributeIntersection" (formula "37") (term "1,0")) + (rule "distributeIntersection" (formula "37") (term "0,0")) + (rule "distributeIntersection" (formula "36") (term "1,1,0")) + (rule "distributeIntersection" (formula "36") (term "0,1,0")) + (rule "distributeIntersection" (formula "36") (term "1,0,0")) + (rule "distributeIntersection" (formula "36") (term "0,0,0")) + (rule "distributeIntersection" (formula "37") (term "1,1,0")) + (rule "distributeIntersection" (formula "37") (term "0,1,0")) + (rule "distributeIntersection" (formula "37") (term "0,0,0")) + (rule "distributeIntersection" (formula "37") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "unionEqualsEmpty" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "unionEqualsEmpty" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "73")) + (rule "eqSymm" (formula "72")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "71")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "71")) + (rule "eqSymm" (formula "70")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "70")) + (rule "eqSymm" (formula "69")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "69")) + (rule "eqSymm" (formula "68")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "68")) + (rule "eqSymm" (formula "67")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "67")) + (rule "eqSymm" (formula "66")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "65")) + (rule "commuteUnion" (formula "44") (term "0,1")) + (rule "commuteUnion" (formula "44") (term "1,1,1")) + (rule "commuteUnion" (formula "44") (term "1,0,1")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "34") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34") (term "1,0,0,0,1")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,0,1")) + (rule "translateJavaMod" (formula "34") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "3,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "34") (term "0,2,1,3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "34") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "34") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "34") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "12")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "27") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "27")) + (rule "expand_inInt" (formula "27") (term "1,0,0")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "27") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "46") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "46")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "46") (term "1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "46") (term "1,1,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "0,1,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "1,0,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "46") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "46") (term "1,1,1,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "46") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "46") (term "1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "46") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,0,0,0,1,1,1,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "49") (term "0,0,0,1,1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "49") (term "0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "48") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "47") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "47") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "48") (term "1,1,1,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "24")) + (rule "inEqSimp_commuteGeq" (formula "47")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_zero_right" (formula "46") (term "0,0")) + (rule "qeq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "34") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34") (term "1,0,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "34") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "120") (term "0")) + (rule "replace_known_right" (formula "120") (term "0,1,0,0,0,0,0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "64")) (ifInst "" (formula "65")) (ifInst "" (formula "66")) (ifInst "" (formula "68")) (ifInst "" (formula "69")) (ifInst "" (formula "70")) (ifInst "" (formula "71"))) + (rule "inEqSimp_leqRight" (formula "120")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_invertInEq1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "1")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "16")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_antiSymm" (formula "54") (ifseqformula "2")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "54")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "54")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "53")) + (rule "qeq_literals" (formula "54")) + (rule "true_left" (formula "54")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "53")) + (rule "add_zero_right" (formula "2") (term "1")) + (rule "applyEq" (formula "57") (term "1,1,0") (ifseqformula "53")) + (rule "applyEq" (formula "48") (term "1,1,1,0,1,0") (ifseqformula "53")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "53")) + (rule "add_zero_right" (formula "5") (term "1")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "53")) + (rule "inEqSimp_homoInEq1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "add_zero_right" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "11")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "14")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "49")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "51")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "applyEq" (formula "56") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "46") (term "1,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "polySimp_pullOutFactor1" (formula "51") (term "0")) + (rule "add_literals" (formula "51") (term "1,0")) + (rule "times_zero_1" (formula "51") (term "0")) + (rule "qeq_literals" (formula "51")) + (rule "true_left" (formula "51")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "57")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "11")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "20") (term "1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "31") (term "0,0,1")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "21")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "15")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "elimGcdLeq_antec" (formula "30") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "30") (term "0,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "29") (ifseqformula "30")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "21")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "associativeLawUnion" (formula "43") (term "1")) + (rule "nnf_imp2or" (formula "46") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "42") (term "0")) + (rule "expand_inShort" (formula "42")) + (rule "replace_short_MIN" (formula "42") (term "0,1")) + (rule "replace_short_MAX" (formula "42") (term "1,0")) + (rule "andLeft" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthNotNegative" (formula "42") (term "0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "43")) + (rule "qeq_literals" (formula "42")) + (rule "true_left" (formula "42")) + (rule "arrayLengthIsAShort" (formula "41") (term "0")) + (rule "expand_inShort" (formula "41")) + (rule "replace_short_MIN" (formula "41") (term "0,1")) + (rule "replace_short_MAX" (formula "41") (term "1,0")) + (rule "andLeft" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "42")) + (rule "leq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "39") (term "0")) + (rule "expand_inShort" (formula "39")) + (rule "replace_short_MIN" (formula "39") (term "0,1")) + (rule "replace_short_MAX" (formula "39") (term "1,0")) + (rule "andLeft" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "leq_literals" (formula "39")) + (rule "true_left" (formula "39")) + (rule "arrayLengthNotNegative" (formula "39") (term "0")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "qeq_literals" (formula "39")) + (rule "true_left" (formula "39")) + (rule "arrayLengthNotNegative" (formula "38") (term "0")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "39")) + (rule "qeq_literals" (formula "38")) + (rule "true_left" (formula "38")) + (rule "arrayLengthIsAShort" (formula "38") (term "0")) + (rule "expand_inShort" (formula "38")) + (rule "replace_short_MIN" (formula "38") (term "0,1")) + (rule "replace_short_MAX" (formula "38") (term "1,0")) + (rule "andLeft" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "40")) + (rule "leq_literals" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "62")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_geqRight" (formula "57")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "57") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0")) + (rule "mul_literals" (formula "57") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "1")) + (rule "mul_literals" (formula "57") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "1,1,0,0")) + (rule "times_zero_1" (formula "57") (term "1,0,0")) + (rule "add_zero_right" (formula "57") (term "0,0")) + (rule "qeq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "elim_double_block_2" (formula "62") (term "1")) + (builtin "Use Operation Contract" (formula "62") (newnames "heapBefore_base_case_sort,exc_3,heapAfter_base_case_sort,anon_heap_base_case_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (base_case_sort)" + (builtin "One Step Simplification" (formula "59")) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "translateJavaSubInt" (formula "59") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "2,1,0")) + (rule "mul_literals" (formula "59") (term "1,2,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0")) + (rule "narrowSelectArrayType" (formula "60") (term "2,1") (ifseqformula "53") (ifseqformula "66")) + (rule "tryEmpty" (formula "67") (term "1")) + (rule "blockEmptyLabel" (formula "67") (term "1")) + (rule "blockEmpty" (formula "67") (term "1")) + (rule "methodCallEmpty" (formula "67") (term "1")) + (builtin "One Step Simplification" (formula "67")) + (rule "emptyModality" (formula "67") (term "1")) + (builtin "One Step Simplification" (formula "67")) + (rule "closeTrue" (formula "67")) + ) + (branch "Exceptional Post (base_case_sort)" + (builtin "One Step Simplification" (formula "64")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "close" (formula "62") (ifseqformula "61")) + ) + (branch "Pre (base_case_sort)" + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "61")) (ifInst "" (formula "53")) (ifInst "" (formula "61")) (ifInst "" (formula "3"))) + (rule "expand_inInt" (formula "62") (term "1")) + (rule "expand_inInt" (formula "62") (term "0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1")) + (rule "replace_int_MAX" (formula "62") (term "1,0,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,1")) + (rule "mul_literals" (formula "62") (term "1,0,1,1")) + (rule "polySimp_addComm1" (formula "62") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0")) + (rule "mul_literals" (formula "62") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,1")) + (rule "replace_known_left" (formula "62") (term "0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,0")) + (rule "replace_known_left" (formula "62") (term "1,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1")) + (rule "polySimp_rightDist" (formula "62") (term "1,1")) + (rule "mul_literals" (formula "62") (term "0,1,1")) + (rule "replace_known_left" (formula "62") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_geqRight" (formula "62")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "qeq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "55")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53")) (ifInst "" (formula "4")) (ifInst "" (formula "55")) (ifInst "" (formula "2"))) + (rule "wellFormedAnon" (formula "56") (term "1,0")) + (rule "wellFormedAnon" (formula "56") (term "0,1,0")) + (rule "expand_inInt" (formula "56") (term "1,1")) + (rule "expand_inInt" (formula "56") (term "0,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,0,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,0,1")) + (rule "translateJavaSubInt" (formula "56") (term "0,0,0,0")) + (rule "replace_known_left" (formula "56") (term "1,1,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "1")) (ifInst "" (formula "38"))) + (rule "polySimp_elimSub" (formula "56") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,0")) + (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "0,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "1,0,1,1")) + (rule "polySimp_addComm1" (formula "56") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,1")) + (rule "mul_literals" (formula "56") (term "0,1,1,1")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "39") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "39")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "39") (term "1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "39") (term "1,1,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "1,0,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "0,1,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "39") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "39") (term "1,1,1,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "39") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "39") (term "1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "41") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "40") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0,0,0,1,1,1,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "42") (term "0,0,0,1,1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "42") (term "0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,2,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "41") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,1")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "40") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "40") (term "1")) + (rule "inEqSimp_gtToGeq" (formula "42") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "23")) + (rule "inEqSimp_commuteGeq" (formula "39")) + (rule "applyEq" (formula "39") (term "1,1,1,1,1,0") (ifseqformula "23")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "nnf_imp2or" (formula "39") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,1,0")) + (rule "nnf_imp2or" (formula "39") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "24") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "translateJavaMulInt" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "translateJavaMulInt" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "84")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "81")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "80")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "79")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "78")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "77")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "76")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "75")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "74")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "44")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "44")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "0,0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0,0")) + (rule "distributeIntersection" (formula "35") (term "0,1,0")) + (rule "distributeIntersection" (formula "35") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "0,1,0")) + (rule "distributeIntersection" (formula "34") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0,0")) + (rule "distributeIntersection" (formula "34") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "65")) + (rule "unionEqualsEmpty" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "65")) + (rule "eqSymm" (formula "64")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "64")) + (rule "eqSymm" (formula "63")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "63")) + (rule "eqSymm" (formula "62")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "62")) + (rule "eqSymm" (formula "61")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "61")) + (rule "eqSymm" (formula "60")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "60")) + (rule "eqSymm" (formula "59")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "59")) + (rule "eqSymm" (formula "58")) + (rule "commuteUnion" (formula "42") (term "0,0,1")) + (rule "commuteUnion" (formula "42") (term "1,1,1")) + (rule "commuteUnion" (formula "42") (term "0,1")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "32") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "32") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "32") (term "0,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,1,1,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "31") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "31") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "31") (term "0,2,1,3,0,1,0,0,1")) + (rule "translateJavaMod" (formula "31") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "31") (term "3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "31") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "31") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "translateJavaAddInt" (formula "23") (term "3,0")) + (rule "translateJavaAddInt" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "21")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "commute_and" (formula "115") (term "0")) + (rule "commute_and" (formula "115") (term "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0,0,0,1,0")) + (rule "commute_or_2" (formula "46") (term "0,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "cnf_rightDist" (formula "46") (term "0,1,0")) + (rule "cnf_rightDist" (formula "46") (term "1,1,0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0,0,1")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0")) + (rule "nnf_imp2or" (formula "25") (term "0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0,0,1")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "expand_inInt" (formula "22") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "associativeLawUnion" (formula "43") (term "1")) + (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "41") (term "0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthIsAShort" (formula "41") (term "0")) + (rule "expand_inShort" (formula "41")) + (rule "replace_short_MIN" (formula "41") (term "0,1")) + (rule "replace_short_MAX" (formula "41") (term "1,0")) + (rule "andLeft" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "40") (term "0")) + (rule "expand_inShort" (formula "40")) + (rule "replace_short_MIN" (formula "40") (term "0,1")) + (rule "replace_short_MAX" (formula "40") (term "1,0")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "42")) + (rule "qeq_literals" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "39") (term "0")) + (rule "expand_inShort" (formula "39")) + (rule "replace_short_MIN" (formula "39") (term "0,1")) + (rule "replace_short_MAX" (formula "39") (term "1,0")) + (rule "andLeft" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "41")) + (rule "qeq_literals" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "leq_literals" (formula "39")) + (rule "true_left" (formula "39")) + (rule "arrayLengthNotNegative" (formula "39") (term "0")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "qeq_literals" (formula "39")) + (rule "true_left" (formula "39")) + (rule "arrayLengthNotNegative" (formula "38") (term "0")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "39")) + (rule "qeq_literals" (formula "38")) + (rule "true_left" (formula "38")) + (rule "arrayLengthIsAShort" (formula "38") (term "0")) + (rule "expand_inShort" (formula "38")) + (rule "replace_short_MIN" (formula "38") (term "0,1")) + (rule "replace_short_MAX" (formula "38") (term "1,0")) + (rule "andLeft" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "40")) + (rule "qeq_literals" (formula "39")) + (rule "true_left" (formula "39")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "39")) + (rule "leq_literals" (formula "38")) + (rule "true_left" (formula "38")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (rule "expand_inShort" (formula "37")) + (rule "replace_short_MIN" (formula "37") (term "0,1")) + (rule "replace_short_MAX" (formula "37") (term "1,0")) + (rule "andLeft" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "39")) + (rule "qeq_literals" (formula "38")) + (rule "true_left" (formula "38")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "leq_literals" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "57")) + (builtin "One Step Simplification" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "52")) + (rule "translateJavaSubInt" (formula "61") (term "2,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,1")) + (rule "translateJavaAddInt" (formula "55") (term "0,0")) + (rule "translateJavaAddInt" (formula "55") (term "1,1")) + (rule "translateJavaSubInt" (formula "55") (term "2,0,1,0,2,0")) + (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0,0")) + (rule "translateJavaAddInt" (formula "56") (term "2,0")) + (rule "translateJavaSubInt" (formula "55") (term "2,0,1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,1")) + (rule "translateJavaSubInt" (formula "56") (term "2,0,1,0,1,2,0")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "polySimp_elimSub" (formula "60") (term "2,0,1,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,2,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "2,0,1,0,2,0")) + (rule "mul_literals" (formula "54") (term "1,2,0,1,0,2,0")) + (rule "polySimp_elimSub" (formula "55") (term "2,0,1,0,0")) + (rule "mul_literals" (formula "55") (term "1,2,0,1,0,0")) + (rule "polySimp_elimSub" (formula "54") (term "2,0,1,0,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,2,0,1,0,1,0,0")) + (rule "polySimp_elimSub" (formula "55") (term "2,0,1,0,1,2,0")) + (rule "mul_literals" (formula "55") (term "1,2,0,1,0,1,2,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,1")) + (rule "polySimp_addComm1" (formula "60") (term "2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "2,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "55") (term "2,0,1,0,0")) + (rule "polySimp_addComm1" (formula "54") (term "2,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "2,0,1,0,1,2,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,2,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0,2,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,0,1,2,0")) + (rule "narrowSelectArrayType" (formula "54") (term "2,1") (ifseqformula "1") (ifseqformula "59")) + (rule "pullOutSelect" (formula "54") (term "1,0,0") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "56") (term "1,2,0") (ifseqformula "54")) + (rule "simplifySelectOfAnon" (formula "54")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "59")) (ifInst "" (formula "5"))) + (rule "replaceKnownSelect_taclet21210110_0" (formula "54") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "54") (term "2,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "2,0")) + (rule "elementOfUnion" (formula "54") (term "0,0")) + (rule "disjointAllFields" (formula "54") (term "1,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "0,0")) + (rule "eqSymm" (formula "54") (term "0,0,0,0")) + (rule "replace_known_right" (formula "54") (term "0,0,0,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "54")) + (rule "applyEqReverse" (formula "56") (term "0,2,0") (ifseqformula "54")) + (rule "applyEqReverse" (formula "55") (term "0,0,0") (ifseqformula "54")) + (rule "hideAuxiliaryEq" (formula "54")) + (rule "polySimp_addComm0" (formula "55") (term "2,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "commuteUnion" (formula "60") (term "1,0,1,0")) + (rule "commuteUnion" (formula "54") (term "1,0,2,0")) + (rule "commuteUnion" (formula "55") (term "1,0,0")) + (rule "ifUnfold" (formula "60") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "replace_known_left" (formula "60") (term "0,0,1,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "60")) + (rule "ifSplit" (formula "60")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (builtin "Block Contract (Internal)" (formula "60") (newnames "anonOut_heap_2,exc_3,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "61")) + (rule "andLeft" (formula "56")) + (rule "translateJavaSubInt" (formula "56") (term "0,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "narrowSelectArrayType" (formula "54") (term "2,0") (ifseqformula "56") (ifseqformula "60")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "exc_3_1")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "emptyStatement" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "emptyStatement" (formula "61") (term "1")) + (rule "tryEmpty" (formula "61") (term "1")) + (rule "blockEmptyLabel" (formula "61") (term "1")) + (rule "blockEmpty" (formula "61") (term "1")) + (rule "methodCallEmpty" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "emptyModality" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "closeTrue" (formula "61")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "60")) + (rule "wellFormedAnon" (formula "60") (term "1")) + (rule "wellFormedAnon" (formula "60") (term "0,1")) + (rule "wellFormedAnon" (formula "60") (term "0,0,1")) + (rule "translateJavaSubInt" (formula "60") (term "0,0,0")) + (rule "replace_known_left" (formula "60") (term "1,1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "41"))) + (rule "polySimp_elimSub" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "close" (formula "60") (ifseqformula "8")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "61")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "translateJavaAddInt" (formula "60") (term "0,1")) + (rule "translateJavaAddInt" (formula "59") (term "1,1")) + (rule "translateJavaAddInt" (formula "60") (term "0,2,1,0,1")) + (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0,1")) + (rule "narrowSelectArrayType" (formula "58") (term "2,1") (ifseqformula "1") (ifseqformula "63")) + (rule "narrowSelectArrayType" (formula "59") (term "2,1") (ifseqformula "1") (ifseqformula "63")) + (rule "ifUnfold" (formula "64") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "64") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "replace_known_left" (formula "64") (term "0,0,1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "64")) + (rule "ifSplit" (formula "64")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "64") (term "1")) + (builtin "Block Contract (Internal)" (formula "64") (newnames "anonOut_heap_3,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "translateJavaSubInt" (formula "60") (term "0,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "narrowSelectArrayType" (formula "58") (term "2,0") (ifseqformula "60") (ifseqformula "64")) + (rule "narrowSelectArrayType" (formula "59") (term "2,0") (ifseqformula "60") (ifseqformula "64")) + (rule "variableDeclarationAssign" (formula "65") (term "1")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "emptyStatement" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "emptyStatement" (formula "65") (term "1")) + (rule "tryEmpty" (formula "65") (term "1")) + (rule "blockEmptyLabel" (formula "65") (term "1")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "methodCallEmpty" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "emptyModality" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "closeTrue" (formula "65")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "64")) + (rule "wellFormedAnon" (formula "64") (term "1")) + (rule "wellFormedAnon" (formula "64") (term "0,1")) + (rule "wellFormedAnon" (formula "64") (term "0,0,1")) + (rule "wellFormedAnon" (formula "64") (term "0,0,0,1")) + (rule "translateJavaSubInt" (formula "64") (term "0,0,0")) + (rule "replace_known_left" (formula "64") (term "1,1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "1")) (ifInst "" (formula "38")) (ifInst "" (formula "41")) (ifInst "" (formula "53"))) + (rule "polySimp_elimSub" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "close" (formula "64") (ifseqformula "8")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "65")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "60")) + (rule "translateJavaAddInt" (formula "64") (term "0,1")) + (rule "translateJavaAddInt" (formula "63") (term "1,1")) + (rule "translateJavaAddInt" (formula "64") (term "0,2,1,0,1")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "polySimp_addComm0" (formula "63") (term "0,2,1,0,1")) + (rule "narrowSelectArrayType" (formula "63") (term "2,1") (ifseqformula "1") (ifseqformula "67")) + (rule "narrowSelectArrayType" (formula "62") (term "2,1") (ifseqformula "1") (ifseqformula "67")) + (rule "ifUnfold" (formula "68") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "68") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "replace_known_left" (formula "68") (term "0,0,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "68")) + (rule "ifSplit" (formula "68")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "69")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "methodCallEmpty" (formula "68") (term "1")) + (rule "tryEmpty" (formula "68") (term "1")) + (rule "emptyModality" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "translateJavaMulInt" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "translateJavaMulInt" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "disjointDefinition" (formula "72")) + (builtin "One Step Simplification" (formula "72")) + (rule "notLeft" (formula "72")) + (rule "disjointDefinition" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notLeft" (formula "71")) + (rule "disjointDefinition" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "notLeft" (formula "70")) + (rule "eqSymm" (formula "97")) + (rule "disjointDefinition" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "notLeft" (formula "69")) + (rule "eqSymm" (formula "96")) + (rule "disjointDefinition" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "eqSymm" (formula "95")) + (rule "disjointDefinition" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "94")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "eqSymm" (formula "93")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "eqSymm" (formula "92")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "91")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "90")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "89")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "88")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "87")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "86")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "85")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "83")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "82")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "applyEq" (formula "67") (term "0,1,0,0,2,0") (ifseqformula "44")) + (rule "applyEq" (formula "71") (term "0,1,0,0,0,2,0") (ifseqformula "44")) + (rule "applyEq" (formula "62") (term "0,1,0,2,0") (ifseqformula "44")) + (rule "applyEq" (formula "70") (term "0,1,0,0,0,2,0") (ifseqformula "44")) + (rule "applyEq" (formula "63") (term "0,1,0,0") (ifseqformula "44")) + (rule "applyEq" (formula "66") (term "0,1,0,0,2,0") (ifseqformula "44")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "44")) + (rule "applyEq" (formula "34") (term "1,0") (ifseqformula "44")) + (rule "applyEq" (formula "104") (term "0,1,0,0,0") (ifseqformula "44")) + (rule "distributeIntersection" (formula "35") (term "0")) + (rule "distributeIntersection" (formula "34") (term "0")) + (rule "distributeIntersection" (formula "35") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0")) + (rule "distributeIntersection" (formula "35") (term "1,0,0")) + (rule "distributeIntersection" (formula "35") (term "0,0,0")) + (rule "distributeIntersection" (formula "35") (term "0,1,0")) + (rule "distributeIntersection" (formula "35") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "0,1,0")) + (rule "distributeIntersection" (formula "34") (term "1,1,0")) + (rule "distributeIntersection" (formula "34") (term "0,0,0")) + (rule "distributeIntersection" (formula "34") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "unionEqualsEmpty" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "unionEqualsEmpty" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "unionEqualsEmpty" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "unionEqualsEmpty" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "unionEqualsEmpty" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "78")) + (rule "eqSymm" (formula "77")) + (rule "unionEqualsEmpty" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "41")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "77")) + (rule "eqSymm" (formula "76")) + (rule "unionEqualsEmpty" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "76")) + (rule "eqSymm" (formula "75")) + (rule "unionEqualsEmpty" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "75")) + (rule "eqSymm" (formula "74")) + (rule "unionEqualsEmpty" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "74")) + (rule "eqSymm" (formula "73")) + (rule "unionEqualsEmpty" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "73")) + (rule "eqSymm" (formula "72")) + (rule "unionEqualsEmpty" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "71")) + (rule "unionEqualsEmpty" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "71")) + (rule "eqSymm" (formula "70")) + (rule "commuteUnion_2" (formula "42") (term "0,1")) + (rule "commuteUnion" (formula "42") (term "1,1,1")) + (rule "commuteUnion" (formula "65") (term "0,0,1,0,0,2,0")) + (rule "commuteUnion" (formula "65") (term "1,1,0,1,0,0,2,0")) + (rule "commuteUnion" (formula "69") (term "1,1,0,1,0,0,0,2,0")) + (rule "commuteUnion" (formula "69") (term "0,0,1,0,0,0,2,0")) + (rule "commuteUnion" (formula "60") (term "0,0,1,0,2,0")) + (rule "commuteUnion" (formula "60") (term "1,1,0,1,0,2,0")) + (rule "commuteUnion" (formula "68") (term "0,0,1,0,0,0,2,0")) + (rule "commuteUnion" (formula "68") (term "1,1,0,1,0,0,0,2,0")) + (rule "commuteUnion_2" (formula "61") (term "0,0,1,0,0")) + (rule "commuteUnion" (formula "61") (term "1,1,0,1,0,0")) + (rule "commuteUnion" (formula "64") (term "0,0,0,1,0,0,2,0")) + (rule "commuteUnion" (formula "64") (term "1,1,0,1,0,0,2,0")) + (rule "commuteUnion_2" (formula "118") (term "0,0,1,0,0,0")) + (rule "commuteUnion" (formula "118") (term "1,1,0,1,0,0,0")) + (rule "commuteUnion" (formula "42") (term "0,0,1")) + (rule "commuteUnion" (formula "65") (term "1,0,0,1,0,0,2,0")) + (rule "commuteUnion" (formula "69") (term "1,0,0,1,0,0,0,2,0")) + (rule "commuteUnion" (formula "60") (term "1,0,0,1,0,2,0")) + (rule "commuteUnion" (formula "68") (term "1,0,0,1,0,0,0,2,0")) + (rule "commuteUnion" (formula "61") (term "0,0,0,1,0,0")) + (rule "commuteUnion_2" (formula "64") (term "0,0,1,0,0,2,0")) + (rule "commuteUnion" (formula "118") (term "0,0,0,1,0,0,0")) + (rule "commuteUnion_2" (formula "42") (term "0,1")) + (rule "commuteUnion_2" (formula "61") (term "0,0,1,0,0")) + (rule "commuteUnion_2" (formula "64") (term "0,1,0,0,2,0")) + (rule "commuteUnion_2" (formula "118") (term "0,0,1,0,0,0")) + (rule "commuteUnion_2" (formula "42") (term "1")) + (rule "commuteUnion_2" (formula "61") (term "0,1,0,0")) + (rule "commuteUnion" (formula "64") (term "0,0,0,1,0,0,2,0")) + (rule "commuteUnion_2" (formula "118") (term "0,1,0,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "32") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0,0,1")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0,0,1")) + (rule "translateJavaMod" (formula "32") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "32") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "32") (term "3,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "32") (term "0,2,1,3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "32") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "32") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "32") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "24") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "9")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "44") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "44")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "44") (term "1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "44") (term "1,1,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "0,1,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "1,0,0,0")) + (rule "replaceKnownSelect_taclet21210110_1" (formula "44") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownSelect_taclet21210110_4" (formula "44") (term "1,1,1,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_2" (formula "44") (term "1,1,1,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_5" (formula "44") (term "1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "47") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "45") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0,0,0,1,1,1,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "47") (term "0,0,0,1,1,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "47") (term "0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,0")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "46") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1")) + (rule "replaceKnownSelect_taclet21210110_7" (formula "45") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet21210110_8" (formula "45") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "22")) + (rule "inEqSimp_commuteGeq" (formula "44")) + (rule "applyEq" (formula "44") (term "1,1,1,1,1,0") (ifseqformula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "32") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "32")) + (rule "expand_inInt" (formula "32") (term "1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "32") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "32") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,1,1,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "translateJavaAddInt" (formula "23") (term "3,0")) + (rule "translateJavaAddInt" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "3,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "21")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "33") (term "0,0,1")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "34") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "62") (term "0")) + (rule "wellFormedAnon" (formula "62") (term "1,0")) + (rule "wellFormedAnon" (formula "62") (term "0,1,0")) + (rule "wellFormedAnon" (formula "62") (term "0,0,1,0")) + (rule "replace_known_right" (formula "62") (term "0,0,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "1")) (ifInst "" (formula "45")) (ifInst "" (formula "48")) (ifInst "" (formula "60")) (ifInst "" (formula "63"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "63") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63") (term "1,0,0")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "63") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "128")) + (rule "replace_known_right" (formula "128") (term "0,1,0,0,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "72")) (ifInst "" (formula "73")) (ifInst "" (formula "75")) (ifInst "" (formula "76")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "79"))) + (rule "closeTrue" (formula "128")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "polySimp_homoEq" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "20")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "20")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "19")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "16")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "14")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "25") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,0,1,1,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "nnf_notAnd" (formula "25") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "24") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "3,0,1,0,0,1")) + (rule "translateJavaMod" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "24") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0,1")) + (rule "Definition_axiom_for_smallBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "21") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,3,0,1,0")) + (rule "translateJavaAddInt" (formula "21") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "21") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "translateJavaAddInt" (formula "21") (term "3,0")) + (rule "translateJavaAddInt" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "3,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_contradEq3" (formula "27") (term "0,1,1") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "17")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "add_zero_right" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + ) + ) +) +(branch "Null Reference (_bucket_starts = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "1")) +) +(branch "Index Out of Bounds (_bucket_starts != null, but _bucket Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "polySimp_homoEq" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "jmod_axiom" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "19")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "19")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "17")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "15")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "19")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "Definition_axiom_for_notAllValuesInOneBucket_in_de_wiesler_Sorter" (formula "26") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "26") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,0,1,1,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_equalityBucketsInRange_in_de_wiesler_Sorter" (formula "25") (term "0,0,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25") (term "1,0,0,0,1")) + (rule "replace_int_MAX" (formula "25") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "translateJavaMod" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "2,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,3,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "3,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,3,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0,0,1")) + (rule "jmod_axiom" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_homoEq" (formula "25") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0,0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "25") (term "1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "nnf_imp2or" (formula "25") (term "0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "1,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "25") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "1,0,1,0,0,0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0,0,0,0,0,1")) + (rule "Definition_axiom_for_allBucketsPartitioned_in_de_wiesler_Sorter" (formula "23") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,5,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "Definition_axiom_for_allBucketsInRangeSorted_in_de_wiesler_Sorter" (formula "22") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "22")) + (rule "expand_inInt" (formula "22") (term "1,0,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,3,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,3,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "60")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "37")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "37")) + (rule "distributeIntersection" (formula "28") (term "0")) + (rule "distributeIntersection" (formula "27") (term "0")) + (rule "distributeIntersection" (formula "28") (term "1,0")) + (rule "distributeIntersection" (formula "28") (term "0,0")) + (rule "distributeIntersection" (formula "27") (term "1,0")) + (rule "distributeIntersection" (formula "27") (term "0,0")) + (rule "distributeIntersection" (formula "28") (term "0,1,0")) + (rule "distributeIntersection" (formula "28") (term "1,1,0")) + (rule "distributeIntersection" (formula "28") (term "0,0,0")) + (rule "distributeIntersection" (formula "28") (term "1,0,0")) + (rule "distributeIntersection" (formula "27") (term "1,1,0")) + (rule "distributeIntersection" (formula "27") (term "0,1,0")) + (rule "distributeIntersection" (formula "27") (term "0,0,0")) + (rule "distributeIntersection" (formula "27") (term "1,0,0")) + (rule "unionEqualsEmpty" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "unionEqualsEmpty" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "unionEqualsEmpty" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "unionEqualsEmpty" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "43")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "43")) + (rule "eqSymm" (formula "42")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "32")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "41")) + (rule "unionEqualsEmpty" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "41")) + (rule "eqSymm" (formula "40")) + (rule "unionEqualsEmpty" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "38")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "37")) + (rule "unionEqualsEmpty" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "36")) + (rule "commuteUnion" (formula "35") (term "1,1,1")) + (rule "commuteUnion_2" (formula "35") (term "0,1")) + (rule "commuteUnion" (formula "35") (term "0,0,1")) + (rule "commuteUnion_2" (formula "35") (term "0,1")) + (rule "commuteUnion_2" (formula "35") (term "1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "translateJavaAddInt" (formula "22") (term "3,0")) + (rule "translateJavaAddInt" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "3,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_contradEq3" (formula "28") (term "0,1,1") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "18")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..0aacf04 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,469 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 21:42:14 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 21:42:14 CEST 2022 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "328") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_sort,savedHeapBefore_sort")) + (builtin "One Step Simplification" (formula "6")) +(rule "variableDeclarationAssign" (formula "6") (term "1")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "storage")) + (builtin "Use Operation Contract" (formula "6") (newnames "heapBefore_Storage,self_25,exc_25,heapAfter_Storage,anon_heap_Storage") (contract "de.wiesler.Storage[de.wiesler.Storage::Storage()].JML normal_behavior operation contract.0")) +(branch "Post (Storage)" + (builtin "One Step Simplification" (formula "6")) + (builtin "One Step Simplification" (formula "8")) + (rule "andLeft" (formula "6")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "6")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "8")) + (rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (builtin "Block Contract (Internal)" (formula "16") (newnames "exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "3"))) + (builtin "One Step Simplification" (formula "17")) + (rule "eqSymm" (formula "17") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "emptyStatement" (formula "17") (term "1")) + (rule "emptyStatement" (formula "17") (term "1")) + (rule "tryEmpty" (formula "17") (term "1")) + (rule "blockEmptyLabel" (formula "17") (term "1")) + (rule "blockEmpty" (formula "17") (term "1")) + (rule "methodCallEmpty" (formula "17") (term "1")) + (rule "emptyModality" (formula "17") (term "1")) + (rule "andRight" (formula "17")) + (branch + (builtin "One Step Simplification" (formula "17")) + (rule "closeTrue" (formula "17")) + ) + (branch + (builtin "One Step Simplification" (formula "17")) + (rule "closeTrue" (formula "17")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "16")) + (branch + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "16")) + ) + (branch + (builtin "One Step Simplification" (formula "16")) + (rule "wellFormedAnonEQ" (formula "16") (ifseqformula "6")) + (rule "replace_known_left" (formula "16") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "13")) + (builtin "One Step Simplification" (formula "17")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "13") (term "1,1") (ifseqformula "6")) + (rule "andLeft" (formula "13")) + (rule "replace_known_left" (formula "14") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "elim_double_block_2" (formula "17") (term "1")) + (rule "ifUnfold" (formula "17") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "replace_known_left" (formula "17") (term "0,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "17")) + (rule "ifSplit" (formula "17")) + (branch "if x true" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "17") (term "1")) + (rule "methodCallUnfoldArguments" (formula "17") (term "1")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "var")) + (rule "assignment" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_1")) + (rule "assignment" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_2")) + (rule "assignment_read_length" (formula "17")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "17")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "var_3")) + (rule "assignment" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) + (builtin "Use Operation Contract" (formula "17") (newnames "heapBefore_sort_0,exc_27,heapAfter_sort,anon_heap_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (sort)" + (builtin "One Step Simplification" (formula "15")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "translateJavaSubInt" (formula "15") (term "2,0,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "2,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "2,0,1,0")) + (rule "commuteUnion" (formula "15") (term "1,0")) + (rule "methodCallEmpty" (formula "24") (term "1")) + (rule "tryEmpty" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "emptyModality" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "closeTrue" (formula "24")) + ) + (branch "Exceptional Post (sort)" + (builtin "One Step Simplification" (formula "15")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "15")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (term "1,0") (ifseqformula "15")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (term "0,1,0") (ifseqformula "6")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "close" (formula "19") (ifseqformula "18")) + ) + (branch "Pre (sort)" + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "12")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "17") (term "1,0") (ifseqformula "6")) + (rule "wellFormedAnonEQ" (formula "17") (term "0,0,0,0,0") (ifseqformula "6")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "17") (term "1,0,0,0,0") (ifseqformula "6")) + (rule "expand_inInt" (formula "17") (term "1,0,0,0")) + (rule "expand_inInt" (formula "17") (term "1,0,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0")) + (rule "leq_literals" (formula "17") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "1")) (ifInst "" (formula "5")) (ifInst "" (formula "2")) (ifInst "" (formula "14")) (ifInst "" (formula "8"))) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "17") (term "0,0,1")) + (rule "mul_literals" (formula "17") (term "1,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,1")) + (rule "measuredByCheckEmpty" (formula "17") (term "1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1")) + (rule "inEqSimp_subsumption0" (formula "17") (term "0") (ifseqformula "4")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_geqRight" (formula "17")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "13")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "11")) + (builtin "One Step Simplification" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "11")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "translateJavaMulInt" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "translateJavaMulInt" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "45")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "44")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "43")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "42")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "41")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "40")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "39")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "38")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "37")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "36")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "35")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "34")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "32")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "eqSymm" (formula "31")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "disjointDefinition" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "notLeft" (formula "20")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "19")) + (rule "subsetUnionLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "subsetUnionLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "subsetUnionLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "subsetUnionLeft" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "subsetUnionLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "subsetUnionLeft" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "subsetUnionLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "commuteUnion_2" (formula "26") (term "0,1")) + (rule "commuteUnion" (formula "26") (term "1,1,1")) + (rule "commuteUnion" (formula "26") (term "0,0,1")) + (rule "commuteUnion_2" (formula "26") (term "0,1")) + (rule "commuteUnion_2" (formula "26") (term "1")) + (rule "associativeLawUnion" (formula "26") (term "0,1")) + (rule "associativeLawUnion" (formula "26") (term "0,1")) + (rule "arrayLengthIsAShort" (formula "1") (term "0")) + (rule "expand_inShort" (formula "1")) + (rule "replace_short_MAX" (formula "1") (term "1,0")) + (rule "replace_short_MIN" (formula "1") (term "0,1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) +) +(branch "Exceptional Post (Storage)" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,0,0") (ifseqformula "6")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "6")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "7")) + (rule "close" (formula "12") (ifseqformula "11")) +) +(branch "Pre (Storage)" + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "6")) +) +) +} diff --git a/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..352d768 --- /dev/null +++ b/src/main/key-overflow/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__sort((I,int,int,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,715 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 21:42:32 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 21:42:32 CEST 2022 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "432") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "7")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "8") (term "0,0")) +(rule "translateJavaSubInt" (formula "13") (term "0")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "0,0")) +(rule "polySimp_elimSub" (formula "13") (term "0")) +(rule "polySimp_addComm0" (formula "8") (term "0,0")) +(rule "polySimp_addComm0" (formula "13") (term "0")) +(rule "disjointDefinition" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "18") (term "1")) + (builtin "One Step Simplification" (formula "18")) +(rule "commuteIntersection" (formula "15") (term "0")) +(rule "methodBodyExpand" (formula "18") (term "1") (newnames "heapBefore_sort,savedHeapBefore_sort")) + (builtin "One Step Simplification" (formula "18")) +(rule "ifElseUnfold" (formula "18") (term "1") (inst "#boolv=x")) +(rule "variableDeclaration" (formula "18") (term "1") (newnames "x")) +(rule "compound_less_equal_than_comparison_1" (formula "18") (term "1") (inst "#v0=x_1")) +(rule "variableDeclarationAssign" (formula "18") (term "1")) +(rule "variableDeclaration" (formula "18") (term "1") (newnames "x_1")) +(rule "assignmentSubtractionInt" (formula "18") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18")) + (rule "replace_int_MIN" (formula "18") (term "0,1")) + (rule "replace_int_MAX" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1")) + (rule "inEqSimp_homoInEq0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "18") (term "0,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1")) + (rule "polySimp_rightDist" (formula "18") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1")) + (rule "mul_literals" (formula "18") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "17") (term "1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,1")) + (rule "add_literals" (formula "17") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,1")) + (rule "qeq_literals" (formula "17") (term "0,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_leqRight" (formula "17")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq1" (formula "12") (ifseqformula "1")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,0")) + (rule "less_equal_than_comparison_simple" (formula "18") (term "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "ifElseSplit" (formula "18")) + (branch "if x true" + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_base_case_sort,exc_51,heapAfter_base_case_sort,anon_heap_base_case_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::base_case_sort([I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (base_case_sort)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "translateJavaSubInt" (formula "18") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "2,1,0")) + (rule "mul_literals" (formula "18") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "2,1,0")) + (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "2") (ifseqformula "23")) + (rule "methodCallEmpty" (formula "24") (term "1")) + (rule "tryEmpty" (formula "24") (term "1")) + (rule "emptyModality" (formula "24") (term "1")) + (rule "andRight" (formula "24")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "11")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "18")) + (rule "expand_inInt" (formula "18") (term "1,0,0")) + (rule "replace_int_MAX" (formula "18") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "18") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "22")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "13")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaMulInt" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "translateJavaMulInt" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "46")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "45")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "44")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "43")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "42")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "41")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "eqSymm" (formula "39")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "eqSymm" (formula "38")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "21")) + (rule "distributeIntersection" (formula "22") (term "0")) + (rule "unionEqualsEmpty" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "distributeIntersection" (formula "22") (term "0")) + (rule "distributeIntersection" (formula "23") (term "0")) + (rule "distributeIntersection" (formula "22") (term "1,0")) + (rule "distributeIntersection" (formula "22") (term "0,0")) + (rule "distributeIntersection" (formula "23") (term "0,0")) + (rule "distributeIntersection" (formula "23") (term "1,0")) + (rule "unionEqualsEmpty" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "unionEqualsEmpty" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "unionEqualsEmpty" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "eqSymm" (formula "31")) + (rule "eqSymm" (formula "30")) + (rule "unionEqualsEmpty" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "22")) + (rule "eqSymm" (formula "30")) + (rule "eqSymm" (formula "29")) + (rule "unionEqualsEmpty" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "23")) + (rule "eqSymm" (formula "29")) + (rule "eqSymm" (formula "28")) + (rule "unionEqualsEmpty" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "eqSymm" (formula "28")) + (rule "eqSymm" (formula "27")) + (rule "commuteUnion" (formula "21") (term "0,0,1")) + (rule "commuteUnion" (formula "21") (term "1,1,1")) + (rule "commuteUnion" (formula "21") (term "0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9")) + (rule "close" (formula "65") (ifseqformula "9")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "24")) + (rule "closeTrue" (formula "24")) + ) + ) + (branch "Exceptional Post (base_case_sort)" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "18")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "19") (term "1,0") (ifseqformula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "21") (ifseqformula "20")) + ) + (branch "Pre (base_case_sort)" + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "18")) (ifInst "" (formula "2")) (ifInst "" (formula "18")) (ifInst "" (formula "3"))) + (rule "expand_inInt" (formula "19") (term "1")) + (rule "expand_inInt" (formula "19") (term "0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,0")) + (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "6"))) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1")) + (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "19") (term "1")) + (builtin "Use Operation Contract" (formula "19") (newnames "heapBefore_sample_sort,exc_51,heapAfter_sample_sort,anon_heap_sample_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::sample_sort([I,int,int,de.wiesler.Storage)].JML normal_behavior operation contract.0")) + (branch "Post (sample_sort)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "translateJavaSubInt" (formula "17") (term "2,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "2,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "2,0,1,0")) + (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "1") (ifseqformula "25")) + (rule "commuteUnion" (formula "17") (term "1,0")) + (rule "methodCallEmpty" (formula "26") (term "1")) + (rule "tryEmpty" (formula "26") (term "1")) + (rule "emptyModality" (formula "26") (term "1")) + (rule "andRight" (formula "26")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "22"))) + (rule "closeTrue" (formula "26")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "26")) + (rule "closeTrue" (formula "26")) + ) + ) + (branch "Exceptional Post (sample_sort)" + (builtin "One Step Simplification" (formula "21")) + (builtin "One Step Simplification" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0") (ifseqformula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "18")) + (rule "close" (formula "21") (ifseqformula "20")) + ) + (branch "Pre (sample_sort)" + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "9")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "1")) (ifInst "" (formula "18")) (ifInst "" (formula "2")) (ifInst "" (formula "17")) (ifInst "" (formula "7"))) + (rule "expand_inInt" (formula "19") (term "0,0")) + (rule "expand_inInt" (formula "19") (term "1,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "0,0,1")) + (rule "replace_known_left" (formula "19") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "5"))) + (rule "polySimp_elimSub" (formula "19") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,1")) + (rule "inEqSimp_leqRight" (formula "16")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "measuredByCheck" (formula "19") (term "1") (ifseqformula "9")) + (rule "precOfPair" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "precOfInt" (formula "19") (term "1,1")) + (rule "less_literals" (formula "19") (term "1,1,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "leq_literals" (formula "19") (term "1,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1")) + (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "1")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..898840e --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,38811 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 12:48:12 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 12:48:12 CEST 2023 +contract=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "5" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "6" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "7" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "562597") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "8")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "11")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "13")) +(rule "notLeft" (formula "12")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "14")) +(rule "notLeft" (formula "13")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "26")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "27")) +(rule "translateJavaSubInt" (formula "19") (term "0")) +(rule "translateJavaSubInt" (formula "21") (term "1")) +(rule "eqSymm" (formula "56") (term "1,0")) +(rule "translateJavaMulInt" (formula "57") (term "0,4,0,0,0,0,0,1,0")) +(rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,1,1,0")) +(rule "translateJavaAddInt" (formula "57") (term "1,1,0,1,0")) +(rule "translateJavaSubInt" (formula "57") (term "0,1,0,1,0")) +(rule "translateJavaMulInt" (formula "57") (term "3,0,0,0,0,0,1,0")) +(rule "translateJavaAddInt" (formula "57") (term "4,0,0,0,0,0,1,0")) +(rule "eqSymm" (formula "57") (term "1,1,0")) +(rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,1,0,1,0")) +(rule "translateJavaSubInt" (formula "57") (term "0,0,1,1,0")) +(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "8")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "11")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "9")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "19") (term "0")) +(rule "polySimp_elimSub" (formula "21") (term "1")) +(rule "polySimp_elimSub" (formula "57") (term "0,1,0,1,0")) +(rule "polySimp_elimSub" (formula "57") (term "0,0,1,1,0")) +(rule "polySimp_addComm0" (formula "57") (term "1,1,0,1,0")) +(rule "polySimp_addComm0" (formula "19") (term "0")) +(rule "polySimp_addComm0" (formula "21") (term "1")) +(rule "polySimp_addComm0" (formula "57") (term "0,1,0,1,0")) +(rule "polySimp_addComm0" (formula "57") (term "0,2,0,0,0,1,1,0")) +(rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) +(rule "notLeft" (formula "54")) +(rule "eqSymm" (formula "57")) +(rule "polySimp_addComm0" (formula "56") (term "0,2,1,0,1,0,1,0")) +(rule "polySimp_addComm0" (formula "56") (term "0,0,1,1,0")) +(rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) +(rule "notLeft" (formula "53")) +(rule "eqSymm" (formula "56")) +(rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) +(rule "notLeft" (formula "52")) +(rule "eqSymm" (formula "55")) +(rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) +(rule "notLeft" (formula "51")) +(rule "eqSymm" (formula "54")) +(rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) +(rule "notLeft" (formula "50")) +(rule "eqSymm" (formula "53")) +(rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) +(rule "notLeft" (formula "49")) +(rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) +(rule "notLeft" (formula "48")) +(rule "eqSymm" (formula "51")) +(rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) +(rule "notLeft" (formula "47")) +(rule "eqSymm" (formula "50")) +(rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) +(rule "notLeft" (formula "46")) +(rule "eqSymm" (formula "49")) +(rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) +(rule "notLeft" (formula "45")) +(rule "eqSymm" (formula "48")) +(rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) +(rule "notLeft" (formula "44")) +(rule "eqSymm" (formula "47")) +(rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) +(rule "notLeft" (formula "43")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) +(rule "notLeft" (formula "42")) +(rule "eqSymm" (formula "45")) +(rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) +(rule "notLeft" (formula "41")) +(rule "eqSymm" (formula "44")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "eqSymm" (formula "43")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "eqSymm" (formula "42")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "41")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "eqSymm" (formula "40")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "39")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "inEqSimp_commuteLeq" (formula "18")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) +(rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) +(rule "applyEq" (formula "20") (term "2,0") (ifseqformula "23")) +(rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "23")) +(rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) +(rule "eqSymm" (formula "22")) +(rule "applyEq" (formula "29") (term "1,1,0,0,0") (ifseqformula "23")) +(rule "applyEq" (formula "28") (term "1,1,0,0,0") (ifseqformula "23")) +(rule "commute_and_2" (formula "29") (term "0,0,1,0")) +(rule "commute_and_2" (formula "28") (term "0,0")) +(rule "commute_and" (formula "29") (term "1,0,0")) +(rule "commute_and" (formula "29") (term "0,0,0")) +(rule "commute_and" (formula "28") (term "1,0,0,0")) +(rule "shift_paren_and" (formula "29") (term "0,0")) +(rule "commute_and_2" (formula "29") (term "0,0,0")) +(rule "commute_and" (formula "29") (term "0,0,0,1,0")) +(rule "methodBodyExpand" (formula "64") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup")) + (builtin "One Step Simplification" (formula "64")) +(rule "variableDeclarationGhostAssign" (formula "64") (term "1")) +(rule "variableDeclarationGhost" (formula "64") (term "1") (newnames "heapOld")) +(rule "assignment" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) +(rule "variableDeclarationFinalAssign" (formula "64") (term "1")) +(rule "variableDeclarationFinal" (formula "64") (term "1") (newnames "num_buckets")) +(rule "shift_paren_and" (formula "28") (term "0,0,0")) +(rule "commute_and" (formula "28") (term "0,0,0,0")) +(rule "arrayLengthIsAShort" (formula "27") (term "0")) +(rule "expand_inShort" (formula "27")) +(rule "replace_short_MIN" (formula "27") (term "0,1")) +(rule "replace_short_MAX" (formula "27") (term "1,0")) +(rule "andLeft" (formula "27")) +(rule "inEqSimp_commuteLeq" (formula "28")) +(rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) +(rule "qeq_literals" (formula "28")) +(rule "true_left" (formula "28")) +(rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) +(rule "leq_literals" (formula "27")) +(rule "true_left" (formula "27")) +(rule "arrayLengthNotNegative" (formula "27") (term "0")) +(rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) +(rule "qeq_literals" (formula "27")) +(rule "true_left" (formula "27")) + (builtin "Use Operation Contract" (formula "64") (newnames "heapBefore_num_buckets,result_21,exc_25") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0")) +(branch "Post (num_buckets)" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "26")) (ifInst "" (formula "15"))) + (rule "expand_inInt" (formula "30") (term "0,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,0,1,0")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "assignment" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "variableDeclarationFinalAssign" (formula "68") (term "1")) + (rule "variableDeclarationFinal" (formula "68") (term "1") (newnames "is_last_level")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "1,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "21") (term "0,2,0") (ifseqformula "32")) + (rule "applyEq" (formula "29") (term "1,0,0,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "20") (term "2,0") (ifseqformula "32")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "32")) + (rule "compound_less_equal_than_comparison_1" (formula "68") (term "1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "68") (term "1")) + (rule "variableDeclaration" (formula "68") (term "1") (newnames "x")) + (rule "assignmentSubtractionInt" (formula "68") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "68")) + (rule "expand_inInt" (formula "68")) + (rule "replace_int_MAX" (formula "68") (term "1,0")) + (rule "replace_int_MIN" (formula "68") (term "0,1")) + (rule "polySimp_homoEq" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "polySimp_addComm0" (formula "68") (term "1,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "68") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "68") (term "0,1")) + (rule "polySimp_addComm0" (formula "68") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "29") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "68") (term "0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "1")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1")) + (rule "polySimp_rightDist" (formula "68") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1")) + (rule "mul_literals" (formula "68") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "16")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "67") (term "1") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,1")) + (rule "mul_literals" (formula "67") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0,1")) + (rule "add_literals" (formula "67") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "67") (term "1,0,0,1")) + (rule "add_zero_right" (formula "67") (term "0,0,1")) + (rule "qeq_literals" (formula "67") (term "0,1")) + (builtin "One Step Simplification" (formula "67")) + (rule "inEqSimp_leqRight" (formula "67")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "add_zero_right" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "68")) + (rule "translateJavaSubInt" (formula "68") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,0")) + (rule "less_equal_than_comparison_simple" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "for_to_while" (formula "68") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1")) + (rule "variableDeclarationAssign" (formula "68") (term "1")) + (rule "variableDeclaration" (formula "68") (term "1") (newnames "bucket")) + (rule "assignment" (formula "68") (term "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "loopScopeInvDia" (formula "68") (term "1") (newnames "bucket_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "68")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "69")) + (rule "expand_inInt" (formula "69") (term "1,0,0,1,0,0")) + (rule "expand_inInt" (formula "69") (term "1,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "69") (term "0,0,1,0,0,0")) + (rule "expand_inInt" (formula "69") (term "0,0,1,1,0,1,0,0")) + (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "69") (term "0,1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "69") (term "1,0,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "69") (term "0,1,0,0,1,1,0,1,0,0")) + (rule "replace_int_MAX" (formula "69") (term "1,0,0,0,1,1,0,1,0,0")) + (rule "impRight" (formula "69")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "77") (term "2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0")) + (rule "eqSymm" (formula "5") (term "0,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,1,0,1,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "3,1,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,5,0,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,1,0,0,0,1,0,1,1,0")) + (rule "eqSymm" (formula "5") (term "1,1,0,1,1,0")) + (rule "translateJavaCastInt" (formula "4") (term "1,0,1,0")) + (rule "translateJavaCastInt" (formula "4") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "77") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,1,0")) + (rule "mul_literals" (formula "6") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,0,1,0,1,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,1,0,0,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,1,0,0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,1,0,0,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,5,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,1,0,0,1,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "77") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "5") (term "1,1,0,0,0") (ifseqformula "32")) + (rule "commute_and" (formula "4") (term "0,0")) + (rule "commute_and" (formula "5") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "5") (term "0,0,0")) + (rule "commute_and_2" (formula "5") (term "0,0")) + (rule "commute_and" (formula "5") (term "1,0,1,1,0")) + (rule "commute_and" (formula "5") (term "0,0,1,1,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "shift_paren_and" (formula "5") (term "0,0,0")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "10") (ifseqformula "19")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "11") (ifseqformula "17")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "72") (term "0,0") (ifseqformula "12") (ifseqformula "21")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "75") (term "1") (ifseqformula "13") (ifseqformula "19")) + (rule "ifElseUnfold" (formula "84") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "84") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "84") (term "1")) + (builtin "One Step Simplification" (formula "84")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "58") (term "0") (ifseqformula "14") (ifseqformula "22")) + (rule "ifElseSplit" (formula "85")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (builtin "Block Contract (Internal)" (formula "86") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "87")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "87") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "87") (term "1")) + (rule "variableDeclaration" (formula "87") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "87") (term "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "emptyStatement" (formula "87") (term "1")) + (rule "emptyStatement" (formula "87") (term "1")) + (rule "tryEmpty" (formula "87") (term "1")) + (rule "blockEmptyLabel" (formula "87") (term "1")) + (rule "blockEmpty" (formula "87") (term "1")) + (rule "methodCallEmpty" (formula "87") (term "1")) + (rule "emptyModality" (formula "87") (term "1")) + (rule "andRight" (formula "87")) + (branch "Case 1" + (rule "andRight" (formula "87")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "87") (userinteraction)) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "87") (term "0") (userinteraction)) + (rule "replace_known_right" (formula "1") (term "0,1,1,0,0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39")) (ifInst "" (formula "2")) (ifInst "" (formula "17")) (ifInst "" (formula "88"))) + (rule "notLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "53")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "86")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "86")) + (rule "wellFormedAnon" (formula "86")) + (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "86")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "87")) + (builtin "One Step Simplification" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "elim_double_block_2" (formula "88") (term "1")) + (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "replace_known_left" (formula "88") (term "0,0,1,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "88")) + (rule "ifSplit" (formula "88")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "88") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_start")) + (rule "assignment_array2" (formula "88")) + (branch "Normal Execution (_bucket_starts != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "pullOutSelect" (formula "88") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "89") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_stop")) + (rule "eval_order_array_access5" (formula "88") (term "1") (inst "#v1=x_2") (inst "#ar1=x_arr")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_4")) + (rule "assignmentAdditionInt" (formula "88") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "88")) + (rule "expand_inInt" (formula "88")) + (rule "replace_int_MIN" (formula "88") (term "0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "1,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "1")) + (rule "mul_literals" (formula "88") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "88") (term "0,1")) + (rule "add_literals" (formula "88") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88") (term "0")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,0")) + (rule "polySimp_elimOne" (formula "88") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88") (term "1")) + (rule "mul_literals" (formula "88") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "88") (term "1") (ifseqformula "7")) + (rule "leq_literals" (formula "88") (term "0,1")) + (builtin "One Step Simplification" (formula "88")) + (rule "inEqSimp_leqRight" (formula "88")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "34")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaAddInt" (formula "88") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,1,0")) + (rule "assignment_array2" (formula "88")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "88")) + (rule "pullOutSelect" (formula "88") (term "0,1,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "89") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "variableDeclarationFinalAssign" (formula "88") (term "1")) + (rule "variableDeclarationFinal" (formula "88") (term "1") (newnames "relative_write")) + (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_write,result,exc_1") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::write(int)].JML normal_behavior operation contract.0")) + (branch "Post (write)" + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13"))) + (rule "expand_inInt" (formula "54") (term "0,1,0")) + (rule "replace_int_MIN" (formula "54") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "54") (term "1,0,0,1,0")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "57")) + (rule "translateJavaAddInt" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "assignment" (formula "94") (term "1")) + (builtin "One Step Simplification" (formula "94")) + (builtin "Block Contract (Internal)" (formula "94") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "95")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "27"))) + (rule "expand_inInt" (formula "95") (term "0,1,0,0,1")) + (rule "expand_inInt" (formula "95") (term "1,1,0,0,1")) + (rule "replace_int_MIN" (formula "95") (term "0,1,0,1,0,0,1")) + (rule "replace_int_MAX" (formula "95") (term "1,0,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "95") (term "0,1,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "95") (term "1,0,1,1,0,0,1")) + (rule "eqSymm" (formula "95") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "95") (term "0,0,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "95") (term "1,1,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "95") (term "0,0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "95") (term "1,1,1,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "95") (term "1")) + (rule "variableDeclaration" (formula "95") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "95") (term "1")) + (builtin "One Step Simplification" (formula "95")) + (rule "emptyStatement" (formula "95") (term "1")) + (rule "emptyStatement" (formula "95") (term "1")) + (rule "tryEmpty" (formula "95") (term "1")) + (rule "blockEmptyLabel" (formula "95") (term "1")) + (rule "blockEmpty" (formula "95") (term "1")) + (rule "methodCallEmpty" (formula "95") (term "1")) + (rule "emptyModality" (formula "95") (term "1")) + (rule "andRight" (formula "95")) + (branch "Case 1" + (rule "andRight" (formula "95")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "95")) + (branch "Case 1" + (rule "andRight" (formula "95")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "95")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "95")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "4")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "translateJavaSubInt" (formula "47") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "47") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "44") (term "1,1")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_elimSub" (formula "47") (term "0,2,1")) + (rule "mul_literals" (formula "47") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "47") (term "0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "43")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "42")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "43")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "60")) (ifInst "" (formula "96")) (ifInst "" (formula "58")) (ifInst "" (formula "21"))) + (rule "translateJavaAddInt" (formula "55") (term "1,0,1,0,1,1")) + (rule "translateJavaAddInt" (formula "55") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "55") (term "1,0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "55") (term "1,1,1,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0")) + (rule "replace_known_left" (formula "55") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1")) + (rule "applyEq" (formula "55") (term "0,0,1,1,1") (ifseqformula "56")) + (rule "applyEq" (formula "55") (term "1,0,1,0,1,1") (ifseqformula "49")) + (rule "applyEq" (formula "55") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "applyEq" (formula "55") (term "0,1,0,0,0,1,1") (ifseqformula "56")) + (rule "inEqSimp_commuteGeq" (formula "55") (term "1,0,0,0,1,1")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1") (ifseqformula "56")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,0")) + (rule "replace_known_left" (formula "55") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "55")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "34")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "34")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "times_zero_1" (formula "52") (term "0,0")) + (rule "add_zero_left" (formula "52") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "1")) + (rule "polySimp_elimOne" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "95")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "95")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "50") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "52") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "53") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "applyEq" (formula "53") (term "1,1,1,1,1,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "53") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "53") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "53") (term "1,1,0,1,1,0")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "1")) + (rule "times_zero_1" (formula "50") (term "0,0")) + (rule "add_zero_left" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "50")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "49") (ifseqformula "27")) + (rule "qeq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "closeFalse" (formula "49")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "95")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "95")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "95")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "7")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "translateJavaAddInt" (formula "38") (term "3,0")) + (rule "translateJavaAddInt" (formula "37") (term "0")) + (rule "polySimp_addComm0" (formula "38") (term "3,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "36")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "58") (inst "b=b")) + (builtin "One Step Simplification" (formula "58")) + (rule "expand_inInt" (formula "58") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "58") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "58") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "translateJavaAddInt" (formula "64") (term "1")) + (rule "translateJavaCastInt" (formula "65") (term "0")) + (rule "translateJavaMulInt" (formula "59") (term "0")) + (rule "translateJavaMulInt" (formula "58") (term "1")) + (rule "translateJavaCastInt" (formula "62") (term "0")) + (rule "translateJavaCastInt" (formula "61") (term "1")) + (rule "polySimp_mulComm0" (formula "59") (term "0")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_addComm0" (formula "64") (term "1")) + (rule "castedGetAny" (formula "65") (term "0")) + (rule "castedGetAny" (formula "62") (term "0")) + (rule "castedGetAny" (formula "61") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "50")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "50")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "50")) + (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "50")) + (rule "applyEq" (formula "67") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "64") (term "1,1") (ifseqformula "50")) + (rule "inEqSimp_sepPosMonomial0" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "36")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "mul_literals" (formula "58") (term "1,0")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "44") (inst "b=b")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "63")) (ifInst "" (formula "66"))) + (rule "expand_inInt" (formula "44") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "translateJavaCastInt" (formula "50") (term "0")) + (rule "translateJavaAddInt" (formula "49") (term "1")) + (rule "translateJavaMulInt" (formula "45") (term "0")) + (rule "translateJavaMulInt" (formula "44") (term "1")) + (rule "translateJavaCastInt" (formula "48") (term "0")) + (rule "translateJavaCastInt" (formula "47") (term "1")) + (rule "polySimp_mulComm0" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_addComm0" (formula "49") (term "1")) + (rule "castedGetAny" (formula "50") (term "0")) + (rule "castedGetAny" (formula "48") (term "0")) + (rule "castedGetAny" (formula "47") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "69")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "0,0,0")) + (rule "add_zero_left" (formula "48") (term "0,0")) + (rule "apply_eq_monomials" (formula "45") (term "0") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "45") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0")) + (rule "add_zero_right" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "apply_eq_monomials" (formula "44") (term "0") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "44") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "44") (term "0")) + (rule "add_literals" (formula "44") (term "1,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0")) + (rule "add_zero_right" (formula "44") (term "0")) + (rule "polySimp_mulComm0" (formula "44") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "54")) + (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "54")) + (rule "polySimp_pullOutFactor2" (formula "47") (term "0")) + (rule "add_literals" (formula "47") (term "1,0")) + (rule "times_zero_1" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "44") (ifseqformula "36")) + (rule "greater_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "mul_literals" (formula "44") (term "1,0")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "52")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "54") (term "0")) + (rule "replace_known_left" (formula "54") (term "1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "105")) (ifInst "" (formula "55"))) + (rule "true_left" (formula "54")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "51")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "4")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "40") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "translateJavaMulInt" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "eqSymm" (formula "71")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "43")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "33")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "42")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "37")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "95")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "95")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "35")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "52") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "52") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "52")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "55") (term "1,1,1,1,1,0") (ifseqformula "38")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "54")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "add_zero_left" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "29") (ifseqformula "52")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "closeFalse" (formula "29")) + ) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "94")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "94")) + (rule "wellFormedAnon" (formula "94")) + (rule "replace_known_left" (formula "94") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "94")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "60")) + (builtin "One Step Simplification" (formula "95")) + (rule "expand_inInt" (formula "60") (term "0,1,0")) + (rule "expand_inInt" (formula "60") (term "1,1,0")) + (rule "replace_int_MAX" (formula "60") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "60") (term "0,1,0,1,0")) + (rule "replace_int_MIN" (formula "60") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "60") (term "1,0,1,1,0")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "61")) + (rule "translateJavaAddInt" (formula "64") (term "1")) + (rule "translateJavaAddInt" (formula "63") (term "0")) + (rule "translateJavaAddInt" (formula "61") (term "0")) + (rule "translateJavaAddInt" (formula "62") (term "1")) + (rule "replace_known_left" (formula "65") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "elim_double_block_2" (formula "99") (term "1")) + (rule "ifUnfold" (formula "99") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "99") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "99") (term "1")) + (builtin "One Step Simplification" (formula "99")) + (rule "replace_known_left" (formula "99") (term "0,0,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "99")) + (rule "ifSplit" (formula "99")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "100")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "100")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "99") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "99") (term "1")) + (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "start")) + (rule "assignmentAdditionInt" (formula "99") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "99")) + (rule "expand_inInt" (formula "99")) + (rule "replace_int_MAX" (formula "99") (term "1,0")) + (rule "replace_int_MIN" (formula "99") (term "0,1")) + (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "61"))) + (rule "closeTrue" (formula "99")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (rule "translateJavaAddInt" (formula "99") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "99") (term "1")) + (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "stop")) + (rule "assignmentAdditionInt" (formula "99") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "99")) + (rule "expand_inInt" (formula "99")) + (rule "replace_int_MIN" (formula "99") (term "0,1")) + (rule "replace_int_MAX" (formula "99") (term "1,0")) + (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "63"))) + (rule "closeTrue" (formula "99")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (rule "translateJavaAddInt" (formula "99") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "99") (term "1")) + (rule "variableDeclarationFinal" (formula "99") (term "1") (newnames "write")) + (rule "assignmentAdditionInt" (formula "99") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "99")) + (rule "expand_inInt" (formula "99")) + (rule "replace_int_MIN" (formula "99") (term "0,1")) + (rule "replace_int_MAX" (formula "99") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "1")) + (rule "mul_literals" (formula "99") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "99") (term "0,1")) + (rule "polySimp_addComm0" (formula "99") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "0")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "99") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "99") (term "1")) + (rule "polySimp_mulComm0" (formula "99") (term "1,1")) + (rule "polySimp_rightDist" (formula "99") (term "1,1")) + (rule "mul_literals" (formula "99") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "99") (term "0")) + (rule "polySimp_mulLiterals" (formula "99") (term "0,0")) + (rule "polySimp_elimOne" (formula "99") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "34")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "5")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "12")) (ifInst "" (formula "95")) (ifInst "" (formula "12")) (ifInst "" (formula "56")) (ifInst "" (formula "20"))) + (rule "wellFormedAnon" (formula "53") (term "1,0")) + (rule "andRight" (formula "99") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "53") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "53") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "53") (term "1,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "53") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "53") (term "1,0,1,0,1")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1")) + (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48")) + (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55")) + (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "54")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "1")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0,0,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "14")) (ifInst "" (formula "101")) (ifInst "" (formula "14")) (ifInst "" (formula "62")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "59") (term "1,0")) + (rule "translateJavaAddInt" (formula "59") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "59") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "59") (term "1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "17"))) + (rule "polySimp_addComm0" (formula "59") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "59") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0")) + (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "59") (term "0,0,0,0,1") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1")) + (rule "applyEq" (formula "59") (term "0,1,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "59") (term "0,0,1,1") (ifseqformula "60")) + (rule "replace_known_left" (formula "59") (term "1,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEq" (formula "59") (term "0,0,0,1") (ifseqformula "60")) + (rule "inEqSimp_commuteGeq" (formula "59") (term "0,0,1")) + (rule "replace_known_left" (formula "59") (term "0,0,1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEq" (formula "59") (term "0,0,1") (ifseqformula "60")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1")) + (rule "replace_known_left" (formula "59") (term "0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEq" (formula "59") (term "1,0,1") (ifseqformula "48")) + (rule "replace_known_left" (formula "59") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "59") (term "0")) + (rule "translateJavaMulInt" (formula "59") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0")) + (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "eqSymm" (formula "60")) + (rule "applyEqReverse" (formula "59") (term "1") (ifseqformula "60")) + (rule "hideAuxiliaryEq" (formula "60")) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0,0")) + (rule "replace_known_right" (formula "59") (term "0,0,0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "59")) + (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "45") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "translateJavaMod" (formula "45") (term "0,1,0,0,1,1,0")) + (rule "translateJavaMod" (formula "45") (term "2,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,1,1,0")) + (rule "jmod_axiom" (formula "45") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,0,0,1,1,0")) + (rule "jmod_axiom" (formula "45") (term "2,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,2,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,0,0,1,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "eqSymm" (formula "47")) + (rule "eqSymm" (formula "44")) + (rule "translateJavaSubInt" (formula "47") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "47") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "44") (term "1,0")) + (rule "polySimp_elimSub" (formula "47") (term "0,2,1")) + (rule "mul_literals" (formula "47") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "47") (term "0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "43")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_subsumption1" (formula "52") (ifseqformula "42")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "43")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "6")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "12") (term "2,0,0,1,1,0")) + (rule "replace_known_left" (formula "12") (term "1,1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "26")) (ifInst "" (formula "17")) (ifInst "" (formula "20")) (ifInst "" (formula "108")) (ifInst "" (formula "26"))) + (rule "true_left" (formula "12")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "12") (term "2,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaMulInt" (formula "12") (term "2,2,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "12") (term "0,3,2,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "3,2,0,0,1,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "49") (term "1,1,0")) + (rule "eqSymm" (formula "49") (term "1,0")) + (rule "translateJavaCastInt" (formula "49") (term "0,0,1,0")) + (rule "castedGetAny" (formula "49") (term "0,0,1,0")) + (rule "eqSymm" (formula "49") (term "1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "61") (term "0,0,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "61")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "61") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "61")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "62") (term "0,1,1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "106"))) + (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "62") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,1")) + (rule "replace_known_left" (formula "62") (term "0,0,0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0")) + (rule "replace_known_left" (formula "62") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "62")) + (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "62") (term "0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "62") (term "1,0,0,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "62") (term "0,1,0,1,1,1,1") (ifseqformula "50")) + (rule "applyEq" (formula "62") (term "0,1,0,0,0,1,1,1") (ifseqformula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "62") (term "0,0,1,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "62") (term "1,0,1,1,1,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "62") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "62") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "62") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0,0,0")) + (rule "qeq_literals" (formula "62") (term "0,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "53") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "56") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "35")) + (rule "inEqSimp_commuteGeq" (formula "55")) + (rule "applyEq" (formula "56") (term "1,1,1,1,1,0") (ifseqformula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_literals" (formula "73") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "mul_literals" (formula "73") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "71")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "add_zero_left" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "27")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "1,1,0,0")) + (rule "times_zero_1" (formula "72") (term "1,0,0")) + (rule "add_literals" (formula "72") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "mul_literals" (formula "72") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "times_zero_1" (formula "53") (term "0,0")) + (rule "add_zero_left" (formula "53") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaAddInt" (formula "36") (term "3,0")) + (rule "translateJavaAddInt" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "36") (term "3,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "1,1,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "3,2,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,0,1,1,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "3,0,1,1,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,2,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "1,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,3,0,1,1,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "3,0,1,1,1,1,0,1,1,0")) + (rule "mul_literals" (formula "13") (term "1,3,0,1,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "3,0,1,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,3,0,1,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,1,1,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,1,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,1,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "eqSymm" (formula "80")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "44")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "114")) (ifInst "" (formula "72")) (ifInst "" (formula "20"))) + (rule "wellFormedAnon" (formula "70") (term "1,0")) + (rule "replace_known_left" (formula "70") (term "1,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "15"))) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0")) + (rule "replace_known_left" (formula "70") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEq" (formula "70") (term "0,1,0,0,0") (ifseqformula "53")) + (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "0,0,0")) + (rule "replace_known_left" (formula "70") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "4,0,0,1,0")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "69") (term "0")) + (rule "translateJavaSubInt" (formula "69") (term "0")) + (rule "polySimp_elimSub" (formula "69") (term "0")) + (rule "polySimp_homoEq" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "70") (inst "b=b")) + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "translateJavaAddInt" (formula "76") (term "1")) + (rule "translateJavaCastInt" (formula "77") (term "0")) + (rule "translateJavaMulInt" (formula "70") (term "1")) + (rule "translateJavaMulInt" (formula "71") (term "0")) + (rule "translateJavaCastInt" (formula "74") (term "0")) + (rule "translateJavaCastInt" (formula "73") (term "1")) + (rule "polySimp_mulComm0" (formula "70") (term "1")) + (rule "polySimp_mulComm0" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "1")) + (rule "castedGetAny" (formula "77") (term "0")) + (rule "castedGetAny" (formula "74") (term "0")) + (rule "castedGetAny" (formula "73") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "79") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "inEqSimp_commuteLeq" (formula "73")) + (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "52")) + (rule "applyEq" (formula "71") (term "0,0") (ifseqformula "52")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "52")) + (rule "applyEq" (formula "74") (term "1,0") (ifseqformula "52")) + (rule "applyEq" (formula "79") (term "0,1,0,0,1,0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "76") (term "1,1") (ifseqformula "52")) + (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "70") (ifseqformula "42")) + (rule "mul_literals" (formula "70") (term "1,1,0")) + (rule "greater_literals" (formula "70") (term "0,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0")) + (rule "polySimp_addComm0" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "notLeft" (formula "24")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "40") (inst "b=b")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "74")) (ifInst "" (formula "77"))) + (rule "expand_inInt" (formula "40") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "translateJavaCastInt" (formula "46") (term "0")) + (rule "translateJavaAddInt" (formula "45") (term "1")) + (rule "translateJavaMulInt" (formula "40") (term "1")) + (rule "translateJavaMulInt" (formula "41") (term "0")) + (rule "translateJavaCastInt" (formula "44") (term "0")) + (rule "translateJavaCastInt" (formula "43") (term "1")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_mulComm0" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "45") (term "1")) + (rule "castedGetAny" (formula "46") (term "0")) + (rule "castedGetAny" (formula "44") (term "0")) + (rule "castedGetAny" (formula "43") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "80")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0")) + (rule "apply_eq_monomials" (formula "40") (term "0") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "40") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0")) + (rule "add_zero_right" (formula "40") (term "0")) + (rule "polySimp_mulComm0" (formula "40") (term "0")) + (rule "apply_eq_monomials" (formula "41") (term "0") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "1,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0")) + (rule "add_zero_right" (formula "41") (term "0")) + (rule "polySimp_mulComm0" (formula "41") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "55")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "55")) + (rule "polySimp_pullOutFactor2" (formula "43") (term "0")) + (rule "add_literals" (formula "43") (term "1,0")) + (rule "times_zero_1" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "44")) + (rule "greater_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "mul_literals" (formula "40") (term "1,0")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "53")) + (rule "applyEq" (formula "40") (term "1,0") (ifseqformula "52")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaMod" (formula "65") (term "0")) + (rule "jmod_axiom" (formula "65") (term "0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "newSym_eq" (formula "65") (inst "l=l_0") (inst "newSymDef=mul(result, Z(0(#)))")) + (rule "times_zero_1" (formula "65") (term "1,1")) + (rule "add_zero_right" (formula "65") (term "1")) + (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "65")) + (rule "eqSymm" (formula "66")) + (rule "applyEq" (formula "63") (term "1") (ifseqformula "66")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "66")) + (rule "applyEq" (formula "62") (term "1") (ifseqformula "66")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "66")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEq" (formula "69") (term "1") (ifseqformula "66")) + (rule "applyEq" (formula "67") (term "1") (ifseqformula "66")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "elimGcdGeq_antec" (formula "60") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0")) + (rule "leq_literals" (formula "60") (term "0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "mul_literals" (formula "60") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "60") (term "0,0,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "elimGcdLeq_antec" (formula "59") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0")) + (rule "qeq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "elimGcdGeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(1(8(4(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "2")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62")) + (rule "mul_literals" (formula "61") (term "0,0")) + (rule "add_zero_left" (formula "61") (term "0")) + (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "2")) + (rule "greater_literals" (formula "61") (term "0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "122"))) + (rule "translateJavaAddInt" (formula "64") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "64") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "64") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "64") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "64") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "64") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "64") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1,1,1")) + (rule "applyEq" (formula "64") (term "0,1,0,0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,0")) + (rule "add_literals" (formula "64") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "64") (term "0,1,0,0")) + (rule "leq_literals" (formula "64") (term "1,0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "applyEq" (formula "64") (term "1,0,1,0,0,1") (ifseqformula "52")) + (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,0,1")) + (rule "add_literals" (formula "64") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "64") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "64") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "applyEq" (formula "64") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "64") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "inEqSimp_homoInEq1" (formula "64") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "64") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "64") (term "1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "64") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "64") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "applyEq" (formula "64") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "64") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "64") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "64") (term "0,1,1,1") (ifseqformula "42")) + (rule "leq_literals" (formula "64") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_subsumption1" (formula "64") (term "0,0") (ifseqformula "42")) + (rule "leq_literals" (formula "64") (term "0,0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "123"))) + (rule "translateJavaSubInt" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "65") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "65") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "65") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "65") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "65") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0,0,0")) + (rule "applyEq" (formula "65") (term "0,1,0,0") (ifseqformula "52")) + (rule "replace_known_left" (formula "65") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "65")) + (rule "applyEq" (formula "65") (term "1,0,1,0,0,1") (ifseqformula "52")) + (rule "replace_known_left" (formula "65") (term "1,0,0,1") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "65")) + (rule "applyEq" (formula "65") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "replace_known_left" (formula "65") (term "1,0,1,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "65")) + (rule "applyEq" (formula "65") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepPosMonomial1" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0")) + (rule "inEqSimp_invertInEq0" (formula "65") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "65") (term "1,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "65") (term "0,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "65") (term "0,0") (ifseqformula "11")) + (rule "leq_literals" (formula "65") (term "0,0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "66") (term "1")) + (rule "translateJavaCastInt" (formula "66") (term "0,1")) + (rule "castedGetAny" (formula "66") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "66")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "63") (term "0")) + (rule "translateJavaCastInt" (formula "63") (term "0,0")) + (rule "castedGetAny" (formula "63") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "66")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "125"))) + (rule "translateJavaSubInt" (formula "61") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "61") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "61") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "61") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "61") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "61") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "61") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0")) + (rule "replace_known_left" (formula "61") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,1")) + (rule "replace_known_left" (formula "61") (term "0,0,0,1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "61")) + (rule "applyEq" (formula "61") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "61") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "61") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "61") (term "0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "61") (term "1,0,0,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "61") (term "0,0,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption1" (formula "61") (term "1,0,1,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "61") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "61") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "61") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "61") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_subsumption1" (formula "61") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0,0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0")) + (rule "qeq_literals" (formula "61") (term "0,0,0")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "72"))) + (rule "true_left" (formula "61")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "125"))) + (rule "translateJavaSubInt" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "62") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0")) + (rule "replace_known_left" (formula "62") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,1")) + (rule "replace_known_left" (formula "62") (term "0,0,0,1") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "62")) + (rule "applyEq" (formula "62") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "62") (term "0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "62") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1,1")) + (rule "applyEq" (formula "62") (term "1,0,0,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "62") (term "0,0,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "62") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0")) + (rule "qeq_literals" (formula "62") (term "0,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "62") (term "1,0,1,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "62") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "62") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "62") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "62") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "72"))) + (rule "true_left" (formula "62")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "0")) + (rule "translateJavaCastInt" (formula "62") (term "0,0")) + (rule "castedGetAny" (formula "62") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "61") (term "0")) + (rule "translateJavaCastInt" (formula "61") (term "0,0")) + (rule "castedGetAny" (formula "61") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62")) + (rule "mul_literals" (formula "61") (term "0,0")) + (rule "add_zero_left" (formula "61") (term "0")) + (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "2")) + (rule "mul_literals" (formula "61") (term "1,1,0")) + (rule "greater_literals" (formula "61") (term "0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "nnf_imp2or" (formula "59") (term "0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "51") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "translateJavaSubInt" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,1,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "expand_inInt" (formula "48") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "56") (term "1,0")) + (rule "translateJavaSubInt" (formula "54") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "50") (term "1")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "3,0")) + (rule "mul_literals" (formula "54") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "3,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45")) + (rule "inEqSimp_commuteGeq" (formula "53")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "applyEq" (formula "97") (term "0") (ifseqformula "45")) + (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "50") (term "1")) + (rule "mod_axiom" (formula "50") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0")) + (rule "mod_axiom" (formula "54") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1")) + (rule "mod_axiom" (formula "52") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "46") (term "3,0")) + (rule "mod_axiom" (formula "46") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0")) + (rule "mod_axiom" (formula "53") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "2,0")) + (rule "mod_axiom" (formula "44") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,1")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "50") (term "0,1")) + (rule "eqSymm" (formula "50")) + (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "54") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "52") (term "0,1")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "50")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "shiftLeftDef" (formula "44") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "46") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "53") (term "0,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "44") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53")) + (rule "mul_literals" (formula "51") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "mul_literals" (formula "51") (term "1")) + (rule "inEqSimp_notLeq" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "60") (term "0,0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "60") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_or_subsumption6" (formula "60") (term "1,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,1,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "60") (term "0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "60") (term "0,0,1,1,0,0,1,0")) + (rule "qeq_literals" (formula "60") (term "0,1,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "nnf_imp2or" (formula "91") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_notAnd" (formula "68") (term "0,0")) + (rule "nnf_imp2or" (formula "68") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "68") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "68") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "68") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,0,1,0")) + (rule "nnf_imp2or" (formula "68") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "68") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "68") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "68") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,0")) + (rule "expand_moduloInteger" (formula "50") (term "0")) + (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,0")) + (rule "replace_int_RANGE" (formula "50") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0,1,0,1")) + (rule "translateJavaCastInt" (formula "75") (term "0,0,1,0,1")) + (rule "castedGetAny" (formula "75") (term "0,0,1,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "74") (term "0")) + (rule "replace_known_right" (formula "74") (term "0,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "74")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "76")) + (rule "replace_known_left" (formula "83") (term "1,0,1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "75")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0")) + (rule "polySimp_addComm0" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "inEqSimp_subsumption4" (formula "72") (ifseqformula "69")) + (rule "greater_literals" (formula "72") (term "0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "14") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,0,0,0,1,1,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "14") (term "0,0,2,0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,2,0,0,0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,0,0,0,1,1,1,0,1,1,0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "14") (term "1,0,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "eqSymm" (formula "14") (term "0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "14") (term "2,0,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "14") (term "0,3,0,0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "3,0,0,1,0,1,1,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "12") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "141")) (ifInst "" (formula "136")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "12") (term "1,0")) + (rule "replace_known_left" (formula "12") (term "1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "17"))) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "79") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "139"))) + (rule "translateJavaAddInt" (formula "79") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "79") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "79") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "79") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "79") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "79") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "79") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "79") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "79") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "79") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "79") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "79") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "79") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "79") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "79") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0,0,0")) + (rule "applyEq" (formula "79") (term "1,0,1,0,0,1") (ifseqformula "62")) + (rule "applyEq" (formula "79") (term "0,1,0,0") (ifseqformula "62")) + (rule "replace_known_left" (formula "79") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "79") (term "1,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "0,1,0,1,1,1,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "79") (term "1,0,1,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "0,1,0,0,0,1,1,1") (ifseqformula "62")) + (rule "inEqSimp_invertInEq0" (formula "79") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "79") (term "1,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "79") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "79") (term "0,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_sepNegMonomial0" (formula "79") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "79") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "79") (term "0,0") (ifseqformula "11")) + (rule "leq_literals" (formula "79") (term "0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "13") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "nnf_imp2or" (formula "57") (term "0")) + (rule "nnf_imp2or" (formula "58") (term "0")) + (rule "nnf_notAnd" (formula "41") (term "0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0")) + (rule "nnf_notAnd" (formula "96") (term "0,0")) + (rule "nnf_notAnd" (formula "57") (term "0,0")) + (rule "nnf_notAnd" (formula "58") (term "0,0")) + (rule "nnf_notAnd" (formula "69") (term "0,0,0")) + (builtin "One Step Simplification" (formula "69")) + (rule "nnf_notAnd" (formula "41") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "0,1,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "41") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,1,0,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "96") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "96") (term "0,1,0,0")) + (rule "mul_literals" (formula "96") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "96") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "96") (term "0,1,0,0")) + (rule "mul_literals" (formula "96") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "96") (term "1,1,0,0")) + (rule "mul_literals" (formula "96") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "96") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "96") (term "1,1,0,0")) + (rule "mul_literals" (formula "96") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "96") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "96") (term "0,0,0,0")) + (rule "times_zero_1" (formula "96") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "96") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "96") (term "0,0,0,0")) + (rule "mul_literals" (formula "96") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "96") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "96") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "96") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "96") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "96") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "96") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "96") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "96") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "57") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "57") (term "1,1,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "57") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,1,0,0")) + (rule "mul_literals" (formula "57") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "57") (term "0,1,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,1,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "57") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "57") (term "0,0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0,0,0,0")) + (rule "nnf_notAnd" (formula "58") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "58") (term "1,1,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "58") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,1,0,0")) + (rule "mul_literals" (formula "58") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "58") (term "0,1,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,1,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "58") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "58") (term "0,0,0,0")) + (rule "mul_literals" (formula "58") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "58") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "69") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "69") (term "0,1,0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "69") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "0,1,0,0")) + (rule "mul_literals" (formula "69") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "69") (term "1,1,0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "69") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,0,0")) + (rule "mul_literals" (formula "69") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "69") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "69") (term "0,0,0,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "69") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "69") (term "0,0,0,1,0,0,0,0")) + (rule "add_zero_left" (formula "69") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0")) + (rule "translateJavaCastInt" (formula "75") (term "0,0")) + (rule "castedGetAny" (formula "75") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "85") (term "0,1,1,1,1,1")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "140"))) + (rule "translateJavaAddInt" (formula "85") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "85") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "85") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "85") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "85") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "85") (term "0,1,1,1,0,1,1,1")) + (rule "add_zero_left" (formula "85") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "85") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "85") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "85") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "85") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "85") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "85") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "85") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0")) + (rule "mul_literals" (formula "85") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "85") (term "0,0,0,0")) + (rule "applyEq" (formula "85") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "85") (term "1,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "85")) + (rule "applyEq" (formula "85") (term "0,1,0,1,1,1,1") (ifseqformula "62")) + (rule "applyEq" (formula "85") (term "0,1,0,0,0,1,1,1") (ifseqformula "62")) + (rule "applyEq" (formula "85") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "applyEq" (formula "85") (term "0,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_sepPosMonomial1" (formula "85") (term "0,0,0")) + (rule "mul_literals" (formula "85") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "85") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "85") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "85") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "85") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "85") (term "1,0,1,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,1,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0,1,0,1,1,1,1")) + (rule "mul_literals" (formula "85") (term "0,1,0,0,1,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0,1,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "85") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "85") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "85") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "85") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_subsumption1" (formula "85") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "85") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "85") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,1,0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "85") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "85") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_subsumption1" (formula "85") (term "0,0,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "85") (term "1,1,0,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "85") (term "1,0,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "85") (term "0,0,0,0,1,1,1")) + (rule "qeq_literals" (formula "85") (term "0,0,0,1,1,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "15") (term "1,3,0,0,1,0,1,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "translateJavaSubInt" (formula "72") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "72") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,1,1")) + (rule "mul_literals" (formula "72") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "72") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,1,1")) + (rule "mul_literals" (formula "72") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "translateJavaUnaryMinusInt" (formula "73") (term "1,0")) + (rule "neg_literal" (formula "73") (term "1,0")) + (rule "translateJavaSubInt" (formula "73") (term "0,0")) + (rule "translateJavaAddInt" (formula "73") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "73") (term "0,0")) + (rule "mul_literals" (formula "73") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "73") (term "0,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "87") (term "0,1,1,1,1,1")) + (rule "translateJavaCastInt" (formula "87") (term "0,0,1,1,1,1,1")) + (rule "castedGetAny" (formula "87") (term "0,0,1,1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "142")) (ifInst "" (formula "79"))) + (rule "translateJavaAddInt" (formula "77") (term "1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "77") (term "1,0,1,1,1,1")) + (rule "polySimp_elimSub" (formula "77") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "77") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "77") (term "1,1,1,1") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,1")) + (rule "applyEq" (formula "77") (term "1,0,1,0,0,1") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0,1")) + (rule "add_literals" (formula "77") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "77") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "77") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "0,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0")) + (rule "add_literals" (formula "77") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "77") (term "0,1,0,0")) + (rule "leq_literals" (formula "77") (term "1,0,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "0,1,0,0,1,1") (ifseqformula "62")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,1,1")) + (rule "add_literals" (formula "77") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "77") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "77") (term "0,0,1,1")) + (rule "leq_literals" (formula "77") (term "0,1,1")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "1,0,1,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "77") (term "1,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "77") (term "0,0") (ifseqformula "43")) + (rule "leq_literals" (formula "77") (term "0,0,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "88") (term "1,0,1")) + (rule "translateJavaCastInt" (formula "88") (term "0,1,0,1")) + (rule "castedGetAny" (formula "88") (term "0,1,0,1")) + (rule "inEqSimp_commuteGeq" (formula "88") (term "0,1")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "15") (term "2,1,1,1,0,1,1,0") (inst "i=i")) + (rule "eqSymm" (formula "15") (term "1,1,0,1,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "82") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "95"))) + (rule "translateJavaSubInt" (formula "82") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "82") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "1,1,1")) + (rule "mul_literals" (formula "82") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "82") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "83") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "83")) + (rule "translateJavaSubInt" (formula "83") (term "0,0,1,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "83") (term "1,0,1,0,1")) + (rule "neg_literal" (formula "83") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "83") (term "0,0,0,1,0,1")) + (rule "polySimp_elimSub" (formula "83") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "83") (term "1,0,0,1,0,1")) + (rule "polySimp_addLiterals" (formula "83") (term "0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "83") (term "0,0,1,0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0,1,1,1,1")) + (rule "translateJavaCastInt" (formula "81") (term "0,0,1,1,1,1")) + (rule "castedGetAny" (formula "81") (term "0,0,1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "79") (term "0,0")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "144")) (ifInst "" (formula "80"))) + (rule "translateJavaSubInt" (formula "79") (term "1,0,1,1,1,1")) + (rule "translateJavaAddInt" (formula "79") (term "1,1,1,0,1,1")) + (rule "polySimp_elimSub" (formula "79") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "79") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "79") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "79") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "79") (term "1,1,1,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_ltToLeq" (formula "79") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "79") (term "1,0,0")) + (rule "applyEq" (formula "79") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "79") (term "1,0,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "0,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "79") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "79") (term "0,1,0,0")) + (rule "add_literals" (formula "79") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "79") (term "0,1,0,0")) + (rule "leq_literals" (formula "79") (term "1,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "0,1,0,0,1,1") (ifseqformula "62")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0,1,1")) + (rule "add_literals" (formula "79") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "79") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "79") (term "0,0,1,1")) + (rule "leq_literals" (formula "79") (term "0,1,1")) + (builtin "One Step Simplification" (formula "79")) + (rule "applyEq" (formula "79") (term "1,0,1,1") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "79") (term "1,1")) + (rule "polySimp_pullOutFactor1" (formula "79") (term "0,1,1")) + (rule "add_literals" (formula "79") (term "1,0,1,1")) + (rule "times_zero_1" (formula "79") (term "0,1,1")) + (rule "leq_literals" (formula "79") (term "1,1")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_subsumption1" (formula "79") (term "0,0") (ifseqformula "43")) + (rule "leq_literals" (formula "79") (term "0,0,0")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "77"))) + (rule "true_left" (formula "79")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "84") (term "1")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "144")) (ifInst "" (formula "79"))) + (rule "translateJavaSubInt" (formula "84") (term "1,0,1,1,1,1")) + (rule "translateJavaAddInt" (formula "84") (term "1,1,1,0,1,1")) + (rule "polySimp_elimSub" (formula "84") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "84") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "84") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "84") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "84") (term "1,1,1,1") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "84") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0")) + (rule "applyEq" (formula "84") (term "0,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "84") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "84") (term "0,1,0,0")) + (rule "add_literals" (formula "84") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "84") (term "0,1,0,0")) + (rule "leq_literals" (formula "84") (term "1,0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "1,0,1,0,0,1") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "84") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "84") (term "0,1,0,0,1")) + (rule "add_literals" (formula "84") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "84") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "84") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "replace_known_left" (formula "84") (term "1,0,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "0,1,0,0,1,1") (ifseqformula "62")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0,1,1")) + (rule "add_literals" (formula "84") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "84") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "84") (term "0,0,1,1")) + (rule "leq_literals" (formula "84") (term "0,1,1")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_subsumption1" (formula "84") (term "0,0") (ifseqformula "43")) + (rule "leq_literals" (formula "84") (term "0,0,0")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "77"))) + (rule "true_left" (formula "84")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "84") (term "1")) + (rule "translateJavaCastInt" (formula "84") (term "0,1")) + (rule "castedGetAny" (formula "84") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "84")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "0")) + (rule "translateJavaCastInt" (formula "78") (term "0,0")) + (rule "castedGetAny" (formula "78") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "78")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0")) + (rule "polySimp_addComm0" (formula "84") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "84")) + (rule "polySimp_mulLiterals" (formula "84") (term "0")) + (rule "polySimp_elimOne" (formula "84") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "84")) + (rule "polySimp_mulAssoc" (formula "75") (term "0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "inEqSimp_subsumption4" (formula "75") (ifseqformula "70")) + (rule "greater_literals" (formula "75") (term "0,0")) + (builtin "One Step Simplification" (formula "75")) + (rule "mul_literals" (formula "75") (term "0,0")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "translateJavaMod" (formula "97") (term "0")) + (rule "jmod_axiom" (formula "97") (term "0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "newSym_eq" (formula "97") (inst "l=l_1") (inst "newSymDef=mul(int::final(bucket_pointers, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "97") (term "1,1")) + (rule "add_zero_right" (formula "97") (term "1")) + (rule "applyEq" (formula "98") (term "0,0") (ifseqformula "97")) + (rule "eqSymm" (formula "98")) + (rule "applyEq" (formula "94") (term "0") (ifseqformula "98")) + (rule "applyEq" (formula "97") (term "0,0") (ifseqformula "98")) + (rule "applyEq" (formula "93") (term "0") (ifseqformula "98")) + (rule "applyEq" (formula "95") (term "1") (ifseqformula "98")) + (rule "elimGcdGeq_antec" (formula "93") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "times_zero_1" (formula "93") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,0,1,0")) + (rule "leq_literals" (formula "93") (term "0,0")) + (builtin "One Step Simplification" (formula "93")) + (rule "add_zero_right" (formula "93") (term "0,0,0,0")) + (rule "add_literals" (formula "93") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,1,0,0")) + (rule "times_zero_1" (formula "93") (term "1,0,0")) + (rule "add_zero_right" (formula "93") (term "0,0")) + (rule "leq_literals" (formula "93") (term "0")) + (builtin "One Step Simplification" (formula "93")) + (rule "elimGcdLeq_antec" (formula "94") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "94") (term "0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "neg_literal" (formula "94") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "94") (term "0,0,0,0")) + (rule "add_zero_right" (formula "94") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "94") (term "0,0")) + (rule "add_literals" (formula "94") (term "1,1,0,0")) + (rule "times_zero_1" (formula "94") (term "1,0,0")) + (rule "add_zero_right" (formula "94") (term "0,0")) + (rule "qeq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "96")) + (rule "polySimp_mulAssoc" (formula "95") (term "0,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "inEqSimp_subsumption4" (formula "95") (ifseqformula "94")) + (rule "mul_literals" (formula "95") (term "0,1,0")) + (rule "greater_literals" (formula "95") (term "0,0")) + (builtin "One Step Simplification" (formula "95")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "81") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "146")) (ifInst "" (formula "79"))) + (rule "translateJavaSubInt" (formula "81") (term "1,0,1,1,1,1")) + (rule "translateJavaAddInt" (formula "81") (term "1,1,1,0,1,1")) + (rule "polySimp_elimSub" (formula "81") (term "1,0,1,1,1,1")) + (rule "mul_literals" (formula "81") (term "1,1,0,1,1,1,1")) + (rule "polySimp_addComm0" (formula "81") (term "1,1,1,0,1,1")) + (rule "polySimp_addComm0" (formula "81") (term "1,0,1,1,1,1")) + (rule "replace_known_left" (formula "81") (term "1,1,1,1") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "81") (term "0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0")) + (rule "applyEq" (formula "81") (term "0,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "81") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0")) + (rule "add_literals" (formula "81") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "81") (term "0,1,0,0")) + (rule "leq_literals" (formula "81") (term "1,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEq" (formula "81") (term "1,0,1,0,0,1") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "81") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0,1")) + (rule "add_literals" (formula "81") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "81") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "81") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEq" (formula "81") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "applyEq" (formula "81") (term "0,1,0,0,1,1") (ifseqformula "62")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0,1,1")) + (rule "add_literals" (formula "81") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "81") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "81") (term "0,0,1,1")) + (rule "leq_literals" (formula "81") (term "0,1,1")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_subsumption1" (formula "81") (term "0,0") (ifseqformula "43")) + (rule "leq_literals" (formula "81") (term "0,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "61") (term "1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "1,1,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12") (term "0,1")) + (rule "replace_known_right" (formula "12") (term "0,0,0,1") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "115"))) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "13") (term "0,1,0")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "150")) (ifInst "" (formula "145")) (ifInst "" (formula "24"))) + (rule "wellFormedAnon" (formula "13") (term "1,0")) + (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "57") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "57")) + (rule "expand_inInt" (formula "57") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "57") (term "1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "57") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "57") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0,0,0,1")) + (rule "translateJavaCastInt" (formula "83") (term "0,0,0,0,1")) + (rule "castedGetAny" (formula "83") (term "0,0,0,0,1")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "62") (term "1,1,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "15") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "15") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,1,0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "1,0,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "150")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_left" (formula "16") (term "0,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "18"))) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "149")) (ifInst "" (formula "24"))) + (rule "wellFormedAnon" (formula "94") (term "1,0")) + (rule "translateJavaAddInt" (formula "94") (term "1,1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "94") (term "1,0,1,0,1,1")) + (rule "replace_known_left" (formula "94") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19"))) + (rule "polySimp_addComm0" (formula "94") (term "1,1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "94") (term "1,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "94") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0")) + (rule "replace_known_left" (formula "94") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,1,1")) + (rule "applyEq" (formula "94") (term "0,0,0,1,1,1") (ifseqformula "95")) + (rule "applyEq" (formula "94") (term "0,1,0,0,0") (ifseqformula "64")) + (rule "applyEq" (formula "94") (term "1,0,1,0,1,1") (ifseqformula "64")) + (rule "applyEq" (formula "94") (term "0,1,0,0,0,1,1") (ifseqformula "95")) + (rule "inEqSimp_commuteGeq" (formula "94") (term "1,0,0,0,1,1")) + (rule "applyEq" (formula "94") (term "0,1,0,0,1,1") (ifseqformula "95")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "94") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "0,0,0")) + (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "94")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "84") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "150"))) + (rule "translateJavaSubInt" (formula "84") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "84") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "84") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "84") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "84") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "84") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "84") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "84") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "84") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "84") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "84") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "84") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "84") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "84") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "84") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0,0")) + (rule "mul_literals" (formula "84") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "84") (term "0,0,0,0")) + (rule "applyEq" (formula "84") (term "0,1,0,0") (ifseqformula "64")) + (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "0,1,0,1,1,1,1") (ifseqformula "64")) + (rule "replace_known_left" (formula "84") (term "1,0,1,1,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "0,1,0,0,0,1,1,1") (ifseqformula "64")) + (rule "applyEq" (formula "84") (term "1,0,1,0,0,1") (ifseqformula "64")) + (rule "applyEq" (formula "84") (term "1,0,1,0,1") (ifseqformula "64")) + (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,0")) + (rule "mul_literals" (formula "84") (term "1,0,0")) + (rule "inEqSimp_invertInEq0" (formula "84") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,0,1,1,1,1")) + (rule "mul_literals" (formula "84") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "84") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "84") (term "0,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "84") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "84") (term "0,0") (ifseqformula "11")) + (rule "leq_literals" (formula "84") (term "0,0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "85") (term "0")) + (rule "replace_known_right" (formula "85") (term "0,0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "88")) + (rule "replace_known_left" (formula "99") (term "1,0,1,1") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "99")) + (rule "replace_known_left" (formula "91") (term "0,1,1,1") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "87"))) + (rule "replace_known_left" (formula "84") (term "0,1,1,1") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "86")) (ifInst "" (formula "87"))) + (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "92")) + (rule "polySimp_mulComm0" (formula "89") (term "0,0")) + (rule "polySimp_addComm0" (formula "89") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "0")) + (rule "polySimp_elimOne" (formula "89") (term "0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "99") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "99")) + (rule "translateJavaMod" (formula "99") (term "0,0,1,1")) + (rule "jmod_axiom" (formula "99") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "99") (term "1,0,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "99") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "99") (term "0,0,1,1")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "17") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "17") (term "3,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "17") (term "3,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "4,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "17") (term "4,0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,4,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "4,0,0,1,0,1,0")) + (rule "mul_literals" (formula "17") (term "1,4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,4,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "49") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "62") (term "0,1,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "translateJavaSubInt" (formula "62") (term "0,0,1,0")) + (rule "translateJavaUnaryMinusInt" (formula "62") (term "1,0,1,0")) + (rule "neg_literal" (formula "62") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "0,0,1,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_addLiterals" (formula "62") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "156"))) + (rule "translateJavaSubInt" (formula "82") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "82") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "82") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "82") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "82") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "82") (term "0,1,1,1,0,1,1,1")) + (rule "add_zero_left" (formula "82") (term "1,1,1,0,1,1,1")) + (rule "replace_known_left" (formula "82") (term "1,0,1,1,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "82")) + (rule "polySimp_addComm1" (formula "82") (term "1,0,1,1,1,1")) + (rule "add_literals" (formula "82") (term "0,1,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "82") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0")) + (rule "mul_literals" (formula "82") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "82") (term "0,0,0,0")) + (rule "applyEq" (formula "82") (term "1,0,1,0,1") (ifseqformula "64")) + (rule "applyEq" (formula "82") (term "0,1,0,0") (ifseqformula "64")) + (rule "inEqSimp_homoInEq1" (formula "82") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,1,0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "82") (term "0,1,0,0")) + (rule "leq_literals" (formula "82") (term "1,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEq" (formula "82") (term "0,1,0,1,1,1") (ifseqformula "64")) + (rule "inEqSimp_homoInEq1" (formula "82") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "82") (term "1,1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "82") (term "1,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "82") (term "0,1,0,1,1,1")) + (rule "leq_literals" (formula "82") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "82")) + (rule "applyEq" (formula "82") (term "1,0,1,0,0,1") (ifseqformula "64")) + (rule "inEqSimp_commuteGeq" (formula "82") (term "1,0,0,1")) + (rule "replace_known_left" (formula "82") (term "1,0,0,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,1,1")) + (rule "replace_known_left" (formula "82") (term "0,1,1,1") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "0,0")) + (rule "mul_literals" (formula "82") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "82") (term "0,0") (ifseqformula "45")) + (rule "leq_literals" (formula "82") (term "0,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0")) + (rule "translateJavaCastInt" (formula "83") (term "0,0")) + (rule "castedGetAny" (formula "83") (term "0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaMod" (formula "81") (term "0")) + (rule "jmod_axiom" (formula "81") (term "0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "0")) + (rule "newSym_eq" (formula "81") (inst "l=l_2") (inst "newSymDef=mul(de.wiesler.BucketPointers::bucketStart(bucket_pointers, + result_21), + Z(0(#)))")) + (rule "times_zero_1" (formula "81") (term "1,1")) + (rule "add_zero_right" (formula "81") (term "1")) + (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "81")) + (rule "eqSymm" (formula "82")) + (rule "applyEq" (formula "85") (term "0,1,1") (ifseqformula "82")) + (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "82")) + (rule "applyEq" (formula "85") (term "0,0,1") (ifseqformula "82")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "82")) + (rule "inEqSimp_commuteGeq" (formula "88")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "82")) + (rule "inEqSimp_commuteGeq" (formula "76")) + (rule "applyEq" (formula "86") (term "0,1,0,1") (ifseqformula "82")) + (rule "applyEq" (formula "101") (term "1,0,1") (ifseqformula "82")) + (rule "applyEq" (formula "79") (term "0,1") (ifseqformula "82")) + (rule "applyEq" (formula "84") (term "1") (ifseqformula "82")) + (rule "applyEq" (formula "100") (term "0,1,0,1") (ifseqformula "82")) + (rule "inEqSimp_commuteGeq" (formula "100") (term "1,0,1")) + (rule "applyEq" (formula "83") (term "0,1,0,1") (ifseqformula "82")) + (rule "elimGcdLeq_antec" (formula "76") (inst "elimGcdRightDiv=l_2") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0")) + (rule "mul_literals" (formula "76") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "76") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "76") (term "0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "elimGcdGeq" (formula "85") (term "0,1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "add_zero_right" (formula "85") (term "0,0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,0,1")) + (rule "sub_literals" (formula "85") (term "0,0,0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,1,0,0,1")) + (rule "mul_literals" (formula "85") (term "0,1,0,0,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,1,0,0,1")) + (rule "times_zero_1" (formula "85") (term "1,0,0,0,0,0,0,0,1")) + (rule "mul_literals" (formula "85") (term "0,0,0,1,0,0,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "85") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "85") (term "0,1,0,0,1")) + (rule "add_literals" (formula "85") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "85") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "85") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,0,1")) + (rule "add_literals" (formula "85") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "85") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "85") (term "0,0,0,1")) + (rule "qeq_literals" (formula "85") (term "0,0,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "elimGcdGeq" (formula "79") (term "1") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "add_zero_right" (formula "79") (term "0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "79") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,1,0,1")) + (rule "mul_literals" (formula "79") (term "0,1,0,0,0,0,0,1")) + (rule "sub_literals" (formula "79") (term "0,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "79") (term "0,0,0,1,0,1")) + (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "79") (term "0,0,1,0,1")) + (rule "add_literals" (formula "79") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "79") (term "0,1,0,1")) + (rule "add_literals" (formula "79") (term "1,0,1,0,1")) + (rule "times_zero_1" (formula "79") (term "0,1,0,1")) + (rule "leq_literals" (formula "79") (term "1,0,1")) + (builtin "One Step Simplification" (formula "79")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0,1")) + (rule "add_literals" (formula "79") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "79") (term "1,0,0,1")) + (rule "add_zero_right" (formula "79") (term "0,0,1")) + (rule "qeq_literals" (formula "79") (term "0,1")) + (builtin "One Step Simplification" (formula "79")) + (rule "elimGcdLeq" (formula "86") (term "1,0,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "86") (term "0,0,0,0,1,0,1,0,1")) + (rule "sub_literals" (formula "86") (term "0,0,0,0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "86") (term "1,0,0,0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "86") (term "0,0,0,0,1,0,1,0,1")) + (rule "add_literals" (formula "86") (term "0,0,0,0,0,0,1,0,1")) + (rule "add_literals" (formula "86") (term "0,0,0,1,0,1,0,1")) + (rule "add_literals" (formula "86") (term "0,0,0,0,0,1,0,1")) + (rule "add_zero_left" (formula "86") (term "0,0,1,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "86") (term "0,0,0,1,0,1")) + (rule "add_literals" (formula "86") (term "1,1,0,0,0,1,0,1")) + (rule "times_zero_1" (formula "86") (term "1,0,0,0,1,0,1")) + (rule "add_zero_right" (formula "86") (term "0,0,0,1,0,1")) + (rule "leq_literals" (formula "86") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "86")) + (rule "polySimp_pullOutFactor0" (formula "86") (term "0,0,1,0,1")) + (rule "add_literals" (formula "86") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "86") (term "0,0,1,0,1")) + (rule "qeq_literals" (formula "86") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "86")) + (rule "elimGcdLeq" (formula "83") (term "1,0,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "83") (term "0,0,0,0,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,0,1,0,1")) + (rule "sub_literals" (formula "83") (term "0,0,0,0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0,0,1,0,1")) + (rule "mul_literals" (formula "83") (term "0,0,0,0,1,0,1,0,1")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0,0,1,0,1")) + (rule "add_literals" (formula "83") (term "0,0,0,1,0,1,0,1")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0,1")) + (rule "add_zero_left" (formula "83") (term "0,0,1,0,1,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,1,0,1")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,1,0,1")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,1,0,1")) + (rule "add_zero_right" (formula "83") (term "0,0,0,1,0,1")) + (rule "leq_literals" (formula "83") (term "0,0,1,0,1")) + (builtin "One Step Simplification" (formula "83")) + (rule "polySimp_pullOutFactor0" (formula "83") (term "0,0,1,0,1")) + (rule "add_literals" (formula "83") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "83") (term "0,0,1,0,1")) + (rule "qeq_literals" (formula "83") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "83")) + (rule "elimGcdLeq" (formula "85") (term "1,1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,0,0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,1,0,1,1")) + (rule "sub_literals" (formula "85") (term "0,0,0,0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,0,0,0,1,1")) + (rule "mul_literals" (formula "85") (term "0,0,0,0,1,0,1,1")) + (rule "mul_literals" (formula "85") (term "1,0,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,1,0,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0,0,1,1")) + (rule "add_zero_left" (formula "85") (term "0,0,1,0,1,1")) + (rule "add_literals" (formula "85") (term "0,0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor0" (formula "85") (term "0,1,0,1,1")) + (rule "add_literals" (formula "85") (term "1,0,1,0,1,1")) + (rule "times_zero_1" (formula "85") (term "0,1,0,1,1")) + (rule "qeq_literals" (formula "85") (term "1,0,1,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "polySimp_pullOutFactor0b" (formula "85") (term "0,0,1,1")) + (rule "add_literals" (formula "85") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "85") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "85") (term "0,0,1,1")) + (rule "leq_literals" (formula "85") (term "0,1,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "76")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "80") (term "1") (ifseqformula "2")) + (rule "leq_literals" (formula "80") (term "0,1")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "85") (term "0,1") (ifseqformula "2")) + (rule "leq_literals" (formula "85") (term "0,0,1")) + (builtin "One Step Simplification" (formula "85")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "64") (term "1,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "64") (term "0,2,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,2,1,1,0,0,1,0")) + (rule "inEqSimp_commuteGeq" (formula "64") (term "1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "113") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "113")) + (rule "expand_inInt" (formula "113") (term "1,0,0")) + (rule "expand_inInt" (formula "113") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "113") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "113") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "113") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "113") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "113") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "113") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "1,0,1,0")) + (rule "applyEq" (formula "113") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "111")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "113") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "113") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "113") (term "0,0,1,0,0,0,1,0")) + (rule "applyEq" (formula "113") (term "0,1,0,0,1,0,0,0") (ifseqformula "111")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "113") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "113") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "113") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "translateJavaSubInt" (formula "74") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "74") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "74") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,1")) + (rule "mul_literals" (formula "74") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "74") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "103") (term "0")) + (rule "translateJavaMulInt" (formula "103") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "103") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "103") (term "0,2,0")) + (rule "replaceKnownSelect_taclet0011120010120110_4" (formula "103") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet0011120010120110_5" (formula "103") (term "0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "translateJavaSubInt" (formula "74") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "74") (term "1,0")) + (rule "neg_literal" (formula "74") (term "1,0")) + (rule "translateJavaAddInt" (formula "74") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "74") (term "0,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "76")) + (rule "mul_literals" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_subsumption6" (formula "74") (ifseqformula "3")) + (rule "mul_literals" (formula "74") (term "1,1,0")) + (rule "greater_literals" (formula "74") (term "0,0")) + (builtin "One Step Simplification" (formula "74")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaSubInt" (formula "78") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "78") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "78") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1,1,1")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "78") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "78") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "78") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "78") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "15") (term "0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0")) + (rule "neg_literal" (formula "79") (term "1,0")) + (rule "translateJavaAddInt" (formula "79") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "79") (term "0,0")) + (rule "polySimp_elimSub" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "64") (term "0,1,0,0,0,1,0")) + (rule "replace_known_left" (formula "64") (term "1,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "125")) (ifInst "" (formula "26")) (ifInst "" (formula "156"))) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "65") (term "1,4,0,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "37") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0")) + (rule "expand_inInt" (formula "37") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "65") (term "0,0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaAddInt" (formula "65") (term "0,4,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "3,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "3,0,2,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "4,0,2,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "65") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "65") (term "1,4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,4,0,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0,0,0,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "60") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "61") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "61") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "61") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,2,0,1,0")) + (rule "commute_or_2" (formula "44") (term "0,0")) + (rule "commute_or_2" (formula "45") (term "0,0")) + (rule "cnf_rightDist" (formula "73") (term "1,1,0")) + (rule "cnf_rightDist" (formula "73") (term "0,1,0")) + (rule "commute_or_2" (formula "115") (term "0,0")) + (rule "commute_or_2" (formula "60") (term "0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "110"))) + (rule "translateJavaSubInt" (formula "81") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "81") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "81") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "1,1,1")) + (rule "mul_literals" (formula "81") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "81") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "81") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaSubInt" (formula "81") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,0")) + (rule "neg_literal" (formula "81") (term "1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "81") (term "0,0")) + (rule "mul_literals" (formula "81") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "81") (term "0,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "commute_or_2" (formula "61") (term "0,0")) + (rule "commute_or_2" (formula "73") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "102") (term "1,0")) + (rule "replace_known_right" (formula "102") (term "0,1,0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "102")) + (rule "div_axiom" (formula "54") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "qeq_literals" (formula "54") (term "0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "mul_literals" (formula "54") (term "1,1,1")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "polySimp_addComm1" (formula "56") (term "1")) + (rule "add_literals" (formula "56") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "applyEq" (formula "57") (term "0,1,1,2,1,0,0") (ifseqformula "54")) + (rule "polySimp_addComm0" (formula "57") (term "1,2,1,0,0")) + (rule "applyEq" (formula "57") (term "0,0,0,1,0,0") (ifseqformula "54")) + (rule "inEqSimp_homoInEq1" (formula "57") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0,1,0,0")) + (rule "applyEq" (formula "57") (term "0,1,1,1,1,1,0,0") (ifseqformula "54")) + (rule "polySimp_addComm0" (formula "57") (term "1,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "57") (term "0,1,0,0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq1" (formula "57") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "57") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "57") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "57") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "57") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "mod_axiom" (formula "57") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "0,1,0,0")) + (rule "mul_literals" (formula "57") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1")) + (rule "polySimp_rightDist" (formula "57") (term "1")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "57") (term "0,1")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,1")) + (rule "polySimp_elimOne" (formula "57") (term "0,1")) + (rule "applyEq" (formula "48") (term "0,1,0") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "applyEq" (formula "60") (term "1") (ifseqformula "57")) + (rule "applyEq" (formula "50") (term "1,1,1,0,0,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "50") (term "1,1,0,0,0")) + (rule "applyEq" (formula "50") (term "1,1,1,0,0,0,1,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "48") (term "2,0") (ifseqformula "57")) + (rule "applyEq" (formula "62") (term "1,1,1,0,0,0,1,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "62") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "64") (term "1,1,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "51") (term "1,0,2,0") (ifseqformula "57")) + (rule "eqSymm" (formula "51")) + (rule "polySimp_addAssoc" (formula "51") (term "0,2,1")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "57")) + (rule "inEqSimp_homoInEq1" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "applyEq" (formula "62") (term "1,1,1,0,0,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "62") (term "1,1,0,0,0")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "applyEq" (formula "63") (term "1,1,0,0") (ifseqformula "57")) + (rule "applyEq" (formula "51") (term "1,0,2,0") (ifseqformula "57")) + (rule "eqSymm" (formula "51")) + (rule "polySimp_addAssoc" (formula "51") (term "0,2,1")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,1,1,0") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1")) + (rule "mul_literals" (formula "59") (term "0,1")) + (rule "polySimp_elimOne" (formula "59") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1")) + (rule "inEqSimp_exactShadow0" (formula "61") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "61")) + (rule "greater_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "61") (term "0")) + (rule "add_literals" (formula "61") (term "1,1,0")) + (rule "times_zero_1" (formula "61") (term "1,0")) + (rule "add_zero_right" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_subsumption6" (formula "61") (ifseqformula "58")) + (rule "mul_literals" (formula "61") (term "1,1,0")) + (rule "greater_literals" (formula "61") (term "0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "56")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0")) + (rule "leq_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "52") (term "0,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "54")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "elimGcdLeq_antec" (formula "56") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "56") (term "0,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "56") (term "0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "qeq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_antiSymm" (formula "52") (ifseqformula "56")) + (rule "applyEqRigid" (formula "58") (term "0,1") (ifseqformula "52")) + (rule "times_zero_2" (formula "58") (term "1")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "52")) + (rule "qeq_literals" (formula "53")) + (rule "true_left" (formula "53")) + (rule "applyEqRigid" (formula "58") (term "0,1,1") (ifseqformula "52")) + (rule "mul_literals" (formula "58") (term "1,1")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "applyEqRigid" (formula "56") (term "0") (ifseqformula "52")) + (rule "leq_literals" (formula "56")) + (rule "true_left" (formula "56")) + (rule "applyEqRigid" (formula "61") (term "0,0,1,1,0,0,1,1") (ifseqformula "52")) + (rule "times_zero_2" (formula "61") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "61") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "61") (term "1")) + (rule "applyEqRigid" (formula "48") (term "0,0,1,1,0,0,1,1,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "48") (term "0,1,1,0,0,1,1,0")) + (rule "add_zero_left" (formula "48") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "1,0")) + (rule "applyEq" (formula "50") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "50") (term "0,1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "50") (term "1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "52")) + (rule "applyEq" (formula "48") (term "0,0,1,1,0,0,1,2,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "48") (term "0,1,1,0,0,1,2,0")) + (rule "add_zero_left" (formula "48") (term "1,1,0,0,1,2,0")) + (rule "polySimp_addComm0" (formula "48") (term "2,0")) + (rule "applyEq" (formula "62") (term "0,0,1,1,1") (ifseqformula "52")) + (rule "mul_literals" (formula "62") (term "0,1,1,1")) + (rule "add_zero_left" (formula "62") (term "1,1,1")) + (rule "applyEqRigid" (formula "65") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "52")) + (rule "mul_literals" (formula "65") (term "0,1,1,0,0,1,1,1,0,0")) + (rule "add_zero_left" (formula "65") (term "1,1,0,0,1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "65") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "60") (term "0,0,1,1,1") (ifseqformula "52")) + (rule "mul_literals" (formula "60") (term "0,1,1,1")) + (rule "add_zero_left" (formula "60") (term "1,1,1")) + (rule "applyEqRigid" (formula "62") (term "0,0,1,1,0,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "62") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "62") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "63") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "63") (term "0,1,1,0,0,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "63") (term "1,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "64") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "52")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0,1,1,1,0,0")) + (rule "add_zero_left" (formula "64") (term "1,1,0,0,1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "64") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "51") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "51") (term "0,1,1,0,0,1,0,2,0")) + (rule "add_zero_left" (formula "51") (term "1,1,0,0,1,0,2,0")) + (rule "eqSymm" (formula "51")) + (rule "polySimp_addComm1" (formula "51") (term "0,2,1")) + (rule "applyEq" (formula "60") (term "0,0,1,1,0,0,0") (ifseqformula "52")) + (rule "mul_literals" (formula "60") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "60") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "50") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "50") (term "0,1,1,0,0,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "1,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0")) + (rule "applyEq" (formula "63") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "63") (term "0,1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "63") (term "1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "58") (term "0,0,1,1,0,0,1,1") (ifseqformula "52")) + (rule "times_zero_2" (formula "58") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "58") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "58") (term "1")) + (rule "applyEqRigid" (formula "64") (term "0,0,1,1,0,0,1,0,0,1,1,1,0") (ifseqformula "52")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0,1,0,0,1,1,1,0")) + (rule "add_zero_left" (formula "64") (term "1,1,0,0,1,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,1,1,1,0")) + (rule "applyEqRigid" (formula "61") (term "0,0,1,1,1") (ifseqformula "52")) + (rule "mul_literals" (formula "61") (term "0,1,1,1")) + (rule "add_zero_left" (formula "61") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "61") (term "1")) + (rule "applyEq" (formula "48") (term "0,0,1,0,1,1,0") (ifseqformula "52")) + (rule "mul_literals" (formula "48") (term "0,1,0,1,1,0")) + (rule "add_zero_left" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "1,0")) + (rule "applyEqRigid" (formula "65") (term "0,0,1,1,1,1,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "65") (term "0,1,1,1,1,0,0")) + (rule "add_zero_left" (formula "65") (term "1,1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "65") (term "1,1,0,0")) + (rule "applyEq" (formula "51") (term "0,0,1,1,0,0,1,0,2,0") (ifseqformula "52")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0,1,0,2,0")) + (rule "add_zero_left" (formula "51") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,2,0")) + (rule "eqSymm" (formula "51")) + (rule "applyEqRigid" (formula "63") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "52")) + (rule "mul_literals" (formula "63") (term "0,1,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "63") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "48") (term "0,0,1,1,2,0") (ifseqformula "52")) + (rule "mul_literals" (formula "48") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "48") (term "1,1,2,0")) + (rule "polySimp_addComm0" (formula "48") (term "2,0")) + (rule "applyEq" (formula "64") (term "0,0,1,1,1,1,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "64") (term "0,1,1,1,1,0,0")) + (rule "add_zero_left" (formula "64") (term "1,1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "64") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "50") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "52")) + (rule "mul_literals" (formula "50") (term "0,1,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "50") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "applyEqRigid" (formula "50") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "50") (term "0,1,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "50") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "63") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "63") (term "0,1,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "63") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "51") (term "0,0,1,1,0,2,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "51") (term "0,1,1,0,2,0")) + (rule "add_zero_left" (formula "51") (term "1,1,0,2,0")) + (rule "eqSymm" (formula "51")) + (rule "polySimp_addComm1" (formula "51") (term "0,2,1")) + (rule "applyEq" (formula "58") (term "0,0,1,1,1") (ifseqformula "52")) + (rule "times_zero_2" (formula "58") (term "0,1,1,1")) + (rule "add_zero_left" (formula "58") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "58") (term "1")) + (rule "applyEq" (formula "51") (term "0,0,1,1,0,2,0") (ifseqformula "52")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,2,0")) + (rule "add_zero_left" (formula "51") (term "1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,2,0")) + (rule "eqSymm" (formula "51")) + (rule "applyEqRigid" (formula "64") (term "0,0,1,0,1,0,0,1,1,1,0") (ifseqformula "52")) + (rule "times_zero_2" (formula "64") (term "0,1,0,1,0,0,1,1,1,0")) + (rule "add_zero_left" (formula "64") (term "1,0,1,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,1,1,1,0")) + (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "54")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "53")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow0" (formula "60") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "60")) + (rule "greater_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "mul_literals" (formula "60") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_subsumption6" (formula "60") (ifseqformula "57")) + (rule "mul_literals" (formula "60") (term "1,1,0")) + (rule "greater_literals" (formula "60") (term "0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "jdiv_axiom" (formula "101") (term "0")) + (rule "polySimp_mulLiterals" (formula "101") (term "0,0,2,1")) + (rule "eqSymm" (formula "101")) + (rule "applyEq" (formula "101") (term "1") (ifseqformula "102")) + (rule "inEqSimp_subsumption6" (formula "101") (term "0,0") (ifseqformula "3")) + (rule "mul_literals" (formula "101") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "101") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "leq_literals" (formula "101") (term "0,0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "polyDiv_pullOut" (formula "101") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "101") (term "0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "polySimp_homoEq" (formula "101")) + (rule "polySimp_pullOutFactor0" (formula "101") (term "0,0,0,1,0")) + (rule "add_literals" (formula "101") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "101") (term "0,0,0,1,0")) + (rule "div_literals" (formula "101") (term "0,0,1,0")) + (rule "add_zero_left" (formula "101") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,0")) + (rule "times_zero_1" (formula "101") (term "0")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "78") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaSubInt" (formula "78") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "78") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "78") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1,1,1")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "78") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "78") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "78") (term "1,1,1,1")) + (rule "mul_literals" (formula "78") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "78") (term "0,0,1")) + (builtin "One Step Simplification" (formula "78")) + (rule "translateJavaMod" (formula "78") (term "0,0,1")) + (rule "jmod_axiom" (formula "78") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "78") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "97") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "97")) + (rule "translateJavaSubInt" (formula "97") (term "0,0,0,1,1")) + (rule "translateJavaUnaryMinusInt" (formula "97") (term "1,0,0,1,1")) + (rule "neg_literal" (formula "97") (term "1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "97") (term "0,0,0,0,1,1")) + (rule "polySimp_elimSub" (formula "97") (term "0,0,0,1,1")) + (rule "mul_literals" (formula "97") (term "1,0,0,0,1,1")) + (rule "polySimp_addLiterals" (formula "97") (term "0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "97") (term "0,0,0,1,1")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "seqGetAlphaCast" (formula "115") (term "0")) + (rule "castedGetAny" (formula "115") (term "0")) + (builtin "One Step Simplification" (formula "115")) + (rule "true_left" (formula "115")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "38") (term "0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "add_literals" (formula "38") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "38") (ifseqformula "50")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "arrayLengthNotNegative" (formula "44") (term "0")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "45")) + (rule "qeq_literals" (formula "44")) + (rule "true_left" (formula "44")) + (rule "arrayLengthIsAShort" (formula "61") (term "0")) + (rule "expand_inShort" (formula "61")) + (rule "replace_short_MAX" (formula "61") (term "1,0")) + (rule "replace_short_MIN" (formula "61") (term "0,1")) + (rule "andLeft" (formula "61")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1")) + (rule "polySimp_elimOne" (formula "63") (term "1,1")) + (rule "arrayLengthNotNegative" (formula "64") (term "0")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "64")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "arrayLengthNotNegative" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "69") (term "0")) + (rule "expand_inShort" (formula "69")) + (rule "replace_short_MAX" (formula "69") (term "1,0")) + (rule "replace_short_MIN" (formula "69") (term "0,1")) + (rule "andLeft" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "71")) + (rule "leq_literals" (formula "69")) + (rule "true_left" (formula "69")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "70")) + (rule "qeq_literals" (formula "69")) + (rule "true_left" (formula "69")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "59") (term "0")) + (rule "expand_inShort" (formula "59")) + (rule "replace_short_MIN" (formula "59") (term "0,1")) + (rule "replace_short_MAX" (formula "59") (term "1,0")) + (rule "andLeft" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "61")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthNotNegative" (formula "60") (term "0")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "61")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "arrayLengthNotNegative" (formula "113") (term "0")) + (rule "arrayLengthIsAShort" (formula "44") (term "0")) + (rule "expand_inShort" (formula "44")) + (rule "replace_short_MIN" (formula "44") (term "0,1")) + (rule "replace_short_MAX" (formula "44") (term "1,0")) + (rule "andLeft" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "46")) + (rule "leq_literals" (formula "44")) + (rule "closeFalse" (formula "44")) + ) + (branch "Case 2" + (rule "translateJavaAddInt" (formula "53") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "53") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "53") (term "1,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "53") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "53") (term "1,1,1,0,0,1")) + (rule "inEqSimp_geqRight" (formula "99")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1")) + (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55")) + (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "1")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "28") (ifseqformula "53")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeFalse" (formula "28")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "Block Contract (Internal)" (formula "99") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "100") (term "1")) + (rule "variableDeclaration" (formula "100") (term "1") (newnames "exc_3_1")) + (rule "assignment" (formula "100") (term "1")) + (builtin "One Step Simplification" (formula "100")) + (rule "emptyStatement" (formula "100") (term "1")) + (builtin "One Step Simplification" (formula "100")) + (rule "emptyStatement" (formula "100") (term "1")) + (rule "tryEmpty" (formula "100") (term "1")) + (rule "blockEmptyLabel" (formula "100") (term "1")) + (rule "blockEmpty" (formula "100") (term "1")) + (rule "methodCallEmpty" (formula "100") (term "1")) + (rule "emptyModality" (formula "100") (term "1")) + (rule "andRight" (formula "100")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "100")) + (rule "closeTrue" (formula "100")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "100")) + (rule "closeTrue" (formula "100")) + ) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "99")) + (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "99")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "65")) + (builtin "One Step Simplification" (formula "100")) + (rule "replaceKnownSelect_taclet0120110_0" (formula "65") (term "1,0,0,0,1")) + (rule "replaceKnownSelect_taclet0120110_0" (formula "65") (term "0,1,0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "65") (term "1,0,0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "65") (term "0,1,0,0,1")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "translateJavaAddInt" (formula "105") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "69") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "68") (term "0,2,1")) + (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0")) + (rule "replaceKnownSelect_taclet010120110_2" (formula "68") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,1")) + (rule "replaceKnownSelect_taclet010120110_2" (formula "67") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "67") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "pullOutSelect" (formula "69") (term "0,0") (inst "selectSK=arr_2")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "69")) + (rule "simplifySelectOfAnon" (formula "69")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "102")) (ifInst "" (formula "23"))) + (rule "eqSymm" (formula "70")) + (rule "elementOfArrayRangeConcrete" (formula "69") (term "0,0")) + (rule "eqSymm" (formula "69") (term "0,0,0,0")) + (rule "replace_known_right" (formula "69") (term "0,0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEqReverse" (formula "70") (term "0,1") (ifseqformula "69")) + (rule "applyEqReverse" (formula "68") (term "0") (ifseqformula "69")) + (rule "hideAuxiliaryEq" (formula "69")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteGeq" (formula "68")) + (rule "applyEq" (formula "69") (term "0,1") (ifseqformula "39")) + (rule "elim_double_block_2" (formula "104") (term "1")) + (rule "ifUnfold" (formula "104") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "104") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "104") (term "1")) + (builtin "One Step Simplification" (formula "104")) + (rule "replace_known_left" (formula "104") (term "0,0,1,0") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "104")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "arrayLengthIsAShort" (formula "45") (term "0")) + (rule "expand_inShort" (formula "45")) + (rule "replace_short_MAX" (formula "45") (term "1,0")) + (rule "replace_short_MIN" (formula "45") (term "0,1")) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "47")) + (rule "qeq_literals" (formula "46")) + (rule "true_left" (formula "46")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "46")) + (rule "leq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "arrayLengthNotNegative" (formula "45") (term "0")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "46")) + (rule "qeq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "ifSplit" (formula "104")) + (branch "if x_6 true" + (builtin "SMTRule") + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "104") (term "1")) + (builtin "Block Contract (Internal)" (formula "104") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "105")) + (rule "expand_inInt" (formula "105") (term "1,1,0,0,1")) + (rule "expand_inInt" (formula "105") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "105") (term "1,0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "105") (term "0,1,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "105") (term "0,1,0,1,0,0,1")) + (rule "replace_int_MAX" (formula "105") (term "1,0,0,1,0,0,1")) + (rule "eqSymm" (formula "105") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "1,1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "0,0,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "1,1,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "0,0,0,1,0,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "1,1,1,1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "105") (term "1,1,0,0,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "105") (term "1,1,1,1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "105") (term "1,1,0,0,1,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "105") (term "1")) + (rule "variableDeclaration" (formula "105") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "105") (term "1")) + (builtin "One Step Simplification" (formula "105")) + (rule "emptyStatement" (formula "105") (term "1")) + (rule "emptyStatement" (formula "105") (term "1")) + (rule "tryEmpty" (formula "105") (term "1")) + (rule "blockEmptyLabel" (formula "105") (term "1")) + (rule "blockEmpty" (formula "105") (term "1")) + (rule "methodCallEmpty" (formula "105") (term "1")) + (rule "emptyModality" (formula "105") (term "1")) + (rule "andRight" (formula "105")) + (branch "Case 1" + (rule "andRight" (formula "105")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "105")) + (rule "closeTrue" (formula "105")) + ) + (branch "Case 2" + (rule "andRight" (formula "105")) + (branch "Case 1" + (rule "andRight" (formula "105")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "105")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "105")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59")) + (rule "times_zero_1" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "times_zero_1" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "69") (term "1")) + (builtin "One Step Simplification" (formula "69")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,1,1")) + (rule "mul_literals" (formula "69") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "69") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "69") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "69") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0")) + (rule "replace_known_left" (formula "69") (term "1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_sepPosMonomial1" (formula "69") (term "0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0")) + (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "70")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "72") (term "1")) + (builtin "One Step Simplification" (formula "72")) + (rule "translateJavaAddInt" (formula "72") (term "0,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "72") (term "1,1")) + (rule "neg_literal" (formula "72") (term "1,1")) + (rule "translateJavaSubInt" (formula "72") (term "0,1")) + (rule "polySimp_elimSub" (formula "72") (term "0,1")) + (rule "mul_literals" (formula "72") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "72") (term "0,1")) + (rule "polySimp_addComm1" (formula "72") (term "0,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,1")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "106")) (ifInst "" (formula "17")) (ifInst "" (formula "53"))) + (rule "true_left" (formula "52")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "42") (inst "b=b")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "translateJavaCastInt" (formula "49") (term "0")) + (rule "translateJavaAddInt" (formula "48") (term "1")) + (rule "translateJavaMulInt" (formula "42") (term "1")) + (rule "translateJavaMulInt" (formula "43") (term "0")) + (rule "translateJavaCastInt" (formula "46") (term "0")) + (rule "translateJavaCastInt" (formula "45") (term "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1")) + (rule "polySimp_mulComm0" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "1")) + (rule "castedGetAny" (formula "49") (term "0")) + (rule "castedGetAny" (formula "46") (term "0")) + (rule "castedGetAny" (formula "45") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "45")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "58")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "46") (term "1,0") (ifseqformula "58")) + (rule "applyEq" (formula "42") (term "0,0") (ifseqformula "58")) + (rule "applyEq" (formula "45") (term "1,0") (ifseqformula "58")) + (rule "applyEq" (formula "48") (term "1,1") (ifseqformula "58")) + (rule "applyEq" (formula "51") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0")) + (rule "elimGcdGeq_antec" (formula "42") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=result_21") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "42")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "66") (inst "b=b")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "48")) (ifInst "" (formula "51"))) + (rule "expand_inInt" (formula "66") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "68")) + (rule "translateJavaCastInt" (formula "72") (term "0")) + (rule "translateJavaAddInt" (formula "71") (term "1")) + (rule "translateJavaCastInt" (formula "70") (term "0")) + (rule "translateJavaMulInt" (formula "66") (term "1")) + (rule "translateJavaMulInt" (formula "67") (term "0")) + (rule "translateJavaCastInt" (formula "69") (term "1")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_mulComm0" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "1")) + (rule "castedGetAny" (formula "72") (term "0")) + (rule "castedGetAny" (formula "70") (term "0")) + (rule "castedGetAny" (formula "69") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "49")) + (rule "polySimp_homoEq" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "mul_literals" (formula "70") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "0,0,0")) + (rule "add_zero_left" (formula "70") (term "0,0")) + (rule "apply_eq_monomials" (formula "66") (term "0") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "66") (term "0")) + (rule "add_literals" (formula "66") (term "1,1,0")) + (rule "times_zero_1" (formula "66") (term "1,0")) + (rule "add_zero_right" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "0")) + (rule "apply_eq_monomials" (formula "67") (term "0") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "67") (term "0")) + (rule "add_literals" (formula "67") (term "1,1,0")) + (rule "times_zero_1" (formula "67") (term "1,0")) + (rule "add_zero_right" (formula "67") (term "0")) + (rule "polySimp_mulComm0" (formula "67") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "applyEq" (formula "70") (term "0,1,0,0,1,0,0,0") (ifseqformula "58")) + (rule "applyEq" (formula "69") (term "1,0") (ifseqformula "58")) + (rule "polySimp_pullOutFactor2" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "1,0")) + (rule "times_zero_1" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,1,0,0,0")) + (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "58")) + (rule "applyEq" (formula "67") (term "1,0") (ifseqformula "58")) + (rule "inEqSimp_subsumption6" (formula "66") (ifseqformula "42")) + (rule "greater_literals" (formula "66") (term "0,0")) + (builtin "One Step Simplification" (formula "66")) + (rule "times_zero_1" (formula "66") (term "1,0")) + (rule "leq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "5")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "14")) (ifInst "" (formula "81")) (ifInst "" (formula "114")) (ifInst "" (formula "14")) (ifInst "" (formula "21"))) + (rule "translateJavaAddInt" (formula "62") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0")) + (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1")) + (rule "applyEq" (formula "62") (term "0,1,0,0,0,1") (ifseqformula "63")) + (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,0,0,1")) + (rule "applyEq" (formula "62") (term "0,1,0,0") (ifseqformula "56")) + (rule "applyEq" (formula "62") (term "0,1,0,0,1") (ifseqformula "63")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1")) + (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "56")) + (rule "applyEq" (formula "62") (term "0,0,0,1,1") (ifseqformula "63")) + (rule "applyEq" (formula "62") (term "0,1,0,1") (ifseqformula "80")) + (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "63")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "1")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "70") (term "0")) + (rule "translateJavaMulInt" (formula "70") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "70") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,2,0")) + (rule "pullOutSelect" (formula "70") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "70")) + (builtin "One Step Simplification" (formula "70")) + (rule "eqSymm" (formula "71")) + (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "71")) + (rule "hideAuxiliaryEq" (formula "71")) + (rule "elementOfArrayRangeConcrete" (formula "70") (term "0,0,0")) + (rule "replace_known_right" (formula "70") (term "0,0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "70")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "translateJavaAddInt" (formula "38") (term "3,0")) + (rule "translateJavaAddInt" (formula "37") (term "0")) + (rule "polySimp_addComm0" (formula "38") (term "3,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "36")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "translateJavaSubInt" (formula "59") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "59") (term "0,2,0")) + (rule "eqSymm" (formula "56")) + (rule "eqSymm" (formula "59")) + (rule "translateJavaMulInt" (formula "56") (term "1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,2,1")) + (rule "mul_literals" (formula "59") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "59") (term "0,2,0")) + (rule "mul_literals" (formula "59") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "42")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "42")) + (rule "inEqSimp_subsumption0" (formula "63") (ifseqformula "54")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "replace_known_right" (formula "74") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "74")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_left" (formula "74") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "74")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "64") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "64")) + (rule "expand_inInt" (formula "64") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "64") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "64") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "66") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "65") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "67") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "64")) + (rule "applyEq" (formula "64") (term "1,1,1,1,1,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,1,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "41") (inst "b=b")) + (builtin "One Step Simplification" (formula "41")) + (rule "expand_inInt" (formula "41") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "41") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "41") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "translateJavaMulInt" (formula "41") (term "1")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "eqSymm" (formula "97")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "34")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "16")) + (rule "notLeft" (formula "16")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "nnf_notAnd" (formula "59") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "60") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "60") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "60") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "60") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "60") (term "1,0,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "60") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,0,0,0")) + (rule "mul_literals" (formula "60") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0,1,1")) + (rule "translateJavaCastInt" (formula "75") (term "0,0,1,1")) + (rule "polySimp_homoEq" (formula "75")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "castedGetAny" (formula "75") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "129"))) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "3") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,1")) + (rule "replace_known_left" (formula "3") (term "0,0,0,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "3") (term "1,0,1,0,1") (ifseqformula "62")) + (rule "applyEq" (formula "3") (term "0,1,0,0,0,1,1,1") (ifseqformula "62")) + (rule "applyEq" (formula "3") (term "0,1,0,1,1,1,1") (ifseqformula "62")) + (rule "applyEq" (formula "3") (term "1,0,0,0,1") (ifseqformula "62")) + (rule "applyEq" (formula "3") (term "0,1,0,1") (ifseqformula "92")) + (rule "applyEq" (formula "3") (term "0,0,0,1") (ifseqformula "92")) + (rule "inEqSimp_commuteGeq" (formula "3") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "3") (term "0,0,1,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "1,0,1,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "3") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "4") (term "0")) + (rule "translateJavaCastInt" (formula "4") (term "0,0")) + (rule "castedGetAny" (formula "4") (term "0,0")) + (rule "nnf_imp2or" (formula "52") (term "0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "14") (term "2,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaMulInt" (formula "14") (term "0,3,2,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "14") (term "2,2,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "3,2,0,0,1,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "60") (term "0,1,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "translateJavaUnaryMinusInt" (formula "60") (term "1,0,1,0")) + (rule "neg_literal" (formula "60") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "60") (term "0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_addLiterals" (formula "60") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,1,0")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "13") (term "0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "4,0,0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "translateJavaAddInt" (formula "61") (term "3,0,2,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "61") (term "4,0,2,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "61") (term "0,4,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "61") (term "3,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "1,4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,4,0,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,0,0,0,0,0,1,0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "15") (term "0,0,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "94")) (ifInst "" (formula "132")) (ifInst "" (formula "21"))) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "1,0,1,0,1,1,0")) + (rule "replace_known_left" (formula "16") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "22")) (ifInst "" (formula "133"))) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "17") (term "0,0,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaAddInt" (formula "17") (term "3,0,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "17") (term "2,0,0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "17") (term "0,3,0,0,1,0,1,1,0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "91") (term "0")) + (builtin "One Step Simplification" (formula "91")) + (rule "translateJavaMod" (formula "91") (term "0")) + (rule "jmod_axiom" (formula "91") (term "0")) + (rule "polySimp_mulLiterals" (formula "91") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "0")) + (rule "newSym_eq" (formula "91") (inst "l=l_0") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin, + Z(neglit(1(#)))), + end)), + Z(0(#)))")) + (rule "times_zero_1" (formula "91") (term "1,1")) + (rule "add_zero_right" (formula "91") (term "1")) + (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "91")) + (rule "eqSymm" (formula "92")) + (rule "applyEq" (formula "94") (term "0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "polySimp_addComm1" (formula "94") (term "0,0")) + (rule "applyEq" (formula "91") (term "0,0") (ifseqformula "92")) + (rule "applyEq" (formula "93") (term "0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1")) + (rule "polySimp_rightDist" (formula "94") (term "1")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1")) + (rule "polySimp_elimOne" (formula "94") (term "1,1")) + (rule "polySimp_rightDist" (formula "94") (term "0,1")) + (rule "mul_literals" (formula "94") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1")) + (rule "polySimp_rightDist" (formula "93") (term "1")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1")) + (rule "polySimp_elimOne" (formula "93") (term "1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "94") (term "0,0")) + (rule "polySimp_rightDist" (formula "94") (term "0,0,0")) + (rule "mul_literals" (formula "94") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm1" (formula "94") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "94") (term "0")) + (rule "add_literals" (formula "94") (term "1,1,0")) + (rule "times_zero_1" (formula "94") (term "1,0")) + (rule "add_zero_right" (formula "94") (term "0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "add_literals" (formula "94") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "elimGcdLeq_antec" (formula "94") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1,0")) + (rule "neg_literal" (formula "94") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "94") (term "0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "mul_literals" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "94") (term "0,0,0,0")) + (rule "add_literals" (formula "94") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "94") (term "0,0")) + (rule "add_literals" (formula "94") (term "1,1,0,0")) + (rule "times_zero_1" (formula "94") (term "1,0,0")) + (rule "add_zero_right" (formula "94") (term "0,0")) + (rule "qeq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "95") (term "0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0")) + (rule "polySimp_rightDist" (formula "95") (term "0,0,0")) + (rule "mul_literals" (formula "95") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "polySimp_elimOne" (formula "95") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "93")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0")) + (rule "add_zero_right" (formula "29") (term "0")) + (rule "elimGcdGeq_antec" (formula "29") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "94")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "97")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "elimGcdLeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "1") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "97") (ifseqformula "1")) + (rule "leq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption6" (formula "22") (ifseqformula "32")) + (rule "mul_literals" (formula "22") (term "1,1,0")) + (rule "greater_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "99") (term "0")) + (rule "translateJavaCastInt" (formula "99") (term "0,0")) + (rule "castedGetAny" (formula "99") (term "0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "56") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "56") (term "1,0,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0")) + (rule "translateJavaCastInt" (formula "56") (term "1,1,0,1,0")) + (rule "translateJavaCastInt" (formula "56") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "56") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "56") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,0")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "56") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "translateJavaMod" (formula "53") (term "0")) + (rule "jmod_axiom" (formula "53") (term "0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "newSym_eq" (formula "53") (inst "l=l_1") (inst "newSymDef=mul(int::final(bucket_pointers, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "53") (term "1,1")) + (rule "add_zero_right" (formula "53") (term "1")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "53")) + (rule "eqSymm" (formula "54")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "54")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "54")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "54")) + (rule "applyEq" (formula "51") (term "1") (ifseqformula "54")) + (rule "elimGcdGeq_antec" (formula "49") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "49") (term "0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "49") (term "0,0,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "leq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "elimGcdLeq_antec" (formula "50") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "50") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "50") (term "0,0")) + (builtin "One Step Simplification" (formula "50")) + (rule "mul_literals" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "50") (term "0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0")) + (rule "qeq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "inEqSimp_subsumption4" (formula "51") (ifseqformula "50")) + (rule "greater_literals" (formula "51") (term "0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "mul_literals" (formula "51") (term "0,0")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "arrayLengthNotNegative" (formula "65") (term "0")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "66")) + (rule "qeq_literals" (formula "65")) + (rule "true_left" (formula "65")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "65") (term "0")) + (rule "expand_inShort" (formula "65")) + (rule "replace_short_MAX" (formula "65") (term "1,0")) + (rule "replace_short_MIN" (formula "65") (term "0,1")) + (rule "andLeft" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "67")) + (rule "leq_literals" (formula "65")) + (rule "true_left" (formula "65")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "66")) + (rule "qeq_literals" (formula "65")) + (rule "true_left" (formula "65")) + (rule "nnf_imp2or" (formula "71") (term "0")) + (rule "nnf_imp2or" (formula "47") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "0")) + (rule "translateJavaCastInt" (formula "78") (term "0,0")) + (rule "castedGetAny" (formula "78") (term "0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaMod" (formula "79") (term "0")) + (rule "jmod_axiom" (formula "79") (term "0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "newSym_eq" (formula "79") (inst "l=l_2") (inst "newSymDef=mul(result, Z(0(#)))")) + (rule "times_zero_1" (formula "79") (term "1,1")) + (rule "add_zero_right" (formula "79") (term "1")) + (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "79")) + (rule "eqSymm" (formula "80")) + (rule "applyEq" (formula "75") (term "1") (ifseqformula "80")) + (rule "applyEq" (formula "77") (term "1") (ifseqformula "80")) + (rule "applyEq" (formula "79") (term "0,0") (ifseqformula "80")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "80")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "80")) + (rule "applyEq" (formula "76") (term "1") (ifseqformula "80")) + (rule "applyEq" (formula "73") (term "0") (ifseqformula "80")) + (rule "applyEq" (formula "82") (term "1") (ifseqformula "80")) + (rule "applyEq" (formula "83") (term "0,1") (ifseqformula "80")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "elimGcdGeq_antec" (formula "73") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "73") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1,0")) + (rule "leq_literals" (formula "73") (term "0,0")) + (builtin "One Step Simplification" (formula "73")) + (rule "add_zero_right" (formula "73") (term "0,0,0,0")) + (rule "mul_literals" (formula "73") (term "1,0,0,0,0")) + (rule "add_literals" (formula "73") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0")) + (rule "leq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "elimGcdLeq_antec" (formula "72") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "neg_literal" (formula "72") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "72") (term "0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "mul_literals" (formula "72") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "72") (term "0,0,0,0")) + (rule "add_literals" (formula "72") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "1,1,0,0")) + (rule "times_zero_1" (formula "72") (term "1,0,0")) + (rule "add_zero_right" (formula "72") (term "0,0")) + (rule "qeq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "99")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "elimGcdLeq_antec" (formula "3") (inst "elimGcdRightDiv=add(Z(neglit(0(8(4(8(8(3(8(#))))))))), l_2)") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "neg_literal" (formula "3") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "76")) + (rule "mul_literals" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "74")) + (rule "greater_literals" (formula "75") (term "0,0")) + (builtin "One Step Simplification" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "elimGcdGeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(1(8(4(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "4")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "3")) + (rule "times_zero_1" (formula "33") (term "0,0")) + (rule "add_zero_left" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "4")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "82") (inst "b=b")) + (builtin "One Step Simplification" (formula "82")) + (rule "expand_inInt" (formula "82") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "translateJavaCastInt" (formula "89") (term "0")) + (rule "translateJavaAddInt" (formula "88") (term "1")) + (rule "translateJavaMulInt" (formula "82") (term "1")) + (rule "translateJavaMulInt" (formula "83") (term "0")) + (rule "translateJavaCastInt" (formula "86") (term "0")) + (rule "translateJavaCastInt" (formula "85") (term "1")) + (rule "polySimp_mulComm0" (formula "82") (term "1")) + (rule "polySimp_mulComm0" (formula "83") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "1")) + (rule "castedGetAny" (formula "89") (term "0")) + (rule "castedGetAny" (formula "86") (term "0")) + (rule "castedGetAny" (formula "85") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "85")) + (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "70")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "57")) + (rule "polySimp_homoEq" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "mul_literals" (formula "87") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "0,0,0")) + (rule "add_zero_left" (formula "87") (term "0,0")) + (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "70")) + (rule "applyEq" (formula "84") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "83") (term "0,0") (ifseqformula "70")) + (rule "inEqSimp_commuteLeq" (formula "83")) + (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "70")) + (rule "applyEq" (formula "84") (term "0,0") (ifseqformula "56")) + (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "70")) + (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "70")) + (rule "polySimp_pullOutFactor2" (formula "85") (term "0")) + (rule "add_literals" (formula "85") (term "1,0")) + (rule "times_zero_1" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "86") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "40")) + (rule "mul_literals" (formula "82") (term "1,1,0")) + (rule "greater_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "51")) + (rule "greater_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "mul_literals" (formula "82") (term "1,0")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "142"))) + (rule "translateJavaSubInt" (formula "78") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "78") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "78") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "78") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "78") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "78") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "78") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "78") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "78") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "78") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "78") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "78") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "78") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "78") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0,0,0")) + (rule "applyEq" (formula "78") (term "0,1,0,1,1,1,1") (ifseqformula "70")) + (rule "replace_known_left" (formula "78") (term "1,0,1,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "78")) + (rule "applyEq" (formula "78") (term "1,0,1,0,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "78") (term "0,1,0,0") (ifseqformula "70")) + (rule "replace_known_left" (formula "78") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "78")) + (rule "applyEq" (formula "78") (term "0,1,0,0,0,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "78") (term "1,0,1,0,1") (ifseqformula "70")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0")) + (rule "inEqSimp_invertInEq0" (formula "78") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,1,1,1,1")) + (rule "mul_literals" (formula "78") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "78") (term "0,1,1,1,1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "78") (term "0,0") (ifseqformula "15")) + (rule "leq_literals" (formula "78") (term "0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "79") (term "0")) + (rule "translateJavaCastInt" (formula "79") (term "0,0")) + (rule "castedGetAny" (formula "79") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "80")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "143"))) + (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "76") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1")) + (rule "replace_known_left" (formula "76") (term "0,0,0,1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1")) + (rule "applyEq" (formula "76") (term "0,1,0,1,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "76") (term "1,0,0,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "76") (term "1,0,1,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "76") (term "0,0,0") (ifseqformula "70")) + (rule "applyEq" (formula "76") (term "0,1,0,0,0,1,1,1") (ifseqformula "70")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "76") (term "0,0,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "76") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0")) + (rule "qeq_literals" (formula "76") (term "0,0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "76") (term "1,0,1,1,1,1") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "76") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "76") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "76") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "76") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "76")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "144"))) + (rule "translateJavaSubInt" (formula "75") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "75") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "75") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "75") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "75") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "75") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "75") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,1")) + (rule "replace_known_left" (formula "75") (term "0,0,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0")) + (rule "replace_known_left" (formula "75") (term "0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0")) + (rule "applyEq" (formula "75") (term "0,1,0,0,0,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "75") (term "1,0,1,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "75") (term "1,0,0,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "75") (term "0,1,0,1,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "75") (term "0,0,0") (ifseqformula "70")) + (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "75") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "75") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "75") (term "0,0,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "75") (term "1,0,1,1,1,1") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "75") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "75") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "75") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "75") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "75") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0,0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0,0,0")) + (rule "add_literals" (formula "75") (term "0,0,0,0")) + (rule "qeq_literals" (formula "75") (term "0,0,0")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "77"))) + (rule "true_left" (formula "75")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "77") (term "0")) + (rule "translateJavaCastInt" (formula "77") (term "0,0")) + (rule "castedGetAny" (formula "77") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "75") (term "0")) + (rule "translateJavaCastInt" (formula "75") (term "0,0")) + (rule "castedGetAny" (formula "75") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "77")) + (rule "mul_literals" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "4")) + (rule "mul_literals" (formula "75") (term "1,1,0")) + (rule "greater_literals" (formula "75") (term "0,0")) + (builtin "One Step Simplification" (formula "75")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "42") (term "0")) + (rule "replace_known_left" (formula "42") (term "0,1") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "145")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "43") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "43") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,0,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "67") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "67")) + (builtin "One Step Simplification" (formula "67")) + (rule "expand_inInt" (formula "68") (term "1,0,0")) + (rule "expand_inInt" (formula "67") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "67") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "67") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "69")) + (rule "notLeft" (formula "68")) + (rule "notLeft" (formula "67")) + (rule "eqSymm" (formula "75") (term "1,0")) + (rule "translateJavaSubInt" (formula "73") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "69") (term "1")) + (rule "translateJavaSubInt" (formula "75") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "73") (term "3,0")) + (rule "mul_literals" (formula "73") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "75") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "75") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "73") (term "3,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "69")) + (rule "applyEq" (formula "63") (term "0,1,0") (ifseqformula "69")) + (rule "applyEq" (formula "73") (term "1,3,0") (ifseqformula "69")) + (rule "applyEq" (formula "71") (term "1") (ifseqformula "69")) + (rule "applyEq" (formula "65") (term "3,0") (ifseqformula "69")) + (rule "applyEq" (formula "72") (term "0,0") (ifseqformula "64")) + (rule "inEqSimp_commuteGeq" (formula "72")) + (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69")) + (rule "eqSymm" (formula "66")) + (rule "applyEq" (formula "117") (term "0") (ifseqformula "64")) + (rule "applyEq" (formula "75") (term "1,0,1,0") (ifseqformula "64")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "69")) + (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "64")) + (rule "applyEq" (formula "75") (term "0,1,0,0,1,0,0,0") (ifseqformula "69")) + (rule "applyEq" (formula "74") (term "0,1,0,0,1,1,0") (ifseqformula "69")) + (rule "applyEq" (formula "74") (term "0,1,0,0,1,0,0,0") (ifseqformula "69")) + (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69")) + (rule "eqSymm" (formula "66")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "69")) + (rule "inEqSimp_sepPosMonomial0" (formula "75") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "74") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "69") (term "1")) + (rule "mod_axiom" (formula "69") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "70") (term "0")) + (rule "mod_axiom" (formula "70") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "0,1,0")) + (rule "mod_axiom" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "73") (term "1,3,0")) + (rule "mod_axiom" (formula "73") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "71") (term "1")) + (rule "mod_axiom" (formula "71") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "65") (term "3,0")) + (rule "mod_axiom" (formula "65") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "63") (term "2,0")) + (rule "mod_axiom" (formula "63") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "66") (term "1,0,2,1")) + (rule "mod_axiom" (formula "66") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "66") (term "1,0,2,0")) + (rule "mod_axiom" (formula "66") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "72") (term "0")) + (rule "mod_axiom" (formula "72") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "75") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "75") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "74") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "74") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "74") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "74") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "69") (term "0,1")) + (rule "eqSymm" (formula "69")) + (rule "polySimp_elimNeg" (formula "69") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "69") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "69") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "69") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "70") (term "0,0")) + (rule "polySimp_elimNeg" (formula "70") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "70") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "70") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "70") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,0")) + (rule "mul_literals" (formula "70") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0,0")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "63") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "63") (term "0,1,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "73") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "73") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "73") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "73") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "73") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "73") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "73") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "73") (term "1,3,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "71") (term "0,1")) + (rule "polySimp_elimNeg" (formula "71") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "71") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "71") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "71") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "71") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "71")) + (rule "inEqSimp_sepNegMonomial0" (formula "71") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,0,0,0")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "69")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "shiftLeftDef" (formula "65") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "65") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "65") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "65") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "65") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,3,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "65") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,3,0")) + (rule "applyEq" (formula "65") (term "3,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "63") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "63") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "63") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "63") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "63") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,2,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,2,0")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "66") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "66")) + (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "72") (term "0,0")) + (rule "polySimp_elimNeg" (formula "72") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "72") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "72") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "72") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "72") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0,0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "75") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "75") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "75") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "75") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "75") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "75") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "75") (term "1,1,1,0,0,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "74") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "74") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "74") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "74") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "74") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,1,1,1,0")) + (rule "mul_literals" (formula "74") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "74") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "74") (term "1,1,1,1,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "74") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "74") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "74") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "74") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "74") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "74") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "74") (term "1,1,1,0,0,0") (ifseqformula "69")) + (rule "shiftLeftDef" (formula "66") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "66")) + (rule "polySimp_elimNeg" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "66") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "66") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "66") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "66") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "66") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "66") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "66") (term "1,0,2,0") (ifseqformula "69")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "72")) + (rule "mul_literals" (formula "70") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "mul_literals" (formula "70") (term "1")) + (rule "nnf_imp2or" (formula "60") (term "0")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "nnf_imp2or" (formula "96") (term "0")) + (rule "nnf_notAnd" (formula "98") (term "0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "nnf_notAnd" (formula "50") (term "0,0")) + (rule "nnf_notAnd" (formula "83") (term "0,0")) + (rule "nnf_imp2or" (formula "83") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "83") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "83") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,0,1,1,0")) + (rule "nnf_imp2or" (formula "83") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "83") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "83") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0,0,0,0,0")) + (rule "expand_moduloInteger" (formula "69") (term "0")) + (rule "replace_int_MIN" (formula "69") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "69") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "69") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0")) + (rule "mul_literals" (formula "69") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm0" (formula "69") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "19") (term "1,1") (inst "b=b")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "49"))) + (rule "expand_inInt" (formula "19") (term "1,0,0,1,1,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0,1,0,0,1,1,1")) + (rule "replace_int_MIN" (formula "19") (term "0,1,1,0,0,1,1,1")) + (rule "translateJavaMulInt" (formula "19") (term "1,1,0,0,1,1")) + (rule "mul_literals" (formula "19") (term "1,1,0,0,1,1")) + (rule "eqSymm" (formula "19") (term "0,0,0,0,1,1")) + (rule "replace_known_left" (formula "19") (term "1,0,0,1,1") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "145"))) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,1,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,1,1")) + (rule "applyEq" (formula "19") (term "0,0,0,1,1") (ifseqformula "46")) + (rule "applyEq" (formula "19") (term "0,1,0,1,1") (ifseqformula "46")) + (rule "replace_known_left" (formula "19") (term "1,0,1,1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEq" (formula "19") (term "0,1,0,0,1,0,0,0,1,1,1") (ifseqformula "46")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,1,1") (ifseqformula "40")) + (rule "leq_literals" (formula "19") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "translateJavaSubInt" (formula "85") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "85") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "85") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "85") (term "1,1,1")) + (rule "mul_literals" (formula "85") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "85") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "85") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "85") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "85") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "85") (term "1,1,1,1")) + (rule "mul_literals" (formula "85") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "85") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "20") (term "0,0,1,0,1,1,0") (inst "i=i")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "78") (term "1,1,0")) + (rule "translateJavaCastInt" (formula "78") (term "0,1,1,0")) + (rule "eqSymm" (formula "78") (term "1,0")) + (rule "castedGetAny" (formula "78") (term "0,0,1,0")) + (rule "eqSymm" (formula "78") (term "1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "87") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "155"))) + (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "87") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "87") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1")) + (rule "applyEq" (formula "87") (term "0,1,0,1,1,1,1") (ifseqformula "80")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "87") (term "1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "87") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "87") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "0,1,0,0") (ifseqformula "80")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0")) + (rule "add_literals" (formula "87") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "87") (term "0,1,0,0")) + (rule "leq_literals" (formula "87") (term "1,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "1,0,1,0,1") (ifseqformula "80")) + (rule "applyEq" (formula "87") (term "0,1,0,0,0,1,1,1") (ifseqformula "80")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "87") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "1,0,1,0,0,1") (ifseqformula "80")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0,1")) + (rule "add_literals" (formula "87") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "87") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "87") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "87") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "87") (term "0,0") (ifseqformula "40")) + (rule "leq_literals" (formula "87") (term "0,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_subsumption1" (formula "87") (term "0,1,1,1") (ifseqformula "40")) + (rule "leq_literals" (formula "87") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "6") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "156"))) + (rule "translateJavaAddInt" (formula "6") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "6") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "6") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "6") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "6") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "6") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "6") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0")) + (rule "replace_known_left" (formula "6") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0,1,1,1")) + (rule "applyEq" (formula "6") (term "1,0,1,0,1") (ifseqformula "81")) + (rule "applyEq" (formula "6") (term "1,0,1,0,0,1") (ifseqformula "81")) + (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "81")) + (rule "applyEq" (formula "6") (term "0,1,0,0,0,1,1,1") (ifseqformula "81")) + (rule "applyEq" (formula "6") (term "0,1,0,1,1,1,1") (ifseqformula "81")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "6") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "6") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "6") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "7") (term "0,0,0,1")) + (rule "translateJavaCastInt" (formula "7") (term "0,0,0,0,1")) + (rule "castedGetAny" (formula "7") (term "0,0,0,0,1")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "80") (term "0,2,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "80") (term "1,0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "160")) (ifInst "" (formula "30")) (ifInst "" (formula "155"))) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "0,0,0,0,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,0,2,0,0,0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,0,0,0,0,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "90") (term "1,0,1,1,1")) + (rule "translateJavaCastInt" (formula "90") (term "0,1,0,1,1,1")) + (rule "castedGetAny" (formula "90") (term "0,1,0,1,1,1")) + (rule "inEqSimp_commuteGeq" (formula "90") (term "0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "93") (term "0,0,0,0,1")) + (rule "translateJavaCastInt" (formula "93") (term "0,0,0,0,0,1")) + (rule "castedGetAny" (formula "93") (term "0,0,0,0,0,1")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "81") (term "0,0,1,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "161")) (ifInst "" (formula "23")) (ifInst "" (formula "156")) (ifInst "" (formula "80"))) + (rule "true_left" (formula "81")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "91") (term "0")) + (builtin "One Step Simplification" (formula "91")) + (rule "translateJavaSubInt" (formula "91") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "91") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "91") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "91") (term "1,1,1")) + (rule "mul_literals" (formula "91") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "91") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "91") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "91") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "91") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "91") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "91") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "91") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "91") (term "1,1,1,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "101") (term "0,1,1")) + (builtin "One Step Simplification" (formula "101")) + (rule "translateJavaSubInt" (formula "101") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "101") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "101") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "101") (term "1,1,1")) + (rule "mul_literals" (formula "101") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "101") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "101") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "101") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "101") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "101") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "101") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "101") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "1,4,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,2,1,4,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,0,2,1,4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,1,4,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,1,4,0,0,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "81") (term "1,4,0,2,0,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,0,2,1,4,0,2,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,2,1,4,0,2,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,2,1,4,0,2,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,1,4,0,2,0,0,0,0,1,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "81") (term "1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "81") (term "1,1,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "43") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "43")) + (rule "expand_inInt" (formula "43") (term "1,0,0")) + (rule "replace_int_MAX" (formula "43") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "43") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "1,1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "43") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "81") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaMod" (formula "81") (term "0,1,0,0,1,1,0")) + (rule "translateJavaMod" (formula "81") (term "2,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "81") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,0,0,1,1,0")) + (rule "jmod_axiom" (formula "81") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0,1,0,0,1,1,0")) + (rule "jmod_axiom" (formula "81") (term "2,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,2,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "81") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "81") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,0,0,1,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaSubInt" (formula "88") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "88") (term "1,0")) + (rule "neg_literal" (formula "88") (term "1,0")) + (rule "translateJavaAddInt" (formula "88") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "88") (term "0,0")) + (rule "mul_literals" (formula "88") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "17") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "161")) (ifInst "" (formula "121")) (ifInst "" (formula "156")) (ifInst "" (formula "31"))) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "102") (term "0,1,1")) + (builtin "One Step Simplification" (formula "102")) + (rule "translateJavaSubInt" (formula "102") (term "0,0,1,1")) + (rule "translateJavaUnaryMinusInt" (formula "102") (term "1,0,1,1")) + (rule "neg_literal" (formula "102") (term "1,0,1,1")) + (rule "translateJavaAddInt" (formula "102") (term "0,0,0,1,1")) + (rule "polySimp_elimSub" (formula "102") (term "0,0,1,1")) + (rule "mul_literals" (formula "102") (term "1,0,0,1,1")) + (rule "polySimp_addLiterals" (formula "102") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "7") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "159"))) + (rule "translateJavaAddInt" (formula "7") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "7") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "7") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "7") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "7") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "7") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "7") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "7") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "7") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "applyEq" (formula "7") (term "0,1,0,1,1,1,1") (ifseqformula "84")) + (rule "replace_known_left" (formula "7") (term "1,0,1,1,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "7") (term "0,1,0,0,0,1,1,1") (ifseqformula "84")) + (rule "applyEq" (formula "7") (term "0,1,0,0") (ifseqformula "84")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "7") (term "1,0,1,0,0,1") (ifseqformula "84")) + (rule "applyEq" (formula "7") (term "1,0,1,0,1") (ifseqformula "84")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "7") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,1,1,1,1")) + (rule "mul_literals" (formula "7") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "7") (term "0,1,1,1,1") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "17")) + (rule "leq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "translateJavaMod" (formula "100") (term "0")) + (rule "jmod_axiom" (formula "100") (term "0")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,0")) + (rule "applyEqRigid" (formula "100") (term "0,1,0") (ifseqformula "59")) + (rule "polySimp_pullOutFactor0" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "116") (term "0")) + (builtin "One Step Simplification" (formula "116")) + (rule "translateJavaSubInt" (formula "116") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "116") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "116") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "116") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "116") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "116") (term "1,1,1")) + (rule "mul_literals" (formula "116") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "116") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "116") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "116") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "1,0")) + (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "116") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "116") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "116") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "116") (term "0,0")) + (rule "mul_literals" (formula "116") (term "1,0,0,0")) + (rule "add_zero_right" (formula "116") (term "0,0,0")) + (rule "applyEq" (formula "116") (term "0,0,1,1") (ifseqformula "117")) + (rule "inEqSimp_homoInEq1" (formula "116") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "116") (term "1,0,0,1,1")) + (rule "polySimp_addComm1" (formula "116") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "116") (term "0,0,0,1,1")) + (rule "applyEq" (formula "116") (term "0,0,0,1") (ifseqformula "117")) + (rule "applyEq" (formula "116") (term "1,0,1,1,1") (ifseqformula "117")) + (rule "polySimp_addComm1" (formula "116") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "116") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "116") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "116") (term "0,1,0")) + (rule "replace_known_left" (formula "116") (term "1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "116")) + (rule "inEqSimp_sepPosMonomial0" (formula "116") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "116") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "116") (term "1,1,0,1,1")) + (rule "polySimp_elimOne" (formula "116") (term "1,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "116") (term "0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0,1,1")) + (rule "replace_known_left" (formula "116") (term "0,1,1") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "116")) + (rule "inEqSimp_sepPosMonomial1" (formula "116") (term "0")) + (rule "polySimp_mulLiterals" (formula "116") (term "1,0")) + (rule "polySimp_elimOne" (formula "116") (term "1,0")) + (rule "replace_known_left" (formula "116") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "116")) + (rule "andLeft" (formula "116")) + (rule "inEqSimp_sepNegMonomial0" (formula "117")) + (rule "polySimp_mulLiterals" (formula "117") (term "0")) + (rule "polySimp_elimOne" (formula "117") (term "0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "117") (term "0")) + (builtin "One Step Simplification" (formula "117")) + (rule "translateJavaSubInt" (formula "117") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "117") (term "1,0")) + (rule "neg_literal" (formula "117") (term "1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "117") (term "0,0")) + (rule "mul_literals" (formula "117") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "117") (term "0,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,0,0")) + (rule "applyEq" (formula "94") (term "0") (ifseqformula "117")) + (rule "applyEq" (formula "8") (term "0,1,0,1") (ifseqformula "117")) + (rule "applyEq" (formula "8") (term "1,0,0,1") (ifseqformula "117")) + (rule "applyEq" (formula "97") (term "1") (ifseqformula "117")) + (rule "applyEq" (formula "121") (term "1") (ifseqformula "117")) + (rule "inEqSimp_contradInEq3" (formula "94") (ifseqformula "3")) + (rule "greater_literals" (formula "94") (term "0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "polySimp_rightDist" (formula "94") (term "0")) + (rule "mul_literals" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "mul_literals" (formula "94") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "94") (term "0")) + (rule "add_literals" (formula "94") (term "1,1,0")) + (rule "times_zero_1" (formula "94") (term "1,0")) + (rule "add_zero_right" (formula "94") (term "0")) + (rule "leq_literals" (formula "94")) + (rule "closeFalse" (formula "94")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "105")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "105")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60")) + (rule "times_zero_1" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "mul_literals" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "27")) (ifInst "" (formula "102"))) + (rule "translateJavaSubInt" (formula "69") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "69") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "69") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "69") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "69") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1,1,1")) + (rule "applyEq" (formula "69") (term "1,0,1,0,1") (ifseqformula "49")) + (rule "applyEq" (formula "69") (term "0,0,0,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "69") (term "0,1,0,0,0,1,1,1") (ifseqformula "49")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "69") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "69") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "69") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "69") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEq" (formula "69") (term "1,0,1,0,0,1") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0,0,1")) + (rule "add_literals" (formula "69") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "69") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "69") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEq" (formula "69") (term "1,1,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "69") (term "0,0,0,1") (ifseqformula "70")) + (rule "applyEq" (formula "69") (term "0,1,0") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0")) + (rule "add_literals" (formula "69") (term "1,0,1,0")) + (rule "times_zero_1" (formula "69") (term "0,1,0")) + (rule "leq_literals" (formula "69") (term "1,0")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEq" (formula "69") (term "0,1,0,1,1,1") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "69") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "69") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "69") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "69") (term "0,1,0,1,1,1")) + (rule "leq_literals" (formula "69") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEq" (formula "69") (term "0,1,0,1") (ifseqformula "70")) + (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "69") (term "0,0,1,1,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "45") (term "1,1")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "45")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption1" (formula "75") (term "0,1,1,1") (ifseqformula "43")) + (rule "leq_literals" (formula "75") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "73") (term "0") (ifseqformula "43")) + (rule "leq_literals" (formula "73") (term "0,0")) + (builtin "One Step Simplification" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "73")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "77") (term "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "translateJavaUnaryMinusInt" (formula "77") (term "1,1")) + (rule "neg_literal" (formula "77") (term "1,1")) + (rule "translateJavaSubInt" (formula "77") (term "0,1")) + (rule "translateJavaAddInt" (formula "77") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "77") (term "0,1")) + (rule "mul_literals" (formula "77") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "77") (term "0,1")) + (rule "polySimp_addComm1" (formula "77") (term "0,1")) + (rule "polySimp_addComm0" (formula "77") (term "0,0,1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaAddInt" (formula "39") (term "3,0")) + (rule "translateJavaAddInt" (formula "38") (term "0")) + (rule "polySimp_addComm0" (formula "39") (term "3,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "63") (inst "b=b")) + (builtin "One Step Simplification" (formula "63")) + (rule "expand_inInt" (formula "63") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "translateJavaCastInt" (formula "70") (term "0")) + (rule "translateJavaAddInt" (formula "69") (term "1")) + (rule "translateJavaMulInt" (formula "63") (term "1")) + (rule "translateJavaMulInt" (formula "64") (term "0")) + (rule "translateJavaCastInt" (formula "67") (term "0")) + (rule "translateJavaCastInt" (formula "66") (term "1")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_mulComm0" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "69") (term "1")) + (rule "castedGetAny" (formula "70") (term "0")) + (rule "castedGetAny" (formula "67") (term "0")) + (rule "castedGetAny" (formula "66") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "55")) + (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "67") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "applyEq" (formula "72") (term "0,1,0,0,1,0,0,0") (ifseqformula "55")) + (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "72") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "63") (ifseqformula "45")) + (rule "greater_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "7")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "42") (inst "b=b")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "translateJavaMulInt" (formula "42") (term "1")) + (rule "mul_literals" (formula "42") (term "1")) + (rule "eqSymm" (formula "93")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "47")) + (rule "leq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "13")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "6")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "58") (term "0")) + (rule "replace_known_right" (formula "58") (term "0,1,1,0,0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "15")) (ifInst "" (formula "59"))) + (rule "true_left" (formula "58")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "notLeft" (formula "24")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "13")) (ifInst "" (formula "89")) (ifInst "" (formula "124")) (ifInst "" (formula "13")) (ifInst "" (formula "20"))) + (rule "translateJavaAddInt" (formula "60") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "60") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "60") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "60") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0")) + (rule "replace_known_left" (formula "60") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1")) + (rule "applyEq" (formula "60") (term "0,1,0,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,0,0,1")) + (rule "applyEq" (formula "60") (term "0,1,0,0") (ifseqformula "54")) + (rule "applyEq" (formula "60") (term "1,0,1,0,1") (ifseqformula "54")) + (rule "applyEq" (formula "60") (term "0,0,0,1,1") (ifseqformula "61")) + (rule "applyEq" (formula "60") (term "0,1,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,1")) + (rule "applyEq" (formula "60") (term "0,1,0,1") (ifseqformula "88")) + (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0")) + (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1")) + (rule "polySimp_elimOne" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "60")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "1")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "26") (ifseqformula "60")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "105")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "105")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "105")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "35")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60")) + (rule "mul_literals" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "mul_literals" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "45") (term "1,1")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "45")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,1")) + (rule "mul_literals" (formula "48") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "56") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "58") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "59") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "38")) + (rule "inEqSimp_commuteGeq" (formula "56")) + (rule "applyEq" (formula "56") (term "1,1,1,1,1,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "6")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "13")) (ifInst "" (formula "72")) (ifInst "" (formula "107")) (ifInst "" (formula "13")) (ifInst "" (formula "59")) (ifInst "" (formula "20"))) + (rule "translateJavaAddInt" (formula "56") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "56") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0")) + (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1")) + (rule "applyEq" (formula "56") (term "1,0,1,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "56") (term "0,1,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,1")) + (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "0,1,0,0,0,1") (ifseqformula "57")) + (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,0,0,1")) + (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "71")) + (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0")) + (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "1")) + (rule "polySimp_elimOne" (formula "58") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "60")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "mul_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "57")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "26")) (ifInst "" (formula "114"))) + (rule "translateJavaAddInt" (formula "77") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "77") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "77") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "77") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "77") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,1,1,1")) + (rule "applyEq" (formula "77") (term "0,1,0") (ifseqformula "51")) + (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0")) + (rule "add_literals" (formula "77") (term "1,0,1,0")) + (rule "times_zero_1" (formula "77") (term "0,1,0")) + (rule "leq_literals" (formula "77") (term "1,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "1,1,0,0,1") (ifseqformula "78")) + (rule "applyEq" (formula "77") (term "0,1,0,1,1,1,1") (ifseqformula "51")) + (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "77") (term "1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "77") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "77") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "0,0,0,1,1") (ifseqformula "78")) + (rule "applyEq" (formula "77") (term "0,0,0,0,1") (ifseqformula "78")) + (rule "applyEq" (formula "77") (term "1,0,1,0,0,1") (ifseqformula "51")) + (rule "applyEq" (formula "77") (term "1,1,0,1,1,1") (ifseqformula "78")) + (rule "applyEq" (formula "77") (term "1,1,1,1,1,1") (ifseqformula "78")) + (rule "applyEq" (formula "77") (term "0,1,0,0,0,1,1,1") (ifseqformula "51")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "77") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "77") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "0,1,0,0,1") (ifseqformula "78")) + (rule "inEqSimp_homoInEq1" (formula "77") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,1,0,0,1")) + (rule "add_literals" (formula "77") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "77") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "77") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "77")) + (rule "applyEq" (formula "77") (term "1,0,1,0,1") (ifseqformula "51")) + (rule "applyEq" (formula "77") (term "0,1,0,1") (ifseqformula "78")) + (rule "inEqSimp_sepNegMonomial0" (formula "77") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "77") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "77") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "77") (term "0,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "41")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "78")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "59")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "1")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0")) + (rule "translateJavaCastInt" (formula "81") (term "0,0")) + (rule "castedGetAny" (formula "81") (term "0,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "63") (term "0")) + (rule "translateJavaAddInt" (formula "63") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "63") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,2,0")) + (rule "pullOutSelect" (formula "63") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "eqSymm" (formula "64")) + (rule "applyEqReverse" (formula "63") (term "1") (ifseqformula "64")) + (rule "hideAuxiliaryEq" (formula "64")) + (rule "elementOfArrayRangeConcrete" (formula "63") (term "0,0,0")) + (rule "replace_known_right" (formula "63") (term "0,0,0,0,0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "63")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "eqSymm" (formula "87")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "44")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "translateJavaAddInt" (formula "37") (term "3,0")) + (rule "translateJavaAddInt" (formula "36") (term "0")) + (rule "polySimp_addComm0" (formula "37") (term "3,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "69") (inst "b=b")) + (builtin "One Step Simplification" (formula "69")) + (rule "expand_inInt" (formula "69") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "69") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "69") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "71")) + (rule "translateJavaCastInt" (formula "76") (term "0")) + (rule "translateJavaAddInt" (formula "75") (term "1")) + (rule "translateJavaMulInt" (formula "70") (term "0")) + (rule "translateJavaMulInt" (formula "69") (term "1")) + (rule "translateJavaCastInt" (formula "73") (term "0")) + (rule "translateJavaCastInt" (formula "72") (term "1")) + (rule "polySimp_mulComm0" (formula "70") (term "0")) + (rule "polySimp_mulComm0" (formula "69") (term "1")) + (rule "polySimp_addComm0" (formula "75") (term "1")) + (rule "castedGetAny" (formula "76") (term "0")) + (rule "castedGetAny" (formula "73") (term "0")) + (rule "castedGetAny" (formula "72") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "inEqSimp_commuteLeq" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "69") (term "0,0") (ifseqformula "55")) + (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "70")) + (rule "applyEq" (formula "73") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "75") (term "1,1") (ifseqformula "55")) + (rule "applyEq" (formula "78") (term "0,1,0,0,1,0,0,0") (ifseqformula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "69") (ifseqformula "45")) + (rule "mul_literals" (formula "69") (term "1,1,0")) + (rule "greater_literals" (formula "69") (term "0,0")) + (builtin "One Step Simplification" (formula "69")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0")) + (rule "polySimp_addComm0" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "66")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_left" (formula "66") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "66")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "93") (term "1")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "91"))) + (rule "translateJavaSubInt" (formula "93") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "93") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,1,1")) + (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0,1,1")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "93") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,1")) + (rule "mul_literals" (formula "93") (term "1,0,0,1,1")) + (rule "add_literals" (formula "93") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "93") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "93") (term "0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "93") (term "0,0")) + (rule "times_zero_2" (formula "93") (term "1,0,0,0")) + (rule "add_zero_right" (formula "93") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "93") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "93") (term "0,1,1,1")) + (rule "mul_literals" (formula "93") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "93") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0")) + (rule "replace_known_left" (formula "93") (term "1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_sepPosMonomial1" (formula "93") (term "0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,0")) + (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "93")) + (rule "andLeft" (formula "93")) + (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "94")) + (rule "mul_literals" (formula "89") (term "0,0")) + (rule "add_zero_left" (formula "89") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1")) + (rule "polySimp_rightDist" (formula "89") (term "1")) + (rule "mul_literals" (formula "89") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,1")) + (rule "polySimp_elimOne" (formula "89") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "89") (term "0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0,0")) + (rule "mul_literals" (formula "89") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "89") (term "0,0")) + (rule "add_literals" (formula "89") (term "1,1,0,0")) + (rule "times_zero_1" (formula "89") (term "1,0,0")) + (rule "add_zero_right" (formula "89") (term "0,0")) + (rule "qeq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "94")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0")) + (rule "polySimp_addComm0" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "95")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "2")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "105")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "105") (term "1,1") (userinteraction)) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "102"))) + (rule "translateJavaAddInt" (formula "1") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_elimSub" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "1") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "1") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "1") (term "1,0,1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "106")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "2") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "applyEq" (formula "2") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "2") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "2") (term "1,0,1,0,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "52")) + (rule "applyEq" (formula "2") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "2") (term "0,1,0,1") (ifseqformula "71")) + (rule "applyEq" (formula "2") (term "0,1,0,0,1") (ifseqformula "71")) + (rule "inEqSimp_commuteGeq" (formula "2") (term "1,0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "49") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "replace_known_left" (formula "2") (term "1,0,1,1,1,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "3"))) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "2") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,1,1,1")) + (rule "mul_literals" (formula "2") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "2") (term "0,1,1,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0") (ifseqformula "9")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "37")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "73")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "mul_literals" (formula "69") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "2")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "105")) + (rule "closeTrue" (formula "105")) + ) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "104")) + (rule "replace_known_left" (formula "104") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "104")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "70")) + (builtin "One Step Simplification" (formula "105")) + (rule "expand_inInt" (formula "70") (term "1,1,0")) + (rule "expand_inInt" (formula "70") (term "0,1,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,1,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,1,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,0,1,0")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "71")) + (rule "translateJavaAddInt" (formula "74") (term "1")) + (rule "translateJavaAddInt" (formula "73") (term "0")) + (rule "translateJavaAddInt" (formula "71") (term "0")) + (rule "translateJavaAddInt" (formula "72") (term "1")) + (rule "translateJavaAddInt" (formula "74") (term "1,1,1")) + (rule "translateJavaAddInt" (formula "73") (term "1,1,0")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "polySimp_addComm0" (formula "74") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "73") (term "1,1,0")) + (rule "elim_double_block_2" (formula "109") (term "1")) + (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "109")) + (rule "ifSplit" (formula "109")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "109") (term "1")) + (builtin "Block Contract (Internal)" (formula "109") (newnames "anonOut_heap,exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "109")) (ifInst "" (formula "17")) (ifInst "" (formula "105")) (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "110")) + (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,0,0,1")) + (rule "expand_inInt" (formula "75") (term "1,1")) + (rule "expand_inInt" (formula "75") (term "1,0,0,0,1")) + (rule "expand_inInt" (formula "75") (term "1,0,1")) + (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,1")) + (rule "expand_inInt" (formula "75") (term "1,0,0,1")) + (rule "expand_inInt" (formula "75") (term "1,0,0,0,0,0,1")) + (rule "expand_inInt" (formula "75") (term "0,0,0,0,0,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,0,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,0,0,0,0,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,0,0,0,0,0,1")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "inEqSimp_commuteLeq" (formula "85")) + (rule "inEqSimp_commuteLeq" (formula "83")) + (rule "inEqSimp_commuteLeq" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "77")) + (rule "inEqSimp_commuteLeq" (formula "78")) + (rule "variableDeclarationAssign" (formula "118") (term "1")) + (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (builtin "Block Contract (Internal)" (formula "118") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "119")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (rule "true_left" (formula "84")) + (rule "eqSymm" (formula "118") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "118") (term "1")) + (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (rule "emptyStatement" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (rule "emptyStatement" (formula "118") (term "1")) + (rule "tryEmpty" (formula "118") (term "1")) + (rule "blockEmptyLabel" (formula "118") (term "1")) + (rule "blockEmpty" (formula "118") (term "1")) + (rule "methodCallEmpty" (formula "118") (term "1")) + (rule "emptyModality" (formula "118") (term "1")) + (rule "andRight" (formula "118")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "118")) + (rule "closeTrue" (formula "118")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "118")) + (rule "closeTrue" (formula "118")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "118")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "118")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "118")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "119")) + (builtin "One Step Simplification" (formula "84")) + (rule "replaceKnownSelect_taclet0120110_0" (formula "84") (term "0,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "84") (term "0,0,1,0,1")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "86")) + (rule "translateJavaAddInt" (formula "88") (term "1,1")) + (rule "translateJavaAddInt" (formula "88") (term "0,2,0,0")) + (rule "eqSymm" (formula "86")) + (rule "replace_known_left" (formula "85") (term "0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "polySimp_addComm0" (formula "87") (term "1,1")) + (rule "polySimp_addComm0" (formula "87") (term "0,2,0,0")) + (rule "replaceKnownSelect_taclet010120110_2" (formula "87") (term "0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "87") (term "0,0")) + (rule "elim_double_block_2" (formula "122") (term "1")) + (rule "arrayLengthIsAShort" (formula "45") (term "0")) + (rule "expand_inShort" (formula "45")) + (rule "replace_short_MAX" (formula "45") (term "1,0")) + (rule "replace_short_MIN" (formula "45") (term "0,1")) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "47")) + (rule "qeq_literals" (formula "46")) + (rule "true_left" (formula "46")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "46")) + (rule "leq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "arrayLengthNotNegative" (formula "33") (term "0")) + (rule "arrayLengthIsAShort" (formula "36") (term "0")) + (rule "expand_inShort" (formula "36")) + (rule "replace_short_MIN" (formula "36") (term "0,1")) + (rule "replace_short_MAX" (formula "36") (term "1,0")) + (rule "andLeft" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "arrayLengthNotNegative" (formula "45") (term "0")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "46")) + (rule "qeq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "ifUnfold" (formula "122") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "122") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "replace_known_left" (formula "122") (term "0,0,1,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "122")) + (rule "ifSplit" (formula "122")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "123")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "123")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "122") (term "1")) + (builtin "Block Contract (Internal)" (formula "122") (newnames "exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (builtin "One Step Simplification" (formula "123")) + (rule "true_left" (formula "88")) + (rule "eqSymm" (formula "122") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "122") (term "1")) + (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (rule "tryEmpty" (formula "122") (term "1")) + (rule "blockEmptyLabel" (formula "122") (term "1")) + (rule "blockEmpty" (formula "122") (term "1")) + (rule "methodCallEmpty" (formula "122") (term "1")) + (rule "emptyModality" (formula "122") (term "1")) + (rule "andRight" (formula "122")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "122")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "122")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "88")) + (builtin "One Step Simplification" (formula "123")) + (rule "replaceKnownSelect_taclet0120110_0" (formula "88") (term "0,0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0120110_1" (formula "88") (term "0,0,0,1")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "88")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1")) + (rule "replace_known_left" (formula "89") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "polySimp_addComm0" (formula "90") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet010120110_2" (formula "90") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010120110_3" (formula "90") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "90")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "86")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "87")) + (rule "elim_double_block_2" (formula "125") (term "1")) + (rule "ifUnfold" (formula "125") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "replace_known_left" (formula "125") (term "0,0,1,0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "125")) + (rule "ifSplit" (formula "125")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "125") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "125") (term "1")) + (rule "variableDeclarationFinal" (formula "125") (term "1") (newnames "head_start")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "variableDeclarationAssign" (formula "125") (term "1")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "head_stop")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "variableDeclarationAssign" (formula "125") (term "1")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "tail_start")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "variableDeclarationFinalAssign" (formula "125") (term "1")) + (rule "variableDeclarationFinal" (formula "125") (term "1") (newnames "tail_stop")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (builtin "Block Contract (Internal)" (formula "125") (newnames "anonOut_heap_0,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,tail_start_Before_BLOCK#33,head_stop_Before_BLOCK#34,o,f,anonOut_tail_start,anonOut_head_stop")) + (branch "Validity" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "27")) (ifInst "" (formula "75")) (ifInst "" (formula "125")) (ifInst "" (formula "17")) (ifInst "" (formula "121")) (ifInst "" (formula "26"))) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0")) + (rule "expand_inInt" (formula "91") (term "0,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0")) + (rule "leq_literals" (formula "91") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "63")) (ifInst "" (formula "64")) (ifInst "" (formula "20")) (ifInst "" (formula "78")) (ifInst "" (formula "79")) (ifInst "" (formula "18")) (ifInst "" (formula "63")) (ifInst "" (formula "64")) (ifInst "" (formula "80")) (ifInst "" (formula "82"))) + (rule "leq_literals" (formula "91") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "91")) + (rule "leq_literals" (formula "91") (term "1,1,0,0,0")) + (builtin "One Step Simplification" (formula "91")) + (rule "leq_literals" (formula "91") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "93")) + (rule "inEqSimp_commuteLeq" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "91")) + (rule "variableDeclarationAssign" (formula "128") (term "1")) + (rule "variableDeclaration" (formula "128") (term "1") (newnames "exc_8_1")) + (rule "assignment" (formula "128") (term "1")) + (builtin "One Step Simplification" (formula "128")) + (rule "ifElseUnfold" (formula "128") (term "1") (inst "#boolv=x")) + (builtin "One Step Simplification" (formula "128")) + (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_10")) + (rule "compound_less_equal_than_comparison_1" (formula "128") (term "1") (inst "#v0=x_11")) + (rule "variableDeclarationAssign" (formula "128") (term "1")) + (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_11")) + (rule "assignmentSubtractionInt" (formula "128") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "128")) + (rule "expand_inInt" (formula "128")) + (rule "replace_int_MIN" (formula "128") (term "0,1")) + (rule "replace_int_MAX" (formula "128") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "128") (term "1,1")) + (rule "polySimp_elimSub" (formula "128") (term "0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "128") (term "1,1")) + (rule "polySimp_addComm0" (formula "128") (term "0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "mul_literals" (formula "79") (term "1,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_mulComm0" (formula "91") (term "1,0")) + (rule "polySimp_rightDist" (formula "91") (term "1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "127") (term "1")) + (rule "mul_literals" (formula "127") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "127") (term "0,1")) + (rule "polySimp_addComm0" (formula "127") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "127") (term "0")) + (rule "polySimp_mulComm0" (formula "127") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "127") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "127") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "127") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "127") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "127") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "127") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "125") (term "1")) + (rule "polySimp_mulComm0" (formula "125") (term "1,1")) + (rule "polySimp_rightDist" (formula "125") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,1,1")) + (rule "mul_literals" (formula "125") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "125") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "125") (term "0")) + (rule "polySimp_mulLiterals" (formula "125") (term "0,0")) + (rule "polySimp_elimOne" (formula "125") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "65")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "123") (term "1") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "123") (term "0,1")) + (rule "polySimp_mulComm0" (formula "123") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "123") (term "1,0,0,1")) + (rule "mul_literals" (formula "123") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "123") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "123") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "123") (term "0,0,1")) + (rule "add_literals" (formula "123") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "123") (term "1,0,0,1")) + (rule "add_zero_right" (formula "123") (term "0,0,1")) + (rule "qeq_literals" (formula "123") (term "0,1")) + (builtin "One Step Simplification" (formula "123")) + (rule "inEqSimp_leqRight" (formula "123")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "8")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "65") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "70")) + (rule "polySimp_mulComm0" (formula "85") (term "0,0")) + (rule "polySimp_addComm0" (formula "85") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "85")) + (rule "polySimp_mulLiterals" (formula "85") (term "0")) + (rule "polySimp_elimOne" (formula "85") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "74")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "30")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "2")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "36")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "37")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "67") (ifseqformula "2")) + (rule "qeq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "closeFalse" (formula "67")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "128")) + (rule "translateJavaSubInt" (formula "128") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "128") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "128") (term "0,1,0")) + (rule "less_equal_than_comparison_simple" (formula "128") (term "1")) + (builtin "One Step Simplification" (formula "128")) + (builtin "Use Dependency Contract" (formula "57") (term "1,0") (ifInst "" (formula "47") (term "0,1,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "94") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "94") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "125")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29"))) + (rule "polySimp_mulComm0" (formula "94") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "94") (term "1,0")) + (rule "disjointWithSingleton1" (formula "94") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0")) + (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0")) + (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0")) + (rule "replace_known_left" (formula "94") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "94")) + (rule "applyEq" (formula "94") (term "1,0") (ifseqformula "50")) + (rule "replace_known_left" (formula "94") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "94")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "94")) + (builtin "Use Dependency Contract" (formula "56") (term "0") (ifInst "" (formula "85") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "95") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "95") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "95") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "95") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "95") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "95") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "95") (term "1,0,0,0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "126")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29"))) + (rule "polySimp_mulComm0" (formula "95") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "95") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "95") (term "1,0")) + (rule "disjointWithSingleton1" (formula "95") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "95") (term "0,1,0")) + (rule "replace_known_right" (formula "95") (term "0,0,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "0,1,0")) + (rule "replace_known_left" (formula "95") (term "0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0")) + (rule "replace_known_left" (formula "95") (term "0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "95")) + (rule "applyEq" (formula "95") (term "0,1") (ifseqformula "56")) + (rule "eqSymm" (formula "95") (term "1")) + (rule "replace_known_left" (formula "95") (term "1") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "ifElseSplit" (formula "129")) + (branch "if x_10 true" + (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "28")) (ifInst "" (formula "76"))) + (builtin "One Step Simplification" (formula "131")) + (rule "true_left" (formula "96")) + (rule "eqSymm" (formula "130") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "130") (term "1")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (rule "tryEmpty" (formula "130") (term "1")) + (rule "blockEmptyLabel" (formula "130") (term "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (rule "methodCallEmpty" (formula "130") (term "1")) + (rule "emptyModality" (formula "130") (term "1")) + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "76"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "applyEq" (formula "58") (term "1,0") (ifseqformula "97")) + (rule "add_zero_right" (formula "58") (term "0")) + (rule "applyEq" (formula "73") (term "1,1") (ifseqformula "58")) + (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "58")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "58")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "95")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "58")) + (rule "elim_double_block_2" (formula "130") (term "1")) + (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "130")) + (rule "ifSplit" (formula "130")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "28")) (ifInst "" (formula "74"))) + (rule "true_left" (formula "96")) + (rule "eqSymm" (formula "130") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "130") (term "1")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (rule "tryEmpty" (formula "130") (term "1")) + (rule "blockEmptyLabel" (formula "130") (term "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (rule "methodCallEmpty" (formula "130") (term "1")) + (rule "emptyModality" (formula "130") (term "1")) + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "96")) + (rule "expand_inInt" (formula "96") (term "0,0,1")) + (rule "replace_int_MAX" (formula "96") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "96") (term "0,1,0,0,1")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_commuteLeq" (formula "97") (term "1,0,0")) + (rule "commute_and" (formula "97") (term "0,0")) + (rule "elim_double_block_2" (formula "132") (term "1")) + (rule "ifUnfold" (formula "132") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "132") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "replace_known_left" (formula "132") (term "0,0,1,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "132")) + (rule "ifSplit" (formula "132")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "132") (term "1")) + (rule "assignment" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "assignment" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "blockEmpty" (formula "132") (term "1")) + (builtin "Block Contract (Internal)" (formula "132") (newnames "exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "133")) + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "28")) (ifInst "" (formula "74"))) + (rule "true_left" (formula "98")) + (rule "eqSymm" (formula "132") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "132") (term "1")) + (rule "variableDeclaration" (formula "132") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "emptyStatement" (formula "132") (term "1")) + (builtin "One Step Simplification" (formula "132")) + (rule "emptyStatement" (formula "132") (term "1")) + (rule "tryEmpty" (formula "132") (term "1")) + (rule "blockEmptyLabel" (formula "132") (term "1")) + (rule "blockEmpty" (formula "132") (term "1")) + (rule "methodCallEmpty" (formula "132") (term "1")) + (rule "emptyModality" (formula "132") (term "1")) + (rule "andRight" (formula "132")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "132")) + (rule "closeTrue" (formula "132")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "132")) + (rule "closeTrue" (formula "132")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "132")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "132")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "132") (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "132")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "13")) (ifInst "" (formula "14"))) + (builtin "One Step Simplification" (formula "133")) + (rule "andLeft" (formula "98")) + (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "elim_double_block_2" (formula "133") (term "1")) + (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "133") (term "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "133")) + (rule "ifSplit" (formula "133")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "133") (term "1")) + (rule "emptyStatement" (formula "133") (term "1")) + (rule "tryEmpty" (formula "133") (term "1")) + (rule "blockEmptyLabel" (formula "133") (term "1")) + (rule "blockEmpty" (formula "133") (term "1")) + (rule "methodCallEmpty" (formula "133") (term "1")) + (rule "emptyModality" (formula "133") (term "1")) + (rule "andRight" (formula "133")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "133")) + (rule "closeTrue" (formula "133")) + ) + (branch "Case 2" + (rule "andRight" (formula "133")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "133")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "133")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationFinalAssign" (formula "130") (term "1")) + (rule "variableDeclarationFinal" (formula "130") (term "1") (newnames "aligned_relative_start")) + (builtin "Use Operation Contract" (formula "130") (newnames "heapBefore_align_to_next_block,result_0,exc_9") (contract "de.wiesler.Buffers[de.wiesler.Buffers::align_to_next_block(int)].JML normal_behavior operation contract.0")) + (branch "Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "95")) + (rule "expand_inInt" (formula "95") (term "0,1,0")) + (rule "replace_int_MAX" (formula "95") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "95") (term "0,1,0,1,0")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "eqSymm" (formula "97")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (builtin "Block Contract (Internal)" (formula "134") (newnames "exc_10,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (rule "true_left" (formula "99")) + (rule "eqSymm" (formula "134") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "134") (term "1")) + (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (rule "applyEq" (formula "97") (term "0") (ifseqformula "86")) + (rule "applyEq" (formula "72") (term "1,1") (ifseqformula "97")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "97")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "97")) + (rule "applyEq" (formula "86") (term "1") (ifseqformula "97")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "97")) + (rule "tryEmpty" (formula "134") (term "1")) + (rule "blockEmptyLabel" (formula "134") (term "1")) + (rule "blockEmpty" (formula "134") (term "1")) + (rule "methodCallEmpty" (formula "134") (term "1")) + (rule "emptyModality" (formula "134") (term "1")) + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "One Step Simplification" (formula "135")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "eqSymm" (formula "101")) + (rule "replace_known_left" (formula "100") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "applyEq" (formula "97") (term "0") (ifseqformula "86")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "97")) + (rule "applyEq" (formula "72") (term "1,1") (ifseqformula "97")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "97")) + (rule "applyEq" (formula "86") (term "1") (ifseqformula "97")) + (rule "applyEq" (formula "57") (term "0,0") (ifseqformula "97")) + (rule "elim_double_block_2" (formula "135") (term "1")) + (rule "ifUnfold" (formula "135") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "135") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "135") (term "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "replace_known_left" (formula "135") (term "0,0,1,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "135")) + (rule "ifSplit" (formula "135")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "136")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "136")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "135") (term "1")) + (builtin "Block Contract (Internal)" (formula "135") (newnames "exc_11,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (builtin "One Step Simplification" (formula "136")) + (rule "true_left" (formula "100")) + (rule "eqSymm" (formula "135") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "135") (term "1")) + (rule "variableDeclaration" (formula "135") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "135") (term "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "emptyStatement" (formula "135") (term "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "emptyStatement" (formula "135") (term "1")) + (rule "tryEmpty" (formula "135") (term "1")) + (rule "blockEmptyLabel" (formula "135") (term "1")) + (rule "blockEmpty" (formula "135") (term "1")) + (rule "methodCallEmpty" (formula "135") (term "1")) + (rule "emptyModality" (formula "135") (term "1")) + (rule "andRight" (formula "135")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "135")) + (rule "closeTrue" (formula "135")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "135")) + (rule "closeTrue" (formula "135")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "135")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "135")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "135")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "100")) + (builtin "One Step Simplification" (formula "136")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "100")) + (rule "eqSymm" (formula "102")) + (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "elim_double_block_2" (formula "136") (term "1")) + (rule "ifUnfold" (formula "136") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "136") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "136") (term "1")) + (builtin "One Step Simplification" (formula "136")) + (rule "replace_known_left" (formula "136") (term "0,0,1,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "136")) + (rule "ifSplit" (formula "136")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "137")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "137")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "136") (term "1")) + (rule "assignmentAdditionInt" (formula "136") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "136")) + (rule "expand_inInt" (formula "136")) + (rule "replace_int_MAX" (formula "136") (term "1,0")) + (rule "replace_int_MIN" (formula "136") (term "0,1")) + (rule "replace_known_left" (formula "136") (term "1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "71"))) + (rule "closeTrue" (formula "136")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "136")) + (builtin "Block Contract (Internal)" (formula "136") (newnames "exc_12,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (builtin "One Step Simplification" (formula "137")) + (rule "true_left" (formula "101")) + (rule "eqSymm" (formula "136") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "136") (term "0,1,0,0")) + (rule "variableDeclarationAssign" (formula "136") (term "1")) + (rule "variableDeclaration" (formula "136") (term "1") (newnames "exc_12_1")) + (rule "assignment" (formula "136") (term "1")) + (builtin "One Step Simplification" (formula "136")) + (rule "emptyStatement" (formula "136") (term "1")) + (builtin "One Step Simplification" (formula "136")) + (rule "emptyStatement" (formula "136") (term "1")) + (rule "tryEmpty" (formula "136") (term "1")) + (rule "blockEmptyLabel" (formula "136") (term "1")) + (rule "blockEmpty" (formula "136") (term "1")) + (rule "methodCallEmpty" (formula "136") (term "1")) + (rule "emptyModality" (formula "136") (term "1")) + (rule "andRight" (formula "136")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "136")) + (rule "closeTrue" (formula "136")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "136")) + (rule "closeTrue" (formula "136")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "136")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "136")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "136")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "101")) + (builtin "One Step Simplification" (formula "137")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "103")) + (rule "translateJavaAddInt" (formula "140") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "103") (term "1")) + (rule "translateJavaAddInt" (formula "104") (term "0")) + (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "elim_double_block_2" (formula "139") (term "1")) + (rule "ifUnfold" (formula "139") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "139") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "replace_known_left" (formula "139") (term "0,0,1,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "139")) + (rule "ifSplit" (formula "139")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "140")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "140")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "139") (term "1")) + (rule "ifElseUnfold" (formula "139") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "139") (term "1") (newnames "x_15")) + (rule "less_than_comparison_simple" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "ifElseSplit" (formula "139")) + (branch "if x_15 true" + (builtin "Block Contract (Internal)" (formula "140") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "28")) (ifInst "" (formula "76"))) + (rule "true_left" (formula "105")) + (rule "eqSymm" (formula "140") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "140") (term "1")) + (rule "variableDeclaration" (formula "140") (term "1") (newnames "exc_13_1")) + (rule "assignment" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "emptyStatement" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "emptyStatement" (formula "140") (term "1")) + (rule "tryEmpty" (formula "140") (term "1")) + (rule "blockEmptyLabel" (formula "140") (term "1")) + (rule "blockEmpty" (formula "140") (term "1")) + (rule "methodCallEmpty" (formula "140") (term "1")) + (rule "emptyModality" (formula "140") (term "1")) + (rule "andRight" (formula "140")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "140")) + (rule "closeTrue" (formula "140")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "140")) + (rule "closeTrue" (formula "140")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "140")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "140")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "76"))) + (rule "closeTrue" (formula "140")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "141")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "eqSymm" (formula "107")) + (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "106")) + (rule "true_left" (formula "106")) + (rule "applyEq" (formula "106") (term "0") (ifseqformula "88")) + (rule "applyEq" (formula "74") (term "1,0") (ifseqformula "106")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "105")) + (rule "applyEq" (formula "74") (term "1,1") (ifseqformula "105")) + (rule "applyEq" (formula "86") (term "1") (ifseqformula "104")) + (rule "elim_double_block_2" (formula "140") (term "1")) + (rule "ifUnfold" (formula "140") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "140") (term "1") (newnames "x_16")) + (rule "inequality_comparison_simple" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "replace_known_left" (formula "140") (term "0,0,1,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "140")) + (rule "ifSplit" (formula "140")) + (branch "if x_16 true" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_16 false" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "140") (term "1")) + (rule "ifElseUnfold" (formula "140") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "140") (term "1") (newnames "x_17")) + (rule "less_than_comparison_simple" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "ifElseSplit" (formula "140")) + (branch "if x_17 true" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "1")) + (rule "elim_double_block_2" (formula "141") (term "1")) + (rule "assignmentSubtractionInt" (formula "141") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "141")) + (rule "expand_inInt" (formula "141")) + (rule "replace_int_MAX" (formula "141") (term "1,0")) + (rule "replace_int_MIN" (formula "141") (term "0,1")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_elimSub" (formula "141") (term "1,1")) + (rule "mul_literals" (formula "141") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "141") (term "0,0")) + (rule "mul_literals" (formula "141") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "141") (term "1,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,0")) + (rule "polySimp_addComm0" (formula "141") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "141") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "106")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0")) + (rule "add_literals" (formula "104") (term "1,0,0,0")) + (rule "times_zero_1" (formula "104") (term "0,0,0")) + (rule "add_zero_left" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_addAssoc" (formula "93") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0,0")) + (rule "add_literals" (formula "93") (term "1,0,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0,0")) + (rule "add_zero_left" (formula "93") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "139") (term "1")) + (rule "mul_literals" (formula "139") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "139") (term "0,1")) + (rule "polySimp_addComm1" (formula "139") (term "0,0,1")) + (rule "add_literals" (formula "139") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "139") (term "0")) + (rule "polySimp_mulComm0" (formula "139") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "139") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "139") (term "0,1,0,0")) + (rule "mul_literals" (formula "139") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "139") (term "0,0")) + (rule "polySimp_addAssoc" (formula "139") (term "0,0,0")) + (rule "add_literals" (formula "139") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "137") (term "1")) + (rule "polySimp_mulComm0" (formula "137") (term "1,1")) + (rule "polySimp_rightDist" (formula "137") (term "1,1")) + (rule "mul_literals" (formula "137") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "0")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,0")) + (rule "polySimp_elimOne" (formula "137") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "67")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_zero_right" (formula "67") (term "0,0")) + (rule "qeq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_subsumption0" (formula "131") (term "0") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "131") (term "0,0")) + (rule "polySimp_mulComm0" (formula "131") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "131") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "131") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "131") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "131") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "131") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "131") (term "0,0,0,0")) + (rule "add_literals" (formula "131") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "131") (term "0,0,0")) + (rule "add_literals" (formula "131") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "131") (term "1,0,0,0")) + (rule "add_zero_right" (formula "131") (term "0,0,0")) + (rule "qeq_literals" (formula "131") (term "0,0")) + (builtin "One Step Simplification" (formula "131")) + (rule "inEqSimp_geqRight" (formula "131")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0")) + (rule "add_literals" (formula "75") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "4")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "7")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "mul_literals" (formula "80") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "80")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "86")) + (rule "mul_literals" (formula "89") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "89")) + (rule "mul_literals" (formula "89") (term "1")) + (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "79")) + (rule "leq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "70")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1")) + (rule "polySimp_elimOne" (formula "80") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "37")) + (rule "inEqSimp_homoInEq0" (formula "80") (term "0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0,0")) + (rule "mul_literals" (formula "80") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "qeq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "95")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "73")) + (rule "mul_literals" (formula "89") (term "0,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "add_literals" (formula "89") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "0")) + (rule "polySimp_elimOne" (formula "89") (term "0")) + (rule "inEqSimp_subsumption0" (formula "89") (ifseqformula "24")) + (rule "leq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "95")) + (rule "times_zero_1" (formula "69") (term "0,0")) + (rule "add_zero_left" (formula "69") (term "0")) + (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "69")) + (rule "leq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "mul_literals" (formula "78") (term "1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "36")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "41")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "37")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_rightDist" (formula "6") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "6")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "42")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "89")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "36")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "9")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "67")) + (rule "mul_literals" (formula "81") (term "0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "0")) + (rule "polySimp_elimOne" (formula "81") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "27")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0")) + (rule "mul_literals" (formula "68") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "polySimp_addComm1" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "68")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "mul_literals" (formula "69") (term "1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "38")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "87")) + (rule "polySimp_rightDist" (formula "77") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1")) + (rule "polySimp_rightDist" (formula "77") (term "1")) + (rule "mul_literals" (formula "77") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "68")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "42") (ifseqformula "7")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_subsumption0" (formula "87") (ifseqformula "96")) + (rule "inEqSimp_homoInEq0" (formula "87") (term "0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "qeq_literals" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87")) + (rule "true_left" (formula "87")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "73")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "2")) + (rule "times_zero_1" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "72")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "65")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "141")) + (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_14,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "29")) (ifInst "" (formula "75"))) + (builtin "One Step Simplification" (formula "142")) + (rule "true_left" (formula "106")) + (rule "eqSymm" (formula "141") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "141") (term "0,1,0,0")) + (rule "polySimp_elimSub" (formula "141") (term "0,1,0,0")) + (rule "mul_literals" (formula "141") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "141") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "141") (term "0,0,1,0,0")) + (rule "variableDeclarationAssign" (formula "141") (term "1")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_14_1")) + (rule "assignment" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "tryEmpty" (formula "141") (term "1")) + (rule "blockEmptyLabel" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "methodCallEmpty" (formula "141") (term "1")) + (rule "emptyModality" (formula "141") (term "1")) + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "102"))) + (builtin "One Step Simplification" (formula "142")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "106")) + (rule "translateJavaSubInt" (formula "145") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "109") (term "0")) + (rule "translateJavaSubInt" (formula "108") (term "1")) + (rule "replace_known_left" (formula "107") (term "0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "107")) + (rule "true_left" (formula "107")) + (rule "polySimp_elimSub" (formula "144") (term "0,1,0")) + (rule "mul_literals" (formula "144") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "108") (term "0")) + (rule "mul_literals" (formula "108") (term "1,0")) + (rule "polySimp_elimSub" (formula "107") (term "1")) + (rule "mul_literals" (formula "107") (term "1,1")) + (rule "polySimp_addComm1" (formula "144") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "108") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "1")) + (rule "polySimp_addComm0" (formula "144") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,1")) + (rule "elim_double_block_2" (formula "144") (term "1")) + (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_18")) + (rule "inequality_comparison_simple" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "144")) + (rule "ifSplit" (formula "144")) + (branch "if x_18 true" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_18 false" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (rule "variableDeclarationAssign" (formula "144") (term "1")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "tail_len")) + (rule "assignmentSubtractionInt" (formula "144") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "144")) + (rule "expand_inInt" (formula "144")) + (rule "replace_int_MIN" (formula "144") (term "0,1")) + (rule "replace_int_MAX" (formula "144") (term "1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_elimSub" (formula "144") (term "0,0")) + (rule "polySimp_elimSub" (formula "144") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0")) + (rule "mul_literals" (formula "144") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "144") (term "0,0")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,1,1")) + (rule "mul_literals" (formula "144") (term "0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "144") (term "1,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "144") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "144") (term "0,0,0,0")) + (rule "add_literals" (formula "144") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "144") (term "1,0,0,0,0")) + (rule "add_literals" (formula "144") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,1,1")) + (rule "polySimp_addComm0" (formula "144") (term "0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "144") (term "0,0,1,1")) + (rule "add_literals" (formula "144") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "144") (term "1,0,0,1,1")) + (rule "add_literals" (formula "144") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "108")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0")) + (rule "polySimp_mulComm0" (formula "108") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "0,1,0")) + (rule "mul_literals" (formula "107") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0,0")) + (rule "add_zero_right" (formula "106") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "142") (term "0")) + (rule "polySimp_mulComm0" (formula "142") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "142") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "142") (term "0,1,0,0")) + (rule "mul_literals" (formula "142") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "142") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "142") (term "1")) + (rule "mul_literals" (formula "142") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "142") (term "0,1")) + (rule "polySimp_addComm1" (formula "142") (term "0,0,1")) + (rule "add_literals" (formula "142") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "142") (term "0,0")) + (rule "polySimp_addAssoc" (formula "142") (term "0,0,0")) + (rule "add_literals" (formula "142") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "1")) + (rule "polySimp_elimOne" (formula "100") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1")) + (rule "polySimp_rightDist" (formula "105") (term "1")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1")) + (rule "mul_literals" (formula "105") (term "0,1")) + (rule "polySimp_elimOne" (formula "105") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "140") (term "1")) + (rule "polySimp_mulComm0" (formula "140") (term "1,1")) + (rule "polySimp_rightDist" (formula "140") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "140") (term "1,1,1")) + (rule "mul_literals" (formula "140") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "140") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "140") (term "0")) + (rule "polySimp_mulLiterals" (formula "140") (term "0,0")) + (rule "polySimp_elimOne" (formula "140") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "1,1,0,0")) + (rule "times_zero_1" (formula "88") (term "1,0,0")) + (rule "add_zero_right" (formula "88") (term "0,0")) + (rule "qeq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "135") (term "1") (ifseqformula "100")) + (rule "inEqSimp_homoInEq0" (formula "135") (term "0,1")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "135") (term "1,0,0,1")) + (rule "mul_literals" (formula "135") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "135") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "135") (term "0,0,0,1")) + (rule "add_literals" (formula "135") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "135") (term "0,0,1")) + (rule "add_literals" (formula "135") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "135") (term "1,0,0,1")) + (rule "add_zero_right" (formula "135") (term "0,0,1")) + (rule "qeq_literals" (formula "135") (term "0,1")) + (builtin "One Step Simplification" (formula "135")) + (rule "inEqSimp_leqRight" (formula "135")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "0")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0,0")) + (rule "mul_literals" (formula "99") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0,0")) + (rule "polySimp_addComm1" (formula "99") (term "0,0,0")) + (rule "add_literals" (formula "99") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0")) + (rule "add_literals" (formula "99") (term "1,1,0,0")) + (rule "times_zero_1" (formula "99") (term "1,0,0")) + (rule "add_literals" (formula "99") (term "0,0")) + (rule "qeq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "144")) + (builtin "Block Contract (Internal)" (formula "144") (newnames "exc_15,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "29")) (ifInst "" (formula "75"))) + (rule "true_left" (formula "109")) + (rule "eqSymm" (formula "144") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "144") (term "1")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_15_1")) + (rule "assignment" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (rule "tryEmpty" (formula "144") (term "1")) + (rule "blockEmptyLabel" (formula "144") (term "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (rule "methodCallEmpty" (formula "144") (term "1")) + (rule "emptyModality" (formula "144") (term "1")) + (rule "andRight" (formula "144")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "144")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "144")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "translateJavaSubInt" (formula "147") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "111") (term "0")) + (rule "translateJavaSubInt" (formula "111") (term "0,1")) + (rule "translateJavaSubInt" (formula "111") (term "1,1")) + (rule "translateJavaAddInt" (formula "111") (term "1")) + (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "110")) + (rule "true_left" (formula "110")) + (rule "polySimp_elimSub" (formula "146") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "110") (term "1,1")) + (rule "polySimp_elimSub" (formula "110") (term "0,1")) + (rule "polySimp_mulComm0" (formula "146") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "146") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "110") (term "0,1,1,1")) + (rule "polySimp_rightDist" (formula "110") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "146") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "146") (term "0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "146") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "0,1,0,1")) + (rule "mul_literals" (formula "110") (term "0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "110") (term "0,1")) + (rule "polySimp_addAssoc" (formula "110") (term "1,1")) + (rule "polySimp_addComm1" (formula "110") (term "1")) + (rule "polySimp_addComm1" (formula "110") (term "0,1,0,1")) + (rule "polySimp_pullOutFactor1" (formula "110") (term "0,0,1,0,1")) + (rule "add_literals" (formula "110") (term "1,0,0,1,0,1")) + (rule "times_zero_1" (formula "110") (term "0,0,1,0,1")) + (rule "add_zero_left" (formula "110") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "146") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "146") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "146") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "146") (term "0,0,0,1,0")) + (rule "add_literals" (formula "146") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "146") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "146") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0,0,0,1")) + (rule "polySimp_addComm0" (formula "110") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "110") (term "0,0,0,1")) + (rule "add_literals" (formula "110") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "110") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "110") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "110") (term "0,1")) + (rule "elim_double_block_2" (formula "146") (term "1")) + (builtin "Use Dependency Contract" (formula "94") (term "0") (ifInst "" (formula "94") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "111") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "111") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "111") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "111") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "111") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "111") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "143")) (ifInst "" (formula "26")) (ifInst "" (formula "18")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "76")) (ifInst "" (formula "31"))) + (rule "true_left" (formula "111")) + (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "146")) + (rule "ifSplit" (formula "146")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "146") (term "1")) + (builtin "Use Operation Contract" (formula "146") (newnames "heapBefore_copy_nonoverlapping,exc_16,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "148")) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "112") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "112") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "112") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "112") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "translateJavaSubInt" (formula "112") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "113") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "113") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "113") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "3,1,1,0")) + (rule "add_zero_left" (formula "114") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "112") (term "0,2,1,0")) + (rule "polySimp_elimSub" (formula "112") (term "2,1,0")) + (rule "mul_literals" (formula "112") (term "1,2,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "3,0,1,0")) + (rule "polySimp_addAssoc" (formula "112") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,3,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,3,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "114") (term "0,3,0,1,0")) + (rule "add_literals" (formula "114") (term "1,1,0,3,0,1,0")) + (rule "times_zero_1" (formula "114") (term "1,0,3,0,1,0")) + (rule "polySimp_addLiterals" (formula "114") (term "0,3,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,3,0,1,0")) + (rule "add_literals" (formula "114") (term "0,0,3,0,1,0")) + (rule "add_zero_left" (formula "114") (term "0,3,0,1,0")) + (rule "polySimp_addAssoc" (formula "112") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,2,1,0")) + (rule "polySimp_addLiterals" (formula "112") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "112") (term "0,2,1,0")) + (rule "add_literals" (formula "112") (term "1,1,0,2,1,0")) + (rule "times_zero_1" (formula "112") (term "1,0,2,1,0")) + (rule "polySimp_addLiterals" (formula "112") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,2,1,0")) + (rule "add_literals" (formula "112") (term "0,0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "114") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "1,1,0,0")) + (rule "variableDeclarationAssign" (formula "151") (term "1")) + (rule "variableDeclaration" (formula "151") (term "1") (newnames "head_elements")) + (rule "commute_and" (formula "114") (term "0,0")) + (rule "commute_and" (formula "113") (term "0,0,0")) + (rule "commute_and" (formula "113") (term "1,0,0")) + (rule "shift_paren_and" (formula "113") (term "0,0")) + (rule "commute_and_2" (formula "113") (term "0,0,0")) + (rule "assignmentSubtractionInt" (formula "151") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "151")) + (rule "expand_inInt" (formula "151")) + (rule "replace_int_MIN" (formula "151") (term "0,1")) + (rule "replace_int_MAX" (formula "151") (term "1,0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "151") (term "1,1")) + (rule "polySimp_elimSub" (formula "151") (term "0,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "151") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "151") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "151") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,1,1")) + (rule "mul_literals" (formula "151") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "151") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "151") (term "0,1,0,0")) + (rule "mul_literals" (formula "151") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "151") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "151") (term "1,1")) + (rule "polySimp_addAssoc" (formula "151") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "151") (term "0,1,1")) + (rule "add_literals" (formula "151") (term "0,0,1,1")) + (rule "add_zero_left" (formula "151") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "151") (term "0,0,0")) + (rule "add_literals" (formula "151") (term "0,0,0,0")) + (rule "add_zero_left" (formula "151") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0")) + (rule "add_literals" (formula "92") (term "1,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0")) + (rule "add_zero_left" (formula "92") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "108")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "0,1,0")) + (rule "mul_literals" (formula "108") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "108") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_mulComm0" (formula "91") (term "1,0")) + (rule "polySimp_rightDist" (formula "91") (term "1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0,0")) + (rule "add_zero_right" (formula "106") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0")) + (rule "add_literals" (formula "101") (term "1,0,0,0")) + (rule "times_zero_1" (formula "101") (term "0,0,0")) + (rule "add_zero_left" (formula "101") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_zero_right" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "1")) + (rule "mul_literals" (formula "149") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "149") (term "0,1")) + (rule "polySimp_addComm0" (formula "149") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "0")) + (rule "polySimp_mulComm0" (formula "149") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "149") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "149") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "149") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "149") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "149") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1")) + (rule "polySimp_rightDist" (formula "106") (term "1")) + (rule "mul_literals" (formula "106") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1")) + (rule "polySimp_elimOne" (formula "106") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "0")) + (rule "polySimp_elimOne" (formula "91") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "147") (term "1")) + (rule "polySimp_mulLiterals" (formula "147") (term "0,1")) + (rule "polySimp_elimOne" (formula "147") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "147") (term "0")) + (rule "polySimp_mulComm0" (formula "147") (term "1,0")) + (rule "polySimp_rightDist" (formula "147") (term "1,0")) + (rule "mul_literals" (formula "147") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "147") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "147") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "10")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0")) + (rule "add_zero_right" (formula "85") (term "0,0")) + (rule "qeq_literals" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "inEqSimp_subsumption1" (formula "141") (term "0") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "0,0")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0,0")) + (rule "mul_literals" (formula "141") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,0,0")) + (rule "add_literals" (formula "141") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,0")) + (rule "add_literals" (formula "141") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "141") (term "1,0,0,0")) + (rule "add_zero_right" (formula "141") (term "0,0,0")) + (rule "qeq_literals" (formula "141") (term "0,0")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_leqRight" (formula "141")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "0")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0,0")) + (rule "mul_literals" (formula "99") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0,0")) + (rule "polySimp_addComm1" (formula "99") (term "0,0,0")) + (rule "add_literals" (formula "99") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0")) + (rule "add_literals" (formula "99") (term "1,1,0,0")) + (rule "times_zero_1" (formula "99") (term "1,0,0")) + (rule "add_literals" (formula "99") (term "0,0")) + (rule "qeq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "4")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "151")) + (rule "translateJavaSubInt" (formula "151") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "151") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "151") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "151") (term "1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "151") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "151") (term "0,0,1,0")) + (rule "add_literals" (formula "151") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "151") (term "0,0,1,0")) + (rule "compound_assignment_op_minus" (formula "151") (term "1")) + (rule "compound_int_cast_expression" (formula "151") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "151") (term "1")) + (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_20")) + (rule "remove_parentheses_right" (formula "151") (term "1")) + (rule "compound_subtraction_2" (formula "151") (term "1") (inst "#v1=x_22") (inst "#v0=x_21")) + (rule "variableDeclarationAssign" (formula "151") (term "1")) + (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_21")) + (rule "assignment" (formula "151") (term "1")) + (builtin "One Step Simplification" (formula "151")) + (rule "variableDeclarationAssign" (formula "151") (term "1")) + (rule "variableDeclaration" (formula "151") (term "1") (newnames "x_22")) + (rule "remove_parentheses_right" (formula "151") (term "1")) + (rule "assignment" (formula "151") (term "1")) + (builtin "One Step Simplification" (formula "151")) + (rule "assignmentSubtractionInt" (formula "151") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "151")) + (rule "expand_inInt" (formula "151") (userinteraction)) + (rule "andRight" (formula "151")) + (branch + (rule "replace_int_MAX" (formula "151") (term "1")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_elimSub" (formula "151") (term "0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "151") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "151") (term "0")) + (rule "polySimp_addComm1" (formula "151") (term "0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_leqRight" (formula "151")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0")) + (rule "add_literals" (formula "104") (term "1,0,0,0")) + (rule "times_zero_1" (formula "104") (term "0,0,0")) + (rule "add_zero_left" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "95")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "0,1,0")) + (rule "mul_literals" (formula "110") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "110") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0")) + (rule "add_literals" (formula "108") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "108") (term "1,0,0,0")) + (rule "add_literals" (formula "108") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "110")) + (rule "polySimp_mulLiterals" (formula "110") (term "0")) + (rule "polySimp_elimOne" (formula "110") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "1")) + (rule "polySimp_elimOne" (formula "101") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1")) + (rule "polySimp_rightDist" (formula "106") (term "1")) + (rule "mul_literals" (formula "106") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1")) + (rule "polySimp_elimOne" (formula "106") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "11")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0")) + (rule "add_literals" (formula "90") (term "0,0")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "71") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0")) + (rule "add_literals" (formula "71") (term "1,1,0,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0")) + (rule "add_literals" (formula "71") (term "0,0")) + (rule "qeq_literals" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "70")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "98")) + (rule "mul_literals" (formula "87") (term "0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "87")) + (rule "mul_literals" (formula "87") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "87")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "4")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "mul_literals" (formula "78") (term "1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "87")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "33")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "56")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71")) + (rule "mul_literals" (formula "88") (term "0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "8")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_subsumption0" (formula "96") (ifseqformula "101")) + (rule "inEqSimp_homoInEq0" (formula "96") (term "0")) + (rule "polySimp_mulComm0" (formula "96") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "96") (term "1,0,0")) + (rule "mul_literals" (formula "96") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "96") (term "0,0")) + (rule "polySimp_addComm1" (formula "96") (term "0,0,0")) + (rule "add_literals" (formula "96") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "96") (term "0,0")) + (rule "add_literals" (formula "96") (term "1,1,0,0")) + (rule "times_zero_1" (formula "96") (term "1,0,0")) + (rule "add_literals" (formula "96") (term "0,0")) + (rule "qeq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "95")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "71")) + (rule "leq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "77")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "151") (term "0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_elimSub" (formula "151") (term "1")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "151") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "151") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "151") (term "1")) + (rule "polySimp_addComm1" (formula "151") (term "0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "151")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "95")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "mul_literals" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "109") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0")) + (rule "add_literals" (formula "108") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "108") (term "1,0,0,0")) + (rule "add_literals" (formula "108") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "110")) + (rule "polySimp_mulLiterals" (formula "110") (term "0")) + (rule "polySimp_elimOne" (formula "110") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "1")) + (rule "polySimp_elimOne" (formula "101") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1")) + (rule "polySimp_rightDist" (formula "106") (term "1")) + (rule "mul_literals" (formula "106") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1")) + (rule "polySimp_elimOne" (formula "106") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "11")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "70")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "1,1,0,0")) + (rule "times_zero_1" (formula "88") (term "1,0,0")) + (rule "add_literals" (formula "88") (term "0,0")) + (rule "qeq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "63") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "93")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "67")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "69")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1")) + (rule "polySimp_elimOne" (formula "80") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "80") (term "0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0,0")) + (rule "mul_literals" (formula "80") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "qeq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "93")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "1")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0,0,0")) + (rule "add_literals" (formula "80") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "69")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "40")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "78")) + (rule "mul_literals" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "23")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "mul_literals" (formula "66") (term "1")) + (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "37")) + (rule "leq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "6")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "10")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "91")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "mul_literals" (formula "79") (term "1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "39")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "69")) + (rule "polySimp_rightDist" (formula "103") (term "0,0")) + (rule "mul_literals" (formula "103") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "add_literals" (formula "103") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_subsumption0" (formula "103") (ifseqformula "81")) + (rule "inEqSimp_homoInEq0" (formula "103") (term "0")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "103") (term "1,1,0,0")) + (rule "mul_literals" (formula "103") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "103") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "103") (term "0,0")) + (rule "add_literals" (formula "103") (term "1,1,0,0")) + (rule "times_zero_1" (formula "103") (term "1,0,0")) + (rule "add_literals" (formula "103") (term "0,0")) + (rule "qeq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "103") (term "0,0")) + (rule "mul_literals" (formula "103") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "add_literals" (formula "103") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_subsumption0" (formula "103") (ifseqformula "61")) + (rule "leq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "45")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "28")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0")) + (rule "polySimp_addComm0" (formula "98") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "98") (term "0")) + (rule "add_literals" (formula "98") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "99") (term "0,0")) + (rule "polySimp_addComm0" (formula "99") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "99")) + (rule "polySimp_mulLiterals" (formula "99") (term "0")) + (rule "polySimp_elimOne" (formula "99") (term "0")) + (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "0")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0,0")) + (rule "mul_literals" (formula "99") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0,0")) + (rule "polySimp_addComm1" (formula "99") (term "0,0,0")) + (rule "add_literals" (formula "99") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0")) + (rule "add_literals" (formula "99") (term "1,1,0,0")) + (rule "times_zero_1" (formula "99") (term "1,0,0")) + (rule "add_literals" (formula "99") (term "0,0")) + (rule "qeq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "69")) + (rule "polySimp_mulComm0" (formula "99") (term "0,0")) + (rule "polySimp_addComm0" (formula "99") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "99")) + (rule "polySimp_mulLiterals" (formula "99") (term "0")) + (rule "polySimp_elimOne" (formula "99") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "104") (term "0,0")) + (rule "mul_literals" (formula "104") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "1,1,0,0")) + (rule "times_zero_1" (formula "104") (term "1,0,0")) + (rule "add_zero_right" (formula "104") (term "0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "81")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addComm0" (formula "98") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "polySimp_elimOne" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "75")) + (rule "polySimp_rightDist" (formula "104") (term "0,0")) + (rule "mul_literals" (formula "104") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "102")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "78")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0")) + (rule "mul_literals" (formula "70") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "mul_literals" (formula "70") (term "1")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "39")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "74")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addComm0" (formula "98") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "polySimp_elimOne" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "43") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "43")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "69")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "add_literals" (formula "83") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "inEqSimp_subsumption0" (formula "83") (ifseqformula "27")) + (rule "leq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "9")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "add_literals" (formula "83") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "mul_literals" (formula "83") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "83")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "43")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_and_subsumption2" (formula "53") (term "0,0,0,0")) + (rule "leq_literals" (formula "53") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "38")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81")) + (rule "times_zero_1" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "mul_literals" (formula "71") (term "0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "99")) + (rule "times_zero_1" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "1")) + (rule "polySimp_elimOne" (formula "72") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "105")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "72")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "71") (ifseqformula "37")) + (rule "qeq_literals" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "closeFalse" (formula "71")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "151")) + (rule "translateJavaSubInt" (formula "151") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "151") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "151") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "151") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "151") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "151") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "151") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "151") (term "0,0,1,0")) + (rule "widening_identity_cast_5" (formula "151") (term "1")) + (rule "assignment" (formula "151") (term "1")) + (builtin "One Step Simplification" (formula "151")) + (builtin "Use Operation Contract" (formula "151") (newnames "heapBefore_copy_nonoverlapping_0,exc_17,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "117")) + (builtin "One Step Simplification" (formula "153")) + (builtin "Block Contract (Internal)" (formula "153") (newnames "exc_18,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "154")) + (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "eqSymm" (formula "157") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "117") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0")) + (rule "polySimp_elimSub" (formula "117") (term "2,1,0")) + (rule "mul_literals" (formula "117") (term "1,2,1,0")) + (rule "polySimp_addAssoc" (formula "119") (term "3,1,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "0,3,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,1,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,1,1,0")) + (rule "add_zero_right" (formula "119") (term "3,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "119") (term "3,1,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,1,1,0")) + (rule "add_literals" (formula "119") (term "3,1,1,0")) + (rule "polySimp_addAssoc" (formula "119") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "0,3,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,0,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,0,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,0,1,0")) + (rule "add_zero_right" (formula "119") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "3,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "119") (term "0,3,0,1,0")) + (rule "add_literals" (formula "119") (term "1,1,0,3,0,1,0")) + (rule "times_zero_1" (formula "119") (term "1,0,3,0,1,0")) + (rule "add_zero_right" (formula "119") (term "0,3,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "117") (term "0,2,1,0")) + (rule "add_literals" (formula "117") (term "1,1,0,2,1,0")) + (rule "times_zero_1" (formula "117") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "117") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "117") (term "0,0,2,1,0")) + (rule "add_literals" (formula "117") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "117") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "117") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "157") (term "1")) + (rule "variableDeclaration" (formula "157") (term "1") (newnames "exc_18_1")) + (rule "assignment" (formula "157") (term "1")) + (builtin "One Step Simplification" (formula "157")) + (rule "emptyStatement" (formula "157") (term "1")) + (builtin "One Step Simplification" (formula "157")) + (rule "emptyStatement" (formula "157") (term "1")) + (rule "commute_and" (formula "119") (term "0,0")) + (rule "commute_and" (formula "118") (term "0,0,0")) + (rule "commute_and" (formula "118") (term "1,0,0")) + (rule "shift_paren_and" (formula "118") (term "0,0")) + (rule "commute_and_2" (formula "118") (term "0,0,0")) + (rule "tryEmpty" (formula "157") (term "1")) + (rule "blockEmptyLabel" (formula "157") (term "1")) + (rule "blockEmpty" (formula "157") (term "1")) + (rule "methodCallEmpty" (formula "157") (term "1")) + (rule "emptyModality" (formula "157") (term "1")) + (rule "andRight" (formula "157")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "157")) + (rule "closeTrue" (formula "157")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "157")) + (rule "closeTrue" (formula "157")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "153")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "153") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "153")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "153")) + (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "117")) + (rule "wellFormedAnonEQ" (formula "154") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "154") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "154") (term "0,0")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "translateJavaSubInt" (formula "117") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0")) + (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111"))) + (rule "closeTrue" (formula "156")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "118")) + (builtin "One Step Simplification" (formula "154")) + (rule "expand_inInt" (formula "117") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "117") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "117") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "117") (term "1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,1") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,1,1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "119")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "translateJavaSubInt" (formula "117") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,2,1,0")) + (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "122")) + (rule "true_left" (formula "122")) + (rule "polySimp_elimSub" (formula "117") (term "2,1,0")) + (rule "mul_literals" (formula "117") (term "1,2,1,0")) + (rule "polySimp_addAssoc" (formula "119") (term "3,1,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "0,3,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,1,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,1,1,0")) + (rule "add_zero_right" (formula "119") (term "3,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "119") (term "3,1,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,1,1,0")) + (rule "add_literals" (formula "119") (term "3,1,1,0")) + (rule "polySimp_addAssoc" (formula "119") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "0,3,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "119") (term "3,0,1,0")) + (rule "add_literals" (formula "119") (term "1,1,3,0,1,0")) + (rule "times_zero_1" (formula "119") (term "1,3,0,1,0")) + (rule "add_zero_right" (formula "119") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "119") (term "3,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "119") (term "0,3,0,1,0")) + (rule "add_literals" (formula "119") (term "1,1,0,3,0,1,0")) + (rule "times_zero_1" (formula "119") (term "1,0,3,0,1,0")) + (rule "add_zero_right" (formula "119") (term "0,3,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "117") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "117") (term "1,1,0,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "117") (term "1,0,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "117") (term "0,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "117") (term "2,1,0")) + (rule "add_literals" (formula "117") (term "1,1,2,1,0")) + (rule "times_zero_1" (formula "117") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "117") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "119") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0")) + (rule "commute_and" (formula "119") (term "0,0")) + (rule "elim_double_block_2" (formula "159") (term "1")) + (rule "commute_and" (formula "118") (term "0,0,0")) + (rule "commute_and" (formula "118") (term "1,0,0")) + (rule "shift_paren_and" (formula "118") (term "0,0")) + (rule "commute_and_2" (formula "118") (term "0,0,0")) + (rule "ifUnfold" (formula "159") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "159") (term "1") (newnames "x_23")) + (rule "inequality_comparison_simple" (formula "159") (term "1")) + (builtin "One Step Simplification" (formula "159")) + (rule "replace_known_left" (formula "159") (term "0,0,1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "159")) + (builtin "Use Dependency Contract" (formula "110") (term "1,0") (ifInst "" (formula "49") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "124") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "124") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "124") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "124") (term "0,1,1,0,0,0")) + (rule "replace_known_right" (formula "124") (term "0,0,0,0,0,0,0") (ifseqformula "158")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "24")) (ifInst "" (formula "18")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "76")) (ifInst "" (formula "30"))) + (rule "disjointDefinition" (formula "124") (term "1,0")) + (rule "disjointWithSingleton1" (formula "124") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "124") (term "0,1,0")) + (rule "replace_known_right" (formula "124") (term "0,0,0,1,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "124")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,1,0")) + (rule "replace_known_left" (formula "124") (term "0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "124")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0")) + (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "124")) + (rule "applyEq" (formula "124") (term "1,0") (ifseqformula "42")) + (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "124")) + (rule "applyEq" (formula "110") (term "1,0") (ifseqformula "124")) + (rule "ifSplit" (formula "160")) + (branch "if x_23 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_23 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "160") (term "1")) + (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_19,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "161")) + (rule "eqSymm" (formula "161") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "161") (term "1")) + (rule "variableDeclaration" (formula "161") (term "1") (newnames "exc_19_1")) + (rule "assignment" (formula "161") (term "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "emptyStatement" (formula "161") (term "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "emptyStatement" (formula "161") (term "1")) + (rule "tryEmpty" (formula "161") (term "1")) + (rule "blockEmptyLabel" (formula "161") (term "1")) + (rule "blockEmpty" (formula "161") (term "1")) + (rule "methodCallEmpty" (formula "161") (term "1")) + (rule "emptyModality" (formula "161") (term "1")) + (rule "andRight" (formula "161")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "161")) + (rule "closeTrue" (formula "161")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "161")) + (rule "closeTrue" (formula "161")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "160")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "160")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "160")) + (rule "wellFormedAnonEQ" (formula "160") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "160") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "160") (term "0,0")) + (rule "replace_known_left" (formula "160") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111"))) + (rule "closeTrue" (formula "160")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "161")) + (builtin "One Step Simplification" (formula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,1,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "translateJavaAddInt" (formula "130") (term "4,0")) + (rule "translateJavaAddInt" (formula "128") (term "3,0")) + (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "126")) + (rule "true_left" (formula "126")) + (rule "polySimp_addAssoc" (formula "129") (term "4,0")) + (rule "polySimp_addComm1" (formula "129") (term "0,4,0")) + (rule "polySimp_pullOutFactor1b" (formula "129") (term "4,0")) + (rule "add_literals" (formula "129") (term "1,1,4,0")) + (rule "times_zero_1" (formula "129") (term "1,4,0")) + (rule "add_zero_right" (formula "129") (term "4,0")) + (rule "polySimp_addComm1" (formula "129") (term "4,0")) + (rule "polySimp_pullOutFactor2b" (formula "129") (term "0,4,0")) + (rule "add_literals" (formula "129") (term "1,1,0,4,0")) + (rule "times_zero_1" (formula "129") (term "1,0,4,0")) + (rule "add_zero_right" (formula "129") (term "0,4,0")) + (rule "polySimp_addAssoc" (formula "127") (term "3,0")) + (rule "polySimp_addComm1" (formula "127") (term "0,3,0")) + (rule "polySimp_pullOutFactor1b" (formula "127") (term "3,0")) + (rule "add_literals" (formula "127") (term "1,1,3,0")) + (rule "times_zero_1" (formula "127") (term "1,3,0")) + (rule "add_zero_right" (formula "127") (term "3,0")) + (rule "polySimp_addComm1" (formula "127") (term "3,0")) + (rule "polySimp_pullOutFactor2b" (formula "127") (term "0,3,0")) + (rule "add_literals" (formula "127") (term "1,1,0,3,0")) + (rule "times_zero_1" (formula "127") (term "1,0,3,0")) + (rule "add_zero_right" (formula "127") (term "0,3,0")) + (rule "elim_double_block_2" (formula "166") (term "1")) + (rule "ifUnfold" (formula "166") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "166") (term "1") (newnames "x_24")) + (rule "inequality_comparison_simple" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "replace_known_left" (formula "166") (term "0,0,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "166")) + (rule "ifSplit" (formula "166")) + (branch "if x_24 true" + (builtin "One Step Simplification" (formula "167")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_24 false" + (builtin "One Step Simplification" (formula "167")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "166") (term "1")) + (builtin "Block Contract (Internal)" (formula "166") (newnames "exc_20,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "167")) + (rule "eqSymm" (formula "167") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "167") (term "1")) + (rule "variableDeclaration" (formula "167") (term "1") (newnames "exc_20_1")) + (rule "assignment" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "emptyStatement" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "emptyStatement" (formula "167") (term "1")) + (rule "tryEmpty" (formula "167") (term "1")) + (rule "blockEmptyLabel" (formula "167") (term "1")) + (rule "blockEmpty" (formula "167") (term "1")) + (rule "methodCallEmpty" (formula "167") (term "1")) + (rule "emptyModality" (formula "167") (term "1")) + (rule "andRight" (formula "167")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "167")) + (rule "closeTrue" (formula "167")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "167")) + (rule "closeTrue" (formula "167")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "166")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "166") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "166")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "166")) + (rule "wellFormedAnonEQ" (formula "166") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "166") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "166") (term "0,0")) + (rule "replace_known_left" (formula "166") (term "1,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "166") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "116"))) + (rule "closeTrue" (formula "166")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "167")) + (builtin "One Step Simplification" (formula "131")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,0") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,1,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "131")) + (rule "replace_known_left" (formula "132") (term "0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "132")) + (rule "true_left" (formula "132")) + (rule "elim_double_block_2" (formula "169") (term "1")) + (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_25")) + (rule "inequality_comparison_simple" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "169")) + (rule "ifSplit" (formula "169")) + (branch "if x_25 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_25 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (builtin "Block Contract (Internal)" (formula "169") (newnames "exc_21,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "170")) + (rule "eqSymm" (formula "170") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "170") (term "1")) + (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_21_1")) + (rule "assignment" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (rule "tryEmpty" (formula "170") (term "1")) + (rule "blockEmptyLabel" (formula "170") (term "1")) + (rule "blockEmpty" (formula "170") (term "1")) + (rule "methodCallEmpty" (formula "170") (term "1")) + (rule "emptyModality" (formula "170") (term "1")) + (rule "andRight" (formula "170")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "169")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "169")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "169")) + (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "169") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "169") (term "0,0")) + (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111"))) + (rule "closeTrue" (formula "169")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "170")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (term "1,1,0") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "134") (term "0,1,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "134")) + (rule "expand_inInt" (formula "134") (term "0,0,1")) + (rule "replace_int_MIN" (formula "134") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "134") (term "1,0,0,0,1")) + (rule "andLeft" (formula "134")) + (rule "andLeft" (formula "134")) + (rule "translateJavaAddInt" (formula "136") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "136") (term "2,0,1,1,0")) + (rule "replace_known_left" (formula "135") (term "0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "135")) + (rule "true_left" (formula "135")) + (rule "polySimp_addComm0" (formula "135") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "135") (term "2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "135") (term "0,2,1,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "135") (term "2,1,1,1,0")) + (rule "add_literals" (formula "135") (term "1,1,2,1,1,1,0")) + (rule "times_zero_1" (formula "135") (term "1,2,1,1,1,0")) + (rule "add_zero_right" (formula "135") (term "2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "135") (term "2,1,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "135") (term "0,2,1,1,1,0")) + (rule "add_literals" (formula "135") (term "1,1,0,2,1,1,1,0")) + (rule "times_zero_1" (formula "135") (term "1,0,2,1,1,1,0")) + (rule "add_zero_right" (formula "135") (term "0,2,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "135") (term "1,0,0")) + (rule "commute_and" (formula "135") (term "0,0")) + (rule "elim_double_block_2" (formula "171") (term "1")) + (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_26")) + (rule "inequality_comparison_simple" (formula "171") (term "1")) + (builtin "One Step Simplification" (formula "171")) + (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "171")) + (rule "ifSplit" (formula "171")) + (branch "if x_26 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_26 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "171") (term "1")) + (builtin "Block Contract (Internal)" (formula "171") (newnames "exc_22,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "172")) + (rule "eqSymm" (formula "172") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "172") (term "1")) + (rule "variableDeclaration" (formula "172") (term "1") (newnames "exc_22_1")) + (rule "assignment" (formula "172") (term "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "emptyStatement" (formula "172") (term "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "emptyStatement" (formula "172") (term "1")) + (rule "tryEmpty" (formula "172") (term "1")) + (rule "blockEmptyLabel" (formula "172") (term "1")) + (rule "blockEmpty" (formula "172") (term "1")) + (rule "methodCallEmpty" (formula "172") (term "1")) + (rule "emptyModality" (formula "172") (term "1")) + (rule "andRight" (formula "172")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "172")) + (rule "closeTrue" (formula "172")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "172")) + (rule "closeTrue" (formula "172")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "171")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "171")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "171")) + (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "171") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "171") (term "0,0")) + (rule "replace_known_left" (formula "171") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111"))) + (rule "closeTrue" (formula "171")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "136")) + (builtin "One Step Simplification" (formula "172")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "136") (term "1,1,0") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "136") (term "0,1,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "136")) + (rule "andLeft" (formula "136")) + (rule "andLeft" (formula "137")) + (rule "andLeft" (formula "136")) + (rule "andLeft" (formula "138")) + (rule "translateJavaAddInt" (formula "140") (term "3,0")) + (rule "replace_known_left" (formula "137") (term "0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "137")) + (rule "true_left" (formula "137")) + (rule "polySimp_addAssoc" (formula "139") (term "3,0")) + (rule "polySimp_addComm1" (formula "139") (term "0,3,0")) + (rule "polySimp_pullOutFactor1b" (formula "139") (term "3,0")) + (rule "add_literals" (formula "139") (term "1,1,3,0")) + (rule "times_zero_1" (formula "139") (term "1,3,0")) + (rule "add_zero_right" (formula "139") (term "3,0")) + (rule "polySimp_addComm1" (formula "139") (term "3,0")) + (rule "polySimp_pullOutFactor2b" (formula "139") (term "0,3,0")) + (rule "add_literals" (formula "139") (term "1,1,0,3,0")) + (rule "times_zero_1" (formula "139") (term "1,0,3,0")) + (rule "add_zero_right" (formula "139") (term "0,3,0")) + (rule "elim_double_block_2" (formula "175") (term "1")) + (rule "ifUnfold" (formula "175") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "175") (term "1") (newnames "x_27")) + (rule "inequality_comparison_simple" (formula "175") (term "1")) + (builtin "One Step Simplification" (formula "175")) + (rule "replace_known_left" (formula "175") (term "0,0,1,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "175")) + (rule "ifSplit" (formula "175")) + (branch "if x_27 true" + (builtin "One Step Simplification" (formula "176")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_27 false" + (builtin "One Step Simplification" (formula "176")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "175") (term "1")) + (rule "assignment" (formula "175") (term "1")) + (builtin "One Step Simplification" (formula "175")) + (rule "blockEmpty" (formula "175") (term "1")) + (builtin "Block Contract (Internal)" (formula "175") (newnames "exc_23,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "176")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "29"))) + (rule "eqSymm" (formula "176") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "176") (term "1")) + (rule "variableDeclaration" (formula "176") (term "1") (newnames "exc_23_1")) + (rule "assignment" (formula "176") (term "1")) + (builtin "One Step Simplification" (formula "176")) + (rule "emptyStatement" (formula "176") (term "1")) + (builtin "One Step Simplification" (formula "176")) + (rule "emptyStatement" (formula "176") (term "1")) + (rule "tryEmpty" (formula "176") (term "1")) + (rule "blockEmptyLabel" (formula "176") (term "1")) + (rule "blockEmpty" (formula "176") (term "1")) + (rule "methodCallEmpty" (formula "176") (term "1")) + (rule "emptyModality" (formula "176") (term "1")) + (rule "andRight" (formula "176")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "176")) + (rule "closeTrue" (formula "176")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "176")) + (rule "closeTrue" (formula "176")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "175")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "175") (ifInst "" (formula "29"))) + (rule "closeTrue" (formula "175")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "175")) + (rule "wellFormedAnonEQ" (formula "175") (ifseqformula "117")) + (rule "wellFormedAnonEQ" (formula "175") (term "0") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "175") (term "0,0")) + (rule "replace_known_left" (formula "175") (term "1") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "175") (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "111"))) + (rule "closeTrue" (formula "175")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "176")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "122")) (ifInst "" (formula "123"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "1,1") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "0,1,1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "140")) + (rule "andLeft" (formula "140")) + (rule "replace_known_left" (formula "141") (term "0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "141")) + (rule "true_left" (formula "141")) + (rule "elim_double_block_2" (formula "176") (term "1")) + (rule "ifUnfold" (formula "176") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "176") (term "1") (newnames "x_28")) + (rule "inequality_comparison_simple" (formula "176") (term "1")) + (builtin "One Step Simplification" (formula "176")) + (rule "replace_known_left" (formula "176") (term "0,0,1,0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "176")) + (rule "ifSplit" (formula "176")) + (branch "if x_28 true" + (builtin "One Step Simplification" (formula "177")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_28 false" + (builtin "One Step Simplification" (formula "177")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "176") (term "1")) + (rule "emptyStatement" (formula "176") (term "1")) + (rule "tryEmpty" (formula "176") (term "1")) + (rule "blockEmptyLabel" (formula "176") (term "1")) + (rule "blockEmpty" (formula "176") (term "1")) + (rule "methodCallEmpty" (formula "176") (term "1")) + (rule "emptyModality" (formula "176") (term "1")) + (rule "andRight" (formula "176")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "176")) + (rule "closeTrue" (formula "176")) + ) + (branch "Case 2" + (rule "andRight" (formula "176")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "176") (ifInst "" (formula "122"))) + (rule "closeTrue" (formula "176")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "176") (ifInst "" (formula "123"))) + (rule "closeTrue" (formula "176")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "117")) + (builtin "One Step Simplification" (formula "153")) + (rule "andLeft" (formula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "1,0") (ifseqformula "117")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "0,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "notLeft" (formula "118")) + (rule "close" (formula "120") (ifseqformula "119")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "146")) (ifInst "" (formula "150")) (ifInst "" (formula "146")) (ifInst "" (formula "150"))) + (rule "andRight" (formula "151")) + (branch "Case 1" + (rule "andRight" (formula "151")) + (branch + (rule "andRight" (formula "151")) + (branch + (rule "andRight" (formula "151")) + (branch + (rule "andRight" (formula "151")) + (branch + (rule "wellFormedAnonEQ" (formula "151") (ifseqformula "112")) + (rule "wellFormedAnon" (formula "151") (term "0")) + (rule "replace_known_left" (formula "151") (term "1") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "18")) (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "151")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "151")) + ) + ) + (branch + (rule "expand_inInt" (formula "151")) + (rule "replace_int_MIN" (formula "151") (term "0,1")) + (rule "replace_int_MAX" (formula "151") (term "1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0")) + (rule "add_literals" (formula "92") (term "1,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0")) + (rule "add_zero_left" (formula "92") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "108")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "0,1,0")) + (rule "mul_literals" (formula "108") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "108") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "1")) + (rule "mul_literals" (formula "149") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "149") (term "0,1")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "0")) + (rule "polySimp_mulComm0" (formula "149") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "149") (term "0,0,1")) + (rule "add_literals" (formula "149") (term "0,0,0,1")) + (rule "polySimp_rightDist" (formula "106") (term "1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_rightDist" (formula "149") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "149") (term "0,1,0,0")) + (rule "mul_literals" (formula "149") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "149") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "149") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0,0")) + (rule "add_zero_right" (formula "106") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "149") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_zero_right" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "149") (term "0,0,0")) + (rule "add_literals" (formula "149") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "148") (term "1")) + (rule "polySimp_mulComm0" (formula "148") (term "1,1")) + (rule "polySimp_rightDist" (formula "148") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "148") (term "1,1,1")) + (rule "mul_literals" (formula "148") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "148") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "0")) + (rule "polySimp_elimOne" (formula "91") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "1")) + (rule "polySimp_elimOne" (formula "100") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1")) + (rule "polySimp_rightDist" (formula "105") (term "1")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1")) + (rule "mul_literals" (formula "105") (term "0,1")) + (rule "polySimp_elimOne" (formula "105") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "147") (term "0")) + (rule "polySimp_mulLiterals" (formula "147") (term "0,0")) + (rule "polySimp_elimOne" (formula "147") (term "0,0")) + (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0")) + (rule "add_zero_right" (formula "90") (term "0,0")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "10")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "141") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "0,0")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0,0")) + (rule "mul_literals" (formula "141") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,0,0")) + (rule "add_literals" (formula "141") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,0")) + (rule "add_literals" (formula "141") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "141") (term "1,0,0,0")) + (rule "add_zero_right" (formula "141") (term "0,0,0")) + (rule "qeq_literals" (formula "141") (term "0,0")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_geqRight" (formula "141")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_contradInEq0" (formula "99") (ifseqformula "1")) + (rule "andLeft" (formula "99")) + (rule "inEqSimp_homoInEq1" (formula "99")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0")) + (rule "mul_literals" (formula "99") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0")) + (rule "polySimp_addComm1" (formula "99") (term "0,0")) + (rule "add_literals" (formula "99") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "99") (term "0")) + (rule "add_literals" (formula "99") (term "1,1,0")) + (rule "times_zero_1" (formula "99") (term "1,0")) + (rule "add_literals" (formula "99") (term "0")) + (rule "leq_literals" (formula "99")) + (rule "closeFalse" (formula "99")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "151") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "151") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "151")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "151") (userinteraction)) + (rule "andRight" (formula "151")) + (branch + (rule "replace_int_MAX" (formula "151") (term "1")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "151")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "115") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0")) + (rule "add_literals" (formula "104") (term "1,0,0,0")) + (rule "times_zero_1" (formula "104") (term "0,0,0")) + (rule "add_zero_left" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "109") (term "0,0,0")) + (rule "add_literals" (formula "109") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "109") (term "1,0,0,0")) + (rule "add_literals" (formula "109") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "mul_literals" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "109") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0")) + (rule "add_literals" (formula "108") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "108") (term "1,0,0,0")) + (rule "add_literals" (formula "108") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "110")) + (rule "polySimp_mulLiterals" (formula "110") (term "0")) + (rule "polySimp_elimOne" (formula "110") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "107")) + (rule "polySimp_mulLiterals" (formula "107") (term "0")) + (rule "polySimp_elimOne" (formula "107") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1")) + (rule "polySimp_rightDist" (formula "106") (term "1")) + (rule "mul_literals" (formula "106") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1")) + (rule "polySimp_elimOne" (formula "106") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0")) + (rule "add_literals" (formula "90") (term "0,0")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "11")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "72")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "151") (term "0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "151")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "115") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "115") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "115") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "115") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0")) + (rule "add_literals" (formula "105") (term "1,0,0,0")) + (rule "times_zero_1" (formula "105") (term "0,0,0")) + (rule "add_zero_left" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0")) + (rule "add_literals" (formula "94") (term "1,0,0,0")) + (rule "times_zero_1" (formula "94") (term "0,0,0")) + (rule "add_zero_left" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "0,1,0")) + (rule "mul_literals" (formula "110") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "110") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "95")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "108") (term "0,0,0")) + (rule "add_literals" (formula "108") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "108") (term "1,0,0,0")) + (rule "add_literals" (formula "108") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "110")) + (rule "polySimp_mulLiterals" (formula "110") (term "0")) + (rule "polySimp_elimOne" (formula "110") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "113") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "113") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "113") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "1")) + (rule "polySimp_elimOne" (formula "103") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1")) + (rule "polySimp_rightDist" (formula "106") (term "1")) + (rule "mul_literals" (formula "106") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1")) + (rule "polySimp_elimOne" (formula "106") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "70")) + (rule "leq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0")) + (rule "add_literals" (formula "90") (term "0,0")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "11")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "94") (term "0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_addComm1" (formula "94") (term "0,0,0")) + (rule "add_literals" (formula "94") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0")) + (rule "add_literals" (formula "94") (term "1,1,0,0")) + (rule "times_zero_1" (formula "94") (term "1,0,0")) + (rule "add_literals" (formula "94") (term "0,0")) + (rule "qeq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "33")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "98")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "72")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "93")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "99")) + (rule "mul_literals" (formula "87") (term "0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "87")) + (rule "mul_literals" (formula "87") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "87")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "1")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "5")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71")) + (rule "mul_literals" (formula "88") (term "0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "95")) + (rule "mul_literals" (formula "68") (term "0,0")) + (rule "add_zero_left" (formula "68") (term "0")) + (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "68")) + (rule "leq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "57")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0")) + (rule "polySimp_addComm0" (formula "98") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "98") (term "0")) + (rule "add_literals" (formula "98") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "89")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "35")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "99") (term "0,0")) + (rule "polySimp_addComm0" (formula "99") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "99")) + (rule "polySimp_mulLiterals" (formula "99") (term "0")) + (rule "polySimp_elimOne" (formula "99") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "64")) + (rule "mul_literals" (formula "70") (term "0,0")) + (rule "add_zero_left" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "41")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "66")) + (rule "mul_literals" (formula "82") (term "0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "0")) + (rule "polySimp_elimOne" (formula "82") (term "0")) + (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "24")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_rightDist" (formula "6") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "41")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "8")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "add_literals" (formula "83") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "mul_literals" (formula "83") (term "1")) + (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "92")) + (rule "leq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "81")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "6")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "73")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1")) + (rule "polySimp_rightDist" (formula "83") (term "1")) + (rule "mul_literals" (formula "83") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,1")) + (rule "polySimp_elimOne" (formula "83") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "83") (term "0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0")) + (rule "add_literals" (formula "83") (term "0,0")) + (rule "qeq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "105") (term "0,0")) + (rule "mul_literals" (formula "105") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "105") (term "0,0")) + (rule "add_literals" (formula "105") (term "1,1,0,0")) + (rule "times_zero_1" (formula "105") (term "1,0,0")) + (rule "add_zero_right" (formula "105") (term "0,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "add_literals" (formula "105") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "105")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "105") (term "0,0")) + (rule "mul_literals" (formula "105") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "add_literals" (formula "105") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_subsumption0" (formula "105") (ifseqformula "61")) + (rule "leq_literals" (formula "105") (term "0")) + (builtin "One Step Simplification" (formula "105")) + (rule "true_left" (formula "105")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1")) + (rule "polySimp_rightDist" (formula "69") (term "1")) + (rule "mul_literals" (formula "69") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "77")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0,0")) + (rule "add_literals" (formula "69") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "73")) + (rule "polySimp_rightDist" (formula "105") (term "0,0")) + (rule "mul_literals" (formula "105") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "mul_literals" (formula "69") (term "1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "38")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "106") (term "0,0")) + (rule "mul_literals" (formula "106") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0")) + (rule "polySimp_addAssoc" (formula "106") (term "0,0")) + (rule "add_literals" (formula "106") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_subsumption0" (formula "106") (ifseqformula "79")) + (rule "inEqSimp_homoInEq0" (formula "106") (term "0")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0,0")) + (rule "mul_literals" (formula "106") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "106") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "106") (term "0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0")) + (rule "add_literals" (formula "106") (term "0,0")) + (rule "qeq_literals" (formula "106") (term "0")) + (builtin "One Step Simplification" (formula "106")) + (rule "true_left" (formula "106")) + (rule "inEqSimp_and_subsumption2" (formula "53") (term "0,0,0,0")) + (rule "leq_literals" (formula "53") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "79")) + (rule "mul_literals" (formula "90") (term "0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0")) + (rule "add_literals" (formula "90") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "90")) + (rule "polySimp_mulLiterals" (formula "90") (term "0")) + (rule "polySimp_elimOne" (formula "90") (term "0")) + (rule "inEqSimp_subsumption0" (formula "90") (ifseqformula "27")) + (rule "leq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "105")) + (rule "mul_literals" (formula "90") (term "0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "90")) + (rule "polySimp_mulComm0" (formula "90") (term "1")) + (rule "polySimp_rightDist" (formula "90") (term "1")) + (rule "polySimp_mulLiterals" (formula "90") (term "1,1")) + (rule "mul_literals" (formula "90") (term "0,1")) + (rule "polySimp_elimOne" (formula "90") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "90") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "90") (term "0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0")) + (rule "add_literals" (formula "90") (term "0,0")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "105")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "mul_literals" (formula "71") (term "0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "98")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "1")) + (rule "polySimp_elimOne" (formula "72") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "4")) + (rule "mul_literals" (formula "73") (term "0,0")) + (rule "add_zero_left" (formula "73") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "73")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "39") (term "0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0")) + (rule "qeq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "104")) + (rule "times_zero_1" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "mul_literals" (formula "71") (term "1")) + (rule "inEqSimp_subsumption1" (formula "92") (ifseqformula "71")) + (rule "leq_literals" (formula "92") (term "0")) + (builtin "One Step Simplification" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "105")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "72")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + ) + ) + (branch + (rule "expand_inInt" (formula "151")) + (rule "replace_int_MIN" (formula "151") (term "0,1")) + (rule "replace_int_MAX" (formula "151") (term "1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "116")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0,0")) + (rule "add_literals" (formula "111") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "111") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0")) + (rule "add_literals" (formula "104") (term "1,0,0,0")) + (rule "times_zero_1" (formula "104") (term "0,0,0")) + (rule "add_zero_left" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0")) + (rule "add_literals" (formula "92") (term "1,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0")) + (rule "add_zero_left" (formula "92") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "0,1,0")) + (rule "mul_literals" (formula "107") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_mulComm0" (formula "91") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "1")) + (rule "mul_literals" (formula "149") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "149") (term "0,1")) + (rule "polySimp_addComm0" (formula "149") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "149") (term "0")) + (rule "polySimp_mulComm0" (formula "149") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "91") (term "1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_rightDist" (formula "149") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "149") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "149") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "149") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0,0")) + (rule "add_zero_right" (formula "106") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "149") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_zero_right" (formula "107") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "112") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "112") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "112") (term "0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "112") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "149") (term "1")) + (rule "polySimp_mulLiterals" (formula "149") (term "0,1")) + (rule "polySimp_elimOne" (formula "149") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "147") (term "0")) + (rule "polySimp_mulComm0" (formula "147") (term "1,0")) + (rule "polySimp_rightDist" (formula "147") (term "1,0")) + (rule "mul_literals" (formula "147") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "147") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "147") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1")) + (rule "polySimp_rightDist" (formula "105") (term "1")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1")) + (rule "mul_literals" (formula "105") (term "0,1")) + (rule "polySimp_elimOne" (formula "105") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "10")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption0" (formula "146") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "146") (term "0,1")) + (rule "polySimp_mulComm0" (formula "146") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "146") (term "1,0,0,1")) + (rule "mul_literals" (formula "146") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "146") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "146") (term "0,0,0,1")) + (rule "add_literals" (formula "146") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "146") (term "0,0,1")) + (rule "add_literals" (formula "146") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "146") (term "1,0,0,1")) + (rule "add_zero_right" (formula "146") (term "0,0,1")) + (rule "qeq_literals" (formula "146") (term "0,1")) + (builtin "One Step Simplification" (formula "146")) + (rule "inEqSimp_geqRight" (formula "146")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "88") (term "0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "1,1,0,0")) + (rule "times_zero_1" (formula "88") (term "1,0,0")) + (rule "add_literals" (formula "88") (term "0,0")) + (rule "qeq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "98") (ifseqformula "1")) + (rule "andLeft" (formula "98")) + (rule "inEqSimp_homoInEq1" (formula "98")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0")) + (rule "mul_literals" (formula "98") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0")) + (rule "polySimp_addComm1" (formula "98") (term "0,0")) + (rule "add_literals" (formula "98") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "98") (term "0")) + (rule "add_literals" (formula "98") (term "1,1,0")) + (rule "times_zero_1" (formula "98") (term "1,0")) + (rule "add_literals" (formula "98") (term "0")) + (rule "leq_literals" (formula "98")) + (rule "closeFalse" (formula "98")) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "148")) + (rule "andLeft" (formula "112")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "notLeft" (formula "113")) + (rule "close" (formula "115") (ifseqformula "114")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "141")) (ifInst "" (formula "145")) (ifInst "" (formula "75")) (ifInst "" (formula "141")) (ifInst "" (formula "28")) (ifInst "" (formula "145")) (ifInst "" (formula "19"))) + (rule "expand_inInt" (formula "146") (term "1")) + (rule "expand_inInt" (formula "146") (term "1,0")) + (rule "expand_inInt" (formula "146") (term "0,0")) + (rule "replace_int_MIN" (formula "146") (term "0,1,1")) + (rule "replace_int_MAX" (formula "146") (term "1,0,1")) + (rule "replace_int_MAX" (formula "146") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "146") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "146") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "146") (term "0,1,0,0")) + (rule "leq_literals" (formula "146") (term "0,0,0")) + (builtin "One Step Simplification" (formula "146")) + (rule "leq_literals" (formula "146") (term "0,0")) + (builtin "One Step Simplification" (formula "146")) + (rule "polySimp_homoEq" (formula "49") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "inEqSimp_leqRight" (formula "111")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0,0")) + (rule "add_literals" (formula "111") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "111") (term "0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "0,1,0")) + (rule "mul_literals" (formula "107") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "144") (term "1,0")) + (rule "mul_literals" (formula "144") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "144") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "144") (term "0,0,1,0")) + (rule "add_literals" (formula "144") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "144") (term "1,1")) + (rule "mul_literals" (formula "144") (term "1,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "144") (term "0,1")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "144") (term "0,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "144") (term "0,1,1")) + (rule "polySimp_addComm1" (formula "144") (term "0,0,1,1")) + (rule "add_literals" (formula "144") (term "0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "144") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "144") (term "1,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "144") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "1,0,0,0")) + (rule "add_literals" (formula "106") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,1")) + (rule "add_literals" (formula "144") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,0,0")) + (rule "add_literals" (formula "144") (term "0,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1,0")) + (rule "polySimp_mulComm0" (formula "142") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "142") (term "1,1,0")) + (rule "mul_literals" (formula "142") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1,1")) + (rule "polySimp_mulComm0" (formula "142") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "142") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "142") (term "1,1,1,1")) + (rule "mul_literals" (formula "142") (term "0,1,1,1")) + (rule "polySimp_elimOne" (formula "142") (term "1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "1")) + (rule "polySimp_elimOne" (formula "100") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1")) + (rule "polySimp_rightDist" (formula "105") (term "1")) + (rule "mul_literals" (formula "105") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1")) + (rule "polySimp_elimOne" (formula "105") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "142") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "142") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "142") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "142") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "69")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "10")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_zero_right" (formula "68") (term "0,0")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "136") (term "1,1") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "136") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "136") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "136") (term "1,0,0,1,1")) + (rule "mul_literals" (formula "136") (term "0,1,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "136") (term "0,0,1,1")) + (rule "polySimp_addComm1" (formula "136") (term "0,0,0,1,1")) + (rule "add_literals" (formula "136") (term "0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "136") (term "0,0,1,1")) + (rule "add_literals" (formula "136") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "136") (term "1,0,0,1,1")) + (rule "add_zero_right" (formula "136") (term "0,0,1,1")) + (rule "qeq_literals" (formula "136") (term "0,1,1")) + (builtin "One Step Simplification" (formula "136")) + (rule "inEqSimp_subsumption0" (formula "84") (ifseqformula "98")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,0")) + (rule "mul_literals" (formula "84") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0")) + (rule "add_zero_right" (formula "84") (term "0,0")) + (rule "qeq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_subsumption0" (formula "135") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "135") (term "0,1")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "135") (term "1,0,0,1")) + (rule "mul_literals" (formula "135") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "135") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "135") (term "0,0,0,1")) + (rule "add_literals" (formula "135") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "135") (term "0,0,1")) + (rule "add_literals" (formula "135") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "135") (term "1,0,0,1")) + (rule "add_zero_right" (formula "135") (term "0,0,1")) + (rule "qeq_literals" (formula "135") (term "0,1")) + (builtin "One Step Simplification" (formula "135")) + (rule "inEqSimp_subsumption0" (formula "135") (term "0") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "135") (term "0,0")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "135") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "135") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "135") (term "0,0,0,0")) + (rule "add_literals" (formula "135") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "135") (term "0,0,0")) + (rule "add_literals" (formula "135") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "135") (term "1,0,0,0")) + (rule "add_zero_right" (formula "135") (term "0,0,0")) + (rule "qeq_literals" (formula "135") (term "0,0")) + (builtin "One Step Simplification" (formula "135")) + (rule "inEqSimp_geqRight" (formula "135")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0")) + (rule "add_literals" (formula "75") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "3")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "1")) + (rule "mul_literals" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "56")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "2")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "7")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addComm1" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "67")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "57")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_rightDist" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "98")) + (rule "mul_literals" (formula "87") (term "0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "87")) + (rule "mul_literals" (formula "87") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "87")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "40")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "93")) + (rule "mul_literals" (formula "70") (term "0,0")) + (rule "add_zero_left" (formula "70") (term "0")) + (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "70")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "mul_literals" (formula "68") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "35")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "86")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "36")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "98")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "76")) + (rule "inEqSimp_homoInEq0" (formula "67") (term "0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0,0")) + (rule "mul_literals" (formula "67") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0,0,0")) + (rule "add_literals" (formula "67") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "qeq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "75")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "if x_17 false" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationAssign" (formula "141") (term "1")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "overflow_len")) + (rule "assignmentSubtractionInt" (formula "141") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "141")) + (rule "expand_inInt" (formula "141")) + (rule "replace_int_MIN" (formula "141") (term "0,1")) + (rule "replace_int_MAX" (formula "141") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_elimSub" (formula "141") (term "1,1")) + (rule "polySimp_elimSub" (formula "141") (term "0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "141") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "141") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "141") (term "0,1,1,1")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "141") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "inEqSimp_leqRight" (formula "106")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "106")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "141") (term "1,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,1,1")) + (rule "add_literals" (formula "141") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "141") (term "0,0,1,1")) + (rule "add_zero_left" (formula "141") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,0,0")) + (rule "add_literals" (formula "141") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "141") (term "0,0,0,0")) + (rule "add_zero_left" (formula "141") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0,0,0")) + (rule "add_literals" (formula "104") (term "1,0,0,0")) + (rule "times_zero_1" (formula "104") (term "0,0,0")) + (rule "add_zero_left" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_mulComm0" (formula "91") (term "1,0")) + (rule "polySimp_rightDist" (formula "91") (term "1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0,0")) + (rule "add_literals" (formula "91") (term "1,0,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0,0")) + (rule "add_zero_left" (formula "91") (term "0,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0")) + (rule "add_literals" (formula "101") (term "1,0,0,0")) + (rule "times_zero_1" (formula "101") (term "0,0,0")) + (rule "add_zero_left" (formula "101") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "139") (term "1")) + (rule "mul_literals" (formula "139") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "139") (term "0,1")) + (rule "polySimp_addComm0" (formula "139") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "139") (term "0")) + (rule "polySimp_mulComm0" (formula "139") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "139") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "139") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "139") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "139") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "139") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "99")) + (rule "polySimp_mulLiterals" (formula "99") (term "0")) + (rule "polySimp_elimOne" (formula "99") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "1")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,1")) + (rule "polySimp_elimOne" (formula "137") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "137") (term "0")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0")) + (rule "polySimp_rightDist" (formula "137") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0")) + (rule "mul_literals" (formula "137") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "137") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "133") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "133") (term "0,1")) + (rule "polySimp_mulComm0" (formula "133") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "133") (term "1,0,0,1")) + (rule "mul_literals" (formula "133") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "133") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "133") (term "0,0,0,1")) + (rule "add_literals" (formula "133") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "133") (term "0,0,1")) + (rule "add_literals" (formula "133") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "133") (term "1,0,0,1")) + (rule "add_zero_right" (formula "133") (term "0,0,1")) + (rule "qeq_literals" (formula "133") (term "0,1")) + (builtin "One Step Simplification" (formula "133")) + (rule "inEqSimp_geqRight" (formula "133")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "11")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "qeq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "94")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "67")) + (rule "leq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "39")) + (rule "mul_literals" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "35")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "0,0,0")) + (rule "add_zero_left" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "65")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "88")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "34")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "65")) + (rule "mul_literals" (formula "81") (term "0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "0")) + (rule "polySimp_elimOne" (formula "81") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "23")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "71")) + (rule "mul_literals" (formula "81") (term "0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1")) + (rule "polySimp_elimOne" (formula "81") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "36")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0")) + (rule "add_literals" (formula "81") (term "1,1,0,0")) + (rule "times_zero_1" (formula "81") (term "1,0,0")) + (rule "add_literals" (formula "81") (term "0,0")) + (rule "qeq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "2")) + (rule "mul_literals" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "36")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0")) + (rule "add_literals" (formula "58") (term "0,0")) + (rule "qeq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "6")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "72")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0")) + (rule "mul_literals" (formula "68") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "1")) + (rule "mul_literals" (formula "81") (term "0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "0,0")) + (rule "add_zero_left" (formula "81") (term "0")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "81")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "95")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "36")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "87")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "8")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "41")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_subsumption0" (formula "87") (ifseqformula "97")) + (rule "inEqSimp_homoInEq0" (formula "87") (term "0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "qeq_literals" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87")) + (rule "true_left" (formula "87")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "3")) + (rule "times_zero_1" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "71")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "4")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "mul_literals" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "71")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "63")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "95")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "96")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "add_zero_left" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "63")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "64")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "5")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "mul_literals" (formula "71") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "56") (ifseqformula "71")) + (rule "qeq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "closeFalse" (formula "56")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "141")) + (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_14,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "28")) (ifInst "" (formula "74"))) + (builtin "One Step Simplification" (formula "142")) + (rule "true_left" (formula "105")) + (rule "translateJavaSubInt" (formula "141") (term "0,1,0,0")) + (rule "eqSymm" (formula "141") (term "0,0,1,0,1")) + (rule "polySimp_elimSub" (formula "141") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "141") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "141") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "141") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "141") (term "1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "141") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "141") (term "0,0,1,0,0")) + (rule "variableDeclarationAssign" (formula "141") (term "1")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_14_1")) + (rule "assignment" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "tryEmpty" (formula "141") (term "1")) + (rule "blockEmptyLabel" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "methodCallEmpty" (formula "141") (term "1")) + (rule "emptyModality" (formula "141") (term "1")) + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "101")) (ifInst "" (formula "102"))) + (builtin "One Step Simplification" (formula "142")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "105")) + (rule "translateJavaSubInt" (formula "145") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "108") (term "1,0")) + (rule "translateJavaSubInt" (formula "107") (term "1,1")) + (rule "translateJavaAddInt" (formula "108") (term "0")) + (rule "translateJavaAddInt" (formula "107") (term "1")) + (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "106")) + (rule "true_left" (formula "106")) + (rule "polySimp_elimSub" (formula "144") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "107") (term "1,0")) + (rule "polySimp_elimSub" (formula "106") (term "1,1")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "144") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "144") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "144") (term "0,0,0,1,0")) + (rule "add_literals" (formula "144") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "144") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "144") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "107") (term "1,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,1,0")) + (rule "add_literals" (formula "107") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "107") (term "0,0,1,0")) + (rule "add_zero_left" (formula "107") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "106") (term "1,1")) + (rule "polySimp_addComm1" (formula "106") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "106") (term "0,0,1,1")) + (rule "add_literals" (formula "106") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "106") (term "0,0,1,1")) + (rule "add_zero_left" (formula "106") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "107") (term "0")) + (rule "add_literals" (formula "107") (term "1,1,0")) + (rule "times_zero_1" (formula "107") (term "1,0")) + (rule "add_zero_right" (formula "107") (term "0")) + (rule "polySimp_addAssoc" (formula "106") (term "1")) + (rule "polySimp_addComm1" (formula "106") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "106") (term "1")) + (rule "add_literals" (formula "106") (term "1,1,1")) + (rule "times_zero_1" (formula "106") (term "1,1")) + (rule "add_zero_right" (formula "106") (term "1")) + (rule "elim_double_block_2" (formula "144") (term "1")) + (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_18")) + (rule "inequality_comparison_simple" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "144")) + (builtin "Use Dependency Contract" (formula "93") (term "0") (ifInst "" (formula "93") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "108") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "108") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "108") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "108") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "108") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "108") (term "0,1,1,1,0")) + (rule "replace_known_right" (formula "108") (term "0,0,0,0,0,0,0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "25")) (ifInst "" (formula "17")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "75")) (ifInst "" (formula "30")) (ifInst "" (formula "93"))) + (rule "true_left" (formula "108")) + (rule "ifSplit" (formula "144")) + (branch "if x_18 true" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_18 false" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (builtin "Block Contract (Internal)" (formula "144") (newnames "exc_15,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "28")) (ifInst "" (formula "74"))) + (rule "true_left" (formula "108")) + (rule "eqSymm" (formula "144") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "144") (term "1")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_15_1")) + (rule "assignment" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (rule "tryEmpty" (formula "144") (term "1")) + (rule "blockEmptyLabel" (formula "144") (term "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (rule "methodCallEmpty" (formula "144") (term "1")) + (rule "emptyModality" (formula "144") (term "1")) + (rule "andRight" (formula "144")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "144")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "144")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "108")) + (rule "andLeft" (formula "108")) + (rule "andLeft" (formula "108")) + (rule "translateJavaAddInt" (formula "110") (term "0")) + (rule "translateJavaSubInt" (formula "110") (term "1")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "109")) + (rule "true_left" (formula "109")) + (rule "polySimp_elimSub" (formula "109") (term "1")) + (rule "polySimp_mulComm0" (formula "109") (term "1,1")) + (rule "polySimp_rightDist" (formula "109") (term "1,1")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "109") (term "1")) + (rule "polySimp_addComm1" (formula "109") (term "0,1")) + (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1")) + (rule "add_literals" (formula "109") (term "1,0,0,1")) + (rule "times_zero_1" (formula "109") (term "0,0,1")) + (rule "add_zero_left" (formula "109") (term "0,1")) + (rule "elim_double_block_2" (formula "146") (term "1")) + (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "146")) + (rule "ifSplit" (formula "146")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "146") (term "1")) + (builtin "Block Contract (Internal)" (formula "146") (newnames "exc_16,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "28")) (ifInst "" (formula "74"))) + (rule "true_left" (formula "110")) + (rule "eqSymm" (formula "146") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "146") (term "1")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "exc_16_1")) + (rule "assignment" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "emptyStatement" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "emptyStatement" (formula "146") (term "1")) + (rule "tryEmpty" (formula "146") (term "1")) + (rule "blockEmptyLabel" (formula "146") (term "1")) + (rule "blockEmpty" (formula "146") (term "1")) + (rule "methodCallEmpty" (formula "146") (term "1")) + (rule "emptyModality" (formula "146") (term "1")) + (rule "andRight" (formula "146")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "146")) + (rule "closeTrue" (formula "146")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "146")) + (rule "closeTrue" (formula "146")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "146")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "146")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "146")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "147")) + (rule "andLeft" (formula "110")) + (rule "andLeft" (formula "110")) + (rule "translateJavaSubInt" (formula "112") (term "1")) + (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "111")) + (rule "true_left" (formula "111")) + (rule "polySimp_elimSub" (formula "111") (term "1")) + (rule "polySimp_mulComm0" (formula "111") (term "1,1")) + (rule "polySimp_rightDist" (formula "111") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "111") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "111") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "111") (term "1")) + (rule "polySimp_addComm1" (formula "111") (term "0,1")) + (rule "elim_double_block_2" (formula "148") (term "1")) + (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_20")) + (rule "inequality_comparison_simple" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "148")) + (rule "ifSplit" (formula "148")) + (branch "if x_20 true" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_20 false" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "148") (term "1")) + (rule "compound_assignment_op_minus" (formula "148") (term "1")) + (rule "compound_int_cast_expression" (formula "148") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "148") (term "1")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_21")) + (rule "remove_parentheses_right" (formula "148") (term "1")) + (rule "compound_subtraction_2" (formula "148") (term "1") (inst "#v1=x_23") (inst "#v0=x_22")) + (rule "variableDeclarationAssign" (formula "148") (term "1")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_22")) + (rule "assignment" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "variableDeclarationAssign" (formula "148") (term "1")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_23")) + (rule "remove_parentheses_right" (formula "148") (term "1")) + (rule "assignment" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "assignmentSubtractionInt" (formula "148") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "148")) + (rule "expand_inInt" (formula "148") (userinteraction)) + (rule "andRight" (formula "148") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "148") (term "1")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "148") (term "0")) + (rule "polySimp_homoEq" (formula "109")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "148") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "148") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "148") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "113")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "148") (term "0")) + (rule "polySimp_addComm1" (formula "148") (term "0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "148")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "114")) + (rule "polySimp_mulComm0" (formula "114") (term "1,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0")) + (rule "polySimp_mulComm0" (formula "114") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "114") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "114") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm0" (formula "110") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "95")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "0,0,0")) + (rule "add_zero_left" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1")) + (rule "polySimp_rightDist" (formula "111") (term "1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,1")) + (rule "polySimp_elimOne" (formula "111") (term "1,1")) + (rule "polySimp_rightDist" (formula "111") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "111") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "111") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "111") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "111") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "71") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0")) + (rule "add_literals" (formula "71") (term "1,1,0,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0")) + (rule "add_literals" (formula "71") (term "0,0")) + (rule "qeq_literals" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "11")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "80") (ifseqformula "69")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "99") (term "0")) + (rule "polySimp_mulComm0" (formula "99") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "99") (term "1,0,0")) + (rule "mul_literals" (formula "99") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "99") (term "0,0")) + (rule "polySimp_addComm0" (formula "99") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "99") (term "0,0")) + (rule "add_literals" (formula "99") (term "1,1,0,0")) + (rule "times_zero_1" (formula "99") (term "1,0,0")) + (rule "add_literals" (formula "99") (term "0,0")) + (rule "qeq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "polySimp_rightDist" (formula "102") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "102") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,0,0")) + (rule "add_literals" (formula "102") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "94") (term "0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0")) + (rule "add_literals" (formula "94") (term "1,1,0,0")) + (rule "times_zero_1" (formula "94") (term "1,0,0")) + (rule "add_literals" (formula "94") (term "0,0")) + (rule "qeq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "polySimp_rightDist" (formula "102") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "102") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "103") (term "0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_rightDist" (formula "103") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "103") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "103") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "94")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0")) + (rule "add_literals" (formula "85") (term "0,0")) + (rule "qeq_literals" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "78")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "76")) + (rule "mul_literals" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption0" (formula "58") (ifseqformula "23")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "65")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "23")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "39")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "86")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "add_literals" (formula "73") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "mul_literals" (formula "73") (term "1")) + (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "34")) + (rule "leq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "94")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "148") (term "0")) + (rule "polySimp_homoEq" (formula "109")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "148") (term "1")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "1,1")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "148") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "148") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "148") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "148") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "113")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "148") (term "1")) + (rule "polySimp_addComm1" (formula "148") (term "0,1")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "148")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "113")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0")) + (rule "polySimp_mulComm0" (formula "113") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,0")) + (rule "add_literals" (formula "103") (term "1,0,0,0")) + (rule "times_zero_1" (formula "103") (term "0,0,0")) + (rule "add_zero_left" (formula "103") (term "0,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "112") (term "0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "112") (term "0,0,0,0,0")) + (rule "add_literals" (formula "112") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "112") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "112") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "0,0,0")) + (rule "add_zero_left" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "1")) + (rule "polySimp_elimOne" (formula "103") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1")) + (rule "polySimp_rightDist" (formula "111") (term "1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,1")) + (rule "polySimp_elimOne" (formula "111") (term "1,1")) + (rule "polySimp_rightDist" (formula "111") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "111") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "111") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "111") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "111") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "69")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "102") (term "0")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0")) + (rule "mul_literals" (formula "102") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,0")) + (rule "add_literals" (formula "102") (term "0,0")) + (rule "qeq_literals" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "75")) + (rule "mul_literals" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "21")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "4")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "mul_literals" (formula "79") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "79")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "5")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_subsumption0" (formula "86") (ifseqformula "65")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0")) + (rule "polySimp_addComm0" (formula "86") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,0")) + (rule "add_literals" (formula "86") (term "0,0")) + (rule "qeq_literals" (formula "86") (term "0")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "64")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "22")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "mul_literals" (formula "69") (term "1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "35")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "96")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_subsumption1" (formula "91") (ifseqformula "71")) + (rule "leq_literals" (formula "91") (term "0")) + (builtin "One Step Simplification" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "41")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "36")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "73")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1")) + (rule "polySimp_rightDist" (formula "83") (term "1")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,1")) + (rule "mul_literals" (formula "83") (term "0,1")) + (rule "polySimp_elimOne" (formula "83") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "83") (ifseqformula "36")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "83") (term "0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0")) + (rule "add_literals" (formula "83") (term "0,0")) + (rule "qeq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "5")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "1")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_literals" (formula "70") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "mul_literals" (formula "70") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "66") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0,0")) + (rule "add_literals" (formula "66") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "91")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "mul_literals" (formula "78") (term "1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "37")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "97")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "74")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addComm0" (formula "98") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "polySimp_elimOne" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "106") (term "0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0")) + (rule "polySimp_rightDist" (formula "106") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "106") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0")) + (rule "polySimp_addComm0" (formula "100") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "109") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "109") (term "0,0")) + (rule "polySimp_addComm1" (formula "109") (term "0")) + (rule "polySimp_rightDist" (formula "109") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "109") (term "0,0")) + (rule "add_literals" (formula "109") (term "1,1,0,0")) + (rule "times_zero_1" (formula "109") (term "1,0,0")) + (rule "add_zero_right" (formula "109") (term "0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "109") (term "0,0")) + (rule "add_literals" (formula "109") (term "1,1,0,0")) + (rule "times_zero_1" (formula "109") (term "1,0,0")) + (rule "add_zero_right" (formula "109") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "109")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "108")) + (rule "andLeft" (formula "66")) + (rule "inEqSimp_homoInEq1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "mul_literals" (formula "66") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "66") (term "0")) + (rule "add_literals" (formula "66") (term "1,1,0")) + (rule "times_zero_1" (formula "66") (term "1,0")) + (rule "add_literals" (formula "66") (term "0")) + (rule "leq_literals" (formula "66")) + (rule "closeFalse" (formula "66")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "148")) + (rule "translateJavaSubInt" (formula "148") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "148") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "148") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "148") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "148") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "148") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "148") (term "0,0,1,0")) + (rule "widening_identity_cast_5" (formula "148") (term "1")) + (rule "assignment" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (builtin "Use Operation Contract" (formula "148") (newnames "heapBefore_copy_nonoverlapping,exc_17,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "113")) + (builtin "One Step Simplification" (formula "150")) + (builtin "Block Contract (Internal)" (formula "150") (newnames "exc_18,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "28"))) + (builtin "One Step Simplification" (formula "151")) + (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "eqSymm" (formula "154") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "113") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0")) + (rule "polySimp_elimSub" (formula "113") (term "2,1,0")) + (rule "mul_literals" (formula "113") (term "1,2,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "0,3,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,0,1,0")) + (rule "add_literals" (formula "115") (term "1,1,3,0,1,0")) + (rule "times_zero_1" (formula "115") (term "1,3,0,1,0")) + (rule "add_zero_right" (formula "115") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "3,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "115") (term "0,3,0,1,0")) + (rule "add_literals" (formula "115") (term "1,1,0,3,0,1,0")) + (rule "times_zero_1" (formula "115") (term "1,0,3,0,1,0")) + (rule "add_zero_right" (formula "115") (term "0,3,0,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "3,1,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "0,3,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,1,1,0")) + (rule "add_literals" (formula "115") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "115") (term "1,3,1,1,0")) + (rule "add_zero_right" (formula "115") (term "3,1,1,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "113") (term "0,2,1,0")) + (rule "add_literals" (formula "113") (term "1,1,0,2,1,0")) + (rule "times_zero_1" (formula "113") (term "1,0,2,1,0")) + (rule "polySimp_addLiterals" (formula "113") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,2,1,0")) + (rule "add_literals" (formula "113") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "113") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "113") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "114") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "114") (term "1,1,0,0")) + (rule "variableDeclarationAssign" (formula "154") (term "1")) + (rule "variableDeclaration" (formula "154") (term "1") (newnames "exc_18_1")) + (rule "assignment" (formula "154") (term "1")) + (builtin "One Step Simplification" (formula "154")) + (rule "emptyStatement" (formula "154") (term "1")) + (builtin "One Step Simplification" (formula "154")) + (rule "emptyStatement" (formula "154") (term "1")) + (rule "commute_and" (formula "115") (term "0,0")) + (rule "commute_and" (formula "114") (term "0,0,0")) + (rule "commute_and" (formula "114") (term "1,0,0")) + (rule "shift_paren_and" (formula "114") (term "0,0")) + (rule "commute_and_2" (formula "114") (term "0,0,0")) + (rule "tryEmpty" (formula "154") (term "1")) + (rule "blockEmptyLabel" (formula "154") (term "1")) + (rule "blockEmpty" (formula "154") (term "1")) + (rule "methodCallEmpty" (formula "154") (term "1")) + (rule "emptyModality" (formula "154") (term "1")) + (rule "andRight" (formula "154")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "154")) + (rule "closeTrue" (formula "154")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "154")) + (rule "closeTrue" (formula "154")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "150")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "150")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "150")) + (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "113")) + (rule "wellFormedAnonEQ" (formula "151") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "151") (term "0")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "translateJavaSubInt" (formula "113") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0")) + (rule "replace_known_left" (formula "153") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "153") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "153")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "114")) + (rule "expand_inInt" (formula "113") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "113") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "113") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "113") (term "1,0,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "113")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "115")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "translateJavaAddInt" (formula "113") (term "0,2,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "3,0,1,0")) + (rule "translateJavaSubInt" (formula "113") (term "2,1,0")) + (rule "replace_known_left" (formula "118") (term "0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "118")) + (rule "true_left" (formula "118")) + (rule "polySimp_elimSub" (formula "113") (term "2,1,0")) + (rule "mul_literals" (formula "113") (term "1,2,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "3,1,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "0,3,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,1,1,0")) + (rule "add_literals" (formula "115") (term "1,1,3,1,1,0")) + (rule "times_zero_1" (formula "115") (term "1,3,1,1,0")) + (rule "add_zero_right" (formula "115") (term "3,1,1,0")) + (rule "polySimp_addAssoc" (formula "115") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "0,3,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "115") (term "3,0,1,0")) + (rule "add_literals" (formula "115") (term "1,1,3,0,1,0")) + (rule "times_zero_1" (formula "115") (term "1,3,0,1,0")) + (rule "add_zero_right" (formula "115") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "115") (term "3,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "115") (term "0,3,0,1,0")) + (rule "add_literals" (formula "115") (term "1,1,0,3,0,1,0")) + (rule "times_zero_1" (formula "115") (term "1,0,3,0,1,0")) + (rule "add_zero_right" (formula "115") (term "0,3,0,1,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "113") (term "1,1,0,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "113") (term "1,0,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "113") (term "0,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "113") (term "2,1,0")) + (rule "add_literals" (formula "113") (term "1,1,2,1,0")) + (rule "times_zero_1" (formula "113") (term "1,2,1,0")) + (rule "add_zero_right" (formula "113") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "114") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "114") (term "1,1,0,0")) + (rule "commute_and" (formula "115") (term "0,0")) + (rule "elim_double_block_2" (formula "156") (term "1")) + (rule "commute_and" (formula "114") (term "0,0,0")) + (rule "commute_and" (formula "114") (term "1,0,0")) + (rule "shift_paren_and" (formula "114") (term "0,0")) + (rule "commute_and_2" (formula "114") (term "0,0,0")) + (rule "ifUnfold" (formula "156") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "156") (term "1") (newnames "x_24")) + (rule "inequality_comparison_simple" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "replace_known_left" (formula "156") (term "0,0,1,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "156")) + (rule "ifSplit" (formula "156")) + (branch "if x_24 true" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_24 false" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "156") (term "1")) + (builtin "Block Contract (Internal)" (formula "156") (newnames "exc_19,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "157") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "157") (term "1")) + (rule "variableDeclaration" (formula "157") (term "1") (newnames "exc_19_1")) + (rule "assignment" (formula "157") (term "1")) + (builtin "One Step Simplification" (formula "157")) + (rule "emptyStatement" (formula "157") (term "1")) + (builtin "One Step Simplification" (formula "157")) + (rule "emptyStatement" (formula "157") (term "1")) + (rule "tryEmpty" (formula "157") (term "1")) + (rule "blockEmptyLabel" (formula "157") (term "1")) + (rule "blockEmpty" (formula "157") (term "1")) + (rule "methodCallEmpty" (formula "157") (term "1")) + (rule "emptyModality" (formula "157") (term "1")) + (rule "andRight" (formula "157")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "157")) + (rule "closeTrue" (formula "157")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "157")) + (rule "closeTrue" (formula "157")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "156")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "156")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "156")) + (rule "wellFormedAnonEQ" (formula "156") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "156") (term "0")) + (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "156")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "120")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "120") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "120")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "120")) + (rule "translateJavaAddInt" (formula "122") (term "3,0")) + (rule "replace_known_left" (formula "121") (term "0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "121")) + (rule "true_left" (formula "121")) + (rule "polySimp_addAssoc" (formula "121") (term "3,0")) + (rule "polySimp_addComm1" (formula "121") (term "0,3,0")) + (rule "polySimp_pullOutFactor1b" (formula "121") (term "3,0")) + (rule "add_literals" (formula "121") (term "1,1,3,0")) + (rule "times_zero_1" (formula "121") (term "1,3,0")) + (rule "add_zero_right" (formula "121") (term "3,0")) + (rule "polySimp_addComm1" (formula "121") (term "3,0")) + (rule "polySimp_pullOutFactor2b" (formula "121") (term "0,3,0")) + (rule "add_literals" (formula "121") (term "1,1,0,3,0")) + (rule "times_zero_1" (formula "121") (term "1,0,3,0")) + (rule "add_zero_right" (formula "121") (term "0,3,0")) + (rule "elim_double_block_2" (formula "158") (term "1")) + (rule "ifUnfold" (formula "158") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "158") (term "1") (newnames "x_25")) + (rule "inequality_comparison_simple" (formula "158") (term "1")) + (builtin "One Step Simplification" (formula "158")) + (rule "replace_known_left" (formula "158") (term "0,0,1,0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "158")) + (rule "ifSplit" (formula "158")) + (branch "if x_25 true" + (builtin "One Step Simplification" (formula "159")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_25 false" + (builtin "One Step Simplification" (formula "159")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "158") (term "1")) + (builtin "Block Contract (Internal)" (formula "158") (newnames "exc_20,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "28"))) + (builtin "One Step Simplification" (formula "159")) + (rule "eqSymm" (formula "159") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "159") (term "1")) + (rule "variableDeclaration" (formula "159") (term "1") (newnames "exc_20_1")) + (rule "assignment" (formula "159") (term "1")) + (builtin "One Step Simplification" (formula "159")) + (rule "emptyStatement" (formula "159") (term "1")) + (builtin "One Step Simplification" (formula "159")) + (rule "emptyStatement" (formula "159") (term "1")) + (rule "tryEmpty" (formula "159") (term "1")) + (rule "blockEmptyLabel" (formula "159") (term "1")) + (rule "blockEmpty" (formula "159") (term "1")) + (rule "methodCallEmpty" (formula "159") (term "1")) + (rule "emptyModality" (formula "159") (term "1")) + (rule "andRight" (formula "159")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "159")) + (rule "closeTrue" (formula "159")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "159")) + (rule "closeTrue" (formula "159")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "158")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "158")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "158")) + (rule "wellFormedAnonEQ" (formula "158") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "158") (term "0")) + (rule "replace_known_left" (formula "158") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "158")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "159")) + (builtin "One Step Simplification" (formula "122")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "122") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "122")) + (rule "andLeft" (formula "122")) + (rule "andLeft" (formula "122")) + (rule "translateJavaAddInt" (formula "124") (term "3,0")) + (rule "replace_known_left" (formula "123") (term "0") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "123")) + (rule "true_left" (formula "123")) + (rule "polySimp_addAssoc" (formula "123") (term "3,0")) + (rule "polySimp_addComm1" (formula "123") (term "0,3,0")) + (rule "polySimp_pullOutFactor1b" (formula "123") (term "3,0")) + (rule "add_literals" (formula "123") (term "1,1,3,0")) + (rule "times_zero_1" (formula "123") (term "1,3,0")) + (rule "add_zero_right" (formula "123") (term "3,0")) + (rule "polySimp_addComm1" (formula "123") (term "3,0")) + (rule "polySimp_pullOutFactor2b" (formula "123") (term "0,3,0")) + (rule "add_literals" (formula "123") (term "1,1,0,3,0")) + (rule "times_zero_1" (formula "123") (term "1,0,3,0")) + (rule "add_zero_right" (formula "123") (term "0,3,0")) + (rule "elim_double_block_2" (formula "160") (term "1")) + (rule "ifUnfold" (formula "160") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "160") (term "1") (newnames "x_26")) + (rule "inequality_comparison_simple" (formula "160") (term "1")) + (builtin "One Step Simplification" (formula "160")) + (rule "replace_known_left" (formula "160") (term "0,0,1,0") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "160")) + (builtin "Use Dependency Contract" (formula "109") (term "1,0") (ifInst "" (formula "48") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "124") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "124") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "124") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "124") (term "1,0,1,0,0,0")) + (rule "replace_known_left" (formula "124") (term "0,1,0,0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "159")) (ifInst "" (formula "23")) (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "75")) (ifInst "" (formula "29"))) + (rule "disjointDefinition" (formula "124") (term "1,0")) + (rule "disjointWithSingleton1" (formula "124") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "124") (term "0,1,0")) + (rule "replace_known_right" (formula "124") (term "0,0,0,1,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "124")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0")) + (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "124")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0")) + (rule "replace_known_left" (formula "124") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "124")) + (rule "applyEq" (formula "124") (term "1,0") (ifseqformula "41")) + (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "124")) + (rule "applyEq" (formula "109") (term "1,0") (ifseqformula "124")) + (rule "polySimp_addComm1" (formula "109") (term "0")) + (rule "ifSplit" (formula "161")) + (branch "if x_26 true" + (builtin "One Step Simplification" (formula "162")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_26 false" + (builtin "One Step Simplification" (formula "162")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "161") (term "1")) + (builtin "Block Contract (Internal)" (formula "161") (newnames "exc_21,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "162")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "162") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "162") (term "1")) + (rule "variableDeclaration" (formula "162") (term "1") (newnames "exc_21_1")) + (rule "assignment" (formula "162") (term "1")) + (builtin "One Step Simplification" (formula "162")) + (rule "emptyStatement" (formula "162") (term "1")) + (builtin "One Step Simplification" (formula "162")) + (rule "emptyStatement" (formula "162") (term "1")) + (rule "tryEmpty" (formula "162") (term "1")) + (rule "blockEmptyLabel" (formula "162") (term "1")) + (rule "blockEmpty" (formula "162") (term "1")) + (rule "methodCallEmpty" (formula "162") (term "1")) + (rule "emptyModality" (formula "162") (term "1")) + (rule "andRight" (formula "162")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "162")) + (rule "closeTrue" (formula "162")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "162")) + (rule "closeTrue" (formula "162")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "161")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "161") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "161")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "161")) + (rule "wellFormedAnonEQ" (formula "161") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "161") (term "0")) + (rule "replace_known_left" (formula "161") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "161") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "161")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "162")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "126")) + (rule "true_left" (formula "126")) + (rule "elim_double_block_2" (formula "163") (term "1")) + (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_27")) + (rule "inequality_comparison_simple" (formula "163") (term "1")) + (builtin "One Step Simplification" (formula "163")) + (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "163")) + (rule "ifSplit" (formula "163")) + (branch "if x_27 true" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_27 false" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "163") (term "1")) + (builtin "Block Contract (Internal)" (formula "163") (newnames "exc_22,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "164") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "164") (term "1")) + (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_22_1")) + (rule "assignment" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (rule "tryEmpty" (formula "164") (term "1")) + (rule "blockEmptyLabel" (formula "164") (term "1")) + (rule "blockEmpty" (formula "164") (term "1")) + (rule "methodCallEmpty" (formula "164") (term "1")) + (rule "emptyModality" (formula "164") (term "1")) + (rule "andRight" (formula "164")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "163")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "163")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "163")) + (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "163") (term "0")) + (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "163")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "164")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "translateJavaAddInt" (formula "129") (term "4,0")) + (rule "replace_known_left" (formula "128") (term "0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "128")) + (rule "true_left" (formula "128")) + (rule "polySimp_addAssoc" (formula "128") (term "4,0")) + (rule "polySimp_addComm1" (formula "128") (term "0,4,0")) + (rule "polySimp_pullOutFactor1b" (formula "128") (term "4,0")) + (rule "add_literals" (formula "128") (term "1,1,4,0")) + (rule "times_zero_1" (formula "128") (term "1,4,0")) + (rule "add_zero_right" (formula "128") (term "4,0")) + (rule "polySimp_addComm1" (formula "128") (term "4,0")) + (rule "polySimp_pullOutFactor2b" (formula "128") (term "0,4,0")) + (rule "add_literals" (formula "128") (term "1,1,0,4,0")) + (rule "times_zero_1" (formula "128") (term "1,0,4,0")) + (rule "add_zero_right" (formula "128") (term "0,4,0")) + (rule "elim_double_block_2" (formula "165") (term "1")) + (rule "ifUnfold" (formula "165") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "165") (term "1") (newnames "x_28")) + (rule "inequality_comparison_simple" (formula "165") (term "1")) + (builtin "One Step Simplification" (formula "165")) + (rule "replace_known_left" (formula "165") (term "0,0,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "165")) + (rule "ifSplit" (formula "165")) + (branch "if x_28 true" + (builtin "One Step Simplification" (formula "166")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_28 false" + (builtin "One Step Simplification" (formula "166")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "165") (term "1")) + (builtin "Block Contract (Internal)" (formula "165") (newnames "exc_23,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "28"))) + (builtin "One Step Simplification" (formula "166")) + (rule "eqSymm" (formula "166") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "166") (term "1")) + (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_23_1")) + (rule "assignment" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (rule "tryEmpty" (formula "166") (term "1")) + (rule "blockEmptyLabel" (formula "166") (term "1")) + (rule "blockEmpty" (formula "166") (term "1")) + (rule "methodCallEmpty" (formula "166") (term "1")) + (rule "emptyModality" (formula "166") (term "1")) + (rule "andRight" (formula "166")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "166")) + (rule "closeTrue" (formula "166")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "166")) + (rule "closeTrue" (formula "166")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "165")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "165")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "165")) + (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "165") (term "0")) + (rule "replace_known_left" (formula "165") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "165")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "166")) + (builtin "One Step Simplification" (formula "129")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "129") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "129")) + (rule "expand_inInt" (formula "129") (term "0,0,1")) + (rule "replace_int_MIN" (formula "129") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "129") (term "1,0,0,0,1")) + (rule "andLeft" (formula "129")) + (rule "andLeft" (formula "129")) + (rule "translateJavaAddInt" (formula "131") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "131") (term "3,1,1,0")) + (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "130")) + (rule "true_left" (formula "130")) + (rule "inEqSimp_commuteLeq" (formula "130") (term "1,0,0")) + (rule "applyEq" (formula "130") (term "1,2,1,1,0") (ifseqformula "96")) + (rule "applyEq" (formula "130") (term "1,3,1,1,0") (ifseqformula "84")) + (rule "commute_and" (formula "130") (term "0,0")) + (rule "elim_double_block_2" (formula "167") (term "1")) + (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_29")) + (rule "inequality_comparison_simple" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "167")) + (rule "ifSplit" (formula "167")) + (branch "if x_29 true" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_29 false" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "167") (term "1")) + (builtin "Block Contract (Internal)" (formula "167") (newnames "exc_24,heap_Before_BLOCK_20,savedHeap_Before_BLOCK_20,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "168") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "168") (term "1")) + (rule "variableDeclaration" (formula "168") (term "1") (newnames "exc_24_1")) + (rule "assignment" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "emptyStatement" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "emptyStatement" (formula "168") (term "1")) + (rule "tryEmpty" (formula "168") (term "1")) + (rule "blockEmptyLabel" (formula "168") (term "1")) + (rule "blockEmpty" (formula "168") (term "1")) + (rule "methodCallEmpty" (formula "168") (term "1")) + (rule "emptyModality" (formula "168") (term "1")) + (rule "andRight" (formula "168")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "167")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "167")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "167")) + (rule "wellFormedAnonEQ" (formula "167") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "167") (term "0")) + (rule "replace_known_left" (formula "167") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "167")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "168")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "translateJavaAddInt" (formula "133") (term "2,0")) + (rule "replace_known_left" (formula "132") (term "0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "132")) + (rule "true_left" (formula "132")) + (rule "polySimp_addAssoc" (formula "132") (term "2,0")) + (rule "polySimp_addComm1" (formula "132") (term "0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "132") (term "2,0")) + (rule "add_literals" (formula "132") (term "1,1,2,0")) + (rule "times_zero_1" (formula "132") (term "1,2,0")) + (rule "add_zero_right" (formula "132") (term "2,0")) + (rule "polySimp_addComm1" (formula "132") (term "2,0")) + (rule "polySimp_pullOutFactor2b" (formula "132") (term "0,2,0")) + (rule "add_literals" (formula "132") (term "1,1,0,2,0")) + (rule "times_zero_1" (formula "132") (term "1,0,2,0")) + (rule "add_zero_right" (formula "132") (term "0,2,0")) + (rule "elim_double_block_2" (formula "169") (term "1")) + (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_30")) + (rule "inequality_comparison_simple" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "169")) + (rule "ifSplit" (formula "169")) + (branch "if x_30 true" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_30 false" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (builtin "Block Contract (Internal)" (formula "169") (newnames "exc_26,heap_Before_BLOCK_21,savedHeap_Before_BLOCK_21,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "170") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "170") (term "1")) + (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (rule "tryEmpty" (formula "170") (term "1")) + (rule "blockEmptyLabel" (formula "170") (term "1")) + (rule "blockEmpty" (formula "170") (term "1")) + (rule "methodCallEmpty" (formula "170") (term "1")) + (rule "emptyModality" (formula "170") (term "1")) + (rule "andRight" (formula "170")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "169")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "169")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "169")) + (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "169") (term "0")) + (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "169")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "133")) + (builtin "One Step Simplification" (formula "170")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "1,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "133")) + (rule "andLeft" (formula "133")) + (rule "andLeft" (formula "133")) + (rule "translateJavaAddInt" (formula "135") (term "3,0")) + (rule "replace_known_left" (formula "134") (term "0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "134")) + (rule "true_left" (formula "134")) + (rule "polySimp_addAssoc" (formula "134") (term "3,0")) + (rule "polySimp_addComm1" (formula "134") (term "0,3,0")) + (rule "polySimp_pullOutFactor1b" (formula "134") (term "3,0")) + (rule "add_literals" (formula "134") (term "1,1,3,0")) + (rule "times_zero_1" (formula "134") (term "1,3,0")) + (rule "add_zero_right" (formula "134") (term "3,0")) + (rule "polySimp_addComm1" (formula "134") (term "3,0")) + (rule "polySimp_pullOutFactor2b" (formula "134") (term "0,3,0")) + (rule "add_literals" (formula "134") (term "1,1,0,3,0")) + (rule "times_zero_1" (formula "134") (term "1,0,3,0")) + (rule "add_zero_right" (formula "134") (term "0,3,0")) + (rule "elim_double_block_2" (formula "171") (term "1")) + (rule "ifUnfold" (formula "171") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "171") (term "1") (newnames "x_31")) + (rule "inequality_comparison_simple" (formula "171") (term "1")) + (builtin "One Step Simplification" (formula "171")) + (rule "replace_known_left" (formula "171") (term "0,0,1,0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "171")) + (rule "ifSplit" (formula "171")) + (branch "if x_31 true" + (builtin "One Step Simplification" (formula "172")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_31 false" + (builtin "One Step Simplification" (formula "172")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "171") (term "1")) + (rule "assignment" (formula "171") (term "1")) + (builtin "One Step Simplification" (formula "171")) + (rule "blockEmpty" (formula "171") (term "1")) + (builtin "Block Contract (Internal)" (formula "171") (newnames "exc_27,heap_Before_BLOCK_22,savedHeap_Before_BLOCK_22,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "172")) + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "28"))) + (rule "eqSymm" (formula "172") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "172") (term "1")) + (rule "variableDeclaration" (formula "172") (term "1") (newnames "exc_27_1")) + (rule "assignment" (formula "172") (term "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "emptyStatement" (formula "172") (term "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "emptyStatement" (formula "172") (term "1")) + (rule "tryEmpty" (formula "172") (term "1")) + (rule "blockEmptyLabel" (formula "172") (term "1")) + (rule "blockEmpty" (formula "172") (term "1")) + (rule "methodCallEmpty" (formula "172") (term "1")) + (rule "emptyModality" (formula "172") (term "1")) + (rule "andRight" (formula "172")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "172")) + (rule "closeTrue" (formula "172")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "172")) + (rule "closeTrue" (formula "172")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "171")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "171")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "171")) + (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "113")) + (rule "wellFormedAnon" (formula "171") (term "0")) + (rule "replace_known_left" (formula "171") (term "1") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "171") (ifInst "" (formula "17")) (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "171")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "118")) (ifInst "" (formula "119"))) + (builtin "One Step Simplification" (formula "172")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "135") (term "1,1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "135")) + (rule "andLeft" (formula "135")) + (rule "replace_known_left" (formula "136") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "136")) + (rule "true_left" (formula "136")) + (rule "elim_double_block_2" (formula "172") (term "1")) + (rule "ifUnfold" (formula "172") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "172") (term "1") (newnames "x_32")) + (rule "inequality_comparison_simple" (formula "172") (term "1")) + (builtin "One Step Simplification" (formula "172")) + (rule "replace_known_left" (formula "172") (term "0,0,1,0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "172")) + (rule "ifSplit" (formula "172")) + (branch "if x_32 true" + (builtin "One Step Simplification" (formula "173")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_32 false" + (builtin "One Step Simplification" (formula "173")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "172") (term "1")) + (rule "emptyStatement" (formula "172") (term "1")) + (rule "tryEmpty" (formula "172") (term "1")) + (rule "blockEmptyLabel" (formula "172") (term "1")) + (rule "blockEmpty" (formula "172") (term "1")) + (rule "methodCallEmpty" (formula "172") (term "1")) + (rule "emptyModality" (formula "172") (term "1")) + (rule "andRight" (formula "172")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "172")) + (rule "closeTrue" (formula "172")) + ) + (branch "Case 2" + (rule "andRight" (formula "172")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "118"))) + (rule "closeTrue" (formula "172")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "172") (ifInst "" (formula "119"))) + (rule "closeTrue" (formula "172")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "150")) + (builtin "One Step Simplification" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "notLeft" (formula "114")) + (rule "close" (formula "116") (ifseqformula "115")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "147")) (ifInst "" (formula "74")) (ifInst "" (formula "147")) (ifInst "" (formula "18")) (ifInst "" (formula "147")) (ifInst "" (formula "18"))) + (rule "andRight" (formula "148")) + (branch "Case 1" + (rule "andRight" (formula "148")) + (branch + (rule "expand_inInt" (formula "148")) + (rule "replace_int_MIN" (formula "148") (term "0,1")) + (rule "replace_int_MAX" (formula "148") (term "1,0")) + (rule "replace_known_left" (formula "148") (term "0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "65"))) + (rule "closeTrue" (formula "148")) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "148") (userinteraction)) + (rule "andRight" (formula "148") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "148") (term "1")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "109")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "113")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "148")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "112") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "112") (term "0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "112") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0")) + (rule "add_literals" (formula "105") (term "1,0,0,0")) + (rule "times_zero_1" (formula "105") (term "0,0,0")) + (rule "add_zero_left" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm0" (formula "110") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0")) + (rule "add_literals" (formula "94") (term "1,0,0,0")) + (rule "times_zero_1" (formula "94") (term "0,0,0")) + (rule "add_zero_left" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "112")) + (rule "polySimp_mulComm0" (formula "112") (term "1,0")) + (rule "polySimp_rightDist" (formula "112") (term "1,0")) + (rule "polySimp_mulComm0" (formula "112") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "108")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0")) + (rule "polySimp_mulComm0" (formula "108") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0")) + (rule "add_literals" (formula "111") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "111") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "0,0,0")) + (rule "add_zero_left" (formula "107") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "1")) + (rule "polySimp_elimOne" (formula "103") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1")) + (rule "polySimp_rightDist" (formula "109") (term "1")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1")) + (rule "polySimp_elimOne" (formula "109") (term "1,1")) + (rule "polySimp_rightDist" (formula "109") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "109") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "109") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_subsumption1" (formula "71") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "71") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0")) + (rule "add_literals" (formula "71") (term "1,1,0,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0")) + (rule "add_literals" (formula "71") (term "0,0")) + (rule "qeq_literals" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "11")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "102") (term "0")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0")) + (rule "mul_literals" (formula "102") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,0")) + (rule "add_literals" (formula "102") (term "0,0")) + (rule "qeq_literals" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "67")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "75")) + (rule "mul_literals" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "21")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "68")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "polySimp_elimOne" (formula "79") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "4")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "mul_literals" (formula "79") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "79")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "85")) + (rule "mul_literals" (formula "88") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "mul_literals" (formula "88") (term "1")) + (rule "inEqSimp_subsumption1" (formula "88") (ifseqformula "78")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "polySimp_elimOne" (formula "95") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "5")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "polySimp_elimOne" (formula "95") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "64")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "22")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "87")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "add_literals" (formula "72") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "mul_literals" (formula "72") (term "1")) + (rule "inEqSimp_subsumption1" (formula "72") (ifseqformula "33")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "95")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "64") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "35")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "86")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "66")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0")) + (rule "mul_literals" (formula "74") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0")) + (rule "add_literals" (formula "74") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "qeq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "35")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "5")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "98") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "98") (term "0,0")) + (rule "polySimp_addComm0" (formula "98") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "98")) + (rule "polySimp_mulLiterals" (formula "98") (term "0")) + (rule "polySimp_elimOne" (formula "98") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "105") (term "0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_rightDist" (formula "105") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "105") (term "0,0,0")) + (rule "add_literals" (formula "105") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "105") (term "1,0,0,0")) + (rule "add_literals" (formula "105") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_subsumption0" (formula "96") (ifseqformula "105")) + (rule "inEqSimp_homoInEq0" (formula "96") (term "0")) + (rule "polySimp_mulComm0" (formula "96") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "96") (term "1,0,0")) + (rule "mul_literals" (formula "96") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "96") (term "0,0")) + (rule "add_literals" (formula "96") (term "1,1,0,0")) + (rule "times_zero_1" (formula "96") (term "1,0,0")) + (rule "add_literals" (formula "96") (term "0,0")) + (rule "qeq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "76")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "148") (term "0")) + (rule "polySimp_homoEq" (formula "109")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "113")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "148")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "112") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "112") (term "0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "112") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_addAssoc" (formula "105") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "105") (term "0,0,0")) + (rule "add_literals" (formula "105") (term "1,0,0,0")) + (rule "times_zero_1" (formula "105") (term "0,0,0")) + (rule "add_zero_left" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "68")) + (rule "mul_literals" (formula "68") (term "1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,0")) + (rule "times_zero_1" (formula "92") (term "0")) + (rule "leq_literals" (formula "92")) + (rule "true_left" (formula "92")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "108")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0")) + (rule "polySimp_mulComm0" (formula "108") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_addComm1" (formula "92") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0")) + (rule "add_literals" (formula "92") (term "1,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0")) + (rule "add_zero_left" (formula "92") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "112")) + (rule "polySimp_mulComm0" (formula "112") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "112") (term "1,0")) + (rule "polySimp_mulComm0" (formula "112") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "92") (term "0,0,0")) + (rule "add_literals" (formula "92") (term "1,0,0,0")) + (rule "times_zero_1" (formula "92") (term "0,0,0")) + (rule "add_zero_left" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "0,0,0")) + (rule "add_zero_left" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0")) + (rule "add_literals" (formula "111") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "111") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm0" (formula "93") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "61")) + (rule "polySimp_sepNegMonomial" (formula "51") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "109")) + (rule "polySimp_mulLiterals" (formula "109") (term "0")) + (rule "polySimp_elimOne" (formula "109") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "1")) + (rule "polySimp_elimOne" (formula "103") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulComm0" (formula "68") (term "1")) + (rule "polySimp_rightDist" (formula "68") (term "1")) + (rule "mul_literals" (formula "68") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "1")) + (rule "polySimp_elimOne" (formula "92") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1")) + (rule "polySimp_rightDist" (formula "110") (term "1")) + (rule "polySimp_mulLiterals" (formula "110") (term "1,1")) + (rule "polySimp_elimOne" (formula "110") (term "1,1")) + (rule "polySimp_rightDist" (formula "110") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "110") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "110") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "110") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "polySimp_elimOne" (formula "92") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "35")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "102") (term "0")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0")) + (rule "mul_literals" (formula "102") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,0")) + (rule "add_literals" (formula "102") (term "0,0")) + (rule "qeq_literals" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "85")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "95") (term "0")) + (rule "add_literals" (formula "95") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_subsumption0" (formula "85") (ifseqformula "96")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0")) + (rule "add_literals" (formula "85") (term "0,0")) + (rule "qeq_literals" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "86")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "add_literals" (formula "72") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "mul_literals" (formula "72") (term "1")) + (rule "inEqSimp_subsumption1" (formula "72") (ifseqformula "33")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "38")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "103") (term "0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_rightDist" (formula "103") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "103") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "103") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "2")) + (rule "mul_literals" (formula "56") (term "0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "mul_literals" (formula "56") (term "0,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_literals" (formula "56") (term "0,0")) + (rule "qeq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "37")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "104") (term "0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_rightDist" (formula "104") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "104") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "1,1,0,0")) + (rule "times_zero_1" (formula "104") (term "1,0,0")) + (rule "add_zero_right" (formula "104") (term "0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "1,1,0,0")) + (rule "times_zero_1" (formula "104") (term "1,0,0")) + (rule "add_zero_right" (formula "104") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "104") (ifseqformula "63")) + (rule "andLeft" (formula "104")) + (rule "inEqSimp_homoInEq1" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "mul_literals" (formula "104") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "104") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "104") (term "0")) + (rule "add_literals" (formula "104") (term "1,1,0")) + (rule "times_zero_1" (formula "104") (term "1,0")) + (rule "add_literals" (formula "104") (term "0")) + (rule "leq_literals" (formula "104")) + (rule "closeFalse" (formula "104")) + ) + ) + ) + (branch + (rule "expand_inInt" (formula "148")) + (rule "replace_int_MIN" (formula "148") (term "0,1")) + (rule "replace_int_MAX" (formula "148") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "109")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0")) + (rule "polySimp_rightDist" (formula "109") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "113")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "113")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "111") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_addAssoc" (formula "93") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0,0")) + (rule "add_literals" (formula "93") (term "1,0,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0,0")) + (rule "add_zero_left" (formula "93") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "91")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0")) + (rule "add_literals" (formula "91") (term "1,0")) + (rule "times_zero_1" (formula "91") (term "0")) + (rule "leq_literals" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_homoInEq0" (formula "91")) + (rule "polySimp_addComm1" (formula "91") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "91") (term "0,0")) + (rule "add_literals" (formula "91") (term "1,0,0")) + (rule "times_zero_1" (formula "91") (term "0,0")) + (rule "add_zero_left" (formula "91") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0,0,0")) + (rule "add_literals" (formula "101") (term "1,0,0,0")) + (rule "times_zero_1" (formula "101") (term "0,0,0")) + (rule "add_zero_left" (formula "101") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1,0")) + (rule "polySimp_rightDist" (formula "111") (term "1,0")) + (rule "polySimp_mulComm0" (formula "111") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "111") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "mul_literals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "106")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "146") (term "1")) + (rule "mul_literals" (formula "146") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "146") (term "0,1")) + (rule "polySimp_addComm0" (formula "146") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "146") (term "0")) + (rule "polySimp_mulComm0" (formula "146") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "111") (term "0,0,0,0,0")) + (rule "add_literals" (formula "111") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "111") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "111") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "146") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "146") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "146") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "146") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0")) + (rule "add_literals" (formula "102") (term "1,0,0,0")) + (rule "times_zero_1" (formula "102") (term "0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "106") (term "0,0,0")) + (rule "add_literals" (formula "106") (term "1,0,0,0")) + (rule "times_zero_1" (formula "106") (term "0,0,0")) + (rule "add_zero_left" (formula "106") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_addComm0" (formula "92") (term "0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "applyEq" (formula "93") (term "1") (ifseqformula "60")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "50") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "108")) + (rule "polySimp_mulLiterals" (formula "108") (term "0")) + (rule "polySimp_elimOne" (formula "108") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "1")) + (rule "polySimp_elimOne" (formula "91") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "1")) + (rule "polySimp_mulLiterals" (formula "144") (term "0,1")) + (rule "polySimp_elimOne" (formula "144") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1")) + (rule "polySimp_rightDist" (formula "109") (term "1")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1")) + (rule "polySimp_elimOne" (formula "109") (term "1,1")) + (rule "polySimp_rightDist" (formula "109") (term "0,1")) + (rule "polySimp_mulAssoc" (formula "109") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "109") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "1")) + (rule "polySimp_elimOne" (formula "101") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "0")) + (rule "polySimp_elimOne" (formula "91") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "143") (term "0")) + (rule "polySimp_mulComm0" (formula "143") (term "1,0")) + (rule "polySimp_rightDist" (formula "143") (term "1,0")) + (rule "mul_literals" (formula "143") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "143") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "143") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "38")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "68")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption0" (formula "141") (term "1") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,1")) + (rule "add_literals" (formula "141") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "141") (term "1,0,0,1")) + (rule "add_zero_right" (formula "141") (term "0,0,1")) + (rule "qeq_literals" (formula "141") (term "0,1")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_geqRight" (formula "141")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "11")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "100") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "100") (term "0")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,0")) + (rule "mul_literals" (formula "100") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0")) + (rule "add_literals" (formula "100") (term "1,1,0,0")) + (rule "times_zero_1" (formula "100") (term "1,0,0")) + (rule "add_literals" (formula "100") (term "0,0")) + (rule "qeq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_subsumption1" (formula "68") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "68") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "93")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61")) + (rule "mul_literals" (formula "66") (term "0,0")) + (rule "add_zero_left" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "74")) + (rule "mul_literals" (formula "55") (term "0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "20")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "37")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "33")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "67")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "33")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "94")) + (rule "polySimp_mulLiterals" (formula "94") (term "0")) + (rule "polySimp_elimOne" (formula "94") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "32")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "77")) + (rule "polySimp_mulComm0" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "95")) + (rule "polySimp_mulLiterals" (formula "95") (term "0")) + (rule "polySimp_elimOne" (formula "95") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "add_zero_left" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "64")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "1")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "add_zero_left" (formula "78") (term "0")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "78")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "qeq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "63")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "22")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "38")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "71")) + (rule "mul_literals" (formula "88") (term "0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_subsumption0" (formula "88") (ifseqformula "22")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "6")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "add_literals" (formula "67") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "mul_literals" (formula "67") (term "1")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "35")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "88")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "35")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "104") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "104") (term "0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_rightDist" (formula "104") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "104") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "104") (term "0,0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "105") (term "0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_rightDist" (formula "105") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "105") (term "0,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "polySimp_elimOne" (formula "105") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "89") (ifseqformula "86")) + (rule "mul_literals" (formula "89") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "89")) + (rule "mul_literals" (formula "89") (term "1")) + (rule "inEqSimp_subsumption1" (formula "89") (ifseqformula "79")) + (rule "leq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "106") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "106") (term "0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0")) + (rule "polySimp_rightDist" (formula "106") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "106") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "106") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "106") (term "0,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_subsumption0" (formula "86") (ifseqformula "97")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0")) + (rule "polySimp_addComm0" (formula "86") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,0")) + (rule "add_literals" (formula "86") (term "0,0")) + (rule "qeq_literals" (formula "86") (term "0")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "107") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "107") (term "0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "polySimp_rightDist" (formula "107") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "107") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "107") (term "0,0,0")) + (rule "add_literals" (formula "107") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "107") (term "1,0,0,0")) + (rule "add_literals" (formula "107") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "107")) + (rule "polySimp_mulLiterals" (formula "107") (term "0")) + (rule "polySimp_elimOne" (formula "107") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "107")) + (rule "inEqSimp_homoInEq0" (formula "94") (term "0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "94") (term "0,0")) + (rule "add_literals" (formula "94") (term "1,1,0,0")) + (rule "times_zero_1" (formula "94") (term "1,0,0")) + (rule "add_literals" (formula "94") (term "0,0")) + (rule "qeq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "8")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "5")) + (rule "mul_literals" (formula "70") (term "0,0")) + (rule "add_zero_left" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1")) + (rule "polySimp_rightDist" (formula "70") (term "1")) + (rule "mul_literals" (formula "70") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1")) + (rule "polySimp_elimOne" (formula "70") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "64")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "103")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "3")) + (rule "times_zero_1" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "mul_literals" (formula "71") (term "1")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "71")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_contradInEq1" (formula "57") (ifseqformula "71")) + (rule "qeq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "closeFalse" (formula "57")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "if x_15 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "notLeft" (formula "1")) + (rule "assignment" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "blockEmpty" (formula "140") (term "1")) + (builtin "Block Contract (Internal)" (formula "140") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "27")) (ifInst "" (formula "75"))) + (rule "true_left" (formula "104")) + (rule "eqSymm" (formula "140") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "140") (term "1")) + (rule "variableDeclaration" (formula "140") (term "1") (newnames "exc_13_1")) + (rule "assignment" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "emptyStatement" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "emptyStatement" (formula "140") (term "1")) + (rule "tryEmpty" (formula "140") (term "1")) + (rule "blockEmptyLabel" (formula "140") (term "1")) + (rule "blockEmpty" (formula "140") (term "1")) + (rule "methodCallEmpty" (formula "140") (term "1")) + (rule "emptyModality" (formula "140") (term "1")) + (rule "andRight" (formula "140")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "140")) + (rule "closeTrue" (formula "140")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "140")) + (rule "closeTrue" (formula "140")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "140")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "140")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "140")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "12")) (ifInst "" (formula "13"))) + (rule "andLeft" (formula "104")) + (rule "replace_known_left" (formula "105") (term "0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "105")) + (rule "true_left" (formula "105")) + (rule "elim_double_block_2" (formula "141") (term "1")) + (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_16")) + (rule "inequality_comparison_simple" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "141")) + (rule "ifSplit" (formula "141")) + (branch "if x_16 true" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_16 false" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "tryEmpty" (formula "141") (term "1")) + (rule "blockEmptyLabel" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "methodCallEmpty" (formula "141") (term "1")) + (rule "emptyModality" (formula "141") (term "1")) + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "141")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (align_to_next_block)" + (builtin "One Step Simplification" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "notLeft" (formula "95")) + (rule "close" (formula "97") (ifseqformula "96")) + ) + (branch "Pre (align_to_next_block)" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "75"))) + (rule "expand_inInt" (formula "130")) + (rule "replace_int_MIN" (formula "130") (term "0,1")) + (rule "replace_int_MAX" (formula "130") (term "1,0")) + (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "130")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "95")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "130")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "mul_literals" (formula "76") (term "1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "94") (term "0,0,0")) + (rule "add_literals" (formula "94") (term "1,0,0,0")) + (rule "times_zero_1" (formula "94") (term "0,0,0")) + (rule "add_zero_left" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "mul_literals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "66")) + (rule "mul_literals" (formula "66") (term "1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "95")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0")) + (rule "polySimp_mulComm0" (formula "95") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "93")) + (rule "polySimp_addComm1" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,0,0")) + (rule "times_zero_1" (formula "93") (term "0,0")) + (rule "add_zero_left" (formula "93") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "39")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "49") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "applyEq" (formula "95") (term "1") (ifseqformula "59")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "1")) + (rule "polySimp_elimOne" (formula "93") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "68") (ifseqformula "1")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "closeFalse" (formula "68")) + ) + ) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "125")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "75"))) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "andRight" (formula "125")) + (branch "Case 1" + (rule "orRight" (formula "125")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "126")) + ) + (branch "Case 2" + (rule "orRight" (formula "125")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "126")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "63"))) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "125")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "125")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "20")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "79"))) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "125")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "125")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "1")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "leq_literals" (formula "125") (term "0")) + (builtin "One Step Simplification" (formula "125")) + (rule "leq_literals" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "63"))) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "leq_literals" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "leq_literals" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "125")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "125")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "1")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_contradInEq0" (formula "66") (ifseqformula "1")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "closeFalse" (formula "66")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125")) + (rule "replace_int_MAX" (formula "125") (term "1,0")) + (rule "replace_int_MIN" (formula "125") (term "0,1")) + (rule "replace_known_left" (formula "125") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "125")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "125")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "80")) + (rule "mul_literals" (formula "80") (term "1,0")) + (rule "polySimp_addComm1" (formula "80") (term "0")) + (rule "polySimp_addComm0" (formula "80") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_rightDist" (formula "80") (term "1")) + (rule "mul_literals" (formula "80") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "83") (ifseqformula "1")) + (rule "leq_literals" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "81")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "91")) + (rule "expand_inInt" (formula "91") (term "0,0,1,1,1,1,1")) + (rule "expand_inInt" (formula "91") (term "1,0,1,0")) + (rule "expand_inInt" (formula "91") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,1,1,1,1,1")) + (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,1,1,1,1,1")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,1,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,0,0,1,0")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "102")) + (rule "translateJavaSubInt" (formula "146") (term "2,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "101") (term "2,1,0")) + (rule "translateJavaSubInt" (formula "100") (term "2,1,0")) + (rule "eqSymm" (formula "109")) + (rule "translateJavaSubInt" (formula "110") (term "2,1,0,0")) + (rule "eqSymm" (formula "111") (term "1,0")) + (rule "translateJavaSubInt" (formula "92") (term "2,1,0")) + (rule "translateJavaSubInt" (formula "93") (term "2,1,0")) + (rule "translateJavaSubInt" (formula "109") (term "1")) + (rule "translateJavaSubInt" (formula "111") (term "2,1,0,1,1,0")) + (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "polySimp_elimSub" (formula "145") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "145") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "100") (term "2,1,0")) + (rule "mul_literals" (formula "100") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "99") (term "2,1,0")) + (rule "mul_literals" (formula "99") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "109") (term "2,1,0,0")) + (rule "mul_literals" (formula "109") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "92") (term "2,1,0")) + (rule "mul_literals" (formula "92") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "93") (term "2,1,0")) + (rule "mul_literals" (formula "93") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "108") (term "1")) + (rule "polySimp_elimSub" (formula "110") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "110") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "145") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "100") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "99") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "109") (term "2,1,0,0")) + (rule "polySimp_addComm1" (formula "92") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "108") (term "1")) + (rule "polySimp_addComm1" (formula "110") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "145") (term "0,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "99") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,2,1,0,0")) + (rule "polySimp_addComm0" (formula "92") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "93") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "110") (term "0,2,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "107")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "inEqSimp_commuteLeq" (formula "98")) + (rule "inEqSimp_commuteLeq" (formula "103")) + (rule "commute_and" (formula "109") (term "0,0")) + (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "144")) + (builtin "Use Dependency Contract" (formula "57") (term "1,0") (ifInst "" (formula "107") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "110") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "110") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "110") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "110") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "110") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "110") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "110") (term "0,1,0,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "141")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76")) (ifInst "" (formula "29"))) + (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "110") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "110") (term "1,0")) + (rule "disjointWithSingleton1" (formula "110") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "110") (term "0,1,0")) + (rule "replace_known_right" (formula "110") (term "0,0,0,1,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "110")) + (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0")) + (rule "replace_known_left" (formula "110") (term "0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "110")) + (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0")) + (rule "replace_known_left" (formula "110") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "110")) + (rule "applyEq" (formula "110") (term "1,0") (ifseqformula "50")) + (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "110")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "107")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "applyEq" (formula "110") (term "1") (ifseqformula "107")) + (builtin "Use Dependency Contract" (formula "56") (term "0") (ifInst "" (formula "85") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "111") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "111") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "111") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "111") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "111") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "111") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "111") (term "1,1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "142")) (ifInst "" (formula "24")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "76"))) + (rule "polySimp_mulComm0" (formula "111") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "111") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "111") (term "1,0")) + (rule "disjointWithSingleton1" (formula "111") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "111") (term "0,1,0")) + (rule "replace_known_right" (formula "111") (term "0,0,0,1,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "111")) + (rule "inEqSimp_commuteLeq" (formula "111") (term "0,1,0")) + (rule "replace_known_left" (formula "111") (term "0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "111")) + (rule "inEqSimp_commuteLeq" (formula "111") (term "0,0")) + (rule "replace_known_left" (formula "111") (term "0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "111")) + (rule "applyEq" (formula "111") (term "1,0") (ifseqformula "50")) + (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "111")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "111")) + (rule "applyEq" (formula "110") (term "1") (ifseqformula "84")) + (rule "ifSplit" (formula "145")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "146")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "146")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "145") (term "1")) + (rule "variableDeclarationAssign" (formula "145") (term "1")) + (rule "variableDeclaration" (formula "145") (term "1") (newnames "head_len")) + (rule "assignmentSubtractionInt" (formula "145") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "145")) + (rule "expand_inInt" (formula "145")) + (rule "replace_int_MIN" (formula "145") (term "0,1")) + (rule "replace_int_MAX" (formula "145") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_elimSub" (formula "145") (term "0,0")) + (rule "polySimp_elimSub" (formula "145") (term "1,1")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "145") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "145") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "145") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "145") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "145") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "145") (term "0,1,1,1")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_pullOutFactor1" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (rule "qeq_literals" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_homoInEq0" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "mul_literals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "mul_literals" (formula "71") (term "1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0")) + (rule "add_literals" (formula "103") (term "1,0")) + (rule "times_zero_1" (formula "103") (term "0")) + (rule "qeq_literals" (formula "103")) + (rule "true_left" (formula "103")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "143") (term "0")) + (rule "polySimp_mulComm0" (formula "143") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "143") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "143") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "143") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "143") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "143") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "143") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "143") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "143") (term "0,0")) + (rule "polySimp_addAssoc" (formula "143") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "143") (term "1")) + (rule "mul_literals" (formula "143") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "143") (term "0,1")) + (rule "polySimp_addComm1" (formula "143") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "143") (term "0,0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "1,1,0")) + (rule "times_zero_1" (formula "88") (term "1,0")) + (rule "add_zero_right" (formula "88") (term "0")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "polySimp_mulAssoc" (formula "102") (term "0,1")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "0")) + (rule "polySimp_mulComm0" (formula "142") (term "1,0")) + (rule "polySimp_rightDist" (formula "142") (term "1,0")) + (rule "polySimp_rightDist" (formula "142") (term "0,1,0")) + (rule "mul_literals" (formula "142") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "142") (term "1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "1")) + (rule "polySimp_mulLiterals" (formula "142") (term "0,1")) + (rule "polySimp_elimOne" (formula "142") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "1")) + (rule "polySimp_elimOne" (formula "88") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "7")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "137") (term "1") (ifseqformula "95")) + (rule "inEqSimp_homoInEq0" (formula "137") (term "0,1")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "137") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "137") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "137") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,0,0,1")) + (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "137") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,1")) + (rule "add_literals" (formula "137") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "137") (term "1,0,0,1")) + (rule "add_zero_right" (formula "137") (term "0,0,1")) + (rule "qeq_literals" (formula "137") (term "0,1")) + (builtin "One Step Simplification" (formula "137")) + (rule "inEqSimp_geqRight" (formula "137")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "63")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "0,1,0,0")) + (rule "mul_literals" (formula "95") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0")) + (rule "add_zero_right" (formula "95") (term "0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0")) + (rule "add_literals" (formula "95") (term "0,0")) + (rule "qeq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "74")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "60")) + (rule "polySimp_rightDist" (formula "96") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "96") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "96") (term "0")) + (rule "polySimp_addComm1" (formula "96") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "96") (term "0")) + (rule "add_literals" (formula "96") (term "1,1,0")) + (rule "times_zero_1" (formula "96") (term "1,0")) + (rule "polySimp_addLiterals" (formula "96") (term "0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "30")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "77")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "96") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "96") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "96") (term "0")) + (rule "polySimp_addComm0" (formula "96") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "96")) + (rule "polySimp_mulComm0" (formula "96") (term "1")) + (rule "polySimp_rightDist" (formula "96") (term "1")) + (rule "mul_literals" (formula "96") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,1")) + (rule "polySimp_elimOne" (formula "96") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "76")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "30")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "1,1,0")) + (rule "times_zero_1" (formula "75") (term "1,0")) + (rule "add_zero_right" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "96")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "1,1,0")) + (rule "times_zero_1" (formula "69") (term "1,0")) + (rule "polySimp_addLiterals" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "85") (ifseqformula "71")) + (rule "polySimp_mulComm0" (formula "85") (term "0,0")) + (rule "polySimp_addComm0" (formula "85") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "85")) + (rule "polySimp_mulLiterals" (formula "85") (term "0")) + (rule "polySimp_elimOne" (formula "85") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "65")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1")) + (rule "polySimp_elimOne" (formula "79") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "60")) + (rule "mul_literals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "18")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "2")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "71") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "mul_literals" (formula "71") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "91")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0")) + (rule "polySimp_addComm0" (formula "97") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "0")) + (rule "polySimp_elimOne" (formula "97") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "60")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "100") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "100") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0")) + (rule "add_literals" (formula "100") (term "1,1,0,0")) + (rule "times_zero_1" (formula "100") (term "1,0,0")) + (rule "add_zero_right" (formula "100") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "1")) + (rule "polySimp_elimOne" (formula "100") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "71")) + (rule "mul_literals" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "30")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "1")) + (rule "times_zero_1" (formula "66") (term "0,0")) + (rule "add_zero_left" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "mul_literals" (formula "101") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,1,0")) + (rule "times_zero_1" (formula "101") (term "1,0")) + (rule "add_zero_right" (formula "101") (term "0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_subsumption0" (formula "101") (ifseqformula "97")) + (rule "leq_literals" (formula "101") (term "0")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68")) + (rule "times_zero_1" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "1")) + (rule "polySimp_elimOne" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "mul_literals" (formula "101") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "101") (term "0")) + (rule "polySimp_addAssoc" (formula "101") (term "0,0")) + (rule "add_literals" (formula "101") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "101") (ifseqformula "100")) + (rule "andLeft" (formula "101")) + (rule "inEqSimp_homoInEq1" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "mul_literals" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,1,0")) + (rule "times_zero_1" (formula "101") (term "1,0")) + (rule "add_literals" (formula "101") (term "0")) + (rule "leq_literals" (formula "101")) + (rule "closeFalse" (formula "101")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "145")) + (rule "translateJavaSubInt" (formula "145") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "145") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "145") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "145") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "145") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "145") (term "1")) + (rule "variableDeclaration" (formula "145") (term "1") (newnames "tail_len")) + (rule "assignmentSubtractionInt" (formula "145") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "145")) + (rule "expand_inInt" (formula "145")) + (rule "replace_int_MIN" (formula "145") (term "0,1")) + (rule "replace_int_MAX" (formula "145") (term "1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "145") (term "1,1")) + (rule "polySimp_elimSub" (formula "145") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "145") (term "1,1")) + (rule "polySimp_addComm1" (formula "145") (term "0,0")) + (rule "polySimp_addComm0" (formula "145") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "145") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "mul_literals" (formula "71") (term "1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "mul_literals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_pullOutFactor1" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (rule "qeq_literals" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0")) + (rule "add_literals" (formula "103") (term "1,0")) + (rule "times_zero_1" (formula "103") (term "0")) + (rule "qeq_literals" (formula "103")) + (rule "true_left" (formula "103")) + (rule "polySimp_addAssoc" (formula "103") (term "0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "143") (term "1")) + (rule "mul_literals" (formula "143") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "143") (term "0,1")) + (rule "polySimp_addComm1" (formula "143") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "143") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "143") (term "0")) + (rule "polySimp_mulComm0" (formula "143") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "143") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "143") (term "0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "143") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "143") (term "0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "143") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "143") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "143") (term "0,0")) + (rule "polySimp_addAssoc" (formula "143") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "1,1,0")) + (rule "times_zero_1" (formula "88") (term "1,0")) + (rule "add_zero_right" (formula "88") (term "0")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "polySimp_mulAssoc" (formula "102") (term "0,1")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "142") (term "1")) + (rule "polySimp_mulComm0" (formula "142") (term "1,1")) + (rule "polySimp_rightDist" (formula "142") (term "1,1")) + (rule "polySimp_rightDist" (formula "142") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "142") (term "1,0,1,1")) + (rule "mul_literals" (formula "142") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "142") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "142") (term "0")) + (rule "polySimp_mulLiterals" (formula "142") (term "0,0")) + (rule "polySimp_elimOne" (formula "142") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "1")) + (rule "polySimp_elimOne" (formula "88") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "62")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "137") (term "1") (ifseqformula "97")) + (rule "inEqSimp_homoInEq0" (formula "137") (term "0,1")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "137") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "137") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "137") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "137") (term "0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,1")) + (rule "add_literals" (formula "137") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "137") (term "1,0,0,1")) + (rule "add_zero_right" (formula "137") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "137") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,1")) + (rule "add_literals" (formula "137") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "137") (term "1,0,0,1")) + (rule "add_zero_right" (formula "137") (term "0,0,1")) + (rule "qeq_literals" (formula "137") (term "0,1")) + (builtin "One Step Simplification" (formula "137")) + (rule "inEqSimp_leqRight" (formula "137")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "8")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "97") (term "0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0,0")) + (rule "polySimp_addComm1" (formula "97") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "97") (term "0,0")) + (rule "add_literals" (formula "97") (term "1,1,0,0")) + (rule "times_zero_1" (formula "97") (term "1,0,0")) + (rule "add_zero_right" (formula "97") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0")) + (rule "add_literals" (formula "97") (term "1,1,0,0")) + (rule "times_zero_1" (formula "97") (term "1,0,0")) + (rule "add_literals" (formula "97") (term "0,0")) + (rule "qeq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "95")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "58")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "77") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77")) + (rule "mul_literals" (formula "77") (term "1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "30")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "60")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "18")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "86") (term "0,0")) + (rule "polySimp_addComm0" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "76")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "70")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "98")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "2")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "69")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0")) + (rule "add_literals" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,1")) + (rule "mul_literals" (formula "73") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "69")) + (rule "mul_literals" (formula "82") (term "0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82")) + (rule "polySimp_mulComm0" (formula "82") (term "1")) + (rule "polySimp_rightDist" (formula "82") (term "1")) + (rule "mul_literals" (formula "82") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1")) + (rule "polySimp_elimOne" (formula "82") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "qeq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "30")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "62")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "1")) + (rule "leq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "83")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "mul_literals" (formula "81") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm1" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0")) + (rule "add_literals" (formula "81") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1")) + (rule "polySimp_elimOne" (formula "81") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0,0")) + (rule "add_literals" (formula "81") (term "1,1,0,0")) + (rule "times_zero_1" (formula "81") (term "1,0,0")) + (rule "add_literals" (formula "81") (term "0,0")) + (rule "qeq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_subsumption1" (formula "63") (ifseqformula "32")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "0,0,0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "1,1,0")) + (rule "times_zero_1" (formula "76") (term "1,0")) + (rule "polySimp_addLiterals" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "polySimp_elimOne" (formula "76") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "68")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "add_zero_left" (formula "33") (term "0")) + (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "33")) + (rule "leq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "38")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0")) + (rule "polySimp_addComm0" (formula "103") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "103") (ifseqformula "32")) + (rule "qeq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "closeFalse" (formula "103")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "145")) + (builtin "Block Contract (Internal)" (formula "145") (newnames "exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "146")) + (rule "eqSymm" (formula "146") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "146") (term "0,1,0,0")) + (rule "polySimp_elimSub" (formula "146") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "146") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "146") (term "0,0,1,0,0")) + (rule "variableDeclarationAssign" (formula "146") (term "1")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "emptyStatement" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "emptyStatement" (formula "146") (term "1")) + (rule "tryEmpty" (formula "146") (term "1")) + (rule "blockEmptyLabel" (formula "146") (term "1")) + (rule "blockEmpty" (formula "146") (term "1")) + (rule "methodCallEmpty" (formula "146") (term "1")) + (rule "emptyModality" (formula "146") (term "1")) + (rule "andRight" (formula "146")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "146")) + (rule "closeTrue" (formula "146")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "146")) + (rule "closeTrue" (formula "146")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "145")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "145")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "145")) + (rule "wellFormedAnon" (formula "145")) + (rule "wellFormedAnon" (formula "145") (term "0")) + (rule "replace_known_left" (formula "145") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "145")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "146")) + (builtin "One Step Simplification" (formula "111")) + (rule "andLeft" (formula "111")) + (rule "andLeft" (formula "111")) + (rule "translateJavaSubInt" (formula "148") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "113") (term "1")) + (rule "translateJavaSubInt" (formula "113") (term "1,1")) + (rule "replace_known_left" (formula "112") (term "0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "112")) + (rule "true_left" (formula "112")) + (rule "polySimp_elimSub" (formula "147") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "112") (term "1,1")) + (rule "polySimp_addComm1" (formula "147") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "112") (term "1,1")) + (rule "polySimp_addComm0" (formula "147") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "112") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "112") (term "1")) + (rule "polySimp_addComm1" (formula "112") (term "0,1")) + (rule "polySimp_addAssoc" (formula "112") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "112") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "112") (term "0,0,1")) + (rule "add_literals" (formula "112") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "112") (term "1,0,0,1")) + (rule "add_zero_right" (formula "112") (term "0,0,1")) + (rule "elim_double_block_2" (formula "147") (term "1")) + (rule "ifUnfold" (formula "147") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "147") (term "1") (newnames "x_11")) + (rule "inequality_comparison_simple" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "replace_known_left" (formula "147") (term "0,0,1,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "147")) + (rule "ifSplit" (formula "147")) + (branch "if x_11 true" + (builtin "One Step Simplification" (formula "148")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_11 false" + (builtin "One Step Simplification" (formula "148")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "147") (term "1")) + (builtin "Use Operation Contract" (formula "147") (newnames "heapBefore_distribute,exc_10,heapAfter_distribute,anon_heap_distribute") (contract "de.wiesler.Buffers[de.wiesler.Buffers::distribute(int,[I,int,int,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (distribute)" + (builtin "One Step Simplification" (formula "114")) + (builtin "One Step Simplification" (formula "149")) + (builtin "Block Contract (Internal)" (formula "149") (newnames "exc_11,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "150")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27"))) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1")) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "eqSymm" (formula "156") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "3,1,0,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "114") (term "2,1,1,0")) + (rule "mul_literals" (formula "114") (term "1,2,1,1,0")) + (rule "polySimp_elimSub" (formula "114") (term "2,0,1,0")) + (rule "mul_literals" (formula "114") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "2,1,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0")) + (rule "add_literals" (formula "114") (term "1,1,2,0,1,0")) + (rule "times_zero_1" (formula "114") (term "1,2,0,1,0")) + (rule "polySimp_addLiterals" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "3,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "3,1,0,1,0")) + (rule "polySimp_addComm1" (formula "117") (term "0,3,1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "117") (term "3,1,0,1,0")) + (rule "add_literals" (formula "117") (term "1,1,3,1,0,1,0")) + (rule "times_zero_1" (formula "117") (term "1,3,1,0,1,0")) + (rule "add_zero_right" (formula "117") (term "3,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,2,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,2,1,1,0")) + (rule "add_literals" (formula "114") (term "1,0,0,0,2,1,1,0")) + (rule "times_zero_1" (formula "114") (term "0,0,0,2,1,1,0")) + (rule "add_zero_left" (formula "114") (term "0,0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "114") (term "0,2,0,1,0")) + (rule "add_literals" (formula "114") (term "1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "114") (term "1,0,2,0,1,0")) + (rule "add_zero_right" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "0,3,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "117") (term "0,0,3,0,0,1,0")) + (rule "add_literals" (formula "117") (term "1,0,0,3,0,0,1,0")) + (rule "times_zero_1" (formula "117") (term "0,0,3,0,0,1,0")) + (rule "add_zero_left" (formula "117") (term "0,3,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "117") (term "3,1,0,1,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,3,1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "117") (term "3,1,0,1,0")) + (rule "add_literals" (formula "117") (term "1,1,3,1,0,1,0")) + (rule "times_zero_1" (formula "117") (term "1,3,1,0,1,0")) + (rule "add_zero_right" (formula "117") (term "3,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "115") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "117") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "156") (term "1")) + (rule "variableDeclaration" (formula "156") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "emptyStatement" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "emptyStatement" (formula "156") (term "1")) + (rule "commuteUnion" (formula "114") (term "1,0")) + (rule "commute_and" (formula "117") (term "0,0")) + (rule "commute_and" (formula "115") (term "0,0,0")) + (rule "commute_and" (formula "115") (term "1,0,0")) + (rule "commute_and" (formula "116") (term "0,0,0")) + (rule "commute_and" (formula "116") (term "1,0,0")) + (rule "shift_paren_and" (formula "115") (term "0,0")) + (rule "commute_and_2" (formula "115") (term "0,0,0")) + (rule "shift_paren_and" (formula "116") (term "0,0")) + (rule "commute_and_2" (formula "116") (term "0,0,0")) + (rule "tryEmpty" (formula "156") (term "1")) + (rule "blockEmptyLabel" (formula "156") (term "1")) + (rule "blockEmpty" (formula "156") (term "1")) + (rule "methodCallEmpty" (formula "156") (term "1")) + (rule "emptyModality" (formula "156") (term "1")) + (rule "andRight" (formula "156")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "156")) + (rule "closeTrue" (formula "156")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "156")) + (rule "closeTrue" (formula "156")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "149")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "149")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "149")) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "andLeft" (formula "114")) + (rule "wellFormedAnonEQ" (formula "150") (ifseqformula "114")) + (rule "wellFormedAnon" (formula "150") (term "0")) + (rule "wellFormedAnon" (formula "150") (term "0,0")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0")) + (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "115") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "3,1,0,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,1,0")) + (rule "replace_known_left" (formula "155") (term "1,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "113"))) + (rule "closeTrue" (formula "155")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "115")) + (builtin "One Step Simplification" (formula "150")) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "114") (term "0,0,0,1,1,1,0,1")) + (rule "expand_inInt" (formula "114") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "114") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "114") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "114")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "119")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "118")) + (rule "translateJavaSubInt" (formula "114") (term "2,0,1,0")) + (rule "translateJavaSubInt" (formula "114") (term "2,1,1,0")) + (rule "translateJavaAddInt" (formula "125") (term "1")) + (rule "translateJavaAddInt" (formula "116") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "117") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "114") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "3,1,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "3,0,0,1,0")) + (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "122")) + (rule "true_left" (formula "122")) + (rule "polySimp_elimSub" (formula "114") (term "2,0,1,0")) + (rule "mul_literals" (formula "114") (term "1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "114") (term "2,1,1,0")) + (rule "mul_literals" (formula "114") (term "1,2,1,1,0")) + (rule "polySimp_addComm0" (formula "118") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "124") (term "1")) + (rule "polySimp_addComm1" (formula "124") (term "0,1")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0")) + (rule "add_literals" (formula "114") (term "1,1,2,0,1,0")) + (rule "times_zero_1" (formula "114") (term "1,2,0,1,0")) + (rule "polySimp_addLiterals" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "2,1,1,0")) + (rule "polySimp_addAssoc" (formula "118") (term "3,1,0,1,0")) + (rule "polySimp_addComm1" (formula "118") (term "0,3,1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "118") (term "3,1,0,1,0")) + (rule "add_literals" (formula "118") (term "1,1,3,1,0,1,0")) + (rule "times_zero_1" (formula "118") (term "1,3,1,0,1,0")) + (rule "add_zero_right" (formula "118") (term "3,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "118") (term "3,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "124") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "124") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "124") (term "0,0,1")) + (rule "add_literals" (formula "124") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "124") (term "1,0,0,1")) + (rule "add_zero_right" (formula "124") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "114") (term "2,0,1,0")) + (rule "add_literals" (formula "114") (term "1,1,2,0,1,0")) + (rule "times_zero_1" (formula "114") (term "1,2,0,1,0")) + (rule "add_zero_right" (formula "114") (term "2,0,1,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,2,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "114") (term "0,0,0,2,1,1,0")) + (rule "add_literals" (formula "114") (term "1,0,0,0,2,1,1,0")) + (rule "times_zero_1" (formula "114") (term "0,0,0,2,1,1,0")) + (rule "add_zero_left" (formula "114") (term "0,0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "118") (term "3,1,0,1,0")) + (rule "polySimp_addComm0" (formula "118") (term "0,3,1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "118") (term "3,1,0,1,0")) + (rule "add_literals" (formula "118") (term "1,1,3,1,0,1,0")) + (rule "times_zero_1" (formula "118") (term "1,3,1,0,1,0")) + (rule "add_zero_right" (formula "118") (term "3,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "118") (term "0,3,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "118") (term "0,0,3,0,0,1,0")) + (rule "add_literals" (formula "118") (term "1,0,0,3,0,0,1,0")) + (rule "times_zero_1" (formula "118") (term "0,0,3,0,0,1,0")) + (rule "add_zero_left" (formula "118") (term "0,3,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "117") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "117") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "1,0,0")) + (rule "commuteUnion" (formula "114") (term "1,0")) + (rule "elim_double_block_2" (formula "160") (term "1")) + (rule "commute_and" (formula "118") (term "0,0")) + (rule "commute_and" (formula "116") (term "1,0,0")) + (rule "commute_and" (formula "116") (term "0,0,0")) + (rule "commute_and" (formula "117") (term "0,0,0")) + (rule "commute_and" (formula "117") (term "1,0,0")) + (rule "shift_paren_and" (formula "116") (term "0,0")) + (rule "commute_and_2" (formula "116") (term "0,0,0")) + (rule "shift_paren_and" (formula "117") (term "0,0")) + (rule "commute_and_2" (formula "117") (term "0,0,0")) + (rule "ifUnfold" (formula "160") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "160") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "160") (term "1")) + (builtin "One Step Simplification" (formula "160")) + (rule "replace_known_left" (formula "160") (term "0,0,1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "160")) + (rule "ifSplit" (formula "160")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "160") (term "1")) + (rule "emptyStatement" (formula "160") (term "1")) + (rule "variableDeclarationGhostAssign" (formula "160") (term "1")) + (rule "variableDeclarationGhost" (formula "160") (term "1") (newnames "bucketOffset")) + (rule "assignmentMultiplicationInt" (formula "160") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "160")) + (rule "expand_inInt" (formula "160")) + (rule "replace_int_MAX" (formula "160") (term "1,0")) + (rule "replace_int_MIN" (formula "160") (term "0,1")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "118") (term "1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "118") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "118") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "118") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "118") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "117") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "117") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "117") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "117") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "117") (term "0,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "117") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "117") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "116") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "116") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "116") (term "1,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "116") (term "1,1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "116") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "116") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "116") (term "1,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "117") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "116") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "117") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "116") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "160") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "mul_literals" (formula "71") (term "1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_pullOutFactor1" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (rule "qeq_literals" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "mul_literals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,0")) + (rule "polySimp_mulComm0" (formula "100") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0")) + (rule "add_literals" (formula "103") (term "1,0")) + (rule "times_zero_1" (formula "103") (term "0")) + (rule "qeq_literals" (formula "103")) + (rule "true_left" (formula "103")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addAssoc" (formula "100") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "116") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "116") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "116") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "1,1,0")) + (rule "times_zero_1" (formula "88") (term "1,0")) + (rule "add_zero_right" (formula "88") (term "0")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "115") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "115") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "115") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "115") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "115") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "115") (term "1,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "115") (term "0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "115") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "114") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "114") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "114") (term "1,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "polySimp_mulAssoc" (formula "102") (term "0,1")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "1")) + (rule "polySimp_elimOne" (formula "88") (term "1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "63")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "7")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_subsumption6" (formula "152") (term "1") (ifseqformula "7")) + (rule "mul_literals" (formula "152") (term "1,1,0,1")) + (rule "greater_literals" (formula "152") (term "0,0,1")) + (builtin "One Step Simplification" (formula "152")) + (rule "leq_literals" (formula "152") (term "0,1")) + (builtin "One Step Simplification" (formula "152")) + (rule "inEqSimp_leqRight" (formula "152")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "elimGcdGeq_antec" (formula "1") (inst "elimGcdRightDiv=Z(8(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=bucket_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0")) + (rule "polySimp_addComm0" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "57")) + (rule "times_zero_1" (formula "62") (term "0,0")) + (rule "add_zero_left" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "65")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "78") (term "0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "89")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "95")) + (rule "mul_literals" (formula "62") (term "0,0")) + (rule "add_zero_left" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "69")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "60")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "polySimp_addAssoc" (formula "80") (term "0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "inEqSimp_subsumption0" (formula "80") (ifseqformula "17")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "72")) + (rule "polySimp_mulComm0" (formula "86") (term "0,0")) + (rule "polySimp_addComm0" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "76")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "17")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "71") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "mul_literals" (formula "71") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "72") (term "0")) + (rule "add_literals" (formula "72") (term "1,1,0")) + (rule "times_zero_1" (formula "72") (term "1,0")) + (rule "polySimp_addLiterals" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "1,1,0")) + (rule "times_zero_1" (formula "79") (term "1,0")) + (rule "add_zero_right" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "polySimp_elimOne" (formula "79") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "101")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "60")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,1,0")) + (rule "times_zero_1" (formula "101") (term "1,0")) + (rule "polySimp_addLiterals" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "28")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "mul_literals" (formula "79") (term "1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "28")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1")) + (rule "polySimp_rightDist" (formula "101") (term "1")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,1")) + (rule "mul_literals" (formula "101") (term "0,1")) + (rule "polySimp_elimOne" (formula "101") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "2")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "68")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "102") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,0")) + (rule "add_zero_right" (formula "102") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "1")) + (rule "polySimp_elimOne" (formula "102") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "29")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "99")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "mul_literals" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "64")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "add_zero_left" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "28")) + (rule "leq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "54")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "add_zero_left" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "101")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "74")) + (rule "mul_literals" (formula "95") (term "0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "add_literals" (formula "95") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "95")) + (rule "mul_literals" (formula "95") (term "1")) + (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "28")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_subsumption0" (formula "73") (ifseqformula "75")) + (rule "inEqSimp_homoInEq0" (formula "73") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0")) + (rule "mul_literals" (formula "73") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0")) + (rule "add_literals" (formula "73") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_literals" (formula "73") (term "0,0")) + (rule "qeq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0")) + (rule "polySimp_addComm0" (formula "102") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (ifseqformula "102")) + (rule "leq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm0" (formula "102") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "mul_literals" (formula "102") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,1")) + (rule "polySimp_elimOne" (formula "102") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "100") (term "0")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,0")) + (rule "mul_literals" (formula "100") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0")) + (rule "polySimp_addComm1" (formula "100") (term "0,0,0")) + (rule "add_literals" (formula "100") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "100") (term "0,0")) + (rule "add_literals" (formula "100") (term "1,1,0,0")) + (rule "times_zero_1" (formula "100") (term "1,0,0")) + (rule "add_literals" (formula "100") (term "0,0")) + (rule "qeq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "95") (ifseqformula "73")) + (rule "mul_literals" (formula "95") (term "0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0")) + (rule "add_literals" (formula "95") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "95")) + (rule "mul_literals" (formula "95") (term "1")) + (rule "inEqSimp_subsumption6" (formula "95") (ifseqformula "28")) + (rule "mul_literals" (formula "95") (term "1,1,0")) + (rule "greater_literals" (formula "95") (term "0,0")) + (builtin "One Step Simplification" (formula "95")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "mul_literals" (formula "102") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "add_literals" (formula "102") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "101")) + (rule "leq_literals" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "mul_literals" (formula "102") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "polySimp_addComm1" (formula "102") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "102") (term "0")) + (rule "add_literals" (formula "102") (term "1,1,0")) + (rule "times_zero_1" (formula "102") (term "1,0")) + (rule "add_zero_right" (formula "102") (term "0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "add_literals" (formula "102") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_subsumption0" (formula "102") (ifseqformula "96")) + (rule "leq_literals" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "73")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0")) + (rule "polySimp_addComm0" (formula "100") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "100") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "mul_literals" (formula "100") (term "1")) + (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "28")) + (rule "leq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_exactShadow3" (formula "102") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "102") (term "0,0")) + (rule "mul_literals" (formula "102") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "102") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "102")) + (rule "polySimp_mulLiterals" (formula "102") (term "0")) + (rule "polySimp_elimOne" (formula "102") (term "0")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "102")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0")) + (rule "add_literals" (formula "75") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_literals" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "100")) + (rule "polySimp_mulComm0" (formula "99") (term "0,0")) + (rule "polySimp_addComm0" (formula "99") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "99")) + (rule "polySimp_mulLiterals" (formula "99") (term "0")) + (rule "polySimp_elimOne" (formula "99") (term "0")) + (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "99")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "101")) + (rule "mul_literals" (formula "94") (term "0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "add_literals" (formula "94") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "94")) + (rule "mul_literals" (formula "94") (term "1")) + (rule "inEqSimp_subsumption1" (formula "94") (ifseqformula "28")) + (rule "leq_literals" (formula "94") (term "0")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_and_subsumption3" (formula "116") (term "0,0,0")) + (rule "leq_literals" (formula "116") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "116")) + (rule "inEqSimp_and_subsumption3" (formula "115") (term "0,0,0")) + (rule "leq_literals" (formula "115") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "115")) + (rule "nnf_imp2or" (formula "107") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "117") (term "0")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0")) + (rule "replace_known_left" (formula "52") (term "1") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "37")) (ifInst "" (formula "157")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "52")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "26")) (ifInst "" (formula "156"))) + (rule "translateJavaSubInt" (formula "70") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "70") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "70") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "70") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "70") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "70") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "70") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "70") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "70") (term "1,0,1,1,1")) + (rule "applyEq" (formula "70") (term "1,0,1,0,0,1") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0,0,1")) + (rule "add_literals" (formula "70") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "70") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "70") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEq" (formula "70") (term "0,1,0,1,1,1,1") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "70") (term "1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "70") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "70") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEq" (formula "70") (term "0,0,0,1,1") (ifseqformula "71")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "49")) + (rule "inEqSimp_homoInEq1" (formula "70") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "70") (term "0,1,0")) + (rule "add_literals" (formula "70") (term "1,0,1,0")) + (rule "times_zero_1" (formula "70") (term "0,1,0")) + (rule "leq_literals" (formula "70") (term "1,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEq" (formula "70") (term "1,0,1,0,1") (ifseqformula "49")) + (rule "applyEq" (formula "70") (term "1,1,0,1,1,1") (ifseqformula "71")) + (rule "applyEq" (formula "70") (term "1,1,1,1,1,1") (ifseqformula "71")) + (rule "applyEq" (formula "70") (term "0,0,0,1") (ifseqformula "71")) + (rule "applyEq" (formula "70") (term "0,1,0,0,0,1,1,1") (ifseqformula "49")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "70") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "70") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "70") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "70") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "70")) + (rule "applyEq" (formula "70") (term "0,1,0,1") (ifseqformula "71")) + (rule "inEqSimp_sepNegMonomial0" (formula "70") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "70") (term "0,0,1,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaSubInt" (formula "88") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "88") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "88") (term "1,1,1")) + (rule "mul_literals" (formula "88") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "88") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "88") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0")) + (rule "applyEq" (formula "88") (term "1,0,1,1,1") (ifseqformula "89")) + (rule "polySimp_addComm1" (formula "88") (term "0,1,1,1")) + (rule "applyEq" (formula "88") (term "0,0,1,1") (ifseqformula "89")) + (rule "inEqSimp_commuteGeq" (formula "88") (term "0,1,1")) + (rule "applyEq" (formula "88") (term "0,0,0,1") (ifseqformula "89")) + (rule "inEqSimp_sepNegMonomial0" (formula "88") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,1,1,1")) + (rule "polySimp_elimOne" (formula "88") (term "0,1,1,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "89") (term "1")) + (rule "eqSymm" (formula "89")) + (rule "translateJavaCastInt" (formula "89") (term "0,0")) + (rule "castedGetAny" (formula "89") (term "0,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "108") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "108")) + (rule "expand_inInt" (formula "108") (term "1,0,0")) + (rule "replace_int_MAX" (formula "108") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "108") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "108") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "108") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "108") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "108") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "108") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "108") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "108") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "108") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "70") (term "0")) + (rule "translateJavaCastInt" (formula "70") (term "0,0")) + (rule "castedGetAny" (formula "70") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "118") (inst "b=b")) + (builtin "One Step Simplification" (formula "118")) + (rule "expand_inInt" (formula "118") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "118") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "118") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "118")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "118")) + (rule "notLeft" (formula "118")) + (rule "translateJavaMulInt" (formula "118") (term "1")) + (rule "mul_literals" (formula "118") (term "1")) + (rule "eqSymm" (formula "129")) + (rule "inEqSimp_ltToLeq" (formula "122") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "122") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "122") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "122") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "122") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "120")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "37")) + (rule "replace_known_left" (formula "68") (term "0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "68")) + (rule "applyEq" (formula "124") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "125") (term "0,1,0,0,1,0,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "125") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "125") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "125") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "45") (ifseqformula "124")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "122")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "122")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "3")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "160")) + (rule "translateJavaMulInt" (formula "160") (term "0,1,0")) + (rule "emptyStatement" (formula "160") (term "1")) + (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_12,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "161")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "161") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "161") (term "1")) + (rule "variableDeclaration" (formula "161") (term "1") (newnames "exc_12_1")) + (rule "assignment" (formula "161") (term "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "emptyStatement" (formula "161") (term "1")) + (builtin "One Step Simplification" (formula "161")) + (rule "emptyStatement" (formula "161") (term "1")) + (rule "tryEmpty" (formula "161") (term "1")) + (rule "blockEmptyLabel" (formula "161") (term "1")) + (rule "blockEmpty" (formula "161") (term "1")) + (rule "methodCallEmpty" (formula "161") (term "1")) + (rule "emptyModality" (formula "161") (term "1")) + (rule "andRight" (formula "161")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "161")) + (rule "closeTrue" (formula "161")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "161")) + (rule "closeTrue" (formula "161")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "160")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "160")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "160")) + (rule "wellFormedAnonEQ" (formula "160") (ifseqformula "114")) + (rule "wellFormedAnon" (formula "160") (term "0")) + (rule "wellFormedAnon" (formula "160") (term "0,0")) + (rule "replace_known_left" (formula "160") (term "1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93"))) + (rule "closeTrue" (formula "160")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "161")) + (builtin "One Step Simplification" (formula "126")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "126") (term "1,1,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "126")) + (rule "andLeft" (formula "126")) + (rule "andLeft" (formula "126")) + (rule "andLeft" (formula "128")) + (rule "translateJavaAddInt" (formula "128") (term "4,0")) + (rule "translateJavaAddInt" (formula "129") (term "4,0")) + (rule "translateJavaAddInt" (formula "129") (term "5,0")) + (rule "replace_known_left" (formula "127") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "127")) + (rule "true_left" (formula "127")) + (rule "polySimp_addAssoc" (formula "128") (term "4,0")) + (rule "polySimp_addComm0" (formula "128") (term "0,4,0")) + (rule "applyEq" (formula "128") (term "1,5,0") (ifseqformula "124")) + (rule "polySimp_addAssoc" (formula "128") (term "5,0")) + (rule "polySimp_addAssoc" (formula "128") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "128") (term "0,0,5,0")) + (rule "applyEq" (formula "127") (term "1,4,0") (ifseqformula "124")) + (rule "polySimp_addAssoc" (formula "127") (term "4,0")) + (rule "polySimp_addAssoc" (formula "127") (term "0,4,0")) + (rule "polySimp_addComm0" (formula "127") (term "0,0,4,0")) + (rule "elim_double_block_2" (formula "163") (term "1")) + (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "163") (term "1")) + (builtin "One Step Simplification" (formula "163")) + (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "163")) + (rule "ifSplit" (formula "163")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "163") (term "1")) + (rule "emptyStatement" (formula "163") (term "1")) + (builtin "Block Contract (Internal)" (formula "163") (newnames "exc_13,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "164")) + (rule "eqSymm" (formula "164") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "164") (term "1")) + (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_13_1")) + (rule "assignment" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (rule "tryEmpty" (formula "164") (term "1")) + (rule "blockEmptyLabel" (formula "164") (term "1")) + (rule "blockEmpty" (formula "164") (term "1")) + (rule "methodCallEmpty" (formula "164") (term "1")) + (rule "emptyModality" (formula "164") (term "1")) + (rule "andRight" (formula "164")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "163")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "163")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "163")) + (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "114")) + (rule "wellFormedAnon" (formula "163") (term "0")) + (rule "wellFormedAnon" (formula "163") (term "0,0")) + (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93"))) + (rule "closeTrue" (formula "163")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "129")) + (builtin "One Step Simplification" (formula "164")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "129") (term "1,1,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "129")) + (rule "andLeft" (formula "129")) + (rule "andLeft" (formula "129")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "translateJavaAddInt" (formula "132") (term "3,0")) + (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "130")) + (rule "true_left" (formula "130")) + (rule "polySimp_addAssoc" (formula "131") (term "3,0")) + (rule "polySimp_addComm0" (formula "131") (term "0,3,0")) + (rule "elim_double_block_2" (formula "168") (term "1")) + (rule "ifUnfold" (formula "168") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "168") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "replace_known_left" (formula "168") (term "0,0,1,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "168")) + (builtin "Use Dependency Contract" (formula "112") (term "0") (ifInst "" (formula "47") (term "1,1,1,0")) (contract "de.wiesler.Buffers[de.wiesler.Buffers::bufferLen(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "134") (term "1,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "134") (term "0,1,1,0,0,0,0")) + (rule "expand_inInt" (formula "134") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "134") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "134") (term "1,0,1,0,0,0")) + (rule "replace_known_left" (formula "134") (term "1,1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "134") (ifInst "" (formula "167")) (ifInst "" (formula "22")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "93")) (ifInst "" (formula "75"))) + (rule "disjointDefinition" (formula "134") (term "1,0")) + (rule "disjointWithSingleton1" (formula "134") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "134") (term "0,0,0")) + (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "134")) + (rule "inEqSimp_commuteLeq" (formula "134") (term "0,0,0")) + (rule "replace_known_left" (formula "134") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "134")) + (rule "applyEq" (formula "134") (term "0,1") (ifseqformula "112")) + (rule "applyEq" (formula "134") (term "1,0,0") (ifseqformula "40")) + (rule "replace_known_left" (formula "134") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "elementOfUnion" (formula "134") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "134") (term "1,0,0")) + (rule "replace_known_right" (formula "134") (term "0,0,1,0,0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "134")) + (rule "elementOfArrayRangeConcrete" (formula "134") (term "0,0")) + (rule "replace_known_right" (formula "134") (term "0,0,0,0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "134")) + (rule "ifSplit" (formula "169")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (rule "emptyStatement" (formula "169") (term "1")) + (rule "tryEmpty" (formula "169") (term "1")) + (rule "blockEmptyLabel" (formula "169") (term "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (rule "methodCallEmpty" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "emptyModality" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "closeTrue" (formula "169")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (distribute)" + (builtin "One Step Simplification" (formula "114")) + (builtin "One Step Simplification" (formula "149")) + (rule "andLeft" (formula "114")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "115")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "115")) + (rule "andLeft" (formula "117")) + (rule "notLeft" (formula "115")) + (rule "close" (formula "118") (ifseqformula "117")) + ) + (branch "Pre (distribute)" + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "146")) (ifInst "" (formula "22")) (ifInst "" (formula "146")) (ifInst "" (formula "17"))) + (rule "andRight" (formula "147")) + (branch "Case 1" + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "147") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14") (userinteraction)) + (rule "close" (formula "147") (ifseqformula "14")) + ) + (branch + (rule "andRight" (formula "147")) + (branch + (rule "andRight" (formula "147")) + (branch + (rule "andRight" (formula "147")) + (branch + (rule "andRight" (formula "147")) + (branch + (rule "andRight" (formula "147")) + (branch + (rule "wellFormedAnon" (formula "147")) + (rule "wellFormedAnon" (formula "147") (term "0")) + (rule "replace_known_left" (formula "147") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "147")) + ) + (branch + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "147")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "147")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_pullOutFactor1" (formula "105") (term "0")) + (rule "add_literals" (formula "105") (term "1,0")) + (rule "times_zero_1" (formula "105") (term "0")) + (rule "qeq_literals" (formula "105")) + (rule "true_left" (formula "105")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "mul_literals" (formula "79") (term "1,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,0")) + (rule "times_zero_1" (formula "101") (term "0")) + (rule "qeq_literals" (formula "101")) + (rule "true_left" (formula "101")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "polySimp_rightDist" (formula "89") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "89") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "89") (term "0")) + (rule "add_literals" (formula "89") (term "1,1,0")) + (rule "times_zero_1" (formula "89") (term "1,0")) + (rule "add_zero_right" (formula "89") (term "0")) + (rule "applyEq" (formula "86") (term "1") (ifseqformula "57")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1")) + (rule "polySimp_rightDist" (formula "103") (term "1")) + (rule "polySimp_mulAssoc" (formula "103") (term "0,1")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "103") (term "0,1")) + (rule "polySimp_elimOne" (formula "103") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,1")) + (rule "mul_literals" (formula "72") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "1")) + (rule "polySimp_elimOne" (formula "89") (term "1")) + (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "1")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_contradInEq0" (formula "76") (ifseqformula "1")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "closeFalse" (formula "76")) + ) + ) + (branch + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "replace_known_left" (formula "147") (term "1") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "60"))) + (rule "closeTrue" (formula "147")) + ) + ) + (branch + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "mul_literals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0")) + (rule "add_literals" (formula "104") (term "1,0")) + (rule "times_zero_1" (formula "104") (term "0")) + (rule "qeq_literals" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "mul_literals" (formula "71") (term "1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_pullOutFactor1" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (rule "qeq_literals" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_homoInEq0" (formula "145") (term "1")) + (rule "mul_literals" (formula "145") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "145") (term "0,1")) + (rule "polySimp_addComm1" (formula "145") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "145") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "145") (term "0")) + (rule "polySimp_mulComm0" (formula "145") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "145") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "145") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "145") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "145") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "145") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "145") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "145") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "1,1,0")) + (rule "times_zero_1" (formula "88") (term "1,0")) + (rule "add_zero_right" (formula "88") (term "0")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "polySimp_mulAssoc" (formula "102") (term "0,1")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "1")) + (rule "polySimp_mulLiterals" (formula "144") (term "0,1")) + (rule "polySimp_elimOne" (formula "144") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "144") (term "0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,0")) + (rule "mul_literals" (formula "144") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "144") (term "1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "1")) + (rule "polySimp_elimOne" (formula "88") (term "1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "7")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "63")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption0" (formula "139") (term "1") (ifseqformula "95")) + (rule "inEqSimp_homoInEq0" (formula "139") (term "0,1")) + (rule "polySimp_mulComm0" (formula "139") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "139") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "139") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "139") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "139") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "139") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "139") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "139") (term "0,0,1")) + (rule "add_literals" (formula "139") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "139") (term "1,0,0,1")) + (rule "add_zero_right" (formula "139") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "139") (term "0,0,1")) + (rule "add_literals" (formula "139") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "139") (term "1,0,0,1")) + (rule "add_zero_right" (formula "139") (term "0,0,1")) + (rule "qeq_literals" (formula "139") (term "0,1")) + (builtin "One Step Simplification" (formula "139")) + (rule "inEqSimp_geqRight" (formula "139")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "95") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "95") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "95") (term "0,1,0,0")) + (rule "mul_literals" (formula "95") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0")) + (rule "polySimp_addComm1" (formula "95") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0")) + (rule "add_zero_right" (formula "95") (term "0,0")) + (rule "polySimp_addAssoc" (formula "95") (term "0,0")) + (rule "polySimp_addComm0" (formula "95") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0")) + (rule "add_literals" (formula "95") (term "0,0")) + (rule "qeq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58")) + (rule "times_zero_1" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "70")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0")) + (rule "polySimp_addComm0" (formula "84") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "84")) + (rule "polySimp_mulLiterals" (formula "84") (term "0")) + (rule "polySimp_elimOne" (formula "84") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "60")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "18")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "1")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "mul_literals" (formula "76") (term "1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "30")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "97") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0")) + (rule "add_literals" (formula "97") (term "1,1,0,0")) + (rule "times_zero_1" (formula "97") (term "1,0,0")) + (rule "add_zero_right" (formula "97") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "97")) + (rule "polySimp_mulLiterals" (formula "97") (term "1")) + (rule "polySimp_elimOne" (formula "97") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "75")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,0,0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0")) + (rule "add_literals" (formula "70") (term "1,1,0")) + (rule "times_zero_1" (formula "70") (term "1,0")) + (rule "polySimp_addLiterals" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "69")) + (rule "polySimp_rightDist" (formula "77") (term "0,0")) + (rule "mul_literals" (formula "77") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0")) + (rule "add_literals" (formula "77") (term "1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0")) + (rule "add_zero_right" (formula "77") (term "0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1")) + (rule "polySimp_rightDist" (formula "77") (term "1")) + (rule "mul_literals" (formula "77") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "98")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_literals" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "71") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "mul_literals" (formula "71") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "1,1,0")) + (rule "times_zero_1" (formula "59") (term "1,0")) + (rule "add_zero_right" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "add_zero_left" (formula "59") (term "0")) + (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "59")) + (rule "leq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "82")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_addComm1" (formula "101") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,1,0")) + (rule "times_zero_1" (formula "101") (term "1,0")) + (rule "polySimp_addLiterals" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "79")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "18")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "2")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "36")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "32")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "101") (term "0")) + (rule "polySimp_addComm0" (formula "101") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1")) + (rule "polySimp_rightDist" (formula "101") (term "1")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,1")) + (rule "mul_literals" (formula "101") (term "0,1")) + (rule "polySimp_elimOne" (formula "101") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "72")) + (rule "mul_literals" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "mul_literals" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "95")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "70")) + (rule "mul_literals" (formula "84") (term "0,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "84")) + (rule "polySimp_mulComm0" (formula "84") (term "1")) + (rule "polySimp_rightDist" (formula "84") (term "1")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,1")) + (rule "mul_literals" (formula "84") (term "0,1")) + (rule "polySimp_elimOne" (formula "84") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "84") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,0")) + (rule "mul_literals" (formula "84") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0")) + (rule "add_literals" (formula "84") (term "0,0")) + (rule "qeq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "add_zero_left" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "1")) + (rule "polySimp_elimOne" (formula "67") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "74")) + (rule "mul_literals" (formula "96") (term "0,0")) + (rule "polySimp_addAssoc" (formula "96") (term "0")) + (rule "add_literals" (formula "96") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "96")) + (rule "mul_literals" (formula "96") (term "1")) + (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "61")) + (rule "leq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "66")) + (rule "mul_literals" (formula "30") (term "0,0")) + (rule "add_zero_left" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "30")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_contradInEq1" (formula "97") (ifseqformula "30")) + (rule "qeq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "closeFalse" (formula "97")) + ) + ) + (branch + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "147")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "147")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_addComm1" (formula "104") (term "0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_pullOutFactor1" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "1,0")) + (rule "times_zero_1" (formula "101") (term "0")) + (rule "qeq_literals" (formula "101")) + (rule "true_left" (formula "101")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0")) + (rule "add_literals" (formula "104") (term "1,0")) + (rule "times_zero_1" (formula "104") (term "0")) + (rule "qeq_literals" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_homoInEq0" (formula "79")) + (rule "mul_literals" (formula "79") (term "1,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "polySimp_rightDist" (formula "89") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "89") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "89") (term "0")) + (rule "add_literals" (formula "89") (term "1,1,0")) + (rule "times_zero_1" (formula "89") (term "1,0")) + (rule "add_zero_right" (formula "89") (term "0")) + (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "57")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0")) + (rule "applyEq" (formula "71") (term "0,1,0") (ifseqformula "57")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "86") (term "1") (ifseqformula "57")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1")) + (rule "polySimp_rightDist" (formula "103") (term "1")) + (rule "polySimp_mulAssoc" (formula "103") (term "0,1")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "103") (term "0,1")) + (rule "polySimp_elimOne" (formula "103") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "1")) + (rule "polySimp_elimOne" (formula "89") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,1")) + (rule "mul_literals" (formula "72") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "8")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "91") (ifseqformula "1")) + (rule "leq_literals" (formula "91") (term "0")) + (builtin "One Step Simplification" (formula "91")) + (rule "true_left" (formula "91")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "64")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_contradInEq0" (formula "90") (ifseqformula "1")) + (rule "qeq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "closeFalse" (formula "90")) + ) + ) + (branch + (rule "expand_inInt" (formula "147")) + (rule "replace_int_MIN" (formula "147") (term "0,1")) + (rule "replace_int_MAX" (formula "147") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "0,1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "70")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "103")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_pullOutFactor1" (formula "104") (term "0")) + (rule "add_literals" (formula "104") (term "1,0")) + (rule "times_zero_1" (formula "104") (term "0")) + (rule "qeq_literals" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "mul_literals" (formula "71") (term "1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "mul_literals" (formula "61") (term "1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1,0")) + (rule "polySimp_rightDist" (formula "101") (term "1,0")) + (rule "polySimp_mulComm0" (formula "101") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "101") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "mul_literals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "100")) + (rule "polySimp_pullOutFactor1" (formula "100") (term "0")) + (rule "add_literals" (formula "100") (term "1,0")) + (rule "times_zero_1" (formula "100") (term "0")) + (rule "qeq_literals" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_homoInEq0" (formula "145") (term "1")) + (rule "mul_literals" (formula "145") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "145") (term "0,1")) + (rule "polySimp_addComm1" (formula "145") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "145") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "145") (term "0")) + (rule "polySimp_mulComm0" (formula "145") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "145") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "145") (term "0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "145") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "145") (term "0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "145") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "145") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0")) + (rule "polySimp_addAssoc" (formula "145") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "88") (term "0")) + (rule "add_literals" (formula "88") (term "1,1,0")) + (rule "times_zero_1" (formula "88") (term "1,0")) + (rule "add_zero_right" (formula "88") (term "0")) + (rule "applyEq" (formula "70") (term "0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "applyEq" (formula "71") (term "1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "56")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102")) + (rule "polySimp_mulComm0" (formula "102") (term "1")) + (rule "polySimp_rightDist" (formula "102") (term "1")) + (rule "polySimp_mulAssoc" (formula "102") (term "0,1")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "0")) + (rule "polySimp_elimOne" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "mul_literals" (formula "78") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "144") (term "1")) + (rule "polySimp_mulComm0" (formula "144") (term "1,1")) + (rule "polySimp_rightDist" (formula "144") (term "1,1")) + (rule "polySimp_rightDist" (formula "144") (term "0,1,1")) + (rule "mul_literals" (formula "144") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "144") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "144") (term "1,0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "144") (term "0")) + (rule "polySimp_mulLiterals" (formula "144") (term "0,0")) + (rule "polySimp_elimOne" (formula "144") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "1")) + (rule "polySimp_elimOne" (formula "88") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1")) + (rule "mul_literals" (formula "71") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "7")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "65")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_subsumption1" (formula "141") (term "1") (ifseqformula "99")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "0,1")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "141") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "141") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "141") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "141") (term "0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "141") (term "0,0,1")) + (rule "add_literals" (formula "141") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "141") (term "1,0,0,1")) + (rule "add_zero_right" (formula "141") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "141") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "141") (term "0,0,1")) + (rule "add_literals" (formula "141") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "141") (term "1,0,0,1")) + (rule "add_zero_right" (formula "141") (term "0,0,1")) + (rule "qeq_literals" (formula "141") (term "0,1")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_leqRight" (formula "141")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "97") (term "0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0,0")) + (rule "polySimp_addComm1" (formula "97") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "97") (term "0,0,0,0")) + (rule "add_literals" (formula "97") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "97") (term "1,0,0,0,0")) + (rule "add_literals" (formula "97") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "97") (term "0,0")) + (rule "add_literals" (formula "97") (term "1,1,0,0")) + (rule "times_zero_1" (formula "97") (term "1,0,0")) + (rule "add_literals" (formula "97") (term "0,0")) + (rule "qeq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "76")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "inEqSimp_subsumption1" (formula "59") (ifseqformula "29")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "0,0,0,0")) + (rule "mul_literals" (formula "69") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "69") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "1,1,0")) + (rule "times_zero_1" (formula "69") (term "1,0")) + (rule "polySimp_addLiterals" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_subsumption1" (formula "61") (ifseqformula "29")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,0")) + (rule "add_literals" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,1")) + (rule "polySimp_rightDist" (formula "72") (term "0,1")) + (rule "mul_literals" (formula "72") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "99")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "61")) + (rule "mul_literals" (formula "82") (term "0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "0")) + (rule "polySimp_elimOne" (formula "82") (term "0")) + (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "19")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "67")) + (rule "mul_literals" (formula "82") (term "0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82")) + (rule "polySimp_mulComm0" (formula "82") (term "1")) + (rule "polySimp_rightDist" (formula "82") (term "1")) + (rule "mul_literals" (formula "82") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1")) + (rule "polySimp_elimOne" (formula "82") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "82") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "qeq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "mul_literals" (formula "79") (term "1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "30")) + (rule "leq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "88") (ifseqformula "74")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0")) + (rule "polySimp_addComm0" (formula "88") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0")) + (rule "add_literals" (formula "79") (term "1,1,0")) + (rule "times_zero_1" (formula "79") (term "1,0")) + (rule "add_zero_right" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1")) + (rule "polySimp_elimOne" (formula "79") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "79") (ifseqformula "101")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_literals" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "78") (ifseqformula "3")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "78")) + (rule "mul_literals" (formula "55") (term "0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "20")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "99")) + (rule "times_zero_1" (formula "65") (term "0,0")) + (rule "add_zero_left" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "62")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "95") (ifseqformula "2")) + (rule "leq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "83")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "39")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "34")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "74")) + (rule "mul_literals" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "63")) + (rule "mul_literals" (formula "69") (term "0,0")) + (rule "add_zero_left" (formula "69") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "34")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "97") (ifseqformula "76")) + (rule "mul_literals" (formula "97") (term "0,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "add_literals" (formula "97") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "97")) + (rule "mul_literals" (formula "97") (term "1")) + (rule "inEqSimp_subsumption1" (formula "97") (ifseqformula "100")) + (rule "leq_literals" (formula "97") (term "0")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "57")) + (rule "times_zero_1" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "104")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "68")) + (rule "times_zero_1" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "inEqSimp_subsumption1" (formula "100") (ifseqformula "32")) + (rule "leq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "65") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,0,0")) + (rule "mul_literals" (formula "65") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_literals" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "mul_literals" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0")) + (rule "polySimp_addComm0" (formula "103") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "103")) + (rule "leq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "102")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + ) + (branch "Null reference (_buffers = null)" + (builtin "One Step Simplification" (formula "147") (ifInst "" (formula "145"))) + (rule "closeTrue" (formula "147")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "109")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "wellFormedAnon" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (rule "andRight" (formula "109")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "108") (term "1") (ifseqformula "7")) + (rule "leq_literals" (formula "108") (term "0,1")) + (builtin "One Step Simplification" (formula "108")) + (rule "inEqSimp_leqRight" (formula "108")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Case 2" + (rule "orRight" (formula "109")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "22"))) + (rule "closeTrue" (formula "110")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "109")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "110")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "109")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "110")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "109")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "30")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "19")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "109") (term "1")) + (rule "mul_literals" (formula "109") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "109") (term "0,1")) + (rule "polySimp_addComm0" (formula "109") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "109") (term "0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "109") (term "1")) + (rule "polySimp_mulComm0" (formula "109") (term "1,1")) + (rule "polySimp_rightDist" (formula "109") (term "1,1")) + (rule "mul_literals" (formula "109") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "109") (term "0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58")) + (rule "times_zero_1" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "51") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "51")) + (rule "expand_inInt" (formula "51") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "51") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "51") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "52") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "54") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "37")) + (rule "inEqSimp_commuteGeq" (formula "51")) + (rule "applyEq" (formula "51") (term "1,1,1,1,1,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "3")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "7")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "66") (term "1")) + (builtin "One Step Simplification" (formula "66")) + (rule "translateJavaUnaryMinusInt" (formula "66") (term "1,1")) + (rule "neg_literal" (formula "66") (term "1,1")) + (rule "translateJavaSubInt" (formula "66") (term "0,1")) + (rule "translateJavaAddInt" (formula "66") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "66") (term "0,1")) + (rule "mul_literals" (formula "66") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "66") (term "0,1")) + (rule "polySimp_addComm1" (formula "66") (term "0,1")) + (rule "polySimp_addComm0" (formula "66") (term "0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,1")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "45")) + (rule "translateJavaMulInt" (formula "42") (term "1,0")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,1")) + (rule "mul_literals" (formula "45") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,0")) + (rule "mul_literals" (formula "45") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "37")) + (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "41")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "40")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaAddInt" (formula "36") (term "3,0")) + (rule "translateJavaAddInt" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "36") (term "3,0")) + (rule "polySimp_addComm0" (formula "35") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "12")) (ifInst "" (formula "112")) (ifInst "" (formula "12")) (ifInst "" (formula "61")) (ifInst "" (formula "20"))) + (rule "wellFormedAnon" (formula "58") (term "1,0")) + (rule "translateJavaAddInt" (formula "58") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "58") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "58") (term "0,1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "14"))) + (rule "polySimp_addComm0" (formula "58") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0")) + (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,0,1")) + (rule "applyEq" (formula "58") (term "0,1,0,0,1") (ifseqformula "59")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,1")) + (rule "applyEq" (formula "58") (term "0,1,0,0,0,1") (ifseqformula "59")) + (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,0,0,1")) + (rule "applyEq" (formula "58") (term "0,1,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "58") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "58") (term "0,0,1,1") (ifseqformula "59")) + (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "73")) + (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,0")) + (rule "replace_known_left" (formula "58") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "81")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "replace_known_left" (formula "121") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "121")) + (rule "inEqSimp_geqRight" (formula "121")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0")) + (rule "qeq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "1")) + (rule "polySimp_elimOne" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "60")) + (rule "polySimp_rightDist" (formula "82") (term "0,0")) + (rule "mul_literals" (formula "82") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82")) + (rule "polySimp_mulComm0" (formula "82") (term "1")) + (rule "polySimp_rightDist" (formula "82") (term "1")) + (rule "mul_literals" (formula "82") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "82")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "109")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "inEqSimp_leqRight" (formula "109")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "mul_literals" (formula "73") (term "1,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "mul_literals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "mul_literals" (formula "73") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_rightDist" (formula "65") (term "1")) + (rule "mul_literals" (formula "65") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "32") (ifseqformula "1")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "106") (term "1") (ifseqformula "63")) + (rule "leq_literals" (formula "106") (term "0,1")) + (builtin "One Step Simplification" (formula "106")) + (rule "inEqSimp_leqRight" (formula "106")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "1")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_literals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "60")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "31") (ifseqformula "1")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "35")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "59")) + (rule "times_zero_1" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "times_zero_1" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13")) (ifInst "" (formula "105")) (ifInst "" (formula "13")) (ifInst "" (formula "57")) (ifInst "" (formula "21"))) + (rule "wellFormedAnon" (formula "54") (term "1,0")) + (rule "translateJavaAddInt" (formula "54") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "54") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "54") (term "1,1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "16"))) + (rule "polySimp_addComm0" (formula "54") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "54") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,1")) + (rule "applyEq" (formula "54") (term "1,0,1,0,1") (ifseqformula "48")) + (rule "applyEq" (formula "54") (term "0,1,0,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,0,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,0") (ifseqformula "48")) + (rule "applyEq" (formula "54") (term "0,0,1,1") (ifseqformula "55")) + (rule "applyEq" (formula "54") (term "0,1,0,0,1") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,0,0,1")) + (rule "applyEq" (formula "54") (term "0,1,0,1") (ifseqformula "69")) + (rule "inEqSimp_commuteGeq" (formula "54") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0")) + (rule "replace_known_left" (formula "54") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "55")) + (rule "polySimp_rightDist" (formula "76") (term "0,0")) + (rule "mul_literals" (formula "76") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "78")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "54")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "76")) + (rule "mul_literals" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_subsumption0" (formula "54") (ifseqformula "29")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "1")) + (rule "polySimp_elimOne" (formula "57") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "59")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "mul_literals" (formula "81") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "mul_literals" (formula "81") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "mul_literals" (formula "78") (term "1")) + (rule "inEqSimp_subsumption1" (formula "78") (ifseqformula "28")) + (rule "leq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "56")) + (rule "mul_literals" (formula "53") (term "0,0")) + (rule "add_zero_left" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "29")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "61") (term "0")) + (rule "translateJavaMulInt" (formula "61") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "61") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,2,0")) + (rule "pullOutSelect" (formula "61") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "eqSymm" (formula "62")) + (rule "applyEqReverse" (formula "61") (term "1") (ifseqformula "62")) + (rule "hideAuxiliaryEq" (formula "62")) + (rule "elementOfArrayRangeConcrete" (formula "61") (term "0,0,0")) + (rule "replace_known_right" (formula "61") (term "0,0,0,0,0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "61")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "5")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "notLeft" (formula "13")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "6")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "45") (term "0,2,1")) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "45")) + (rule "translateJavaMulInt" (formula "42") (term "1,0")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,1")) + (rule "mul_literals" (formula "45") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "45") (term "0,2,0")) + (rule "mul_literals" (formula "45") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "37")) + (rule "inEqSimp_subsumption0" (formula "50") (ifseqformula "41")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "40")) + (rule "leq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "2")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "77") (term "0")) + (rule "translateJavaCastInt" (formula "77") (term "0,0")) + (rule "castedGetAny" (formula "77") (term "0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "77") (term "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "1,1,1")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "77") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0")) + (rule "add_zero_right" (formula "77") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "77") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0")) + (rule "replace_known_left" (formula "77") (term "1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0")) + (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "78")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "80")) + (rule "polySimp_rightDist" (formula "87") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,0,0")) + (rule "mul_literals" (formula "87") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "87") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,0,0")) + (rule "add_literals" (formula "87") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0")) + (rule "add_literals" (formula "87") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "87")) + (rule "mul_literals" (formula "87") (term "1")) + (rule "inEqSimp_subsumption1" (formula "87") (ifseqformula "16")) + (rule "leq_literals" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87")) + (rule "true_left" (formula "87")) + (rule "inEqSimp_exactShadow3" (formula "84") (ifseqformula "59")) + (rule "polySimp_rightDist" (formula "84") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0")) + (rule "mul_literals" (formula "84") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "84") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0")) + (rule "polySimp_addComm1" (formula "84") (term "0,0,0")) + (rule "add_literals" (formula "84") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0")) + (rule "add_literals" (formula "84") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "84")) + (rule "mul_literals" (formula "84") (term "1")) + (rule "inEqSimp_subsumption1" (formula "84") (ifseqformula "16")) + (rule "leq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "59")) + (rule "times_zero_1" (formula "55") (term "0,0")) + (rule "add_zero_left" (formula "55") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "mul_literals" (formula "55") (term "0,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "qeq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "11") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "4,0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "3,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "4,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "0,4,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "11") (term "4,0,0,1,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,4,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,0,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,1")) + (rule "neg_literal" (formula "81") (term "1,1")) + (rule "translateJavaSubInt" (formula "81") (term "0,1")) + (rule "translateJavaAddInt" (formula "81") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "81") (term "0,1")) + (rule "mul_literals" (formula "81") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "81") (term "0,1")) + (rule "polySimp_addComm1" (formula "81") (term "0,1")) + (rule "polySimp_addComm0" (formula "81") (term "0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "63") (term "0,0,0,0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "63")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_left" (formula "63") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "63")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "52") (term "0")) + (rule "replace_known_right" (formula "52") (term "0,1,1,0,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "33")) (ifInst "" (formula "13")) (ifInst "" (formula "53"))) + (rule "true_left" (formula "52")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "translateJavaAddInt" (formula "34") (term "3,0")) + (rule "translateJavaAddInt" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "3,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "65") (inst "b=b")) + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "translateJavaAddInt" (formula "71") (term "1")) + (rule "translateJavaCastInt" (formula "72") (term "0")) + (rule "translateJavaMulInt" (formula "65") (term "1")) + (rule "translateJavaMulInt" (formula "66") (term "0")) + (rule "translateJavaCastInt" (formula "69") (term "0")) + (rule "translateJavaCastInt" (formula "68") (term "1")) + (rule "polySimp_mulComm0" (formula "65") (term "1")) + (rule "polySimp_mulComm0" (formula "66") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "1")) + (rule "castedGetAny" (formula "72") (term "0")) + (rule "castedGetAny" (formula "69") (term "0")) + (rule "castedGetAny" (formula "68") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "applyEq" (formula "68") (term "1,0") (ifseqformula "49")) + (rule "applyEq" (formula "66") (term "0,0") (ifseqformula "49")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "applyEq" (formula "69") (term "1,0") (ifseqformula "49")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "49")) + (rule "applyEq" (formula "71") (term "1,1") (ifseqformula "49")) + (rule "applyEq" (formula "74") (term "0,1,0,0,1,0,0,0") (ifseqformula "49")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "65") (ifseqformula "39")) + (rule "greater_literals" (formula "65") (term "0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "mul_literals" (formula "65") (term "1,0")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "68")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "38") (inst "b=b")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "70")) (ifInst "" (formula "73"))) + (rule "expand_inInt" (formula "38") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "translateJavaCastInt" (formula "44") (term "0")) + (rule "translateJavaAddInt" (formula "43") (term "1")) + (rule "translateJavaMulInt" (formula "39") (term "0")) + (rule "translateJavaMulInt" (formula "38") (term "1")) + (rule "translateJavaCastInt" (formula "42") (term "0")) + (rule "translateJavaCastInt" (formula "41") (term "1")) + (rule "polySimp_mulComm0" (formula "39") (term "0")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_addComm0" (formula "43") (term "1")) + (rule "castedGetAny" (formula "44") (term "0")) + (rule "castedGetAny" (formula "42") (term "0")) + (rule "castedGetAny" (formula "41") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "76")) + (rule "polySimp_homoEq" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0")) + (rule "apply_eq_monomials" (formula "39") (term "0") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "39") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0")) + (rule "add_literals" (formula "39") (term "1,1,0")) + (rule "times_zero_1" (formula "39") (term "1,0")) + (rule "add_zero_right" (formula "39") (term "0")) + (rule "polySimp_mulComm0" (formula "39") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "apply_eq_monomials" (formula "38") (term "0") (ifseqformula "53")) + (rule "polySimp_rightDist" (formula "38") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0")) + (rule "add_literals" (formula "38") (term "1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0")) + (rule "add_zero_right" (formula "38") (term "0")) + (rule "polySimp_mulComm0" (formula "38") (term "0")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "53")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "53")) + (rule "polySimp_pullOutFactor2" (formula "41") (term "0")) + (rule "add_literals" (formula "41") (term "1,0")) + (rule "times_zero_1" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "38") (ifseqformula "42")) + (rule "greater_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "mul_literals" (formula "38") (term "1,0")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "51")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "53") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "53")) + (rule "expand_inInt" (formula "53") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "53") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "53") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "56") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "38") (term "1,0") (ifseqformula "50")) + (rule "applyEq" (formula "53") (term "1,1,1,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "34")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "37") (inst "b=b")) + (builtin "One Step Simplification" (formula "37")) + (rule "expand_inInt" (formula "37") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "37") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "37") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "translateJavaMulInt" (formula "37") (term "1")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "eqSymm" (formula "101")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "40") (term "0,1,0,0,1,0,0,0") (ifseqformula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "42")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "23")) + (rule "notLeft" (formula "22")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "commute_and" (formula "137")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "65") (term "0,1,1")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "134"))) + (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "65") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "65") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "65") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,1")) + (rule "replace_known_left" (formula "65") (term "0,0,0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0")) + (rule "replace_known_left" (formula "65") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1")) + (rule "applyEq" (formula "65") (term "0,1,0,1,1,1,1") (ifseqformula "50")) + (rule "applyEq" (formula "65") (term "0,1,0,0,0,1,1,1") (ifseqformula "50")) + (rule "applyEq" (formula "65") (term "0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "65") (term "1,0,0,0,1") (ifseqformula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "65") (term "0,0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_subsumption1" (formula "65") (term "1,0,1,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "65") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "65") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "65") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "65") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_subsumption1" (formula "65") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "65") (term "0,0,0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "qeq_literals" (formula "65") (term "0,0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "66") (term "0,1,1")) + (rule "translateJavaCastInt" (formula "66") (term "0,0,1,1")) + (rule "polySimp_homoEq" (formula "66")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "castedGetAny" (formula "66") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "96") (term "0")) + (rule "translateJavaCastInt" (formula "96") (term "0,0")) + (rule "castedGetAny" (formula "96") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "93") (term "0")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "135"))) + (rule "translateJavaSubInt" (formula "93") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "93") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "93") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "93") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "93") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "93") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "93") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "93") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0")) + (rule "replace_known_left" (formula "93") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,1")) + (rule "replace_known_left" (formula "93") (term "0,0,0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "93")) + (rule "applyEq" (formula "93") (term "0,1,0,0,0,1,1,1") (ifseqformula "50")) + (rule "applyEq" (formula "93") (term "0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "93") (term "1,0,1,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "93") (term "1,0,0,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "93") (term "0,1,0,1,1,1,1") (ifseqformula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "93") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "93") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "93") (term "0,0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_subsumption1" (formula "93") (term "1,0,1,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "93") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "93") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "93") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "93") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "93") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "93") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "93")) + (rule "inEqSimp_subsumption1" (formula "93") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "93") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "93") (term "0,0,0,0")) + (rule "add_literals" (formula "93") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "93") (term "1,0,0,0,0")) + (rule "add_literals" (formula "93") (term "0,0,0,0")) + (rule "qeq_literals" (formula "93") (term "0,0,0")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "65"))) + (rule "true_left" (formula "93")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "93") (term "0")) + (rule "translateJavaCastInt" (formula "93") (term "0,0")) + (rule "castedGetAny" (formula "93") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "98") (term "0")) + (rule "translateJavaCastInt" (formula "98") (term "0,0")) + (rule "castedGetAny" (formula "98") (term "0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "135"))) + (rule "translateJavaSubInt" (formula "95") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "95") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "95") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "95") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "95") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "95") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "95") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "95") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "95") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "95") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "95") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0,0,1")) + (rule "replace_known_left" (formula "95") (term "0,0,0,1") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "95") (term "0,0,0")) + (rule "replace_known_left" (formula "95") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "95")) + (rule "applyEq" (formula "95") (term "0,1,0,1,1,1,1") (ifseqformula "50")) + (rule "applyEq" (formula "95") (term "1,0,1,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "95") (term "0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "95") (term "1,0,0,0,1") (ifseqformula "50")) + (rule "applyEq" (formula "95") (term "0,1,0,0,0,1,1,1") (ifseqformula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "95") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "95") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "95") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "95") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "95") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "95") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "95") (term "0,0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_subsumption1" (formula "95") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0,0,0")) + (rule "add_literals" (formula "95") (term "0,0,0,0")) + (rule "qeq_literals" (formula "95") (term "0,0,0")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_subsumption1" (formula "95") (term "1,0,1,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "95") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "95") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "95") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "95") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "65"))) + (rule "true_left" (formula "95")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "95") (term "0")) + (rule "translateJavaCastInt" (formula "95") (term "0,0")) + (rule "castedGetAny" (formula "95") (term "0,0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "10") (term "2,0,0,1,1,0")) + (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "14")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "11") (term "1,1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaMod" (formula "64") (term "0")) + (rule "jmod_axiom" (formula "64") (term "0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "newSym_eq" (formula "64") (inst "l=l_0") (inst "newSymDef=mul(result, Z(0(#)))")) + (rule "times_zero_1" (formula "64") (term "1,1")) + (rule "add_zero_right" (formula "64") (term "1")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "64")) + (rule "eqSymm" (formula "65")) + (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "65")) + (rule "applyEq" (formula "61") (term "1") (ifseqformula "65")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "65")) + (rule "inEqSimp_homoInEq0" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "65")) + (rule "inEqSimp_homoInEq0" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "65")) + (rule "applyEq" (formula "62") (term "1") (ifseqformula "65")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "65")) + (rule "applyEq" (formula "96") (term "0") (ifseqformula "65")) + (rule "inEqSimp_homoInEq1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,0")) + (rule "polySimp_addComm1" (formula "96") (term "0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "65")) + (rule "applyEq" (formula "66") (term "1") (ifseqformula "65")) + (rule "applyEq" (formula "68") (term "0,1") (ifseqformula "65")) + (rule "inEqSimp_sepNegMonomial1" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_rightDist" (formula "60") (term "1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1")) + (rule "polySimp_elimOne" (formula "60") (term "1,1")) + (rule "polySimp_rightDist" (formula "60") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1")) + (rule "mul_literals" (formula "60") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "elimGcdGeq_antec" (formula "56") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,0")) + (rule "leq_literals" (formula "56") (term "0,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "elimGcdLeq_antec" (formula "55") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "55") (term "0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "55") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0")) + (rule "qeq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "92")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1")) + (rule "polySimp_rightDist" (formula "61") (term "1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,1")) + (rule "mul_literals" (formula "61") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "59")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "56")) + (rule "greater_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_subsumption0" (formula "59") (ifseqformula "60")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "59") (term "0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0")) + (rule "qeq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "96") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "96") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,0,0")) + (rule "mul_literals" (formula "96") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "96") (term "0")) + (rule "add_literals" (formula "96") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "96")) + (rule "mul_literals" (formula "96") (term "1")) + (rule "inEqSimp_subsumption6" (formula "96") (ifseqformula "56")) + (rule "mul_literals" (formula "96") (term "1,1,0")) + (rule "greater_literals" (formula "96") (term "0,0")) + (builtin "One Step Simplification" (formula "96")) + (rule "leq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "mul_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_subsumption6" (formula "57") (ifseqformula "56")) + (rule "mul_literals" (formula "57") (term "1,1,0")) + (rule "greater_literals" (formula "57") (term "0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "1,1,0")) + (rule "times_zero_1" (formula "60") (term "1,0")) + (rule "add_zero_right" (formula "60") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "inEqSimp_subsumption4" (formula "60") (ifseqformula "55")) + (rule "greater_literals" (formula "60") (term "0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "59")) + (rule "times_zero_1" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "elimGcdLeq_antec" (formula "23") (inst "elimGcdRightDiv=Z(8(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "56") (ifseqformula "23")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "63") (term "1")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "91")) (ifInst "" (formula "92"))) + (rule "translateJavaSubInt" (formula "63") (term "0,1")) + (rule "polySimp_elimSub" (formula "63") (term "0,1")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "63") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "63") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1,0,0,1")) + (rule "add_literals" (formula "63") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "63") (term "0,1")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "63") (term "0,1,1")) + (rule "mul_literals" (formula "63") (term "0,0,1,1")) + (rule "replace_known_left" (formula "63") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "137"))) + (rule "translateJavaAddInt" (formula "63") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "63") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "63") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "63") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "63") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "63") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "63") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "63") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "63") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "63") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "63") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "63") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "63") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "63") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0,0,0")) + (rule "applyEq" (formula "63") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "63") (term "0,1,0,0") (ifseqformula "52")) + (rule "replace_known_left" (formula "63") (term "1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "63")) + (rule "applyEq" (formula "63") (term "1,0,1,0,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "63") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "replace_known_left" (formula "63") (term "1,0,1,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "63")) + (rule "applyEq" (formula "63") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "63") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "63") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,1,1,1,1")) + (rule "mul_literals" (formula "63") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "63") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "63") (term "0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "63")) + (rule "inEqSimp_subsumption1" (formula "63") (term "0,0") (ifseqformula "8")) + (rule "leq_literals" (formula "63") (term "0,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "64") (term "0")) + (rule "translateJavaCastInt" (formula "64") (term "0,0")) + (rule "castedGetAny" (formula "64") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "mul_literals" (formula "101") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1")) + (rule "polySimp_rightDist" (formula "101") (term "1")) + (rule "mul_literals" (formula "101") (term "0,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "64") (term "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaUnaryMinusInt" (formula "64") (term "1,1")) + (rule "neg_literal" (formula "64") (term "1,1")) + (rule "translateJavaSubInt" (formula "64") (term "0,1")) + (rule "translateJavaAddInt" (formula "64") (term "0,0,1")) + (rule "polySimp_elimSub" (formula "64") (term "0,1")) + (rule "mul_literals" (formula "64") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "64") (term "0,1")) + (rule "polySimp_addComm1" (formula "64") (term "0,1")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "mul_literals" (formula "101") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "101") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "101")) + (rule "polySimp_mulComm0" (formula "101") (term "1")) + (rule "polySimp_rightDist" (formula "101") (term "1")) + (rule "mul_literals" (formula "101") (term "0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "0")) + (rule "translateJavaCastInt" (formula "62") (term "0,0")) + (rule "castedGetAny" (formula "62") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "99")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_subsumption0" (formula "62") (ifseqformula "59")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0")) + (rule "qeq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "64")) + (rule "polySimp_mulAssoc" (formula "62") (term "0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "140"))) + (rule "translateJavaSubInt" (formula "57") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "57") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "57") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "57") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "57") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "57") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "57") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "57") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0")) + (rule "replace_known_left" (formula "57") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,1")) + (rule "replace_known_left" (formula "57") (term "0,0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0")) + (rule "applyEq" (formula "57") (term "1,0,0,0,1") (ifseqformula "52")) + (rule "applyEq" (formula "57") (term "0,1,0,1,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "57") (term "0,1,0,0,0,1,1,1") (ifseqformula "52")) + (rule "applyEq" (formula "57") (term "0,0,0") (ifseqformula "52")) + (rule "applyEq" (formula "57") (term "1,0,1,0,1") (ifseqformula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "57") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "57") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "57") (term "0,0,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "57") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,0,0")) + (rule "add_literals" (formula "57") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "57") (term "1,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0")) + (rule "qeq_literals" (formula "57") (term "0,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "57") (term "1,0,1,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "57") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "57") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "57") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "57") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "57") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "70"))) + (rule "true_left" (formula "57")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "57") (term "0")) + (rule "translateJavaCastInt" (formula "57") (term "0,0")) + (rule "castedGetAny" (formula "57") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "97")) + (rule "times_zero_1" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_subsumption0" (formula "57") (ifseqformula "25")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "58") (term "0")) + (rule "translateJavaCastInt" (formula "58") (term "0,0")) + (rule "castedGetAny" (formula "58") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "99") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "99") (term "0,0")) + (rule "mul_literals" (formula "99") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "99") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "99") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "99") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "99")) + (rule "polySimp_mulComm0" (formula "99") (term "1")) + (rule "polySimp_rightDist" (formula "99") (term "1")) + (rule "polySimp_mulLiterals" (formula "99") (term "1,1")) + (rule "mul_literals" (formula "99") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "times_zero_1" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_subsumption6" (formula "57") (ifseqformula "56")) + (rule "greater_literals" (formula "57") (term "0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "mul_literals" (formula "57") (term "1,0")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "93")) (ifInst "" (formula "94"))) + (rule "translateJavaSubInt" (formula "61") (term "0,1")) + (rule "polySimp_elimSub" (formula "61") (term "0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "61") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1")) + (rule "mul_literals" (formula "61") (term "1,0,0,1")) + (rule "add_literals" (formula "61") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,1")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0")) + (rule "add_zero_right" (formula "61") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1")) + (rule "polySimp_rightDist" (formula "61") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1")) + (rule "mul_literals" (formula "61") (term "0,0,1,1")) + (rule "replace_known_left" (formula "61") (term "1") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "translateJavaAddInt" (formula "61") (term "0,0,0")) + (rule "translateJavaUnaryMinusInt" (formula "61") (term "1,0")) + (rule "neg_literal" (formula "61") (term "1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "61") (term "0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "91")) (ifInst "" (formula "92"))) + (rule "translateJavaSubInt" (formula "100") (term "0,1")) + (rule "polySimp_elimSub" (formula "100") (term "0,1")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "100") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "100") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "100") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "100") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "100") (term "1")) + (rule "mul_literals" (formula "100") (term "1,0,0,1")) + (rule "add_literals" (formula "100") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "100") (term "0,1")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "100") (term "1,0")) + (rule "polySimp_mulComm0" (formula "100") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "100") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "100") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "100") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "100") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "100") (term "0,0")) + (rule "mul_literals" (formula "100") (term "1,0,0,0")) + (rule "add_zero_right" (formula "100") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "100") (term "1")) + (rule "polySimp_mulComm0" (formula "100") (term "1,1")) + (rule "polySimp_rightDist" (formula "100") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "100") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "100") (term "0,1,1")) + (rule "mul_literals" (formula "100") (term "0,0,1,1")) + (rule "replace_known_left" (formula "100") (term "1") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "translateJavaUnaryMinusInt" (formula "100") (term "1,0")) + (rule "neg_literal" (formula "100") (term "1,0")) + (rule "translateJavaAddInt" (formula "100") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "100") (term "0,0")) + (rule "polySimp_elimSub" (formula "100") (term "0,0")) + (rule "mul_literals" (formula "100") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "100") (term "0,0")) + (rule "polySimp_addComm1" (formula "100") (term "0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,0,0")) + (rule "arrayLengthIsAShort" (formula "49") (term "0")) + (rule "expand_inShort" (formula "49")) + (rule "replace_short_MIN" (formula "49") (term "0,1")) + (rule "replace_short_MAX" (formula "49") (term "1,0")) + (rule "andLeft" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "50")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "51")) + (rule "leq_literals" (formula "49")) + (rule "true_left" (formula "49")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "50")) + (rule "qeq_literals" (formula "49")) + (rule "true_left" (formula "49")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "28")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "30") (term "0")) + (rule "arrayLengthNotNegative" (formula "49") (term "0")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "50")) + (rule "qeq_literals" (formula "49")) + (rule "true_left" (formula "49")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "48") (inst "i_0=i_0") (inst "i=i")) + (rule "andLeft" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "expand_inInt" (formula "48") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "50")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "54") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "50") (term "1")) + (rule "eqSymm" (formula "56") (term "1,0")) + (rule "polySimp_elimSub" (formula "54") (term "3,0")) + (rule "mul_literals" (formula "54") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "56") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "56") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "3,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "56") (term "1,0,1,0") (ifseqformula "45")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "applyEq" (formula "110") (term "0") (ifseqformula "45")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "45")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "45")) + (rule "inEqSimp_commuteGeq" (formula "53")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0,0") (ifseqformula "50")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,1,0") (ifseqformula "50")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "50")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "50") (term "1")) + (rule "mod_axiom" (formula "50") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "52") (term "1")) + (rule "mod_axiom" (formula "52") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "51") (term "0")) + (rule "mod_axiom" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "2,0")) + (rule "mod_axiom" (formula "44") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "54") (term "1,3,0")) + (rule "mod_axiom" (formula "54") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "46") (term "3,0")) + (rule "mod_axiom" (formula "46") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "44") (term "0,1,0")) + (rule "mod_axiom" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0")) + (rule "eqSymm" (formula "47")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "53") (term "0")) + (rule "mod_axiom" (formula "53") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "56") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "55") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "shiftLeftDef" (formula "50") (term "0,1")) + (rule "eqSymm" (formula "50")) + (rule "polySimp_elimNeg" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "50") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "50") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "50") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "50") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "52") (term "0,1")) + (rule "polySimp_elimNeg" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "52") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "52") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "52") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,1")) + (rule "mul_literals" (formula "52") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0,0,0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "50")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "shiftLeftDef" (formula "51") (term "0,0")) + (rule "polySimp_elimNeg" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "51") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "51") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "51") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "51") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,0,0,0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "44") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,2,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,2,0")) + (rule "applyEq" (formula "44") (term "2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "54") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "54") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "54") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "54") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,3,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "54") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "54") (term "1,3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "46") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,3,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,0,0,3,0")) + (rule "add_zero_right" (formula "46") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,3,0")) + (rule "applyEq" (formula "46") (term "3,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "44") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0") (ifseqformula "50")) + (rule "javaShiftLeftIntDef" (formula "47") (term "1,0,2,0")) + (rule "mod_axiom" (formula "47") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "47")) + (rule "shiftLeftDef" (formula "53") (term "0,0")) + (rule "polySimp_elimNeg" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "53") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "53") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "53") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "53") (term "0,0,0")) + (rule "mul_literals" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "53") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,0,0,0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "56") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "56") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "56") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "56") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "55") (term "1,1,1,0,0,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "55") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "55") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "55") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "55") (term "1,1,1,1,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,0")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "shiftLeftDef" (formula "47") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "47")) + (rule "polySimp_elimNeg" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "47") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "47") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "47") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0,2,0")) + (rule "mul_literals" (formula "47") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "47") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "47") (term "1,0,2,0") (ifseqformula "50")) + (rule "eqSymm" (formula "47")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "53")) + (rule "mul_literals" (formula "51") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "mul_literals" (formula "51") (term "1")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "88") (term "0")) + (rule "nnf_imp2or" (formula "64") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "59") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "60") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "60") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "expand_moduloInteger" (formula "50") (term "0")) + (rule "replace_int_RANGE" (formula "50") (term "1,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "50") (term "0,0,1,0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "mul_literals" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "12") (term "0,0,1,0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0,0,1,0,1,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,0,1,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0,1,0,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0,0,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,1,0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,0,0,0,0,1,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,1,0,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,1,1,0,0,0,0,1,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "33") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "expand_inInt" (formula "33") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "72") (term "0,1,1,1,1")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "148"))) + (rule "translateJavaAddInt" (formula "72") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "72") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "72") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "72") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "72") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "72") (term "0,1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "72") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "72") (term "0,1,0,1,1,1,1,1")) + (rule "add_zero_left" (formula "72") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "72") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "72") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "72") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "72") (term "0,0,0,0,1,1,1,1")) + (rule "add_zero_left" (formula "72") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "72") (term "0,0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,1,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "72") (term "0,0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "72") (term "0,0,0,0")) + (rule "applyEq" (formula "72") (term "0,1,0,1,1,1,1") (ifseqformula "61")) + (rule "replace_known_left" (formula "72") (term "1,0,1,1,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "72")) + (rule "applyEq" (formula "72") (term "1,0,1,0,1") (ifseqformula "61")) + (rule "applyEq" (formula "72") (term "1,0,1,0,0,1") (ifseqformula "61")) + (rule "applyEq" (formula "72") (term "0,1,0,0,0,1,1,1") (ifseqformula "61")) + (rule "applyEq" (formula "72") (term "0,1,0,0") (ifseqformula "61")) + (rule "replace_known_left" (formula "72") (term "1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "72")) + (rule "inEqSimp_sepPosMonomial1" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "72") (term "0,0,0,1,1,1")) + (rule "inEqSimp_invertInEq0" (formula "72") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,1,1,1,1")) + (rule "times_zero_2" (formula "72") (term "1,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "72") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "72") (term "0,1,1,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "72") (term "0,0") (ifseqformula "8")) + (rule "leq_literals" (formula "72") (term "0,0,0")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "73"))) + (rule "true_left" (formula "72")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "60") (term "0,0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,1,1,0,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "translateJavaSubInt" (formula "66") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "66") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "66") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1,1,1")) + (rule "mul_literals" (formula "66") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "66") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "66") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,1,1")) + (rule "mul_literals" (formula "66") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "translateJavaSubInt" (formula "67") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "67") (term "1,0")) + (rule "neg_literal" (formula "67") (term "1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "67") (term "0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "73") (term "0,1,1,1,1")) + (rule "translateJavaCastInt" (formula "73") (term "0,0,1,1,1,1")) + (rule "castedGetAny" (formula "73") (term "0,0,1,1,1,1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "73") (term "0,1,0,1")) + (builtin "One Step Simplification" (formula "73") (ifInst "" (formula "149"))) + (rule "translateJavaAddInt" (formula "73") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "73") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "73") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "73") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "73") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "73") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "73") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1")) + (rule "applyEq" (formula "73") (term "1,0,1,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,0,1")) + (rule "add_literals" (formula "73") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "73") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "73") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "applyEq" (formula "73") (term "0,1,0,0,0,1,1,1") (ifseqformula "61")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "73") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "73") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "73") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "73") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "applyEq" (formula "73") (term "1,0,1,0,1") (ifseqformula "61")) + (rule "applyEq" (formula "73") (term "0,1,0,0") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,0")) + (rule "add_literals" (formula "73") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "73") (term "0,1,0,0")) + (rule "leq_literals" (formula "73") (term "1,0,0")) + (builtin "One Step Simplification" (formula "73")) + (rule "applyEq" (formula "73") (term "0,1,0,1,1,1") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "73") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "73") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "73") (term "0,1,0,1,1,1")) + (rule "leq_literals" (formula "73") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "73") (term "0,0") (ifseqformula "42")) + (rule "leq_literals" (formula "73") (term "0,0,0")) + (builtin "One Step Simplification" (formula "73")) + (rule "inEqSimp_subsumption1" (formula "73") (term "0,1,1,1") (ifseqformula "42")) + (rule "leq_literals" (formula "73") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "73")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "105") (term "0")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "85"))) + (rule "translateJavaSubInt" (formula "105") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "105") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "105") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "105") (term "1,1,1")) + (rule "mul_literals" (formula "105") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "105") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "105") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0")) + (rule "applyEq" (formula "105") (term "0,0,0,1") (ifseqformula "106")) + (rule "applyEq" (formula "105") (term "1,0,1,1,1") (ifseqformula "106")) + (rule "polySimp_addComm1" (formula "105") (term "0,1,1,1")) + (rule "applyEq" (formula "105") (term "0,0,1,1") (ifseqformula "106")) + (rule "inEqSimp_commuteGeq" (formula "105") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "105") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "105") (term "0,1,1,1")) + (rule "polySimp_elimOne" (formula "105") (term "0,1,1,1")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "60") (term "0,1,0,0,0,1,0")) + (rule "replace_known_right" (formula "60") (term "0,1,0,0,0,0") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "14")) (ifInst "" (formula "20")) (ifInst "" (formula "149"))) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80") (term "0")) + (rule "replace_known_right" (formula "80") (term "0,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "replace_known_left" (formula "74") (term "1,0,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "74")) + (rule "replace_known_left" (formula "75") (term "1,0,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "81")) + (rule "polySimp_mulComm0" (formula "80") (term "0,0")) + (rule "polySimp_addComm0" (formula "80") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "polySimp_elimOne" (formula "80") (term "0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "61") (term "0,1,0,0,0,1,0") (inst "i=i")) + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,0,0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,1,0,0,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,1,0,0,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0,1,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,1,1,0,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "61") (term "0,0,1,1,0,0,0,1,0,0,0,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "59") (term "0,1,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "translateJavaSubInt" (formula "59") (term "0,0,1,0")) + (rule "translateJavaUnaryMinusInt" (formula "59") (term "1,0,1,0")) + (rule "neg_literal" (formula "59") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "59") (term "0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "59") (term "0,0,1,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addLiterals" (formula "59") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,1,1")) + (rule "mul_literals" (formula "69") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "69") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "69") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,1,1,1")) + (rule "mul_literals" (formula "69") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "69") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "translateJavaUnaryMinusInt" (formula "69") (term "1,0")) + (rule "neg_literal" (formula "69") (term "1,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,0")) + (rule "translateJavaAddInt" (formula "69") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "69") (term "0,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69")) + (rule "times_zero_1" (formula "68") (term "0,0")) + (rule "add_zero_left" (formula "68") (term "0")) + (rule "inEqSimp_subsumption6" (formula "68") (ifseqformula "66")) + (rule "times_zero_1" (formula "68") (term "1,1,0")) + (rule "greater_literals" (formula "68") (term "0,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "leq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "true_left" (formula "68")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "112") (term "0")) + (builtin "One Step Simplification" (formula "112")) + (rule "translateJavaSubInt" (formula "112") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "112") (term "1,0")) + (rule "neg_literal" (formula "112") (term "1,0")) + (rule "translateJavaAddInt" (formula "112") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "112") (term "0,0")) + (rule "mul_literals" (formula "112") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "112") (term "0,0")) + (rule "polySimp_addComm0" (formula "112") (term "0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "110") (term "0")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "108")) (ifInst "" (formula "109"))) + (rule "translateJavaSubInt" (formula "110") (term "0,1")) + (rule "polySimp_elimSub" (formula "110") (term "0,1")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "110") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "110") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "110") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "110") (term "1")) + (rule "mul_literals" (formula "110") (term "1,0,0,1")) + (rule "add_literals" (formula "110") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "110") (term "0,1")) + (rule "polySimp_addAssoc" (formula "110") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "110") (term "1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "110") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "110") (term "0,0")) + (rule "mul_literals" (formula "110") (term "1,0,0,0")) + (rule "add_zero_right" (formula "110") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "110") (term "1")) + (rule "polySimp_mulComm0" (formula "110") (term "1,1")) + (rule "polySimp_rightDist" (formula "110") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "110") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "110") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "110") (term "0,1,1")) + (rule "mul_literals" (formula "110") (term "0,0,1,1")) + (rule "replace_known_left" (formula "110") (term "1") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "110")) + (rule "true_left" (formula "110")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "110") (term "0")) + (builtin "One Step Simplification" (formula "110")) + (rule "translateJavaUnaryMinusInt" (formula "110") (term "1,0")) + (rule "neg_literal" (formula "110") (term "1,0")) + (rule "translateJavaAddInt" (formula "110") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "110") (term "0,0")) + (rule "polySimp_elimSub" (formula "110") (term "0,0")) + (rule "mul_literals" (formula "110") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "110") (term "0,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "polySimp_addComm0" (formula "110") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "110")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,1")) + (rule "polySimp_rightDist" (formula "72") (term "0,1")) + (rule "mul_literals" (formula "72") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "118") (ifseqformula "110")) + (rule "polySimp_rightDist" (formula "118") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,0,0")) + (rule "mul_literals" (formula "118") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "118") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "118") (term "0")) + (rule "polySimp_addAssoc" (formula "118") (term "0,0")) + (rule "polySimp_addComm1" (formula "118") (term "0,0,0")) + (rule "add_literals" (formula "118") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0")) + (rule "add_literals" (formula "118") (term "1,1,0,0")) + (rule "times_zero_1" (formula "118") (term "1,0,0")) + (rule "add_zero_right" (formula "118") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "118")) + (rule "mul_literals" (formula "118") (term "1")) + (rule "inEqSimp_subsumption1" (formula "118") (ifseqformula "16")) + (rule "leq_literals" (formula "118") (term "0")) + (builtin "One Step Simplification" (formula "118")) + (rule "true_left" (formula "118")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "108") (term "0,0")) + (builtin "One Step Simplification" (formula "108") (ifInst "" (formula "109")) (ifInst "" (formula "110"))) + (rule "translateJavaSubInt" (formula "108") (term "0,1")) + (rule "polySimp_elimSub" (formula "108") (term "0,1")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "108") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "108") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "108") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "108") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "108") (term "0,1,0,1")) + (rule "polySimp_addComm0" (formula "108") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "108") (term "1")) + (rule "mul_literals" (formula "108") (term "1,0,0,1")) + (rule "add_literals" (formula "108") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "108") (term "0,1")) + (rule "polySimp_addAssoc" (formula "108") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "108") (term "0,0")) + (rule "times_zero_2" (formula "108") (term "1,0,0,0")) + (rule "add_zero_right" (formula "108") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "108") (term "1,0")) + (rule "polySimp_mulComm0" (formula "108") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "108") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "108") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "108") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "108") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "108") (term "1")) + (rule "polySimp_mulComm0" (formula "108") (term "1,1")) + (rule "polySimp_rightDist" (formula "108") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "108") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "108") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "108") (term "0,1,1")) + (rule "mul_literals" (formula "108") (term "0,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "108") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "108") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "108") (term "1,0,0")) + (rule "replace_known_left" (formula "108") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "108")) + (rule "inEqSimp_sepNegMonomial1" (formula "108") (term "0")) + (rule "polySimp_mulLiterals" (formula "108") (term "0,0")) + (rule "polySimp_elimOne" (formula "108") (term "0,0")) + (rule "replace_known_left" (formula "108") (term "0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "108")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "92") (term "0")) + (builtin "One Step Simplification" (formula "92")) + (rule "translateJavaMod" (formula "92") (term "0")) + (rule "jmod_axiom" (formula "92") (term "0")) + (rule "polySimp_mulLiterals" (formula "92") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "newSym_eq" (formula "92") (inst "newSymDef=mul(int::final(bucket_pointers, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_1")) + (rule "times_zero_1" (formula "92") (term "1,1")) + (rule "add_zero_right" (formula "92") (term "1")) + (rule "applyEq" (formula "93") (term "0,0") (ifseqformula "92")) + (rule "eqSymm" (formula "93")) + (rule "applyEq" (formula "89") (term "0") (ifseqformula "93")) + (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "93")) + (rule "applyEq" (formula "90") (term "1") (ifseqformula "93")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "93")) + (rule "elimGcdGeq_antec" (formula "88") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,0,1,0")) + (rule "add_zero_right" (formula "88") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "88") (term "0,0")) + (builtin "One Step Simplification" (formula "88")) + (rule "mul_literals" (formula "88") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "88") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "88") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "1,1,0,0")) + (rule "times_zero_1" (formula "88") (term "1,0,0")) + (rule "add_zero_right" (formula "88") (term "0,0")) + (rule "leq_literals" (formula "88") (term "0")) + (builtin "One Step Simplification" (formula "88")) + (rule "elimGcdLeq_antec" (formula "89") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "mul_literals" (formula "89") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "1,0,1,0")) + (rule "neg_literal" (formula "89") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "89") (term "0,0")) + (builtin "One Step Simplification" (formula "89")) + (rule "mul_literals" (formula "89") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "89") (term "0,0,0,0,0")) + (rule "add_literals" (formula "89") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "89") (term "0,0")) + (rule "add_literals" (formula "89") (term "1,1,0,0")) + (rule "times_zero_1" (formula "89") (term "1,0,0")) + (rule "add_zero_right" (formula "89") (term "0,0")) + (rule "qeq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "inEqSimp_exactShadow3" (formula "90") (ifseqformula "91")) + (rule "polySimp_mulAssoc" (formula "90") (term "0,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "0,0")) + (rule "polySimp_addComm0" (formula "90") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "90")) + (rule "polySimp_mulLiterals" (formula "90") (term "0")) + (rule "inEqSimp_subsumption4" (formula "90") (ifseqformula "89")) + (rule "mul_literals" (formula "90") (term "0,1,0")) + (rule "greater_literals" (formula "90") (term "0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "leq_literals" (formula "90") (term "0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "10") (term "0")) + (rule "replace_known_right" (formula "10") (term "0,1,0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "125"))) + (rule "andLeft" (formula "10")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "translateJavaSubInt" (formula "74") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "74") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "74") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,1,1")) + (rule "mul_literals" (formula "74") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "74") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "74") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "74") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1,1,1,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "88") (term "0,1,1")) + (builtin "One Step Simplification" (formula "88")) + (rule "translateJavaSubInt" (formula "88") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "88") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "88") (term "1,1,1")) + (rule "mul_literals" (formula "88") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "88") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "88") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "88") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "88") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "112") (term "0")) + (builtin "One Step Simplification" (formula "112")) + (rule "translateJavaMod" (formula "112") (term "0")) + (rule "jmod_axiom" (formula "112") (term "0")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "112")) + (rule "polySimp_mulLiterals" (formula "112") (term "0")) + (rule "newSym_eq" (formula "112") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin, + Z(neglit(1(#)))), + end)), + Z(0(#)))") (inst "l=l_2")) + (rule "times_zero_1" (formula "112") (term "1,1")) + (rule "add_zero_right" (formula "112") (term "1")) + (rule "applyEq" (formula "113") (term "0,0") (ifseqformula "112")) + (rule "eqSymm" (formula "113")) + (rule "applyEq" (formula "112") (term "0,0") (ifseqformula "113")) + (rule "applyEq" (formula "114") (term "0") (ifseqformula "113")) + (rule "inEqSimp_homoInEq1" (formula "114")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0")) + (rule "polySimp_addComm0" (formula "114") (term "0,0")) + (rule "applyEq" (formula "111") (term "0") (ifseqformula "113")) + (rule "inEqSimp_homoInEq0" (formula "111")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,0")) + (rule "polySimp_addComm1" (formula "111") (term "0")) + (rule "polySimp_addComm1" (formula "111") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "114")) + (rule "polySimp_mulComm0" (formula "114") (term "1")) + (rule "polySimp_rightDist" (formula "114") (term "1")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,1")) + (rule "polySimp_elimOne" (formula "114") (term "1,1")) + (rule "polySimp_mulComm0" (formula "114") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "114") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1")) + (rule "polySimp_rightDist" (formula "111") (term "1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,1")) + (rule "polySimp_elimOne" (formula "111") (term "1,1")) + (rule "polySimp_rightDist" (formula "111") (term "0,1")) + (rule "mul_literals" (formula "111") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "114")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "72") (term "0")) + (rule "add_literals" (formula "72") (term "1,1,0")) + (rule "times_zero_1" (formula "72") (term "1,0")) + (rule "add_zero_right" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "elimGcdLeq_antec" (formula "72") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=add(Z(0(#)), l_2)")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1,0")) + (rule "neg_literal" (formula "72") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "72") (term "0,0")) + (builtin "One Step Simplification" (formula "72")) + (rule "add_zero_left" (formula "72") (term "1,1")) + (rule "mul_literals" (formula "72") (term "0,1,0,0,0,0,0")) + (rule "add_zero_left" (formula "72") (term "1,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "1,1,0,0")) + (rule "times_zero_1" (formula "72") (term "1,0,0")) + (rule "add_zero_right" (formula "72") (term "0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,0")) + (rule "add_literals" (formula "72") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "72") (term "0,0")) + (rule "add_literals" (formula "72") (term "1,1,0,0")) + (rule "times_zero_1" (formula "72") (term "1,0,0")) + (rule "add_zero_right" (formula "72") (term "0,0")) + (rule "qeq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "inEqSimp_exactShadow3" (formula "112") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "112") (term "0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0")) + (rule "polySimp_rightDist" (formula "112") (term "0,0,0")) + (rule "mul_literals" (formula "112") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "112") (term "0,0")) + (rule "add_literals" (formula "112") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "112")) + (rule "polySimp_mulLiterals" (formula "112") (term "0")) + (rule "polySimp_elimOne" (formula "112") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "116")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "114") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "114") (term "0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "114") (term "0")) + (rule "add_literals" (formula "114") (term "1,1,0")) + (rule "times_zero_1" (formula "114") (term "1,0")) + (rule "add_zero_right" (formula "114") (term "0")) + (rule "polySimp_addComm1" (formula "114") (term "0")) + (rule "add_literals" (formula "114") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "114")) + (rule "polySimp_mulLiterals" (formula "114") (term "0")) + (rule "elimGcdLeq_antec" (formula "114") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "neg_literal" (formula "114") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "114") (term "1,0,1,0")) + (rule "leq_literals" (formula "114") (term "0,0")) + (builtin "One Step Simplification" (formula "114")) + (rule "mul_literals" (formula "114") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "114") (term "0,0")) + (rule "add_literals" (formula "114") (term "1,1,0,0")) + (rule "times_zero_1" (formula "114") (term "1,0,0")) + (rule "add_zero_right" (formula "114") (term "0,0")) + (rule "qeq_literals" (formula "114") (term "0")) + (builtin "One Step Simplification" (formula "114")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "118")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "elimGcdGeq_antec" (formula "28") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "74")) + (rule "times_zero_1" (formula "69") (term "0,0")) + (rule "add_zero_left" (formula "69") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "125") (ifseqformula "114")) + (rule "polySimp_rightDist" (formula "125") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,0,0")) + (rule "mul_literals" (formula "125") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "125") (term "0")) + (rule "polySimp_addAssoc" (formula "125") (term "0,0")) + (rule "add_literals" (formula "125") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "125")) + (rule "polySimp_mulComm0" (formula "125") (term "1")) + (rule "polySimp_rightDist" (formula "125") (term "1")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,1")) + (rule "mul_literals" (formula "125") (term "0,1")) + (rule "elimGcdGeq_antec" (formula "125") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=add(Z(neglit(6(3(7(8(8(3(8(#))))))))), l_2)")) + (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,0,1,0")) + (rule "leq_literals" (formula "125") (term "0,0")) + (builtin "One Step Simplification" (formula "125")) + (rule "polySimp_pullOutFactor0b" (formula "125") (term "0,0")) + (rule "add_literals" (formula "125") (term "1,1,0,0")) + (rule "times_zero_1" (formula "125") (term "1,0,0")) + (rule "add_zero_right" (formula "125") (term "0,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0")) + (rule "mul_literals" (formula "125") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "125") (term "0,0,0")) + (rule "add_literals" (formula "125") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "125") (term "0,0")) + (rule "polySimp_addComm1" (formula "125") (term "0,0,0")) + (rule "add_literals" (formula "125") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "125") (term "0,0")) + (rule "add_literals" (formula "125") (term "1,1,0,0")) + (rule "times_zero_1" (formula "125") (term "1,0,0")) + (rule "add_zero_right" (formula "125") (term "0,0")) + (rule "leq_literals" (formula "125") (term "0")) + (builtin "One Step Simplification" (formula "125")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "114")) + (rule "times_zero_1" (formula "26") (term "0,0")) + (rule "add_zero_left" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "elimGcdLeq_antec" (formula "26") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_2") (inst "elimGcdRightDiv=Z(8(2(1(#))))")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "neg_literal" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "116") (ifseqformula "26")) + (rule "leq_literals" (formula "116") (term "0")) + (builtin "One Step Simplification" (formula "116")) + (rule "true_left" (formula "116")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "30")) + (rule "mul_literals" (formula "17") (term "1,1,0")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "74")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "inEqSimp_subsumption4" (formula "17") (ifseqformula "76")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "125") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "125") (term "0,0")) + (rule "mul_literals" (formula "125") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "125") (term "0")) + (rule "add_literals" (formula "125") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "125")) + (rule "polySimp_mulLiterals" (formula "125") (term "0")) + (rule "polySimp_elimOne" (formula "125") (term "0")) + (rule "inEqSimp_subsumption0" (formula "125") (ifseqformula "26")) + (rule "leq_literals" (formula "125") (term "0")) + (builtin "One Step Simplification" (formula "125")) + (rule "true_left" (formula "125")) + (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "2,1,1,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaSubInt" (formula "12") (term "3,0,1,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "3,2,2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "2,0,1,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "2,2,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "0,3,0,1,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "1,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "3,0,1,2,1,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,3,0,1,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "3,0,1,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,3,1,1,2,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,2,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,2,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0,0,2,1,1,1,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "102") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "102")) + (rule "expand_inInt" (formula "102") (term "1,0,0")) + (rule "expand_inInt" (formula "102") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0,1,0")) + (rule "translateJavaCastInt" (formula "102") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "102") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "102") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "102") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "102") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "102") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,1,0")) + (rule "applyEq" (formula "102") (term "0,1,0,0,1,0,0,0") (ifseqformula "100")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "102") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "102") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "102") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "102") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "100")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "102") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "102") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "102") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "102") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "102") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "102") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "102") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "102") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaSubInt" (formula "79") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0")) + (rule "neg_literal" (formula "79") (term "1,0")) + (rule "translateJavaAddInt" (formula "79") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "124") (term "0")) + (builtin "One Step Simplification" (formula "124")) + (rule "translateJavaSubInt" (formula "124") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "124") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "124") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "124") (term "1,1,1")) + (rule "mul_literals" (formula "124") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "124") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "124") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "124") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "124") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "124") (term "1,1,1,1")) + (rule "mul_literals" (formula "124") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "124") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "124") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "124") (term "0")) + (builtin "One Step Simplification" (formula "124")) + (rule "translateJavaSubInt" (formula "124") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "124") (term "1,0")) + (rule "neg_literal" (formula "124") (term "1,0")) + (rule "translateJavaAddInt" (formula "124") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "124") (term "0,0")) + (rule "mul_literals" (formula "124") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "124") (term "0,0")) + (rule "polySimp_addComm0" (formula "124") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "124")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_subsumption0" (formula "72") (ifseqformula "28")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "true_left" (formula "72")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "127") (term "0")) + (builtin "One Step Simplification" (formula "127")) + (rule "translateJavaSubInt" (formula "127") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "127") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "127") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "127") (term "1,1,1")) + (rule "mul_literals" (formula "127") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "127") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "127") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "127") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "127") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "127") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "127") (term "1,1,1,1")) + (rule "mul_literals" (formula "127") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "127") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "127") (term "1,1,1,1,1")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "92") (term "0")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "168")) (ifInst "" (formula "21"))) + (rule "wellFormedAnon" (formula "92") (term "1,0")) + (rule "replace_known_left" (formula "92") (term "1,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "15"))) + (rule "inEqSimp_ltToLeq" (formula "92") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "92") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "0,0,0")) + (rule "replace_known_left" (formula "92") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "92")) + (rule "applyEq" (formula "92") (term "0,1,0,0,0") (ifseqformula "66")) + (rule "inEqSimp_sepNegMonomial0" (formula "92") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "92") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "92") (term "0,0,0")) + (rule "replace_known_left" (formula "92") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "92")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "93") (term "0")) + (rule "translateJavaSubInt" (formula "93") (term "0")) + (rule "polySimp_elimSub" (formula "93") (term "0")) + (rule "polySimp_homoEq" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_addComm0" (formula "93") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_addComm1" (formula "93") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "128") (term "0")) + (builtin "One Step Simplification" (formula "128")) + (rule "translateJavaUnaryMinusInt" (formula "128") (term "1,0")) + (rule "neg_literal" (formula "128") (term "1,0")) + (rule "translateJavaSubInt" (formula "128") (term "0,0")) + (rule "translateJavaAddInt" (formula "128") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "128") (term "0,0")) + (rule "mul_literals" (formula "128") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "128") (term "0,0")) + (rule "polySimp_addComm0" (formula "128") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "128") (ifseqformula "73")) + (rule "polySimp_rightDist" (formula "128") (term "0,0")) + (rule "mul_literals" (formula "128") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "128") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "128") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "128") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "128")) + (rule "polySimp_mulComm0" (formula "128") (term "1")) + (rule "polySimp_rightDist" (formula "128") (term "1")) + (rule "mul_literals" (formula "128") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "128") (term "1,1")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "9") (term "0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaAddInt" (formula "9") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "9") (term "4,0,0,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "129") (term "0")) + (builtin "One Step Simplification" (formula "129")) + (rule "translateJavaSubInt" (formula "129") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "129") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "129") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "129") (term "1,1,1")) + (rule "mul_literals" (formula "129") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "129") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "129") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "129") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "129") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "129") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "129") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "129") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "129") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "129") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "129") (term "0")) + (builtin "One Step Simplification" (formula "129")) + (rule "translateJavaSubInt" (formula "129") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "129") (term "1,0")) + (rule "neg_literal" (formula "129") (term "1,0")) + (rule "translateJavaAddInt" (formula "129") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "129") (term "0,0")) + (rule "mul_literals" (formula "129") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "129") (term "0,0")) + (rule "polySimp_addComm0" (formula "129") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "129")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "0")) + (rule "polySimp_elimOne" (formula "79") (term "0")) + (rule "inEqSimp_subsumption0" (formula "79") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0,0")) + (rule "add_literals" (formula "79") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "79") (term "0,0")) + (rule "add_literals" (formula "79") (term "1,1,0,0")) + (rule "times_zero_1" (formula "79") (term "1,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0")) + (rule "qeq_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "translateJavaSubInt" (formula "82") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "82") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "1,1,1")) + (rule "mul_literals" (formula "82") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "82") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "translateJavaSubInt" (formula "82") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "82") (term "1,0")) + (rule "neg_literal" (formula "82") (term "1,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "82") (term "0,0")) + (rule "mul_literals" (formula "82") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "82") (term "0,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "79") (ifseqformula "82")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulLiterals" (formula "79") (term "1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "131") (term "0")) + (builtin "One Step Simplification" (formula "131")) + (rule "translateJavaSubInt" (formula "131") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "131") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "131") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "131") (term "1,1,1")) + (rule "mul_literals" (formula "131") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "131") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "131") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "131") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "131") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "131") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "131") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "131") (term "1,1,1,1,1")) + (rule "mul_literals" (formula "131") (term "0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "131") (term "1,1,1,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "131") (term "0")) + (builtin "One Step Simplification" (formula "131")) + (rule "translateJavaSubInt" (formula "131") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "131") (term "1,0")) + (rule "neg_literal" (formula "131") (term "1,0")) + (rule "translateJavaAddInt" (formula "131") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "131") (term "0,0")) + (rule "mul_literals" (formula "131") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "131") (term "0,0")) + (rule "polySimp_addComm0" (formula "131") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "131") (ifseqformula "82")) + (rule "polySimp_rightDist" (formula "131") (term "0,0")) + (rule "mul_literals" (formula "131") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "131") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "131") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "131")) + (rule "polySimp_mulComm0" (formula "131") (term "1")) + (rule "polySimp_rightDist" (formula "131") (term "1")) + (rule "mul_literals" (formula "131") (term "0,1")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "60") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "60") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "60") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "60") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "60") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "60") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "60") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "nnf_notAnd" (formula "104") (term "0,0")) + (rule "nnf_notAnd" (formula "69") (term "0,0")) + (rule "nnf_imp2or" (formula "69") (term "1,1,0")) + (rule "nnf_imp2or" (formula "69") (term "0,1,0")) + (rule "commute_and" (formula "60") (term "1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "59") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "59")) + (rule "expand_inInt" (formula "59") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "59") (term "1,0,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "59") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "59") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "50") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,0,1,0,1,0")) + (rule "jdiv_axiom" (formula "83") (term "0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,0,2,1")) + (rule "eqSymm" (formula "83")) + (rule "applyEq" (formula "83") (term "1") (ifseqformula "84")) + (rule "inEqSimp_subsumption6" (formula "83") (term "0,0") (ifseqformula "70")) + (rule "greater_literals" (formula "83") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0")) + (rule "leq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "polyDiv_pullOut" (formula "83") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "polySimp_homoEq" (formula "83")) + (rule "polySimp_pullOutFactor0" (formula "83") (term "0,0,0,1,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0,1,0")) + (rule "div_literals" (formula "83") (term "0,0,1,0")) + (rule "add_zero_left" (formula "83") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0")) + (rule "add_literals" (formula "83") (term "1,0")) + (rule "times_zero_1" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "cut_direct" (formula "172") (term "1")) + (branch "CUT: bucket_starts[1 + bucket_0] <= 2147483647 TRUE" + (builtin "One Step Simplification" (formula "173")) + (rule "inEqSimp_geqRight" (formula "173")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "111") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "111") (term "0,0")) + (rule "mul_literals" (formula "111") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "111") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "111") (term "0")) + (rule "add_literals" (formula "111") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "111")) + (rule "mul_literals" (formula "111") (term "1")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "111")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "115") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "115") (term "0,0")) + (rule "polySimp_addComm0" (formula "115") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "115")) + (rule "polySimp_mulLiterals" (formula "115") (term "0")) + (rule "polySimp_elimOne" (formula "115") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "113") (ifseqformula "115")) + (rule "qeq_literals" (formula "113") (term "0")) + (builtin "One Step Simplification" (formula "113")) + (rule "closeFalse" (formula "113")) + ) + (branch "CUT: bucket_starts[1 + bucket_0] <= 2147483647 FALSE" + (builtin "One Step Simplification" (formula "173")) + (rule "false_right" (formula "173")) + (rule "inEqSimp_leqRight" (formula "172")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "110")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "1")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_contradInEq0" (formula "29") (ifseqformula "1")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "closeFalse" (formula "29")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "63"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "109")) + (rule "expand_inInt" (formula "109")) + (rule "replace_int_MIN" (formula "109") (term "0,1")) + (rule "replace_int_MAX" (formula "109") (term "1,0")) + (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "61"))) + (rule "closeTrue" (formula "109")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "75")) + (rule "expand_inInt" (formula "75") (term "0,0,1,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,1,1")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "75")) + (rule "translateJavaSubInt" (formula "114") (term "2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "78") (term "2,1,0,0")) + (rule "translateJavaAddInt" (formula "79") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "79") (term "2,1,0,1,1,0")) + (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "polySimp_elimSub" (formula "113") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "113") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,1,0,0")) + (rule "mul_literals" (formula "77") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "78") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "78") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "113") (term "2,1,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "2,1,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "113") (term "0,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,2,1,0,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,2,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,0,0")) + (rule "commute_and" (formula "78") (term "0,0")) + (rule "ifUnfold" (formula "113") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "113") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "113") (term "1")) + (builtin "One Step Simplification" (formula "113")) + (rule "replace_known_left" (formula "113") (term "0,0,1,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "113")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "arrayLengthNotNegative" (formula "45") (term "0")) + (rule "arrayLengthIsAShort" (formula "46") (term "0")) + (rule "expand_inShort" (formula "46")) + (rule "replace_short_MAX" (formula "46") (term "1,0")) + (rule "replace_short_MIN" (formula "46") (term "0,1")) + (rule "andLeft" (formula "46")) + (rule "inEqSimp_commuteLeq" (formula "47")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "48")) + (rule "qeq_literals" (formula "47")) + (rule "true_left" (formula "47")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "47")) + (rule "leq_literals" (formula "46")) + (rule "true_left" (formula "46")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "46")) + (rule "qeq_literals" (formula "45")) + (rule "true_left" (formula "45")) + (rule "ifSplit" (formula "113")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "114")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "114")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "113") (term "1")) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "57")) + (rule "polySimp_homoEq" (formula "78") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addAssoc" (formula "78") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "78") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "64")) + (rule "mul_literals" (formula "64") (term "1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "72")) + (rule "mul_literals" (formula "72") (term "1,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "blockEmpty" (formula "113") (term "1")) + (builtin "Block Contract (Internal)" (formula "113") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "114")) + (rule "eqSymm" (formula "114") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "114") (term "1")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (rule "emptyStatement" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (rule "emptyStatement" (formula "114") (term "1")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "78") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "33")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "61") (term "0,0")) + (rule "add_literals" (formula "61") (term "1,1,0,0")) + (rule "times_zero_1" (formula "61") (term "1,0,0")) + (rule "add_literals" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61")) + (rule "mul_literals" (formula "61") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "77") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "77") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "tryEmpty" (formula "113") (term "1")) + (rule "blockEmptyLabel" (formula "113") (term "1")) + (rule "blockEmpty" (formula "113") (term "1")) + (rule "arrayLengthIsAShort" (formula "31") (term "0")) + (rule "expand_inShort" (formula "31")) + (rule "replace_short_MAX" (formula "31") (term "1,0")) + (rule "replace_short_MIN" (formula "31") (term "0,1")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "33")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthNotNegative" (formula "43") (term "0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "arrayLengthIsAShort" (formula "43") (term "0")) + (rule "expand_inShort" (formula "43")) + (rule "replace_short_MAX" (formula "43") (term "1,0")) + (rule "replace_short_MIN" (formula "43") (term "0,1")) + (rule "andLeft" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "45")) + (rule "leq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "commute_or_2" (formula "9") (term "0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "cnf_rightDist" (formula "11") (term "0,1,1,0")) + (rule "commute_or_2" (formula "9") (term "0,0")) + (rule "commute_or_2" (formula "45") (term "0,0")) + (rule "commute_or" (formula "11") (term "0,0,0,0")) + (rule "commute_or" (formula "9") (term "0,0,0")) + (rule "commute_or_2" (formula "9") (term "0,0")) + (rule "commute_or_2" (formula "9") (term "0")) + (rule "commute_or_2" (formula "11") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or_2" (formula "45") (term "0")) + (rule "shift_paren_or" (formula "46") (term "0")) + (rule "commute_or_2" (formula "45") (term "0,0")) + (rule "shift_paren_or" (formula "46") (term "0,0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "commute_or" (formula "11") (term "1,0,1,1,0")) + (rule "methodCallEmpty" (formula "117") (term "1")) + (builtin "Use Dependency Contract" (formula "59") (term "0") (ifInst "" (formula "48") (term "0,0,1,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "83") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "83") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "83") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "83") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "83") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "83") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "83") (term "0,1,0,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "114")) (ifInst "" (formula "21")) (ifInst "" (formula "16")) (ifInst "" (formula "15")) (ifInst "" (formula "26"))) + (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "83") (term "1,0")) + (rule "disjointWithSingleton1" (formula "83") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "83") (term "0,1,0")) + (rule "replace_known_right" (formula "83") (term "0,0,0,1,0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_ltToLeq" (formula "83") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "0,1,0")) + (rule "replace_known_left" (formula "83") (term "0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "83")) + (rule "applyEq" (formula "83") (term "0,1") (ifseqformula "59")) + (rule "eqSymm" (formula "83") (term "1")) + (rule "applyEq" (formula "83") (term "0,1,0,1,0") (ifseqformula "52")) + (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,1,0")) + (rule "replace_known_left" (formula "83") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_subsumption1" (formula "83") (term "1,0") (ifseqformula "8")) + (rule "leq_literals" (formula "83") (term "0,1,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_subsumption0" (formula "83") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "emptyModality" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (rule "closeTrue" (formula "118")) + ) + (branch "Precondition" + (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "113")) + (rule "wellFormedAnon" (formula "113") (term "0")) + (rule "replace_known_left" (formula "113") (term "1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "113")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "114")) + (builtin "One Step Simplification" (formula "79")) + (rule "expand_inInt" (formula "79") (term "1,0,0,1,1")) + (rule "replace_int_MIN" (formula "79") (term "0,1,1,0,0,1,1")) + (rule "replace_int_MAX" (formula "79") (term "1,0,1,0,0,1,1")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "81")) + (rule "andLeft" (formula "81")) + (rule "andLeft" (formula "81")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,0,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,0,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,1,1,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,1,4,0")) + (rule "translateJavaAddInt" (formula "84") (term "3,0")) + (rule "translateJavaAddInt" (formula "84") (term "4,0")) + (rule "replace_known_left" (formula "80") (term "0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,0,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,0,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,1,1,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,1,4,0")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "84") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0,1,1,1,0")) + (rule "applyEq" (formula "84") (term "1,1,0,1,1,1,0") (ifseqformula "39")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "78") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "mul_literals" (formula "72") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "84") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "84") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "84") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "84") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "58")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "34")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "29")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "67")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "62") (term "0,0")) + (rule "add_literals" (formula "62") (term "1,1,0,0")) + (rule "times_zero_1" (formula "62") (term "1,0,0")) + (rule "add_zero_right" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "mul_literals" (formula "62") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "times_zero_1" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption2" (formula "44") (term "0,0,0,0")) + (rule "leq_literals" (formula "44") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "nnf_imp2or" (formula "11") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "77") (term "0")) + (rule "nnf_imp2or" (formula "83") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "77") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "77") (term "0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "77") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,0")) + (rule "mul_literals" (formula "77") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "83") (term "0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "83") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "83") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "83") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,0,1,1,0")) + (rule "nnf_imp2or" (formula "83") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "83") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "83") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "83") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "83") (term "0,1,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "0,1,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "83") (term "1,1,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "83") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "1,1,0,0")) + (rule "mul_literals" (formula "83") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "0,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "83") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "83") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "83") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "83") (term "1,0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "83") (term "0,1,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,1,0,0,0,0")) + (rule "add_zero_left" (formula "83") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,1,0,0,0,0")) + (rule "elim_double_block_2" (formula "118") (term "1")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0,0")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthNotNegative" (formula "32") (term "0")) + (rule "arrayLengthNotNegative" (formula "43") (term "0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "arrayLengthIsAShort" (formula "43") (term "0")) + (rule "expand_inShort" (formula "43")) + (rule "replace_short_MIN" (formula "43") (term "0,1")) + (rule "replace_short_MAX" (formula "43") (term "1,0")) + (rule "andLeft" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "45")) + (rule "leq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "44")) + (rule "qeq_literals" (formula "43")) + (rule "true_left" (formula "43")) + (rule "commute_or_2" (formula "9") (term "0")) + (rule "commute_or" (formula "83") (term "1,0,0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "cnf_rightDist" (formula "83") (term "0,1,0")) + (rule "cnf_rightDist" (formula "83") (term "1,1,0")) + (rule "cnf_rightDist" (formula "11") (term "0,1,1,0")) + (rule "commute_or_2" (formula "83") (term "0,0,0")) + (rule "commute_or_2" (formula "9") (term "0,0")) + (rule "commute_or_2" (formula "45") (term "0,0")) + (rule "commute_or_2" (formula "83") (term "0,0")) + (rule "commute_or" (formula "11") (term "0,0,0,0")) + (rule "commute_or" (formula "9") (term "0,0,0")) + (rule "commute_or_2" (formula "9") (term "0,0")) + (rule "commute_or_2" (formula "9") (term "0")) + (rule "commute_or_2" (formula "83") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (rule "commute_or" (formula "84") (term "1,0,1,0")) + (rule "commute_or" (formula "84") (term "1,1,1,0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or" (formula "46") (term "0")) + (builtin "Use Dependency Contract" (formula "58") (term "0") (ifInst "" (formula "47") (term "0,0,1,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "87") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "87") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "87") (term "1,1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "118")) (ifInst "" (formula "21")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "87") (term "1,0")) + (rule "disjointWithSingleton1" (formula "87") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,1,0")) + (rule "replace_known_right" (formula "87") (term "0,0,0,1,0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,1,0")) + (rule "replace_known_left" (formula "87") (term "0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "0,1") (ifseqformula "58")) + (rule "eqSymm" (formula "87") (term "1")) + (rule "applyEq" (formula "87") (term "0,1,0,1,0") (ifseqformula "51")) + (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "replace_known_left" (formula "87") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_subsumption0" (formula "87") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "87") (term "0,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_subsumption1" (formula "87") (term "0") (ifseqformula "8")) + (rule "leq_literals" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "cnf_rightDist" (formula "45") (term "0")) + (rule "distr_forallAnd" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "commute_or_2" (formula "45") (term "0")) + (rule "commute_or" (formula "11") (term "1,0,1,1,0")) + (rule "shift_paren_or" (formula "46") (term "0")) + (rule "commute_or_2" (formula "45") (term "0,0")) + (rule "shift_paren_or" (formula "87") (term "0,0,0,0")) + (rule "cnf_rightDist" (formula "87") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "46") (term "0,0")) + (rule "commute_or" (formula "45") (term "0,0,0")) + (rule "cnf_rightDist" (formula "87") (term "0,1,1,0")) + (rule "commute_or" (formula "87") (term "0,0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "87") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "87") (term "0,0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "commute_or" (formula "87") (term "1,0,1,1,0")) + (rule "commute_or" (formula "87") (term "1,0,0,1,0")) + (rule "ifUnfold" (formula "123") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "123") (term "1") (newnames "x_9")) + (rule "cnf_rightDist" (formula "87") (term "0,0,1,1,0")) + (rule "cnf_rightDist" (formula "87") (term "0")) + (rule "distr_forallAnd" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "commute_or" (formula "88") (term "0")) + (rule "cnf_rightDist" (formula "87") (term "0")) + (rule "distr_forallAnd" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "commute_or_2" (formula "88") (term "0")) + (rule "shift_paren_or" (formula "88") (term "0,0")) + (rule "cnf_rightDist" (formula "89") (term "0")) + (rule "distr_forallAnd" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "commute_or_2" (formula "90") (term "0")) + (rule "shift_paren_or" (formula "90") (term "0,0")) + (rule "cnf_rightDist" (formula "87") (term "0")) + (rule "distr_forallAnd" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "commute_or_2" (formula "88") (term "0")) + (rule "shift_paren_or" (formula "87") (term "0")) + (rule "commute_or_2" (formula "87") (term "0,0")) + (rule "shift_paren_or" (formula "88") (term "0,0")) + (rule "commute_or_2" (formula "87") (term "0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "87") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "87") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "87") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "87") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "87") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "cnf_rightDist" (formula "90") (term "0")) + (rule "distr_forallAnd" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "commute_or_2" (formula "91") (term "0")) + (rule "shift_paren_or" (formula "89") (term "0,0,0")) + (rule "shift_paren_or" (formula "92") (term "0,0,0")) + (rule "commute_or" (formula "90") (term "1,1,0")) + (rule "shift_paren_or" (formula "91") (term "0,0")) + (rule "shift_paren_or" (formula "88") (term "0,0,0")) + (rule "cnf_rightDist" (formula "90") (term "0")) + (rule "distr_forallAnd" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "commute_or_2" (formula "91") (term "0")) + (rule "shift_paren_or" (formula "90") (term "0")) + (rule "commute_or_2" (formula "90") (term "0,0")) + (rule "inEqSimp_or_subsumption5" (formula "90") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "90") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,0,1,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "90") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "90") (term "1,1,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "90") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "90") (term "0,0,1,0,0,0,0")) + (rule "qeq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "shift_paren_or" (formula "91") (term "0,0")) + (rule "commute_or" (formula "89") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "89") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "89") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "89") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "89") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "89") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "89") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "89")) + (rule "commute_or" (formula "93") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "92") (term "0,0,0")) + (rule "commute_or" (formula "88") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption7" (formula "88") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "88") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "88") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "88") (term "1,1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "88") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "88") (term "0,0,1,0,0,0")) + (rule "qeq_literals" (formula "88") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "88")) + (rule "shift_paren_or" (formula "91") (term "0,0,0")) + (rule "commute_or" (formula "92") (term "0,0,0,0")) + (rule "inequality_comparison_simple" (formula "129") (term "1")) + (builtin "One Step Simplification" (formula "129")) + (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "129")) + (rule "commute_or" (formula "91") (term "0,0,0,0")) + (rule "all_pull_out1" (formula "11") (term "1,0")) + (rule "shift_paren_and" (formula "11") (term "0,1,0")) + (rule "allLeft" (formula "44") (inst "t=bucket_0")) + (rule "inEqSimp_homoInEq1" (formula "44") (term "1,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "44") (term "1,0,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "44") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_contradInEq1" (formula "44") (term "1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "44") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0,1,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "44") (term "0,0,1,0")) + (rule "leq_literals" (formula "44") (term "0,1,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_contradInEq1" (formula "44") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "allLeft" (formula "45") (inst "t=add(Z(1(#)), bucket_0)")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "45") (term "1,0,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "45") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_contradInEq1" (formula "45") (term "0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "45") (term "0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_contradInEq1" (formula "45") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "45") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "all_pull_out3" (formula "11") (term "0")) + (rule "cnf_rightDist" (formula "11") (term "0,0")) + (rule "distr_forallAnd" (formula "11") (term "0")) + (rule "distr_forallAnd" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "cnf_rightDist" (formula "11") (term "0,0")) + (rule "distr_forallAnd" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "distr_forallAnd" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "commute_or_2" (formula "11") (term "0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "11") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "commute_or" (formula "11") (term "0,0,0,0")) + (rule "allLeft" (formula "53") (inst "t=bucket_0")) + (rule "inEqSimp_commuteGeq" (formula "53") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "53") (term "1,0,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "53") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_contradInEq1" (formula "53") (term "1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "53") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0,1,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,1,0")) + (rule "add_literals" (formula "53") (term "0,0,1,0")) + (rule "leq_literals" (formula "53") (term "0,1,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_contradInEq1" (formula "53") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "53") (term "0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "allLeft" (formula "52") (inst "t=bucket_0")) + (rule "inEqSimp_commuteGeq" (formula "52") (term "1,0")) + (rule "applyEq" (formula "52") (term "0,0,1,1") (ifseqformula "100")) + (rule "inEqSimp_contradInEq1" (formula "52") (term "1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "52") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,0,1,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,1,0")) + (rule "add_literals" (formula "52") (term "0,0,1,0")) + (rule "leq_literals" (formula "52") (term "0,1,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_contradInEq1" (formula "52") (term "0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "52") (term "0,0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_contradInEq0" (formula "52") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "applyEq" (formula "47") (term "0,0") (ifseqformula "52")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq0" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "applyEq" (formula "96") (term "1,1,0") (ifseqformula "52")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0")) + (rule "polySimp_rightDist" (formula "76") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "76") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0")) + (rule "add_literals" (formula "76") (term "1,1,0")) + (rule "times_zero_1" (formula "76") (term "1,0")) + (rule "add_zero_right" (formula "76") (term "0")) + (rule "applyEq" (formula "135") (term "1,2,1,0,1,0,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "135") (term "2,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "135") (term "0,2,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "135") (term "0,0,2,1,0,1,0,0")) + (rule "applyEq" (formula "89") (term "1,2,1,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "89") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0,2,1,0")) + (rule "applyEq" (formula "90") (term "1,2,1,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "90") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0,2,1,0")) + (rule "applyEq" (formula "54") (term "1,0,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "applyEq" (formula "86") (term "1,2,1,0,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "86") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0,2,1,0,0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq1" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "72") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0")) + (rule "applyEq" (formula "92") (term "1,4,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "92") (term "4,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,4,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0,4,0")) + (rule "applyEq" (formula "77") (term "0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0")) + (rule "applyEq" (formula "92") (term "1,2,1,0,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "92") (term "2,1,0,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0,0,2,1,0,0")) + (rule "applyEq" (formula "86") (term "1,4,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "86") (term "4,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,4,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0,4,0")) + (rule "applyEq" (formula "91") (term "1,2,1,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "91") (term "2,1,0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "91") (term "0,0,2,1,0")) + (rule "applyEq" (formula "87") (term "1,2,1,0,1,1,1,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "87") (term "2,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,2,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0,2,1,0,1,1,1,0")) + (rule "applyEq" (formula "87") (term "1,3,1,1,1,0") (ifseqformula "52")) + (rule "polySimp_addAssoc" (formula "87") (term "3,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,3,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0,3,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "polySimp_elimOne" (formula "76") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "71")) + (rule "mul_literals" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "78")) + (rule "times_zero_1" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0,0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "69")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0,0,0")) + (rule "add_literals" (formula "73") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0,0,0")) + (rule "add_literals" (formula "73") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,1")) + (rule "mul_literals" (formula "73") (term "0,0,1")) + (rule "inEqSimp_subsumption1" (formula "73") (ifseqformula "80")) + (rule "inEqSimp_homoInEq0" (formula "73") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0")) + (rule "qeq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "73") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "73") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "73") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0,0,0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_rightDist" (formula "73") (term "1")) + (rule "polySimp_mulLiterals" (formula "73") (term "1,1")) + (rule "polySimp_elimOne" (formula "73") (term "1,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,1")) + (rule "polySimp_rightDist" (formula "73") (term "0,0,1")) + (rule "mul_literals" (formula "73") (term "0,0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "81")) + (rule "polySimp_rightDist" (formula "71") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,0,0")) + (rule "mul_literals" (formula "71") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "71") (term "0,0,0,0,0")) + (rule "add_literals" (formula "71") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "71") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "71") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm1" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "0")) + (rule "polySimp_elimOne" (formula "81") (term "0")) + (rule "inEqSimp_subsumption0" (formula "81") (ifseqformula "31")) + (rule "leq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm1" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "1")) + (rule "polySimp_elimOne" (formula "81") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm1" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "polySimp_addAssoc" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "81") (term "0")) + (rule "add_literals" (formula "81") (term "1,1,0")) + (rule "times_zero_1" (formula "81") (term "1,0")) + (rule "add_zero_right" (formula "81") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "mul_literals" (formula "81") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "polySimp_addLiterals" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "20")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "times_zero_1" (formula "74") (term "1,0")) + (rule "add_zero_right" (formula "74") (term "0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "1,1,0")) + (rule "times_zero_1" (formula "75") (term "1,0")) + (rule "add_zero_right" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "1,1,0")) + (rule "times_zero_1" (formula "75") (term "1,0")) + (rule "add_zero_right" (formula "75") (term "0")) + (rule "polySimp_pullOutFactor3" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "0")) + (rule "polySimp_rightDist" (formula "75") (term "0")) + (rule "mul_literals" (formula "75") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "mul_literals" (formula "75") (term "1")) + (rule "inEqSimp_subsumption6" (formula "75") (ifseqformula "20")) + (rule "greater_literals" (formula "75") (term "0,0")) + (builtin "One Step Simplification" (formula "75")) + (rule "mul_literals" (formula "75") (term "1,0")) + (rule "leq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "75") (term "0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "1,1,0")) + (rule "times_zero_1" (formula "75") (term "1,0")) + (rule "add_zero_right" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0")) + (rule "add_literals" (formula "75") (term "1,1,0")) + (rule "times_zero_1" (formula "75") (term "1,0")) + (rule "add_zero_right" (formula "75") (term "0")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1")) + (rule "polySimp_rightDist" (formula "75") (term "1")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,1")) + (rule "mul_literals" (formula "75") (term "0,1")) + (rule "polySimp_elimOne" (formula "75") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "75") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "mul_literals" (formula "75") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_exactShadow1" (formula "74") (ifseqformula "35")) + (rule "greater_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "mul_literals" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "31")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow1" (formula "74") (ifseqformula "37")) + (rule "greater_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "mul_literals" (formula "74") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,0")) + (rule "mul_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "74") (term "0")) + (rule "add_literals" (formula "74") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "mul_literals" (formula "74") (term "1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "30")) + (rule "leq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (builtin "Use Dependency Contract" (formula "65") (term "0") (ifInst "" (formula "106") (term "0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "107") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "107") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "107") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "107") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "107") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "107") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "107") (term "0,1,0,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "107") (ifInst "" (formula "138")) (ifInst "" (formula "23")) (ifInst "" (formula "18")) (ifInst "" (formula "17")) (ifInst "" (formula "28"))) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "107") (term "1,0")) + (rule "disjointWithSingleton1" (formula "107") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "107") (term "0,1,0")) + (rule "replace_known_right" (formula "107") (term "0,0,0,1,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "107")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "107") (term "0,1,0")) + (rule "replace_known_left" (formula "107") (term "0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "107")) + (rule "inEqSimp_commuteLeq" (formula "107") (term "1,0,0")) + (rule "applyEq" (formula "107") (term "0,1,0,1,0") (ifseqformula "58")) + (rule "applyEq" (formula "107") (term "0,1") (ifseqformula "65")) + (rule "eqSymm" (formula "107") (term "1")) + (rule "replace_known_left" (formula "107") (term "1") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "107")) + (rule "true_left" (formula "107")) + (rule "ifSplit" (formula "141")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "preincrement" (formula "141") (term "1")) + (rule "compound_int_cast_expression" (formula "141") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "141") (term "1")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_10")) + (rule "remove_parentheses_right" (formula "141") (term "1")) + (rule "assignmentAdditionInt" (formula "141") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "141")) + (rule "expand_inInt" (formula "141")) + (rule "replace_int_MAX" (formula "141") (term "1,0")) + (rule "replace_int_MIN" (formula "141") (term "0,1")) + (rule "polySimp_addComm0" (formula "141") (term "1,1")) + (rule "polySimp_addComm0" (formula "141") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "1")) + (rule "mul_literals" (formula "141") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,1")) + (rule "add_literals" (formula "141") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "141") (term "0")) + (rule "polySimp_mulComm0" (formula "141") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0")) + (rule "mul_literals" (formula "141") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0")) + (rule "add_literals" (formula "141") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "141") (term "1")) + (rule "mul_literals" (formula "141") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "141") (term "0")) + (rule "polySimp_mulLiterals" (formula "141") (term "0,0")) + (rule "polySimp_elimOne" (formula "141") (term "0,0")) + (rule "replace_known_left" (formula "141") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_geqRight" (formula "141")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "9")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "141")) + (rule "translateJavaAddInt" (formula "141") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "141") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "141") (term "1")) + (rule "assignment" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "lsContinue" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "polySimp_mulComm0" (formula "141") (term "0,0")) + (rule "polySimp_rightDist" (formula "141") (term "0,0")) + (rule "mul_literals" (formula "141") (term "0,0,0")) + (rule "precOfInt" (formula "141")) + (rule "inEqSimp_ltToLeq" (formula "141") (term "1")) + (rule "polySimp_rightDist" (formula "141") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "141") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "141") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "141") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "141") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "141") (term "0,1")) + (rule "add_literals" (formula "141") (term "1,1,0,1")) + (rule "times_zero_1" (formula "141") (term "1,0,1")) + (rule "add_zero_right" (formula "141") (term "0,1")) + (rule "polySimp_addAssoc" (formula "141") (term "0,1")) + (rule "polySimp_addComm1" (formula "141") (term "0,0,1")) + (rule "add_literals" (formula "141") (term "0,0,0,1")) + (rule "add_zero_left" (formula "141") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "141") (term "0,1")) + (rule "add_literals" (formula "141") (term "1,0,1")) + (rule "times_zero_1" (formula "141") (term "0,1")) + (rule "leq_literals" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_leqRight" (formula "141")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "3")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (write)" + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "13"))) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "close" (formula "56") (ifseqformula "55")) + ) + (branch "Pre (write)" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "13")) (ifInst "" (formula "24"))) + (rule "wellFormedAnon" (formula "88") (term "0")) + (rule "expand_inInt" (formula "88") (term "1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1")) + (rule "replace_known_left" (formula "88") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "15"))) + (rule "polySimp_homoEq" (formula "10") (term "1,0")) + (rule "polySimp_homoEq" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "47") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "35")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "7")) + (rule "leq_literals" (formula "87") (term "0,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "45")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Null reference (_bucket_pointers = null)" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "SMTRule") + ) + (branch "Index Out of Bounds (x_arr != null, but x_4 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86"))) + (builtin "One Step Simplification" (formula "89")) + (rule "false_right" (formula "89")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "36")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "45") (term "1,1")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "45")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "43")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "4")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "54") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "54")) + (rule "expand_inInt" (formula "54") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,2,1,1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,2,0")) + (rule "translateJavaAddInt" (formula "55") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "57") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "57") (term "1,1,1,1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "56")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "57") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "55")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1")) + (rule "polySimp_elimOne" (formula "54") (term "1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "40") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "expand_inInt" (formula "40") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "40") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "40") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "translateJavaAddInt" (formula "46") (term "1")) + (rule "translateJavaCastInt" (formula "47") (term "0")) + (rule "translateJavaMulInt" (formula "40") (term "1")) + (rule "translateJavaMulInt" (formula "41") (term "0")) + (rule "translateJavaCastInt" (formula "44") (term "0")) + (rule "translateJavaCastInt" (formula "43") (term "1")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_mulComm0" (formula "41") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "1")) + (rule "castedGetAny" (formula "47") (term "0")) + (rule "castedGetAny" (formula "44") (term "0")) + (rule "castedGetAny" (formula "43") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "60")) + (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "60")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "60")) + (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "60")) + (rule "applyEq" (formula "49") (term "0,1,0,0,1,0,0,0") (ifseqformula "60")) + (rule "applyEq" (formula "46") (term "1,1") (ifseqformula "60")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption6" (formula "40") (ifseqformula "50")) + (rule "mul_literals" (formula "40") (term "1,1,0")) + (rule "greater_literals" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "8")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "38") (inst "b=b")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "translateJavaMulInt" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "eqSymm" (formula "71")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "52")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "7")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "13")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "14")) + (rule "notLeft" (formula "13")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "translateJavaAddInt" (formula "34") (term "3,0")) + (rule "translateJavaAddInt" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "3,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "3")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0")) + (rule "add_zero_right" (formula "32") (term "0")) + (rule "leq_literals" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + ) + (branch "Null Reference (_bucket_starts = null)" + (builtin "SMTRule") + ) + (branch "Index Out of Bounds (_bucket_starts != null, but bucket Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "86"))) + (rule "false_right" (formula "89")) + (rule "polySimp_homoEq" (formula "48") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "34")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "34")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "36")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "31")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption2" (formula "45") (term "0,0,0,0")) + (rule "leq_literals" (formula "45") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "46") (term "0,0,0")) + (rule "leq_literals" (formula "46") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_and_subsumption3" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "nnf_imp2or" (formula "12") (term "0,1,1,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "46") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,1,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "nnf_notAnd" (formula "46") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "46") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "48") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "45") (term "1,1")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "45")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_elimSub" (formula "48") (term "0,2,0")) + (rule "mul_literals" (formula "48") (term "1,0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,0")) + (rule "eqSymm" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "1") (ifseqformula "40")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "44")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "43")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "translateJavaAddInt" (formula "39") (term "3,0")) + (rule "translateJavaAddInt" (formula "38") (term "0")) + (rule "polySimp_addComm0" (formula "39") (term "3,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "37") (term "0,0")) + (rule "mul_literals" (formula "37") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "37")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "86") (term "1")) + (rule "lsBreak" (formula "86") (term "1")) + (rule "assignment" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "methodCallEmpty" (formula "86") (term "1")) + (rule "tryEmpty" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "emptyModality" (formula "86") (term "1")) + (rule "andRight" (formula "86")) + (branch "Case 1" + (rule "impRight" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "closeTrue" (formula "87")) + ) + (branch "Case 2" + (rule "impRight" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) +) +(branch "Exceptional Post (num_buckets)" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "15"))) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "close" (formula "32") (ifseqformula "31")) +) +(branch "Pre (num_buckets)" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "15")) (ifInst "" (formula "1")) (ifInst "" (formula "10"))) + (rule "closeTrue" (formula "64")) +) +(branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "64")) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..1bcb251 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_nonoverlapping((I,int,(I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,2050 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:38:41 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:38:41 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "1451") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "16") (term "2,0")) +(rule "translateJavaSubInt" (formula "16") (term "2,1")) +(rule "translateJavaAddInt" (formula "13") (term "0")) +(rule "translateJavaAddInt" (formula "15") (term "0")) +(rule "translateJavaAddInt" (formula "16") (term "0,2,0")) +(rule "translateJavaAddInt" (formula "16") (term "0,2,1")) +(rule "replace_known_right" (formula "5") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "5")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "16") (term "2,0")) +(rule "mul_literals" (formula "16") (term "1,2,0")) +(rule "polySimp_elimSub" (formula "16") (term "2,1")) +(rule "mul_literals" (formula "16") (term "1,2,1")) +(rule "polySimp_addComm0" (formula "13") (term "0")) +(rule "polySimp_addComm0" (formula "16") (term "0,2,0")) +(rule "polySimp_addComm1" (formula "16") (term "2,1")) +(rule "polySimp_addComm1" (formula "16") (term "2,0")) +(rule "polySimp_addComm0" (formula "16") (term "0,2,1")) +(rule "polySimp_addComm0" (formula "16") (term "0,2,0")) +(rule "disjointDefinition" (formula "16")) +(rule "disjointArrayRanges" (formula "16")) +(rule "notLeft" (formula "16")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "16") (term "0,1,1")) +(rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) +(rule "commute_and_2" (formula "16") (term "0")) +(rule "commute_and" (formula "16") (term "0,1")) +(rule "cnf_rightDist" (formula "16") (term "1")) +(rule "commute_or" (formula "16") (term "0,1")) +(rule "cnf_rightDist" (formula "16") (term "1,1")) +(rule "commute_or" (formula "16") (term "0,1,1")) +(rule "cnf_rightDist" (formula "16") (term "0,1")) +(rule "commute_or" (formula "16") (term "0,0,1")) +(rule "shift_paren_and" (formula "16") (term "1")) +(rule "shift_paren_and" (formula "16")) +(rule "shift_paren_and" (formula "16") (term "0")) +(rule "shift_paren_and" (formula "16") (term "0,0")) +(rule "methodBodyExpand" (formula "19") (term "1") (newnames "heapBefore_copy_nonoverlapping,savedHeapBefore_copy_nonoverlapping,_destBefore_copy_nonoverlapping,_destPosBefore_copy_nonoverlapping,_lengthBefore_copy_nonoverlapping,_srcBefore_copy_nonoverlapping,_srcPosBefore_copy_nonoverlapping")) + (builtin "One Step Simplification" (formula "19")) +(rule "for_to_while" (formula "19") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) +(rule "variableDeclarationAssign" (formula "19") (term "1")) +(rule "variableDeclaration" (formula "19") (term "1") (newnames "i")) +(rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) +(rule "commute_and_2" (formula "16") (term "0")) +(rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) +(branch "Invariant Initially Valid" + (rule "closeTrue" (formula "19")) +) +(branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "20") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "20") (term "1,0,1,0,0,1,0")) + (rule "impRight" (formula "20")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "23") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "23") (term "2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,2,1,0,0,1,0")) + (rule "eqSymm" (formula "3") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_1")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "ifElseUnfold" (formula "23") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "arrayLengthNotNegative" (formula "19") (term "0")) + (rule "ifElseSplit" (formula "29")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access2" (formula "30") (term "1") (inst "#v0=x_2") (inst "#ar1=x_arr")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_3")) + (rule "assignmentAdditionInt" (formula "30") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30")) + (rule "replace_int_MIN" (formula "30") (term "0,1")) + (rule "replace_int_MAX" (formula "30") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30") (term "0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "15")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "18")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "17")) + (rule "times_zero_1" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "4")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaAddInt" (formula "30") (term "0,1,0")) + (rule "eval_order_array_access3" (formula "30") (term "1") (inst "#v1=x_5") (inst "#v2=x_4") (inst "#v0=x_arr_1")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_4")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_5")) + (rule "eval_order_array_access5" (formula "30") (term "1") (inst "#v1=x_6") (inst "#ar1=x_arr_2")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_6")) + (rule "assignmentAdditionInt" (formula "30") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "30")) + (rule "replace_int_MIN" (formula "30") (term "0,1")) + (rule "replace_int_MAX" (formula "30") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30") (term "0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "20")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "17")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "3")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "4")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_or_tautInEq0" (formula "25") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,1,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,1,0")) + (rule "leq_literals" (formula "25") (term "1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_and_subsumption3" (formula "6") (term "0,0,0")) + (rule "leq_literals" (formula "6") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0,0")) + (rule "commute_and" (formula "28")) + (rule "commute_or" (formula "25") (term "1,0")) + (rule "commute_or" (formula "25") (term "1,0,0")) + (rule "commute_or" (formula "6") (term "0,0,0")) + (rule "commute_or_2" (formula "6") (term "0,0")) + (rule "commute_and_2" (formula "25")) + (rule "cut_direct" (formula "28") (term "1")) + (branch "CUT: srcPos <= 2147483647 + i_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_geqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "16")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "CUT: srcPos <= 2147483647 + i_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "6")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaAddInt" (formula "30") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,0")) + (rule "assignment_array2" (formula "30")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "30")) + (rule "pullOutSelect" (formula "30") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "assignment_to_primitive_array_component" (formula "31")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "31")) + (rule "blockEmpty" (formula "31") (term "1")) + (rule "preincrement" (formula "31") (term "1")) + (rule "compound_int_cast_expression" (formula "31") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "31") (term "1")) + (rule "variableDeclaration" (formula "31") (term "1") (newnames "x_7")) + (rule "remove_parentheses_right" (formula "31") (term "1")) + (rule "assignmentAdditionInt" (formula "31") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31")) + (rule "replace_int_MAX" (formula "31") (term "1,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,1")) + (rule "add_literals" (formula "31") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31") (term "0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "29") (term "1") (ifseqformula "3")) + (rule "leq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "3")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "31")) + (rule "translateJavaAddInt" (formula "31") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "31") (term "1")) + (rule "assignment" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "blockEmpty" (formula "31") (term "1")) + (rule "lsContinue" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "precOfInt" (formula "31")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,1")) + (rule "add_zero_right" (formula "31") (term "0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1")) + (rule "add_zero_left" (formula "31") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,1")) + (rule "add_literals" (formula "31") (term "1,0,1")) + (rule "times_zero_1" (formula "31") (term "0,1")) + (rule "leq_literals" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "18")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "18")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "22")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_4 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "24")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "16")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "16")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20")) + (rule "times_zero_1" (formula "17") (term "0,0")) + (rule "add_zero_left" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "17")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "25")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "15")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "4")) + (rule "times_zero_1" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "6")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "5")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_or_tautInEq0" (formula "27") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,0")) + (rule "leq_literals" (formula "27") (term "1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "commute_or" (formula "1")) + (rule "commute_or" (formula "27") (term "1,0")) + (rule "commute_or" (formula "27") (term "1,0,0")) + (rule "commute_or" (formula "8") (term "0,0,0")) + (rule "commute_or_2" (formula "8") (term "0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch " src = dest & srcPos >= destPos + i_0 * -1 & srcPos <= -1 + destPos + i_0 * -1 + length TRUE" + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "replace_known_left" (formula "29") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "13") (term "1,0") (ifseqformula "2")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "2")) + (rule "applyEq" (formula "10") (term "1,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "21") (term "0,0") (ifseqformula "2")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "4")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "7")) + (rule "times_zero_1" (formula "20") (term "0,0")) + (rule "add_zero_left" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "polySimp_rightDist" (formula "20") (term "0,1")) + (rule "mul_literals" (formula "20") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption4" (formula "3") (ifseqformula "12")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "21") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "28")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "20")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "26")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_subsumption4" (formula "3") (ifseqformula "12")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "12")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "commute_and_2" (formula "30")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: dest.length <= destPos + i_0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1")) + (rule "times_zero_1" (formula "27") (term "0,0")) + (rule "add_zero_left" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "31") (term "0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "31")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: dest.length <= destPos + i_0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "elimGcdLeq_antec" (formula "4") (inst "elimGcdRightDiv=Z(2(8(3(6(1(#))))))") (inst "elimGcdLeftDiv=destPos") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "neg_literal" (formula "4") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "4")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "2")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "12")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "11") (ifseqformula "25")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + (branch " src = dest & srcPos >= destPos + i_0 * -1 & srcPos <= -1 + destPos + i_0 * -1 + length FALSE" + (rule "hideAuxiliaryEq" (formula "2")) + (rule "commute_and_2" (formula "27")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: dest.length <= destPos + i_0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "25")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "CUT: dest.length <= destPos + i_0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2")) + (rule "times_zero_1" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "6")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_6 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "17")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "18")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "15")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "23")) + (rule "times_zero_1" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "13")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "4")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "5")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_or_tautInEq0" (formula "26") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "0,1,1,0")) + (rule "leq_literals" (formula "26") (term "1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "nnf_notAnd" (formula "7") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "7") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "7") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0,0")) + (rule "commute_or" (formula "1")) + (rule "commute_or" (formula "26") (term "1,0")) + (rule "commute_or" (formula "26") (term "1,0,0")) + (rule "commute_or" (formula "7") (term "0,0,0")) + (rule "commute_or_2" (formula "7") (term "0,0")) + (rule "commute_and_2" (formula "26")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: src.length <= i_0 + srcPos TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "1")) + (rule "times_zero_1" (formula "18") (term "0,0")) + (rule "add_zero_left" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_zero_right" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "21")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "CUT: src.length <= i_0 + srcPos FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "2")) + (rule "times_zero_1" (formula "17") (term "0,0")) + (rule "add_zero_left" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "16")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + ) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "30") (term "1")) + (rule "lsBreak" (formula "30") (term "1")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "methodCallEmpty" (formula "30") (term "1")) + (rule "tryEmpty" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "emptyModality" (formula "30") (term "1")) + (rule "andRight" (formula "30")) + (branch "Case 1" + (rule "impRight" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeTrue" (formula "31")) + ) + (branch "Case 2" + (rule "impRight" (formula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..88484b1 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,7234 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:42:31 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:42:31 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "15560") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "8")) +(rule "notLeft" (formula "5")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "21") (term "0")) +(rule "translateJavaAddInt" (formula "21") (term "0,0")) +(rule "translateJavaMulInt" (formula "21") (term "1,0,0")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "2")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "11")) +(rule "polySimp_elimSub" (formula "21") (term "0")) +(rule "mul_literals" (formula "21") (term "1,0")) +(rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) +(rule "polySimp_addComm1" (formula "21") (term "0")) +(rule "polySimp_addComm0" (formula "21") (term "0,0")) +(rule "disjointDefinition" (formula "17")) + (builtin "One Step Simplification" (formula "17")) +(rule "notLeft" (formula "17")) +(rule "eqSymm" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) +(rule "methodBodyExpand" (formula "24") (term "1") (newnames "heapBefore_copy_unique,savedHeapBefore_copy_unique,_beginBefore_copy_unique,_countBefore_copy_unique,_endBefore_copy_unique,_stepBefore_copy_unique,_targetBefore_copy_unique,_valuesBefore_copy_unique")) + (builtin "One Step Simplification" (formula "24")) +(rule "variableDeclarationAssign" (formula "24") (term "1")) +(rule "variableDeclaration" (formula "24") (term "1") (newnames "offset")) +(rule "compound_subtraction_1" (formula "24") (term "1") (inst "#v=x")) +(rule "variableDeclarationAssign" (formula "24") (term "1")) +(rule "variableDeclaration" (formula "24") (term "1") (newnames "x")) +(rule "assignmentAdditionInt" (formula "24") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "24") (userinteraction)) + (rule "expand_inInt" (formula "24") (userinteraction)) + (rule "andRight" (formula "24") (userinteraction)) + (branch "Case 1" + (rule "cut" (inst "cutFormula=leq(step<>, + mul(step, count))<>") (userinteraction)) + (branch "CUT: step <= step * count TRUE" + (rule "replace_int_MAX" (formula "25") (term "1")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "21")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "13")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "3")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "CUT: step <= step * count FALSE" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "24") (term "0")) + (rule "inEqSimp_leqRight" (formula "24")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "16")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,1,0")) + (rule "assignmentSubtractionInt" (formula "24") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (userinteraction)) + (rule "andRight" (formula "24") (userinteraction)) + (branch "Case 1" + (rule "cut" (inst "cutFormula=lt(sub(add(begin, step), Z(1(#))), + end<>)<>") (userinteraction)) + (branch "CUT: begin + step - 1 < end TRUE" + (rule "replace_int_MAX" (formula "25") (term "1")) + (rule "polySimp_elimSub" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "21")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "15")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "1")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "CUT: begin + step - 1 < end FALSE" + (rule "cut" (inst "cutFormula=leq(step<>, + mul(step, count))<>") (userinteraction)) + (branch "CUT: step <= step * count TRUE" + (rule "replace_int_MAX" (formula "26") (term "1")) + (rule "polySimp_elimSub" (formula "22") (term "0")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "0")) + (rule "mul_literals" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "22")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "22")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "21")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "16")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "3")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: step <= step * count FALSE" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "24") (term "0")) + (rule "polySimp_elimSub" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "1,1")) + (rule "polySimp_addComm1" (formula "24") (term "1")) + (rule "polySimp_addComm0" (formula "24") (term "0,1")) + (rule "inEqSimp_leqRight" (formula "24")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "20")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "14")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "17")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "17")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "16")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "24")) + (builtin "Block Contract (Internal)" (formula "24") (newnames "result_43,exc_51,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "25")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "12")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "21")) + (rule "eqSymm" (formula "24") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1,0,0")) + (rule "variableDeclarationAssign" (formula "24") (term "1")) + (rule "variableDeclaration" (formula "24") (term "1") (newnames "exc_51_1")) + (rule "assignment" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "emptyStatement" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "emptyStatement" (formula "24") (term "1")) + (rule "tryEmpty" (formula "24") (term "1")) + (rule "blockEmptyLabel" (formula "24") (term "1")) + (rule "blockEmpty" (formula "24") (term "1")) + (rule "methodCallEmpty" (formula "24") (term "1")) + (rule "emptyModality" (formula "24") (term "1")) + (rule "andRight" (formula "24")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "24")) + (rule "closeTrue" (formula "24")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "24")) + (rule "closeTrue" (formula "24")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "24")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "24")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "24")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "0,1,0")) + (rule "replace_int_MAX" (formula "21") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "21") (term "0,1,0,1,0")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "translateJavaSubInt" (formula "29") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0")) + (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "polySimp_elimSub" (formula "28") (term "0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "elim_double_block_2" (formula "28") (term "1")) + (rule "ifUnfold" (formula "28") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "28")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "ifSplit" (formula "34")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "34") (term "1")) + (rule "eval_order_array_access3" (formula "34") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_2")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_3")) + (rule "assignment_array2" (formula "34")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "34")) + (rule "assignment_to_primitive_array_component" (formula "34")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "34")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "target_offset")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "compound_assignment_op_plus" (formula "34") (term "1")) + (rule "compound_int_cast_expression" (formula "34") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_4")) + (rule "remove_parentheses_right" (formula "34") (term "1")) + (rule "compound_addition_2" (formula "34") (term "1") (inst "#v1=x_6") (inst "#v0=x_5")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_5")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_6")) + (rule "remove_parentheses_right" (formula "34") (term "1")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "assignmentAdditionInt" (formula "34") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34")) + (rule "replace_int_MIN" (formula "34") (term "0,1")) + (rule "replace_int_MAX" (formula "34") (term "1,0")) + (rule "polySimp_pullOutFactor3b" (formula "34") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "34") (term "1,1")) + (rule "inEqSimp_gtToGeq" (formula "24")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1")) + (rule "mul_literals" (formula "34") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1")) + (rule "add_literals" (formula "34") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1")) + (rule "mul_literals" (formula "34") (term "0,1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "22")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "17")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "21")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "18")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "25")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "19")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "commute_and" (formula "29")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "cut_direct" (formula "29") (term "1")) + (branch "CUT: step * 2 <= 2147483648 + begin * -1 TRUE" + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow2" (formula "21") (ifseqformula "1")) + (rule "mul_literals" (formula "21") (term "1,0,0,1")) + (rule "greater_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "8")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + (branch "CUT: step * 2 <= 2147483648 + begin * -1 FALSE" + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "26")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "2") (ifseqformula "6")) + (rule "mul_literals" (formula "2") (term "1,0,1")) + (rule "greater_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "10")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "12")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "10")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "34")) + (rule "translateJavaAddInt" (formula "34") (term "0,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "34") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "34") (term "1")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "for_to_while" (formula "34") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "34") (term "1")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "i")) + (rule "assignment" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "elim_double_block_3" (formula "34") (term "1")) + (rule "loopScopeInvDia" (formula "34") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "34")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "35")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,1,0,0")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,1,0,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,0")) + (rule "impRight" (formula "35")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "translateJavaSubInt" (formula "44") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "44") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "44") (term "2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0,0")) + (rule "translateJavaSubInt" (formula "9") (term "2,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,0")) + (rule "eqSymm" (formula "6")) + (rule "translateJavaSubInt" (formula "6") (term "0")) + (rule "translateJavaAddInt" (formula "6") (term "0,0")) + (rule "translateJavaMulInt" (formula "6") (term "1,0,0")) + (rule "translateJavaAddInt" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "44") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "44") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "0")) + (rule "mul_literals" (formula "6") (term "1,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_7")) + (rule "commute_and" (formula "9") (term "1,0,0")) + (rule "commute_and" (formula "9") (term "0,0,0")) + (rule "commute_and" (formula "8") (term "0,0,0")) + (rule "commute_and" (formula "8") (term "1,0,0")) + (rule "shift_paren_and" (formula "9") (term "0,0")) + (rule "commute_and_2" (formula "9") (term "0,0,0")) + (rule "shift_paren_and" (formula "8") (term "0,0")) + (rule "commute_and_2" (formula "8") (term "0,0,0")) + (rule "commute_and" (formula "8") (term "1,0,0,1,0")) + (rule "commute_and" (formula "8") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "8") (term "0,0,1,0")) + (rule "shift_paren_and" (formula "8") (term "0,0,0,1,0")) + (rule "ifElseUnfold" (formula "44") (term "1") (inst "#boolv=x_8")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_8")) + (rule "less_than_comparison_simple" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "ifElseSplit" (formula "44")) + (branch "if x_8 true" + (builtin "Block Contract (Internal)" (formula "45") (newnames "result_44,exc_52,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "23"))) + (rule "eqSymm" (formula "46") (term "0,0,1,0,1")) + (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "variableDeclarationAssign" (formula "46") (term "1")) + (rule "variableDeclaration" (formula "46") (term "1") (newnames "exc_52_1")) + (rule "assignment" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "emptyStatement" (formula "46") (term "1")) + (builtin "One Step Simplification" (formula "46")) + (rule "emptyStatement" (formula "46") (term "1")) + (rule "tryEmpty" (formula "46") (term "1")) + (rule "blockEmptyLabel" (formula "46") (term "1")) + (rule "blockEmpty" (formula "46") (term "1")) + (rule "methodCallEmpty" (formula "46") (term "1")) + (rule "emptyModality" (formula "46") (term "1")) + (rule "andRight" (formula "46")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "46")) + (rule "closeTrue" (formula "46")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "46")) + (rule "closeTrue" (formula "46")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "45")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "45")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "wellFormedAnon" (formula "45")) + (rule "wellFormedStorePrimitiveArray" (formula "45") (term "0")) + (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_left" (formula "45") (term "1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "45")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "42")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "42") (term "0,1,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,0,1,0")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "translateJavaMulInt" (formula "46") (term "1,1")) + (rule "translateJavaMulInt" (formula "46") (term "0,1")) + (rule "translateJavaAddInt" (formula "46") (term "0,0")) + (rule "translateJavaAddInt" (formula "46") (term "0,0,1")) + (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_left" (formula "45") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "44")) + (rule "elim_double_block_2" (formula "49") (term "1")) + (rule "ifUnfold" (formula "49") (term "1") (inst "#boolv=x_8")) + (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "49") (term "1")) + (builtin "One Step Simplification" (formula "49")) + (rule "replace_known_left" (formula "49") (term "0,0,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "49")) + (rule "ifSplit" (formula "49")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "49") (term "1")) + (rule "ifUnfold" (formula "49") (term "1") (inst "#boolv=x_8")) + (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_10")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "49") (term "1")) + (rule "variableDeclarationAssign" (formula "49") (term "1")) + (rule "variableDeclaration" (formula "49") (term "1") (newnames "var")) + (rule "eval_order_array_access5" (formula "49") (term "1") (inst "#v1=x_11") (inst "#ar1=x_arr")) + (rule "variableDeclarationAssign" (formula "49") (term "1")) + (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "49") (term "1")) + (builtin "One Step Simplification" (formula "49")) + (rule "variableDeclarationAssign" (formula "49") (term "1")) + (rule "variableDeclaration" (formula "49") (term "1") (newnames "x_11")) + (rule "assignmentSubtractionInt" (formula "49") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49")) + (rule "replace_int_MIN" (formula "49") (term "0,1")) + (rule "replace_int_MAX" (formula "49") (term "1,0")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_elimSub" (formula "49") (term "1,1")) + (rule "mul_literals" (formula "49") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "49") (term "0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_addComm0" (formula "49") (term "1,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0,1,0")) + (rule "mul_literals" (formula "7") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "35")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "36")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "49") (term "0,1")) + (rule "add_literals" (formula "49") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "applyEq" (formula "45") (term "0,1,0,1") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "45") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "45") (term "0,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "45") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "45") (term "0,0,1")) + (rule "add_literals" (formula "45") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "mul_literals" (formula "35") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "mul_literals" (formula "36") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1")) + (rule "polySimp_rightDist" (formula "37") (term "1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1")) + (rule "polySimp_elimOne" (formula "37") (term "1,1")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1")) + (rule "mul_literals" (formula "49") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1")) + (rule "polySimp_rightDist" (formula "45") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "45") (term "0,0,1,1")) + (rule "mul_literals" (formula "45") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "36")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "27")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "44") (term "1") (ifseqformula "3")) + (rule "leq_literals" (formula "44") (term "0,1")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_leqRight" (formula "44")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "31")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "28")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "3")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "24")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "35")) + (rule "mul_literals" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "3")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "28")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "49")) + (rule "translateJavaSubInt" (formula "49") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0,1,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,1,0")) + (rule "assignment_array2" (formula "49")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "49")) + (rule "pullOutSelect" (formula "49") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationAssign" (formula "50") (term "1")) + (rule "variableDeclaration" (formula "50") (term "1") (newnames "var_1")) + (rule "assignment_array2" (formula "50")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "50")) + (rule "pullOutSelect" (formula "50") (term "0,1,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "51") (term "0,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "51") (term "1") (inst "#v0=x_11")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_12")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "a")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "b")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "methodBodyExpand" (formula "51") (term "1") (newnames "heapBefore_cmp,savedHeapBefore_cmp")) + (builtin "One Step Simplification" (formula "51")) + (rule "returnUnfold" (formula "51") (term "1") (inst "#v0=x_13")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "x_13")) + (rule "less_than_comparison_simple" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "methodCallReturn" (formula "51") (term "1")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "methodCallEmpty" (formula "51") (term "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "ifSplit" (formula "51")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access3" (formula "52") (term "1") (inst "#v1=x_9") (inst "#v2=x_8") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_arr_2")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_14")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_15")) + (rule "assignment_array2" (formula "52")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "52")) + (rule "replaceKnownSelect_taclet00112011001211_1" (formula "52") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet00112011001211_3" (formula "52") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "52")) + (branch "Normal Execution (x_arr_2 != null)" + (builtin "One Step Simplification" (formula "52")) + (rule "compound_assignment_op_plus" (formula "52") (term "1")) + (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_16")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_18") (inst "#v0=x_17")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_17")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_18")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "assignmentAdditionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "1,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "48") (term "1") (ifseqformula "6")) + (rule "leq_literals" (formula "48") (term "0,1")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_leqRight" (formula "48")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "33")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "30")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "5")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "1")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "37")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "25")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "30")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaAddInt" (formula "52") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "compound_assignment_op_plus" (formula "52") (term "1")) + (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_19")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_21") (inst "#v0=x_20")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_20")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_21")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "assignmentAdditionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "polySimp_addComm0" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1")) + (rule "mul_literals" (formula "52") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "35")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "24")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "27")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "5")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "38")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "32")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "9")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_and_subsumption3" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "28")) + (rule "expand_inInt" (formula "28") (term "1,0,0")) + (rule "replace_int_MIN" (formula "28") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "28") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "commute_and" (formula "46")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "target_offset_0 = 1 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "3") (term "0,0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEqRigid" (formula "13") (term "1,1,0,0,0,0") (ifseqformula "2")) + (rule "add_literals" (formula "13") (term "1,0,0,0,0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "applyEq" (formula "11") (term "1,0,0,0,0") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_or_tautInEq2" (formula "12") (term "0,0,0")) + (rule "add_zero_right" (formula "12") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "12") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "commute_or" (formula "24") (term "1,0,0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "commute_or" (formula "11") (term "0,0,0")) + (rule "inEqSimp_or_subsumption3" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_or_antiSymm0" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "commute_or" (formula "24") (term "0,0,0")) + (rule "cut_direct" (formula "38") (term "0")) + (branch "CUT: i_0 <= -2 + count TRUE" + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "37")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "polySimp_rightDist" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "38")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "6")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "commute_and" (formula "9") (term "0,0,0,0,1,0")) + (rule "commute_and_2" (formula "9") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "9") (term "0,0,1,0")) + (rule "cut_direct" (formula "43") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "7")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "44")) + (rule "false_right" (formula "44")) + (rule "inEqSimp_leqRight" (formula "43")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "24")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: i_0 <= -2 + count FALSE" + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_leqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4")) + (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "polySimp_sepNegMonomial" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "commute_and" (formula "10") (term "0,0,0,0,1,0")) + (rule "commute_and_2" (formula "10") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "10") (term "0,0,1,0")) + (rule "ex_pull_out3" (formula "10") (term "0")) + (rule "cnf_rightDist" (formula "10") (term "0,0")) + (rule "commute_or" (formula "10") (term "1,0,0")) + (rule "cnf_rightDist" (formula "10") (term "0,0,0")) + (rule "commute_or" (formula "10") (term "1,0,0,0")) + (rule "cnf_rightDist" (formula "10") (term "0,0,0,0")) + (rule "commute_or" (formula "10") (term "1,0,0,0,0")) + (rule "cnf_rightDist" (formula "10") (term "0,0,0,0,0")) + (rule "commute_or" (formula "10") (term "1,0,0,0,0,0")) + (rule "cut_direct" (formula "39") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_geqRight" (formula "40")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "20")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "40")) + (rule "false_right" (formula "40")) + (rule "inEqSimp_leqRight" (formula "39")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "2")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "25")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "23")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "target_offset_0 = 1 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "6") (ifseqformula "42")) + (rule "add_literals" (formula "6") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6")) + (rule "mul_literals" (formula "42") (term "1,0,0")) + (rule "add_literals" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "6")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "5")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "commute_or" (formula "13") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0")) + (rule "commute_or_2" (formula "27") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "commute_and" (formula "13") (term "0,0,0,0,1,0")) + (rule "commute_or" (formula "27") (term "0,0,0")) + (rule "cut_direct" (formula "41") (term "0")) + (branch "CUT: i_0 <= -2 + count TRUE" + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "40")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "41")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "8")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "commute_or" (formula "25") (term "0,0,0,0")) + (rule "commute_and_2" (formula "11") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "11") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "target_offset_0 <= count TRUE" + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "cut_direct" (formula "46") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "10")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "47")) + (rule "false_right" (formula "47")) + (rule "inEqSimp_leqRight" (formula "46")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "37")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "3")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "3")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + (branch "target_offset_0 <= count FALSE" + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "42")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "41")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: i_0 <= -2 + count FALSE" + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "commute_or" (formula "25") (term "0,0,0,0")) + (rule "commute_and_2" (formula "11") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "11") (term "0,0,1,0")) + (rule "cut_direct" (formula "41") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_geqRight" (formula "42")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "22")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "13")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "2")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "27")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaAddInt" (formula "52") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "preincrement" (formula "52") (term "1")) + (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_22")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "assignmentAdditionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_addComm0" (formula "52") (term "1,1")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "50") (term "1") (ifseqformula "5")) + (rule "leq_literals" (formula "50") (term "0,1")) + (builtin "One Step Simplification" (formula "50")) + (rule "inEqSimp_leqRight" (formula "50")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "37")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "26")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "30")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "1")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaAddInt" (formula "52") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "lsContinue" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "precOfInt" (formula "52")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "1,1,0,1")) + (rule "times_zero_1" (formula "52") (term "1,0,1")) + (rule "add_zero_right" (formula "52") (term "0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,1")) + (rule "add_literals" (formula "52") (term "0,0,0,1")) + (rule "add_zero_left" (formula "52") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "1,0,1")) + (rule "times_zero_1" (formula "52") (term "0,1")) + (rule "leq_literals" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_leqRight" (formula "52")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "49") (term "0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "38")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Null Reference (x_arr_2 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_2 != null, but x_14 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "52"))) + (builtin "One Step Simplification" (formula "53")) + (rule "false_right" (formula "53")) + (rule "polySimp_homoEq" (formula "3") (term "0,0")) + (rule "times_zero_2" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_literals" (formula "39") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "40")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "49") (term "0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "38")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "31")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "25")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "28")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "1")) + (rule "times_zero_1" (formula "30") (term "0,0")) + (rule "add_zero_left" (formula "30") (term "0")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "7")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "32")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "6")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1")) + (rule "polySimp_elimOne" (formula "33") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "35") (ifseqformula "40")) + (rule "mul_literals" (formula "35") (term "0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1")) + (rule "polySimp_rightDist" (formula "35") (term "1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1")) + (rule "mul_literals" (formula "35") (term "0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "34") (term "0,0")) + (rule "mul_literals" (formula "34") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "34")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "31") (ifseqformula "5")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0")) + (rule "add_literals" (formula "31") (term "0")) + (rule "leq_literals" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "51"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)" + (builtin "SMTRule") + ) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "52")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "compound_assignment_op_plus" (formula "52") (term "1")) + (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_14")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "compound_addition_2" (formula "52") (term "1") (inst "#v1=x_16") (inst "#v0=x_15")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_15")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_16")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "assignmentAdditionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "48")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "polySimp_addComm0" (formula "52") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1")) + (rule "polySimp_rightDist" (formula "52") (term "1,1")) + (rule "mul_literals" (formula "52") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "39")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "26")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "33")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "38")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "mul_literals" (formula "33") (term "0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "33")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "5")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "31")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "32")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "expand_inInt" (formula "26") (term "1,0,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "26") (term "1,0,1,0,0")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0")) + (rule "commute_and" (formula "46")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "target_offset_0 = 1 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEqRigid" (formula "3") (term "1,0,2,1,0") (ifseqformula "2")) + (rule "add_literals" (formula "3") (term "0,2,1,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,0,0")) + (rule "applyEq" (formula "3") (term "0,0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "applyEq" (formula "11") (term "1,1,0,0,0,0") (ifseqformula "2")) + (rule "add_literals" (formula "11") (term "1,0,0,0,0")) + (rule "applyEq" (formula "10") (term "1,0,0,0,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "inEqSimp_or_tautInEq2" (formula "10") (term "0,0,0")) + (rule "add_zero_right" (formula "10") (term "1,1,0,0,0")) + (rule "qeq_literals" (formula "10") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "commute_or" (formula "9") (term "0,0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "add_literals" (formula "9") (term "1,0,0,0,0")) + (rule "commute_or" (formula "9") (term "0,0")) + (rule "commute_or" (formula "22") (term "0,0,0")) + (rule "cut_direct" (formula "38") (term "0")) + (branch "CUT: i_0 <= -2 + count TRUE" + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "polySimp_rightDist" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0")) + (rule "polySimp_rightDist" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "37")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "38")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "5")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "commute_or" (formula "22") (term "0,0,0,0")) + (rule "applyEq_or_int0" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "commute_and" (formula "9") (term "0,0,0,0,1,0")) + (rule "commute_and_2" (formula "9") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "9") (term "0,0,1,0")) + (rule "cut_direct" (formula "43") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_geqRight" (formula "44")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "19") (ifseqformula "8")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "44")) + (rule "false_right" (formula "44")) + (rule "inEqSimp_leqRight" (formula "43")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "3")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "23") (ifseqformula "3")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + ) + (branch "CUT: i_0 <= -2 + count FALSE" + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_leqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "applyEq" (formula "7") (term "1,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "7") (term "0")) + (rule "polySimp_homoEq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "commute_or" (formula "21") (term "0,0,0,0")) + (rule "applyEq_or_int0" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "commute_and" (formula "8") (term "0,0,0,0,1,0")) + (rule "commute_and_2" (formula "8") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "8") (term "0,0,1,0")) + (rule "ex_pull_out3" (formula "8") (term "0")) + (rule "cnf_rightDist" (formula "8") (term "0,0")) + (rule "commute_or" (formula "8") (term "1,0,0")) + (rule "cnf_rightDist" (formula "8") (term "0,0,0")) + (rule "commute_or" (formula "8") (term "1,0,0,0")) + (rule "cnf_rightDist" (formula "8") (term "0,0,0,0")) + (rule "commute_or" (formula "8") (term "1,0,0,0,0")) + (rule "cnf_rightDist" (formula "8") (term "0,0,0,0,0")) + (rule "commute_or" (formula "8") (term "1,0,0,0,0,0")) + (rule "cut_direct" (formula "39") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_geqRight" (formula "40")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "6")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "6")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "40")) + (rule "false_right" (formula "40")) + (rule "inEqSimp_leqRight" (formula "39")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "3")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "23")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "21")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "target_offset_0 = 1 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "6") (ifseqformula "42")) + (rule "add_literals" (formula "6") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6")) + (rule "mul_literals" (formula "42") (term "1,0,0")) + (rule "add_literals" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "6")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "5")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "commute_or" (formula "11") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "25") (term "1,0,0")) + (rule "commute_or_2" (formula "11") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "commute_and" (formula "11") (term "0,0,0,0,1,0")) + (rule "commute_or" (formula "25") (term "0,0,0")) + (rule "cut_direct" (formula "41") (term "0")) + (branch "CUT: i_0 <= -2 + count TRUE" + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "41") (term "0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "40")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "41")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "7")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "commute_and_2" (formula "11") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "11") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "target_offset_0 <= count TRUE" + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "cut_direct" (formula "46") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "47")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "1")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "10")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "9")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "47")) + (rule "false_right" (formula "47")) + (rule "inEqSimp_leqRight" (formula "46")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "44")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "3")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + ) + (branch "target_offset_0 <= count FALSE" + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "42")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "41")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: i_0 <= -2 + count FALSE" + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "4")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "polySimp_sepNegMonomial" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "commute_and_2" (formula "9") (term "0,0,0,1,0")) + (rule "commute_and_2" (formula "9") (term "0,0,1,0")) + (rule "cut_direct" (formula "41") (term "1")) + (branch "CUT: step <= 2147483647 + offset_0 * -1 TRUE" + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_geqRight" (formula "42")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "mul_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "30") (ifseqformula "7")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "7")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + (branch "CUT: step <= 2147483647 + offset_0 * -1 FALSE" + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor3b" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "12")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "1")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow1" (formula "3") (ifseqformula "25")) + (rule "mul_literals" (formula "3") (term "1,0,1")) + (rule "greater_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "3")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "23")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaAddInt" (formula "52") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "preincrement" (formula "52") (term "1")) + (rule "compound_int_cast_expression" (formula "52") (term "1") (inst "#v=x_8")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "x_17")) + (rule "remove_parentheses_right" (formula "52") (term "1")) + (rule "assignmentAdditionInt" (formula "52") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "52")) + (rule "expand_inInt" (formula "52")) + (rule "replace_int_MIN" (formula "52") (term "0,1")) + (rule "replace_int_MAX" (formula "52") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_addComm0" (formula "52") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "48")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "mul_literals" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "48") (term "0,1,0,1") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1")) + (rule "polySimp_rightDist" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "polySimp_elimOne" (formula "44") (term "1,1")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "38")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "1")) + (rule "mul_literals" (formula "52") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "30") (ifseqformula "31")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "33")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "27")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "36")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "34")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "46") (term "1") (ifseqformula "5")) + (rule "leq_literals" (formula "46") (term "0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_leqRight" (formula "46")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "20")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "52")) + (rule "translateJavaAddInt" (formula "52") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "52") (term "1")) + (rule "assignment" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "blockEmpty" (formula "52") (term "1")) + (rule "lsContinue" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "48")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "precOfInt" (formula "52")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "39")) + (rule "times_zero_1" (formula "39") (term "1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "38")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "1")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "1,1,0,1")) + (rule "times_zero_1" (formula "52") (term "1,0,1")) + (rule "add_zero_right" (formula "52") (term "0,1")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,1")) + (rule "add_literals" (formula "52") (term "0,0,0,1")) + (rule "add_zero_left" (formula "52") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "52") (term "0,1")) + (rule "add_literals" (formula "52") (term "1,0,1")) + (rule "times_zero_1" (formula "52") (term "0,1")) + (rule "leq_literals" (formula "52") (term "1")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_leqRight" (formula "52")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "49") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "49") (term "0,1,0,1") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,0,1,0,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "49") (term "0,1")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "49") (term "0,0,1")) + (rule "add_literals" (formula "49") (term "1,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1")) + (rule "polySimp_rightDist" (formula "41") (term "1")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1")) + (rule "polySimp_elimOne" (formula "41") (term "1,1")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1")) + (rule "polySimp_elimOne" (formula "45") (term "1,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1")) + (rule "polySimp_rightDist" (formula "49") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "49") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "49") (term "0,0,1,1")) + (rule "mul_literals" (formula "49") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "35")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "38")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "36")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "29")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "25")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "43") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "43") (term "0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0")) + (rule "leq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "5")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_11 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "49"))) + (builtin "One Step Simplification" (formula "50")) + (rule "false_right" (formula "50")) + (rule "polySimp_homoEq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,0,1,0")) + (rule "mul_literals" (formula "8") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "36")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "37")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "add_zero_left" (formula "1") (term "0,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,1")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "46") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,0,1,0,1")) + (rule "polySimp_addComm1" (formula "46") (term "0,1")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "46") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,1")) + (rule "add_literals" (formula "46") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1")) + (rule "polySimp_rightDist" (formula "42") (term "1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1")) + (rule "polySimp_elimOne" (formula "42") (term "1,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "36")) + (rule "mul_literals" (formula "36") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37")) + (rule "mul_literals" (formula "37") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1")) + (rule "polySimp_rightDist" (formula "38") (term "1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46") (term "1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1")) + (rule "polySimp_rightDist" (formula "46") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,0,1,1")) + (rule "polySimp_elimOne" (formula "46") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "46") (term "0,0,1,1")) + (rule "mul_literals" (formula "46") (term "0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "32")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "35")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "35")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "4")) + (rule "qeq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "22")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "25")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1")) + (rule "times_zero_1" (formula "27") (term "0,0")) + (rule "add_zero_left" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "30") (ifseqformula "28")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "30")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "37")) + (rule "mul_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "3")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "29") (term "0,0")) + (rule "mul_literals" (formula "29") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "42") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0")) + (rule "leq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "29")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "45")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "blockBreak" (formula "44") (term "1")) + (rule "lsBreak" (formula "44") (term "1")) + (rule "assignment" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "methodCallReturn" (formula "44") (term "1")) + (rule "assignment" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "methodCallEmpty" (formula "44") (term "1")) + (rule "tryEmpty" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "emptyModality" (formula "44") (term "1")) + (rule "andRight" (formula "44")) + (branch "Case 1" + (rule "impRight" (formula "44")) + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "45")) + (rule "closeTrue" (formula "45")) + ) + (branch "Case 2" + (rule "impRight" (formula "44")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_2 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "false_right" (formula "35")) + (rule "less_literals" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "24")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "23")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "18")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "12")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "17")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "17")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "17")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but offset Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "false_right" (formula "35")) + (rule "inEqSimp_gtToGeq" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,1")) + (rule "add_zero_left" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "21")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "24")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "23")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "15")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "19")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "26")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "20")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0")) + (rule "replace_known_left" (formula "13") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "29")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "commute_or" (formula "1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0")) + (rule "replace_known_left" (formula "13") (term "0,1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "30")) (ifInst "" (formula "2"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "commute_or" (formula "14") (term "0,0,0")) + (rule "commute_or" (formula "13") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "0,0,0,0")) + (rule "commute_or" (formula "13") (term "0,0,0,0")) + (rule "commute_or" (formula "13") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "commute_or" (formula "13") (term "0,0,0,0,1,0")) + (rule "cut_direct" (formula "1") (term "0")) + (branch "CUT: step <= begin * -1 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "8")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + (branch "CUT: step <= begin * -1 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "polySimp_mulAssoc" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "polySimp_rightDist" (formula "13") (term "0,1")) + (rule "mul_literals" (formula "13") (term "0,0,1")) + (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "29")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "1,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0")) + (rule "add_literals" (formula "13") (term "0")) + (rule "leq_literals" (formula "13")) + (rule "closeFalse" (formula "13")) + ) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..d8e7ce3 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__fill((I,int,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,680 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:42:47 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:42:47 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:fill([I,int,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:fill([I,int,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "366") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) +(rule "methodBodyExpand" (formula "14") (term "1") (newnames "heapBefore_fill,savedHeapBefore_fill,_beginBefore_fill,_endBefore_fill,_valueBefore_fill,_valuesBefore_fill")) + (builtin "One Step Simplification" (formula "14")) +(rule "for_to_while" (formula "14") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) +(rule "variableDeclarationAssign" (formula "14") (term "1")) +(rule "variableDeclaration" (formula "14") (term "1") (newnames "i")) +(rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) +(rule "loopScopeInvDia" (formula "14") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) +(branch "Invariant Initially Valid" + (rule "closeTrue" (formula "14")) +) +(branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "impRight" (formula "15")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "18") (term "2,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "18") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "variableDeclaration" (formula "18") (term "1") (newnames "x_1")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and_2" (formula "3") (term "0,0")) + (rule "shift_paren_and" (formula "3") (term "0,0,0")) + (rule "ifElseUnfold" (formula "18") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "18") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "18") (term "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "ifElseSplit" (formula "18")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "assignment_to_primitive_array_component" (formula "19")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "19")) + (rule "blockEmpty" (formula "19") (term "1")) + (rule "postincrement" (formula "19") (term "1")) + (rule "compound_int_cast_expression" (formula "19") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "19") (term "1")) + (rule "variableDeclaration" (formula "19") (term "1") (newnames "x_3")) + (rule "remove_parentheses_right" (formula "19") (term "1")) + (rule "assignmentAdditionInt" (formula "19") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "19")) + (rule "expand_inInt" (formula "19")) + (rule "replace_int_MIN" (formula "19") (term "0,1")) + (rule "replace_int_MAX" (formula "19") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,1")) + (rule "add_literals" (formula "19") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "15")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "2")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0,0")) + (rule "commute_and" (formula "17")) + (rule "commute_or" (formula "5") (term "0,0,0,0")) + (rule "commute_or_2" (formula "5") (term "0,0,0")) + (rule "commute_or_2" (formula "5") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "17")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "cut_direct" (formula "19") (term "1")) + (branch "CUT: i_0 <= 2147483646 TRUE" + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_geqRight" (formula "20")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "5")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "closeFalse" (formula "15")) + ) + (branch "CUT: i_0 <= 2147483646 FALSE" + (builtin "One Step Simplification" (formula "20")) + (rule "false_right" (formula "20")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq1" (formula "16") (ifseqformula "1")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "19") (term "1")) + (rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "blockEmpty" (formula "19") (term "1")) + (rule "lsContinue" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "precOfInt" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,1")) + (rule "add_literals" (formula "19") (term "1,1,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,1")) + (rule "add_zero_right" (formula "19") (term "0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1")) + (rule "add_literals" (formula "19") (term "0,0,0,1")) + (rule "add_zero_left" (formula "19") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "19") (term "0,1")) + (rule "add_literals" (formula "19") (term "1,0,1")) + (rule "times_zero_1" (formula "19") (term "0,1")) + (rule "leq_literals" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Null Reference (_values = null)" + (rule "false_right" (formula "20")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (rule "false_right" (formula "20")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "16")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "3")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,0,0,0,0")) + (rule "commute_or" (formula "1")) + (rule "commute_or" (formula "6") (term "0,0,0,0")) + (rule "commute_or_2" (formula "6") (term "0,0,0")) + (rule "commute_or_2" (formula "6") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "16") (term "0")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "18")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "4")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: values.length <= i_0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "1")) + (rule "times_zero_1" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1")) + (rule "polySimp_elimOne" (formula "19") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "19") (ifseqformula "2")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "add_zero_right" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + (branch "CUT: values.length <= i_0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "6")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "15")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "19") (term "1")) + (rule "lsBreak" (formula "19") (term "1")) + (rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "methodCallEmpty" (formula "19") (term "1")) + (rule "tryEmpty" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "emptyModality" (formula "19") (term "1")) + (rule "andRight" (formula "19")) + (branch + (rule "impRight" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "closeTrue" (formula "20")) + ) + (branch + (rule "impRight" (formula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..ec13307 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__max(int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,105 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:43:00 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:43:00 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:max(int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:max(int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "38") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0")) +(rule "expand_inInt" (formula "1") (term "0,1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_max,savedHeapBefore_max")) + (builtin "One Step Simplification" (formula "7")) +(rule "returnUnfold" (formula "7") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "7") (term "1")) +(rule "variableDeclaration" (formula "7") (term "1") (newnames "x")) +(rule "condition_not_simple" (formula "7") (term "1") (inst "#v0=x_1")) +(rule "variableDeclarationAssign" (formula "7") (term "1")) +(rule "variableDeclaration" (formula "7") (term "1") (newnames "x_1")) +(rule "remove_parentheses_right" (formula "7") (term "1")) +(rule "greater_equal_than_comparison_simple" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "inEqSimp_commuteGeq" (formula "7") (term "0,0,1,0")) +(rule "condition_simple" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodCallReturn" (formula "7") (term "1")) +(rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodCallEmpty" (formula "7") (term "1")) +(rule "tryEmpty" (formula "7") (term "1")) +(rule "emptyModality" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "closeTrue" (formula "7")) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..a198e30 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__min(int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,106 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:43:19 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:43:19 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:min(int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:min(int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "24") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0")) +(rule "expand_inInt" (formula "1") (term "0,1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,1,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_min,savedHeapBefore_min")) + (builtin "One Step Simplification" (formula "7")) +(rule "returnUnfold" (formula "7") (term "1") (inst "#v0=x")) +(rule "variableDeclarationAssign" (formula "7") (term "1")) +(rule "variableDeclaration" (formula "7") (term "1") (newnames "x")) +(rule "condition_not_simple" (formula "7") (term "1") (inst "#v0=x_1")) +(rule "variableDeclarationAssign" (formula "7") (term "1")) +(rule "variableDeclaration" (formula "7") (term "1") (newnames "x_1")) +(rule "remove_parentheses_right" (formula "7") (term "1")) +(rule "less_equal_than_comparison_simple" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,1,0")) +(rule "condition_simple" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodCallReturn" (formula "7") (term "1")) +(rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "methodCallEmpty" (formula "7") (term "1")) +(rule "tryEmpty" (formula "7") (term "1")) +(rule "emptyModality" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "closeTrue" (formula "7")) +) +} diff --git a/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..edb1364 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Functions(de.wiesler.Functions__select_n((I,int,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,113 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 13:45:25 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 13:45:25 CEST 2022 +contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:select_n([I,int,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Functions[de.wiesler.Functions\\:\\:select_n([I,int,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "29") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "3")) +(rule "translateJavaSubInt" (formula "14") (term "1")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "14") (term "1")) +(rule "polySimp_addComm0" (formula "14") (term "1")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) +(rule "methodBodyExpand" (formula "16") (term "1") (newnames "heapBefore_select_n,savedHeapBefore_select_n")) + (builtin "One Step Simplification" (formula "16")) +(rule "methodCallEmpty" (formula "16") (term "1")) +(rule "tryEmpty" (formula "16") (term "1")) +(rule "emptyModality" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) +(rule "closeTrue" (formula "16")) +) +} diff --git a/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..30b32d3 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,165 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:08:52 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:08:52 CEST 2022 +contract=de.wiesler.Increment[de.wiesler.Increment\\:\\:Increment(boolean,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Increment[de.wiesler.Increment\\:\\:Increment(boolean,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "53") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "assignment" (formula "5") (term "1")) + (builtin "One Step Simplification" (formula "5")) +(rule "variableDeclarationAssign" (formula "5") (term "1")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "self_77")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=i")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "i")) +(rule "methodBodyExpand" (formula "5") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "5")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=i_1")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "i_1")) +(rule "allocateInstance" (formula "5")) + (builtin "One Step Simplification" (formula "6")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallWithinClass" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallSuper" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "8") (term "1")) +(rule "methodCallReturn" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "var")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "var_1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallSuper" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute" (formula "8")) +(branch "Normal Execution (self_77 != null)" + (builtin "One Step Simplification" (formula "8")) + (rule "tryEmpty" (formula "8") (term "1")) + (rule "emptyModality" (formula "8") (term "1")) + (rule "andRight" (formula "8")) + (branch + (builtin "One Step Simplification" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_Increment" (formula "8")) + (rule "closeTrue" (formula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "8")) + (rule "closeTrue" (formula "8")) + ) +) +(branch "Null Reference (self_77 = null)" + (rule "false_right" (formula "9")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8"))) + (rule "closeFalse" (formula "1")) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..7842774 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Partition(de.wiesler.Partition__partition((I,int,int,(I,de.wiesler.Classifier,de.wiesler.Storage)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,9727 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Sep 05 21:30:41 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Sep 05 21:30:41 CEST 2022 +contract=de.wiesler.Partition[de.wiesler.Partition\\:\\:partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0 +name=de.wiesler.Partition[de.wiesler.Partition\\:\\:partition([I,int,int,[I,de.wiesler.Classifier,de.wiesler.Storage)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "57883") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "7")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "8")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "9")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "22")) +(rule "translateJavaSubInt" (formula "16") (term "0")) +(rule "translateJavaAddInt" (formula "17") (term "1")) +(rule "add_literals" (formula "17") (term "1")) +(rule "translateJavaSubInt" (formula "19") (term "0")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "9")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "8")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "16") (term "0")) +(rule "polySimp_elimSub" (formula "19") (term "0")) +(rule "polySimp_addComm0" (formula "16") (term "0")) +(rule "polySimp_addComm0" (formula "19") (term "0")) +(rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66")) +(rule "notLeft" (formula "66")) +(rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) +(rule "notLeft" (formula "65")) +(rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) +(rule "notLeft" (formula "64")) +(rule "eqSymm" (formula "64")) +(rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) +(rule "notLeft" (formula "63")) +(rule "eqSymm" (formula "63")) +(rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) +(rule "notLeft" (formula "62")) +(rule "eqSymm" (formula "62")) +(rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) +(rule "notLeft" (formula "61")) +(rule "eqSymm" (formula "61")) +(rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) +(rule "notLeft" (formula "60")) +(rule "eqSymm" (formula "60")) +(rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) +(rule "notLeft" (formula "59")) +(rule "eqSymm" (formula "59")) +(rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) +(rule "notLeft" (formula "58")) +(rule "eqSymm" (formula "58")) +(rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) +(rule "notLeft" (formula "57")) +(rule "eqSymm" (formula "57")) +(rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) +(rule "notLeft" (formula "56")) +(rule "eqSymm" (formula "56")) +(rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) +(rule "notLeft" (formula "55")) +(rule "eqSymm" (formula "55")) +(rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) +(rule "notLeft" (formula "54")) +(rule "eqSymm" (formula "54")) +(rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) +(rule "notLeft" (formula "53")) +(rule "eqSymm" (formula "53")) +(rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) +(rule "notLeft" (formula "52")) +(rule "eqSymm" (formula "52")) +(rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) +(rule "notLeft" (formula "51")) +(rule "eqSymm" (formula "51")) +(rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) +(rule "notLeft" (formula "50")) +(rule "eqSymm" (formula "50")) +(rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) +(rule "notLeft" (formula "49")) +(rule "eqSymm" (formula "49")) +(rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) +(rule "notLeft" (formula "48")) +(rule "eqSymm" (formula "48")) +(rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) +(rule "notLeft" (formula "47")) +(rule "eqSymm" (formula "47")) +(rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) +(rule "notLeft" (formula "46")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) +(rule "notLeft" (formula "45")) +(rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) +(rule "notLeft" (formula "44")) +(rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) +(rule "notLeft" (formula "43")) +(rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) +(rule "notLeft" (formula "42")) +(rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) +(rule "notLeft" (formula "41")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "35")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "31")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "30")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "29")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "28")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "27")) +(rule "inEqSimp_commuteLeq" (formula "15")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "26")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "eqSymm" (formula "25")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "24")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "disjointDefinition" (formula "22")) + (builtin "One Step Simplification" (formula "22")) +(rule "notLeft" (formula "22")) +(rule "eqSymm" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "14")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "18") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "71") (term "1")) + (builtin "One Step Simplification" (formula "71")) +(rule "applyEq" (formula "18") (term "1,1,0,0,0") (ifseqformula "17")) +(rule "commute_and" (formula "18") (term "1,0,0")) +(rule "arrayLengthNotNegative" (formula "17") (term "0")) +(rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) +(rule "qeq_literals" (formula "17")) +(rule "true_left" (formula "17")) +(rule "arrayLengthIsAShort" (formula "17") (term "0")) +(rule "expand_inShort" (formula "17")) +(rule "replace_short_MIN" (formula "17") (term "0,1")) +(rule "replace_short_MAX" (formula "17") (term "1,0")) +(rule "andLeft" (formula "17")) +(rule "inEqSimp_commuteLeq" (formula "18")) +(rule "applyEq" (formula "17") (term "0") (ifseqformula "19")) +(rule "leq_literals" (formula "17")) +(rule "true_left" (formula "17")) +(rule "applyEq" (formula "17") (term "0") (ifseqformula "18")) +(rule "qeq_literals" (formula "17")) +(rule "true_left" (formula "17")) +(rule "commute_and" (formula "18") (term "0,0,0")) +(rule "shift_paren_and" (formula "18") (term "0,0")) +(rule "commute_and_2" (formula "18") (term "0,0,0")) +(rule "methodBodyExpand" (formula "71") (term "1") (newnames "heapBefore_partition,savedHeapBefore_partition")) + (builtin "One Step Simplification" (formula "71")) +(rule "variableDeclarationAssign" (formula "71") (term "1")) +(rule "variableDeclaration" (formula "71") (term "1") (newnames "buffers")) +(rule "instanceCreationAssignmentUnfoldArguments" (formula "71") (term "1")) +(rule "variableDeclarationAssign" (formula "71") (term "1")) +(rule "variableDeclaration" (formula "71") (term "1") (newnames "var")) +(rule "assignment_read_attribute_final" (formula "71")) +(branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "71")) + (rule "variableDeclarationAssign" (formula "71") (term "1")) + (rule "variableDeclaration" (formula "71") (term "1") (newnames "var_1")) + (rule "assignment_read_attribute_final" (formula "71")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "71")) + (rule "variableDeclarationAssign" (formula "71") (term "1")) + (rule "variableDeclaration" (formula "71") (term "1") (newnames "var_2")) + (builtin "Use Operation Contract" (formula "71") (newnames "heapBefore_num_buckets,result_175,exc_207") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0")) + (branch "Post (num_buckets)" + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "21")) (ifInst "" (formula "12"))) + (rule "expand_inInt" (formula "22") (term "0,1,0")) + (rule "replace_int_MIN" (formula "22") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "22") (term "1,0,0,1,0")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "eqSymm" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_Buffers,self_207,exc_208,heapAfter_Buffers,anon_heap_Buffers") (contract "de.wiesler.Buffers[de.wiesler.Buffers::Buffers([I,[I,int)].JML normal_behavior operation contract.0")) + (branch "Post (Buffers)" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "27")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "29")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0")) + (rule "eqSymm" (formula "32")) + (rule "eqSymm" (formula "33")) + (rule "replace_known_right" (formula "29") (term "0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_elimSub" (formula "27") (term "2,1,0")) + (rule "mul_literals" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "2,1,0")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "blockEmpty" (formula "88") (term "1")) + (rule "variableDeclarationAssign" (formula "88") (term "1")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "first_empty_position")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "75") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "32")) + (rule "eqSymm" (formula "69")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "33")) + (rule "eqSymm" (formula "65")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "32")) + (rule "eqSymm" (formula "64")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "59") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "78") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "80") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "79") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "74") (term "0") (ifseqformula "33")) + (rule "eqSymm" (formula "74")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "33")) + (rule "eqSymm" (formula "70")) + (rule "applyEq" (formula "76") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "77") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "74") (term "0") (ifseqformula "32")) + (rule "eqSymm" (formula "74")) + (builtin "Use Operation Contract" (formula "88") (newnames "heapBefore_classify_locally,result_176,exc_209,heapAfter_classify_locally,anon_heap_classify_locally") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify_locally([I,int,int,[I,de.wiesler.Buffers)].JML normal_behavior operation contract.0")) + (branch "Post (classify_locally)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "90")) + (rule "expand_inInt" (formula "38") (term "1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "38") (term "0,0,0,1,1,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "38") (term "0,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,0,0,1,1,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,0,0,1,1,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,0,1,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "translateJavaMulInt" (formula "38") (term "0,2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "44") (term "0,0")) + (rule "translateJavaSubInt" (formula "48") (term "1")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,2,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "50") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "49") (term "0,0,1,0")) + (rule "eqSymm" (formula "49") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "49") (term "0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "2,0,1,1,0")) + (rule "mul_literals" (formula "38") (term "1,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "0,0")) + (rule "polySimp_elimSub" (formula "48") (term "1")) + (rule "polySimp_elimSub" (formula "38") (term "2,1,1,1,0")) + (rule "mul_literals" (formula "38") (term "1,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "1")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,0")) + (rule "assignment" (formula "106") (term "1")) + (builtin "One Step Simplification" (formula "106")) + (rule "variableDeclarationGhostAssign" (formula "106") (term "1")) + (rule "variableDeclarationGhost" (formula "106") (term "1") (newnames "heapAfterClassify")) + (rule "assignment" (formula "106") (term "1")) + (builtin "One Step Simplification" (formula "106")) + (rule "variableDeclarationAssign" (formula "106") (term "1")) + (rule "variableDeclaration" (formula "106") (term "1") (newnames "bucket_pointers")) + (rule "applyEq" (formula "47") (term "2,0") (ifseqformula "24")) + (rule "applyEq" (formula "38") (term "0,1,2,1,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "38") (term "2,1,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "38") (term "1,2,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "48") (term "0,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "49") (term "1,1,0,0,0") (ifseqformula "24")) + (rule "pullOutSelect" (formula "48") (term "0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "105"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "48") (term "0,1,0,0") (ifseqformula "27")) + (rule "replace_known_left" (formula "48") (term "0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "48")) + (rule "elementOfUnion" (formula "48") (term "0,0")) + (rule "elementOfUnion" (formula "48") (term "1,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,1,0,0")) + (rule "eqSymm" (formula "48") (term "0,0,1,1,0,0")) + (rule "replace_known_right" (formula "48") (term "0,0,1,1,0,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "48")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,0,0")) + (rule "eqSymm" (formula "48") (term "0,0,1,0,0")) + (rule "replace_known_right" (formula "48") (term "0,0,1,0,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "48")) + (rule "elementOfUnion" (formula "48") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "1,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0,0")) + (rule "eqSymm" (formula "48") (term "0,0,0,0,0")) + (rule "replace_known_right" (formula "48") (term "0,0,0,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0")) + (rule "pullOutSelect" (formula "48") (term "2,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "48") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "48") (ifInst "" (formula "106")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "48") (term "0,0")) + (rule "eqSymm" (formula "48") (term "0,0,0,0")) + (rule "replace_known_right" (formula "48") (term "0,0,0,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "48")) + (rule "applyEqReverse" (formula "49") (term "2,0") (ifseqformula "48")) + (rule "hideAuxiliaryEq" (formula "48")) + (rule "commuteUnion" (formula "38") (term "0,1,0")) + (rule "commuteUnion" (formula "38") (term "1,1,0")) + (rule "commute_and" (formula "51") (term "0,0")) + (rule "commute_and" (formula "50") (term "1,0,0")) + (rule "commute_and" (formula "50") (term "0,0,0")) + (rule "arrayLengthIsAShort" (formula "15") (term "0")) + (rule "expand_inShort" (formula "15")) + (rule "replace_short_MAX" (formula "15") (term "1,0")) + (rule "replace_short_MIN" (formula "15") (term "0,1")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "shift_paren_and" (formula "53") (term "0,0")) + (rule "commute_and_2" (formula "53") (term "0,0,0")) + (rule "associativeLawUnion" (formula "41") (term "1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "79") (term "1") (ifseqformula "1") (ifseqformula "9")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "96") (term "0") (ifseqformula "2") (ifseqformula "10")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "96") (term "0") (ifseqformula "3") (ifseqformula "11")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "92") (term "1") (ifseqformula "4") (ifseqformula "11")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "92") (term "0") (ifseqformula "5") (ifseqformula "13")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "83") (term "0,0") (ifseqformula "6") (ifseqformula "13")) + (rule "instanceCreationAssignmentUnfoldArguments" (formula "116") (term "1")) + (rule "variableDeclarationAssign" (formula "116") (term "1")) + (rule "variableDeclaration" (formula "116") (term "1") (newnames "var_3")) + (rule "assignment" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "variableDeclarationAssign" (formula "116") (term "1")) + (rule "variableDeclaration" (formula "116") (term "1") (newnames "var_4")) + (builtin "Use Operation Contract" (formula "116") (newnames "heapBefore_num_buckets_0,result_177,exc_210") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0")) + (branch "Post (num_buckets)" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "62")) (ifInst "" (formula "64"))) + (rule "expand_inInt" (formula "65") (term "0,1,0")) + (rule "replace_int_MAX" (formula "65") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "65") (term "0,1,0,1,0")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "eqSymm" (formula "67")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "assignment" (formula "120") (term "1")) + (builtin "One Step Simplification" (formula "120")) + (rule "variableDeclarationAssign" (formula "120") (term "1")) + (rule "variableDeclaration" (formula "120") (term "1") (newnames "var_5")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "33")) + (rule "eqSymm" (formula "67")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "67")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "66")) + (rule "applyEq" (formula "118") (term "0,1,0") (ifseqformula "65")) + (rule "assignmentSubtractionInt" (formula "118") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "118")) + (rule "expand_inInt" (formula "118")) + (rule "replace_int_MIN" (formula "118") (term "0,1")) + (rule "replace_int_MAX" (formula "118") (term "1,0")) + (rule "polySimp_homoEq" (formula "60") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "59") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "118") (term "1,1")) + (rule "polySimp_elimSub" (formula "118") (term "0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "118") (term "1,1")) + (rule "polySimp_addComm0" (formula "118") (term "0,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0")) + (rule "add_literals" (formula "57") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "57") (term "0,1,0,0")) + (rule "qeq_literals" (formula "57") (term "1,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "1")) + (rule "mul_literals" (formula "118") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "118") (term "0,1")) + (rule "polySimp_addComm0" (formula "118") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "0")) + (rule "polySimp_mulComm0" (formula "118") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "118") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "118") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "118") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "118") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "118") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1")) + (rule "polySimp_elimOne" (formula "58") (term "0,1")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0")) + (rule "add_zero_right" (formula "25") (term "0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58")) + (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1")) + (rule "polySimp_mulComm0" (formula "118") (term "1,1")) + (rule "polySimp_rightDist" (formula "118") (term "1,1")) + (rule "mul_literals" (formula "118") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "118") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,0")) + (rule "polySimp_elimOne" (formula "118") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "times_zero_2" (formula "20") (term "1")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption1" (formula "118") (term "1") (ifseqformula "51")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "0,1")) + (rule "polySimp_mulComm0" (formula "118") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "118") (term "1,0,0,1")) + (rule "mul_literals" (formula "118") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "118") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "118") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0,1")) + (rule "add_literals" (formula "118") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "118") (term "1,0,0,1")) + (rule "add_zero_right" (formula "118") (term "0,0,1")) + (rule "qeq_literals" (formula "118") (term "0,1")) + (builtin "One Step Simplification" (formula "118")) + (rule "inEqSimp_leqRight" (formula "118")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "28")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "qeq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "24")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49")) + (rule "mul_literals" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "24") (ifseqformula "1")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "closeFalse" (formula "24")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "118")) + (rule "translateJavaSubInt" (formula "118") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "118") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "118") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "118") (term "1")) + (rule "variableDeclaration" (formula "118") (term "1") (newnames "var_6")) + (rule "assignment_read_attribute_final" (formula "118")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "118")) + (builtin "Use Operation Contract" (formula "118") (newnames "heapBefore_BucketPointers,self_208,exc_211,heapAfter_BucketPointers,anon_heap_BucketPointers") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::BucketPointers([I,int,int,[I)].JML normal_behavior operation contract.0")) + (branch "Post (BucketPointers)" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,1,0,0,1,0,1") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0,1") (ifseqformula "36")) + (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "andLeft" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,1,0,0,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,1,0,0,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,1,0,0,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "71")) + (rule "notLeft" (formula "70")) + (rule "andLeft" (formula "78")) + (rule "notLeft" (formula "70")) + (rule "andLeft" (formula "78")) + (rule "orRight" (formula "81")) + (rule "orRight" (formula "81")) + (rule "translateJavaSubInt" (formula "68") (term "2,1,0")) + (rule "eqSymm" (formula "75")) + (rule "eqSymm" (formula "73")) + (rule "translateJavaSubInt" (formula "77") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,0,1,0")) + (rule "eqSymm" (formula "78") (term "1,0")) + (rule "translateJavaMulInt" (formula "68") (term "0,2,1,0")) + (rule "translateJavaCastInt" (formula "75") (term "0")) + (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,0")) + (rule "replace_known_right" (formula "70") (term "1,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "81")) (ifInst "" (formula "82"))) + (rule "polySimp_elimSub" (formula "68") (term "2,1,0")) + (rule "mul_literals" (formula "68") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,2,0,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,2,1,0,0,1,0")) + (rule "castedGetAny" (formula "75") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0,0")) + (rule "assignment" (formula "136") (term "1")) + (builtin "One Step Simplification" (formula "136")) + (rule "blockEmpty" (formula "136") (term "1")) + (builtin "Block Contract (Internal)" (formula "136") (newnames "exc_212,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "16"))) + (builtin "One Step Simplification" (formula "137")) + (rule "eqSymm" (formula "137") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "137") (term "1")) + (rule "variableDeclaration" (formula "137") (term "1") (newnames "exc_212_1")) + (rule "assignment" (formula "137") (term "1")) + (builtin "One Step Simplification" (formula "137")) + (rule "emptyStatement" (formula "137") (term "1")) + (builtin "One Step Simplification" (formula "137")) + (rule "emptyStatement" (formula "137") (term "1")) + (rule "applyEq" (formula "106") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "119") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "119")) + (rule "applyEq" (formula "99") (term "0") (ifseqformula "73")) + (rule "applyEq" (formula "122") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "121") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "120") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "6") (term "1,0,1") (ifseqformula "73")) + (rule "applyEq" (formula "91") (term "0") (ifseqformula "73")) + (rule "applyEq" (formula "118") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "118")) + (rule "applyEq" (formula "112") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "112")) + (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "73")) + (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "73")) + (rule "pullOutSelect" (formula "75") (term "1") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "75") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "136"))) + (rule "replaceKnownSelect_taclet00000_0" (formula "75") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "applyEqReverse" (formula "75") (term "1") (ifseqformula "76")) + (rule "hideAuxiliaryEq" (formula "76")) + (rule "replace_known_left" (formula "75") (term "0,0,0,1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "75")) + (rule "elementOfArrayRangeConcrete" (formula "75") (term "0,0")) + (rule "eqSymm" (formula "75") (term "0,0,0,0")) + (rule "replace_known_right" (formula "75") (term "0,0,0,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "75")) + (rule "eqSymm" (formula "75")) + (rule "applyEqReverse" (formula "57") (term "1") (ifseqformula "75")) + (rule "applyEqReverse" (formula "58") (term "0") (ifseqformula "75")) + (rule "hideAuxiliaryEq" (formula "75")) + (rule "applyEq" (formula "57") (term "1") (ifseqformula "58")) + (rule "commute_and_2" (formula "77") (term "0,0")) + (rule "commute_and" (formula "76") (term "0,0,0")) + (rule "commute_and" (formula "76") (term "1,0,0")) + (rule "tryEmpty" (formula "136") (term "1")) + (rule "blockEmptyLabel" (formula "136") (term "1")) + (rule "blockEmpty" (formula "136") (term "1")) + (rule "commute_and" (formula "77") (term "1,0,0,0")) + (rule "shift_paren_and" (formula "76") (term "0,0")) + (rule "commute_and_2" (formula "76") (term "0,0,0")) + (rule "methodCallEmpty" (formula "136") (term "1")) + (rule "shift_paren_and" (formula "77") (term "0,0,0")) + (rule "commute_and" (formula "77") (term "0,0,0,0")) + (rule "emptyModality" (formula "136") (term "1")) + (rule "andRight" (formula "136")) + (branch + (builtin "One Step Simplification" (formula "136")) + (rule "closeTrue" (formula "136")) + ) + (branch + (builtin "One Step Simplification" (formula "136")) + (rule "closeTrue" (formula "136")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "136")) + (branch + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "136")) + ) + (branch + (builtin "One Step Simplification" (formula "136")) + (rule "wellFormedAnonEQ" (formula "136") (ifseqformula "68")) + (rule "wellFormedAnonEQ" (formula "136") (term "0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "136") (term "0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "136") (term "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "136") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46"))) + (rule "closeTrue" (formula "136")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "81")) + (builtin "One Step Simplification" (formula "137")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "1,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "0,1,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "81") (term "0,0,1,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "81")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "81")) + (rule "eqSymm" (formula "84")) + (rule "translateJavaSubInt" (formula "84") (term "0,1")) + (rule "replace_known_left" (formula "82") (term "0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "polySimp_elimSub" (formula "83") (term "0,1")) + (rule "polySimp_addComm0" (formula "83") (term "0,1")) + (rule "applyEq" (formula "121") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "121")) + (rule "applyEq" (formula "6") (term "1,0,1") (ifseqformula "73")) + (rule "applyEq" (formula "122") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "108") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "101") (term "0") (ifseqformula "73")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "120")) + (rule "applyEq" (formula "6") (term "0,0") (ifseqformula "73")) + (rule "applyEq" (formula "114") (term "0") (ifseqformula "73")) + (rule "eqSymm" (formula "114")) + (rule "applyEq" (formula "93") (term "0") (ifseqformula "73")) + (rule "applyEq" (formula "124") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "123") (term "1") (ifseqformula "73")) + (rule "applyEq" (formula "68") (term "0,1,0") (ifseqformula "73")) + (rule "applyEq" (formula "83") (term "1,0") (ifseqformula "72")) + (rule "pullOutSelect" (formula "75") (term "1") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "75") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "138"))) + (rule "replaceKnownSelect_taclet00000_0" (formula "75") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "75") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "applyEqReverse" (formula "75") (term "1") (ifseqformula "76")) + (rule "hideAuxiliaryEq" (formula "76")) + (rule "replace_known_left" (formula "75") (term "0,0,0,1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "75")) + (rule "elementOfArrayRangeConcrete" (formula "75") (term "0,0")) + (rule "eqSymm" (formula "75") (term "0,0,0,0")) + (rule "replace_known_right" (formula "75") (term "0,0,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "75")) + (rule "eqSymm" (formula "75")) + (rule "applyEqReverse" (formula "58") (term "0") (ifseqformula "75")) + (rule "applyEqReverse" (formula "57") (term "1") (ifseqformula "75")) + (rule "hideAuxiliaryEq" (formula "75")) + (rule "applyEq" (formula "57") (term "1") (ifseqformula "58")) + (rule "commute_and_2" (formula "77") (term "0,0")) + (rule "commute_and" (formula "76") (term "0,0,0")) + (rule "commute_and" (formula "76") (term "1,0,0")) + (rule "commute_and" (formula "77") (term "1,0,0,0")) + (rule "elim_double_block_2" (formula "138") (term "1")) + (rule "shift_paren_and" (formula "76") (term "0,0")) + (rule "commute_and_2" (formula "76") (term "0,0,0")) + (rule "shift_paren_and" (formula "77") (term "0,0,0")) + (rule "commute_and" (formula "77") (term "0,0,0,0")) + (rule "ifUnfold" (formula "138") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "138") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "replace_known_left" (formula "138") (term "0,0,1,0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "138")) + (rule "ifSplit" (formula "138")) + (branch "if x true" + (builtin "One Step Simplification" (formula "139")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "139")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "138") (term "1")) + (builtin "Block Contract (Internal)" (formula "138") (newnames "exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "16"))) + (builtin "One Step Simplification" (formula "139")) + (rule "eqSymm" (formula "139") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "139") (term "1")) + (rule "variableDeclaration" (formula "139") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "emptyStatement" (formula "139") (term "1")) + (builtin "One Step Simplification" (formula "139")) + (rule "emptyStatement" (formula "139") (term "1")) + (rule "tryEmpty" (formula "139") (term "1")) + (rule "blockEmptyLabel" (formula "139") (term "1")) + (rule "blockEmpty" (formula "139") (term "1")) + (rule "methodCallEmpty" (formula "139") (term "1")) + (rule "emptyModality" (formula "139") (term "1")) + (rule "andRight" (formula "139")) + (branch + (builtin "One Step Simplification" (formula "139")) + (rule "closeTrue" (formula "139")) + ) + (branch + (builtin "One Step Simplification" (formula "139")) + (rule "closeTrue" (formula "139")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "138")) + (branch + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "138")) + ) + (branch + (builtin "One Step Simplification" (formula "138")) + (rule "wellFormedAnonEQ" (formula "138") (ifseqformula "68")) + (rule "wellFormedAnonEQ" (formula "138") (term "0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "138") (term "0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "138") (term "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "138") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46"))) + (rule "closeTrue" (formula "138")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "139")) + (builtin "One Step Simplification" (formula "83")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,1,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "0,0,1,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "85")) + (rule "replace_known_left" (formula "84") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "elim_double_block_2" (formula "142") (term "1")) + (rule "ifUnfold" (formula "142") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "142") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "replace_known_left" (formula "142") (term "0,0,1,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "142")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (rule "expand_inShort" (formula "24")) + (rule "replace_short_MIN" (formula "24") (term "0,1")) + (rule "replace_short_MAX" (formula "24") (term "1,0")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "arrayLengthNotNegative" (formula "22") (term "0")) + (rule "arrayLengthIsAShort" (formula "26") (term "0")) + (rule "expand_inShort" (formula "26")) + (rule "replace_short_MIN" (formula "26") (term "0,1")) + (rule "replace_short_MAX" (formula "26") (term "1,0")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "arrayLengthNotNegative" (formula "26") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "ifSplit" (formula "142")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "143")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "143")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "142") (term "1")) + (builtin "Block Contract (Internal)" (formula "142") (newnames "exc_1,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "16"))) + (builtin "One Step Simplification" (formula "143")) + (rule "eqSymm" (formula "143") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "143") (term "1")) + (rule "variableDeclaration" (formula "143") (term "1") (newnames "exc_1_1")) + (rule "assignment" (formula "143") (term "1")) + (builtin "One Step Simplification" (formula "143")) + (rule "emptyStatement" (formula "143") (term "1")) + (builtin "One Step Simplification" (formula "143")) + (rule "emptyStatement" (formula "143") (term "1")) + (rule "tryEmpty" (formula "143") (term "1")) + (rule "blockEmptyLabel" (formula "143") (term "1")) + (rule "blockEmpty" (formula "143") (term "1")) + (rule "methodCallEmpty" (formula "143") (term "1")) + (rule "emptyModality" (formula "143") (term "1")) + (rule "andRight" (formula "143")) + (branch + (builtin "One Step Simplification" (formula "143")) + (rule "closeTrue" (formula "143")) + ) + (branch + (builtin "One Step Simplification" (formula "143")) + (rule "closeTrue" (formula "143")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "142")) + (branch + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "142")) + ) + (branch + (builtin "One Step Simplification" (formula "142")) + (rule "wellFormedAnonEQ" (formula "142") (ifseqformula "68")) + (rule "wellFormedAnonEQ" (formula "142") (term "0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "142") (term "0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "142") (term "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "142") (ifInst "" (formula "7")) (ifInst "" (formula "35")) (ifInst "" (formula "46"))) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "87")) + (builtin "One Step Simplification" (formula "143")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,0,1,1,0") (ifseqformula "36")) + (rule "expand_inInt" (formula "87") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "eqSymm" (formula "89") (term "1,0")) + (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0")) + (rule "applyEq" (formula "88") (term "1,1,0,0,0") (ifseqformula "33")) + (rule "commute_and" (formula "88") (term "1,0,0")) + (rule "commute_and" (formula "88") (term "0,0,0")) + (rule "shift_paren_and" (formula "88") (term "0,0")) + (rule "commute_and_2" (formula "88") (term "0,0,0")) + (rule "elim_double_block_2" (formula "144") (term "1")) + (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "144")) + (rule "seqGetAlphaCast" (formula "58") (term "0")) + (rule "castedGetAny" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "115") (term "1") (ifseqformula "35") (ifseqformula "38")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "132") (term "1") (ifseqformula "36") (ifseqformula "39")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "129") (term "1") (ifseqformula "69") (ifseqformula "72")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "45") (term "0") (ifseqformula "10") (ifseqformula "18")) + (rule "applyEq" (formula "45") (term "1,0,1") (ifseqformula "46")) + (rule "applyEq" (formula "45") (term "0,0") (ifseqformula "46")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "44") (term "0") (ifseqformula "10") (ifseqformula "18")) + (rule "applyEq" (formula "44") (term "1,0,1") (ifseqformula "45")) + (rule "applyEq" (formula "44") (term "0,0") (ifseqformula "45")) + (rule "ifSplit" (formula "149")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "150")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "149") (term "1")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "overflow")) + (rule "assignment_read_attribute_final" (formula "149")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "149")) + (rule "methodCallUnfoldArguments" (formula "149") (term "1")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_7")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_8")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_9")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_10")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_11")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_12")) + (rule "assignment_read_attribute_final" (formula "149")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_13")) + (rule "assignment_read_attribute_final" (formula "149")) + (branch "Normal Execution (_storage != null)" + (builtin "One Step Simplification" (formula "149")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "var_14")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (builtin "Use Operation Contract" (formula "149") (newnames "heapBefore_permute,exc_2,heapAfter_permute,anon_heap_permute") (contract "de.wiesler.Permute[de.wiesler.Permute::permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0")) + (branch "Post (permute)" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "95")) + (rule "expand_inInt" (formula "95") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "95") (term "0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "95") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "95") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "95") (term "0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "95") (term "1,0,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "99")) + (rule "translateJavaSubInt" (formula "95") (term "2,0,0,1,0")) + (rule "eqSymm" (formula "97") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "95") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "95") (term "1,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "95") (term "2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "97") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "97") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "98") (term "1,0,0")) + (rule "blockEmpty" (formula "158") (term "1")) + (rule "applyEq" (formula "97") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commuteUnion" (formula "95") (term "1,1,0")) + (rule "commuteUnion" (formula "95") (term "0,1,0")) + (rule "commuteUnion_2" (formula "95") (term "1,0")) + (rule "commute_and_2" (formula "97") (term "1,0")) + (rule "commute_and" (formula "98") (term "0,0")) + (rule "commute_and" (formula "97") (term "1,0,0")) + (rule "commute_and" (formula "97") (term "0,0,0")) + (rule "commute_and" (formula "97") (term "0,1,0")) + (rule "commute_and_2" (formula "97") (term "1,0")) + (rule "shift_paren_and" (formula "97") (term "0,0")) + (rule "commute_and_2" (formula "97") (term "0,0,0")) + (rule "associativeLawUnion" (formula "95") (term "0,1,0")) + (rule "associativeLawUnion" (formula "95") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "158") (newnames "heapBefore_cleanup,exc_3,heapAfter_cleanup,anon_heap_cleanup") (contract "de.wiesler.Cleanup[de.wiesler.Cleanup::cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0")) + (branch "Post (cleanup)" + (builtin "One Step Simplification" (formula "160")) + (builtin "Block Contract (Internal)" (formula "160") (newnames "exc_4,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "19"))) + (builtin "One Step Simplification" (formula "161")) + (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "eqSymm" (formula "164") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "104") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "106") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0")) + (rule "polySimp_elimSub" (formula "104") (term "2,1,0")) + (rule "mul_literals" (formula "104") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,2,5,0,1,1,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,2,1,4,0,0,1,0")) + (rule "polySimp_addComm0" (formula "104") (term "2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "1,1,0,0")) + (rule "variableDeclarationAssign" (formula "164") (term "1")) + (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (rule "applyEq" (formula "105") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commute_and" (formula "106") (term "0,0")) + (rule "commute_and" (formula "105") (term "1,0,0")) + (rule "commute_and" (formula "105") (term "0,0,0")) + (rule "shift_paren_and" (formula "105") (term "0,0")) + (rule "commute_and_2" (formula "105") (term "0,0,0")) + (rule "tryEmpty" (formula "164") (term "1")) + (rule "blockEmptyLabel" (formula "164") (term "1")) + (rule "blockEmpty" (formula "164") (term "1")) + (rule "methodCallEmpty" (formula "164") (term "1")) + (rule "emptyModality" (formula "164") (term "1")) + (rule "andRight" (formula "164")) + (branch + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + (branch + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "160")) + (branch + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "160") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "160")) + ) + (branch + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "160")) + (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "104")) + (rule "wellFormedAnonEQ" (formula "161") (ifseqformula "104")) + (rule "wellFormedAnonEQ" (formula "161") (term "0") (ifseqformula "95")) + (rule "wellFormedAnonEQ" (formula "161") (term "0,0") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "161") (term "0,0,0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "161") (term "0,0,0,0") (ifseqformula "39")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "translateJavaSubInt" (formula "104") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "106") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0")) + (rule "replace_known_left" (formula "163") (term "1,0,0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "72")) (ifInst "" (formula "94")) (ifInst "" (formula "103"))) + (rule "closeTrue" (formula "163")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "161")) + (builtin "One Step Simplification" (formula "105")) + (rule "expand_inInt" (formula "104") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "104") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "104") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "104") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,1") (ifseqformula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,1") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,1,1") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,0,1,1") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,0,0,0,1,1") (ifseqformula "39")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "translateJavaSubInt" (formula "104") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,1,4,0,0,1,0")) + (rule "translateJavaAddInt" (formula "106") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "0,2,5,0,1,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "105") (term "4,0,0,1,0")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "109")) + (rule "true_left" (formula "109")) + (rule "polySimp_elimSub" (formula "104") (term "2,1,0")) + (rule "mul_literals" (formula "104") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,2,5,0,1,1,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,2,1,4,0,0,1,0")) + (rule "polySimp_addComm0" (formula "104") (term "2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "105") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0")) + (rule "applyEq" (formula "109") (term "2,0") (ifseqformula "36")) + (rule "applyEq" (formula "105") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commute_and" (formula "106") (term "0,0")) + (rule "commute_and" (formula "105") (term "1,0,0")) + (rule "commute_and" (formula "105") (term "0,0,0")) + (rule "elim_double_block_2" (formula "165") (term "1")) + (rule "shift_paren_and" (formula "105") (term "0,0")) + (rule "commute_and_2" (formula "105") (term "0,0,0")) + (builtin "Use Dependency Contract" (formula "69") (ifInst "" (formula "165") (term "1,0,0,1")) (ifInst "" (formula "52")) (ifInst "" (formula "39")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "110") (term "1,1,0,0,0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "110") (term "0,1,1,0,0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "110") (term "1,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "163")) (ifInst "" (formula "17")) (ifInst "" (formula "10")) (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "69")) (ifInst "" (formula "21"))) + (rule "true_left" (formula "110")) + (rule "ifUnfold" (formula "165") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "165") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "165") (term "1")) + (builtin "One Step Simplification" (formula "165")) + (rule "replace_known_left" (formula "165") (term "0,0,1,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "165")) + (rule "ifSplit" (formula "165")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "165") (term "1")) + (rule "emptyStatement" (formula "165") (term "1")) + (builtin "Block Contract (Internal)" (formula "165") (newnames "exc_5,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "19"))) + (builtin "One Step Simplification" (formula "166")) + (rule "eqSymm" (formula "166") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "166") (term "1")) + (rule "variableDeclaration" (formula "166") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "emptyStatement" (formula "166") (term "1")) + (rule "tryEmpty" (formula "166") (term "1")) + (rule "blockEmptyLabel" (formula "166") (term "1")) + (rule "blockEmpty" (formula "166") (term "1")) + (rule "methodCallEmpty" (formula "166") (term "1")) + (rule "emptyModality" (formula "166") (term "1")) + (rule "andRight" (formula "166")) + (branch + (builtin "One Step Simplification" (formula "166")) + (rule "closeTrue" (formula "166")) + ) + (branch + (builtin "One Step Simplification" (formula "166")) + (rule "closeTrue" (formula "166")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "165")) + (branch + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "165")) + ) + (branch + (builtin "One Step Simplification" (formula "165")) + (rule "wellFormedAnonEQ" (formula "165") (ifseqformula "104")) + (rule "wellFormedAnonEQ" (formula "165") (term "0") (ifseqformula "95")) + (rule "wellFormedAnonEQ" (formula "165") (term "0,0") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "165") (term "0,0,0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "165") (term "1,0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "103"))) + (rule "closeTrue" (formula "165")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "166")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "1,1,0") (ifseqformula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,1,1,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,1,1,0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,0,1,1,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "110") (term "0,0,0,0,1,1,0") (ifseqformula "39")) + (rule "andLeft" (formula "110")) + (rule "andLeft" (formula "110")) + (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "111")) + (rule "true_left" (formula "111")) + (rule "applyEq" (formula "111") (term "5,0") (ifseqformula "36")) + (rule "elim_double_block_2" (formula "167") (term "1")) + (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "167")) + (rule "ifSplit" (formula "167")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "167") (term "1")) + (rule "emptyStatement" (formula "167") (term "1")) + (builtin "Block Contract (Internal)" (formula "167") (newnames "exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "19"))) + (builtin "One Step Simplification" (formula "168")) + (rule "eqSymm" (formula "168") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "168") (term "1")) + (rule "variableDeclaration" (formula "168") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "emptyStatement" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "emptyStatement" (formula "168") (term "1")) + (rule "tryEmpty" (formula "168") (term "1")) + (rule "blockEmptyLabel" (formula "168") (term "1")) + (rule "blockEmpty" (formula "168") (term "1")) + (rule "methodCallEmpty" (formula "168") (term "1")) + (rule "emptyModality" (formula "168") (term "1")) + (rule "andRight" (formula "168")) + (branch + (builtin "One Step Simplification" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + (branch + (builtin "One Step Simplification" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "167")) + (branch + (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "167")) + ) + (branch + (builtin "One Step Simplification" (formula "167")) + (rule "wellFormedAnonEQ" (formula "167") (ifseqformula "104")) + (rule "wellFormedAnonEQ" (formula "167") (term "0") (ifseqformula "95")) + (rule "wellFormedAnonEQ" (formula "167") (term "0,0") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "167") (term "0,0,0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "167") (term "0,0,0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "167") (term "1") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "167") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "94"))) + (rule "closeTrue" (formula "167")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "112")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,0") (ifseqformula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,1,1,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,0,1,1,0") (ifseqformula "39")) + (rule "expand_inInt" (formula "112") (term "0,0,1")) + (rule "replace_int_MIN" (formula "112") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "112") (term "1,0,0,0,1")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "112")) + (rule "replace_known_left" (formula "113") (term "0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "113")) + (rule "true_left" (formula "113")) + (rule "inEqSimp_commuteLeq" (formula "113") (term "1,0,0")) + (rule "commute_and" (formula "113") (term "0,0")) + (rule "elim_double_block_2" (formula "169") (term "1")) + (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "169")) + (rule "ifSplit" (formula "169")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (rule "emptyStatement" (formula "169") (term "1")) + (rule "methodCallEmpty" (formula "169") (term "1")) + (rule "tryEmpty" (formula "169") (term "1")) + (rule "emptyModality" (formula "169") (term "1")) + (rule "andRight" (formula "169")) + (branch + (rule "andRight" (formula "169")) + (branch + (builtin "One Step Simplification" (formula "169")) + (rule "polySimp_homoEq" (formula "106") (term "1,0")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "105") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "106") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "106") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "106") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "105") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "102") (term "0,0,0")) + (rule "leq_literals" (formula "102") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "102")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0")) + (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "nnf_imp2or" (formula "95") (term "0")) + (rule "nnf_imp2or" (formula "110") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "103") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "102") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "nnf_imp2or" (formula "94") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "95") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "95") (term "0,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "95") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "95") (term "0,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "95") (term "1,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "95") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,0,0")) + (rule "mul_literals" (formula "95") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "110") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "110") (term "0,0,0")) + (rule "mul_literals" (formula "110") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "110") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "110") (term "0,0,0")) + (rule "mul_literals" (formula "110") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "110") (term "1,0,0")) + (rule "mul_literals" (formula "110") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "110") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "110") (term "1,0,0")) + (rule "mul_literals" (formula "110") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "62") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "103") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "103") (term "0,0,0")) + (rule "mul_literals" (formula "103") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "103") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "103") (term "0,0,0")) + (rule "mul_literals" (formula "103") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "103") (term "1,0,0")) + (rule "mul_literals" (formula "103") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "103") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103") (term "1,0,0")) + (rule "mul_literals" (formula "103") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "79") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "102") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "102") (term "1,0,0")) + (rule "mul_literals" (formula "102") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "102") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "102") (term "1,0,0")) + (rule "mul_literals" (formula "102") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "90") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "90") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "78") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "78") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "94") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "94") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0")) + (rule "Definition_axiom_for_initialReadAreasCountBucketElements_in_de_wiesler_BucketPointers" (formula "88") (term "0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "88")) + (rule "expand_inInt" (formula "88") (term "1,0,0")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "88") (term "4,0,1,0")) + (rule "eqSymm" (formula "88") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "88") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0")) + (rule "applyEq" (formula "88") (term "1,4,1,1,0") (ifseqformula "76")) + (rule "polySimp_addAssoc" (formula "88") (term "4,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "88") (term "0,4,1,1,0")) + (rule "add_literals" (formula "88") (term "1,0,4,1,1,0")) + (rule "times_zero_1" (formula "88") (term "0,4,1,1,0")) + (rule "add_zero_left" (formula "88") (term "4,1,1,0")) + (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "74")) + (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80") (inst "b=b")) + (builtin "One Step Simplification" (formula "80")) + (rule "expand_inInt" (formula "80") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "80") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "80") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "translateJavaAddInt" (formula "86") (term "1")) + (rule "translateJavaCastInt" (formula "87") (term "0")) + (rule "translateJavaMulInt" (formula "81") (term "0")) + (rule "translateJavaMulInt" (formula "80") (term "1")) + (rule "translateJavaCastInt" (formula "84") (term "0")) + (rule "translateJavaCastInt" (formula "83") (term "1")) + (rule "polySimp_mulComm0" (formula "81") (term "0")) + (rule "polySimp_mulComm0" (formula "80") (term "1")) + (rule "polySimp_addComm0" (formula "86") (term "1")) + (rule "castedGetAny" (formula "87") (term "0")) + (rule "castedGetAny" (formula "84") (term "0")) + (rule "castedGetAny" (formula "83") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "80")) + (rule "inEqSimp_commuteLeq" (formula "83")) + (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "74")) + (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "74")) + (rule "applyEq" (formula "83") (term "1,0") (ifseqformula "74")) + (rule "applyEq" (formula "82") (term "0") (ifseqformula "76")) + (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "74")) + (rule "inEqSimp_commuteLeq" (formula "81")) + (rule "applyEq" (formula "85") (term "0,0") (ifseqformula "76")) + (rule "applyEq" (formula "83") (term "1") (ifseqformula "76")) + (rule "applyEq" (formula "84") (term "0") (ifseqformula "60")) + (rule "inEqSimp_homoInEq0" (formula "84")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0")) + (rule "applyEq" (formula "85") (term "1,1") (ifseqformula "74")) + (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "74")) + (rule "applyEq" (formula "83") (term "0") (ifseqformula "60")) + (rule "inEqSimp_homoInEq1" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "83") (term "0")) + (rule "polySimp_addAssoc" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "add_zero_left" (formula "83") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "1")) + (rule "polySimp_elimOne" (formula "82") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "86") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "86") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "86") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "1")) + (rule "polySimp_elimOne" (formula "82") (term "1")) + (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=result_175") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,1,0")) + (rule "add_zero_right" (formula "80") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "80") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "80") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "80")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "76") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "76")) + (rule "expand_inInt" (formula "76") (term "1,0,0")) + (rule "replace_int_MIN" (formula "76") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "76") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,1,0,0")) + (rule "applyEq" (formula "76") (term "0,1,0,0,1,0,0,0") (ifseqformula "73")) + (rule "inEqSimp_sepPosMonomial0" (formula "76") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "76") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "translateJavaSubInt" (formula "68") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "68") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "65") (term "1,1")) + (rule "eqSymm" (formula "68")) + (rule "eqSymm" (formula "65")) + (rule "polySimp_elimSub" (formula "68") (term "0,2,0")) + (rule "mul_literals" (formula "68") (term "1,0,2,0")) + (rule "eqSymm" (formula "68")) + (rule "polySimp_elimSub" (formula "68") (term "0,2,0")) + (rule "mul_literals" (formula "68") (term "1,0,2,0")) + (rule "eqSymm" (formula "68")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "32")) + (rule "inEqSimp_subsumption1" (formula "85") (ifseqformula "63")) + (rule "leq_literals" (formula "85") (term "0")) + (builtin "One Step Simplification" (formula "85")) + (rule "true_left" (formula "85")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "64")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "pullOutSelect" (formula "67") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,1,1,0,0") (ifseqformula "34")) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "67") (term "0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfUnion" (formula "68") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "68")) + (rule "elementOfUnion" (formula "67") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "68") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "68")) + (rule "elementOfUnion" (formula "67") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "1,0,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,1,0,0,0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfUnion" (formula "68") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "1,0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,1,0,0,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "68")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "68")) + (rule "elementOfUnion" (formula "67") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0,0,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "67")) + (rule "pullOutSelect" (formula "68") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "68") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "68")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "153")) + (builtin "One Step Simplification" (formula "68")) + (rule "pullOutSelect" (formula "67") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "67") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "67")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0,0") (ifseqformula "154")) + (builtin "One Step Simplification" (formula "67")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "65"))) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "eqSymm" (formula "34")) + (rule "eqSymm" (formula "32")) + (rule "translateJavaSubInt" (formula "34") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "34") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "32") (term "1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,1")) + (rule "mul_literals" (formula "34") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,0")) + (rule "mul_literals" (formula "34") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "73") (term "2,0") (ifseqformula "34")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "48") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "48")) + (rule "expand_inInt" (formula "48") (term "1,0,0")) + (rule "replace_int_MAX" (formula "48") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "48") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0")) + (rule "applyEq" (formula "48") (term "0,1,0,0,1,0,0,0") (ifseqformula "43")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "96")) + (rule "notLeft" (formula "96")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "34")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "179")) + (rule "applyEq" (formula "179") (term "0,0,1,0,0,0") (ifseqformula "45")) + (rule "applyEq" (formula "179") (term "0,0,1,0,0,0,0") (ifseqformula "43")) + (rule "applyEq" (formula "179") (term "0,0,1,0,0,0,0,0") (ifseqformula "84")) + (rule "replace_known_right" (formula "179") (term "0,1,0,0,0,0,0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "179")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "109")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "67"))) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "andLeft" (formula "109")) + (rule "eqSymm" (formula "113")) + (rule "eqSymm" (formula "111")) + (rule "translateJavaSubInt" (formula "113") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "113") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "111") (term "1,0")) + (rule "polySimp_elimSub" (formula "113") (term "0,2,0")) + (rule "mul_literals" (formula "113") (term "1,0,2,0")) + (rule "eqSymm" (formula "113")) + (rule "polySimp_elimSub" (formula "113") (term "0,2,0")) + (rule "mul_literals" (formula "113") (term "1,0,2,0")) + (rule "eqSymm" (formula "113")) + (rule "polySimp_mulComm0" (formula "111") (term "1,0")) + (rule "polySimp_addComm0" (formula "113") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "113") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "109")) + (rule "applyEq" (formula "111") (term "0") (ifseqformula "30")) + (rule "eqSymm" (formula "111")) + (rule "pullOutSelect" (formula "112") (term "1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnonEQ" (formula "113") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "113")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,1,1,0,0") (ifseqformula "79")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,1,1,0,0") (ifseqformula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,0,1,1,0,0") (ifseqformula "37")) + (rule "simplifySelectOfAnonEQ" (formula "112") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "112")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0,0") (ifseqformula "79")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0,0") (ifseqformula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,0,1,1,0,0") (ifseqformula "37")) + (rule "elementOfUnion" (formula "113") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "113") (term "1,0,0,0")) + (rule "replace_known_right" (formula "113") (term "0,0,1,0,0,0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "113")) + (rule "elementOfUnion" (formula "112") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "112") (term "1,0,0,0")) + (rule "replace_known_right" (formula "112") (term "0,0,1,0,0,0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "112")) + (rule "elementOfUnion" (formula "113") (term "0,0,0")) + (builtin "One Step Simplification" (formula "113")) + (rule "eqSymm" (formula "113") (term "1,0,0,0")) + (rule "replace_known_right" (formula "113") (term "1,0,0,0") (ifseqformula "163")) + (builtin "One Step Simplification" (formula "113")) + (rule "elementOfUnion" (formula "112") (term "0,0,0")) + (builtin "One Step Simplification" (formula "112")) + (rule "eqSymm" (formula "112") (term "1,0,0,0")) + (rule "replace_known_right" (formula "112") (term "1,0,0,0") (ifseqformula "163")) + (builtin "One Step Simplification" (formula "112")) + (rule "elementOfUnion" (formula "113") (term "0,0,0")) + (builtin "One Step Simplification" (formula "113")) + (rule "eqSymm" (formula "113") (term "1,0,0,0")) + (rule "replace_known_right" (formula "113") (term "1,0,0,0") (ifseqformula "162")) + (builtin "One Step Simplification" (formula "113")) + (rule "elementOfUnion" (formula "112") (term "0,0,0")) + (builtin "One Step Simplification" (formula "112")) + (rule "eqSymm" (formula "112") (term "1,0,0,0")) + (rule "replace_known_right" (formula "112") (term "1,0,0,0") (ifseqformula "162")) + (builtin "One Step Simplification" (formula "112")) + (rule "elementOfUnion" (formula "113") (term "0,0,0")) + (builtin "One Step Simplification" (formula "113") (ifInst "" (formula "159"))) + (rule "eqSymm" (formula "113") (term "0,0,0")) + (rule "replace_known_right" (formula "113") (term "0,0,0") (ifseqformula "164")) + (builtin "One Step Simplification" (formula "113")) + (rule "elementOfUnion" (formula "112") (term "0,0,0")) + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "159"))) + (rule "eqSymm" (formula "112") (term "0,0,0")) + (rule "replace_known_right" (formula "112") (term "0,0,0") (ifseqformula "164")) + (builtin "One Step Simplification" (formula "112")) + (rule "pullOutSelect" (formula "113") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnonEQ" (formula "113") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "113")) + (rule "replaceKnownSelect_taclet0012121200000121212001000000_6" (formula "113") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,1,1,0,0") (ifseqformula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "113") (term "0,0,1,1,0,0") (ifseqformula "37")) + (rule "elementOfArrayRangeConcrete" (formula "113") (term "0,0,0")) + (rule "replace_known_right" (formula "113") (term "0,0,0,0,0") (ifseqformula "160")) + (builtin "One Step Simplification" (formula "113")) + (rule "pullOutSelect" (formula "112") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnonEQ" (formula "112") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "112")) + (rule "replaceKnownSelect_taclet0012121200000121212001000000_7" (formula "112") (term "2,0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,1,1,0,0") (ifseqformula "50")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "0,0,1,1,0,0") (ifseqformula "37")) + (rule "elementOfArrayRangeConcrete" (formula "112") (term "0,0,0")) + (rule "replace_known_right" (formula "112") (term "0,0,0,0,0") (ifseqformula "161")) + (builtin "One Step Simplification" (formula "112")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "notLeft" (formula "76")) + (rule "notLeft" (formula "75")) + (rule "replace_known_right" (formula "69") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "69")) + (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "71")) + (rule "replace_known_right" (formula "111") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "111")) + (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "72")) + (rule "replace_known_right" (formula "113") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "113")) + (rule "replace_known_right" (formula "114") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "114")) + (rule "replace_known_right" (formula "70") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "70")) + (rule "replace_known_right" (formula "112") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "112")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "6")) + (rule "replace_known_left" (formula "113") (term "0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "113")) + (rule "applyEqReverse" (formula "114") (term "2,0") (ifseqformula "113")) + (rule "hideAuxiliaryEq" (formula "113")) + (rule "replace_known_left" (formula "72") (term "0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "72")) + (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "72")) + (rule "applyEqReverse" (formula "111") (term "2,0") (ifseqformula "72")) + (rule "applyEqReverse" (formula "113") (term "2,0") (ifseqformula "72")) + (rule "hideAuxiliaryEq" (formula "72")) + (rule "replace_known_left" (formula "112") (term "0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "112")) + (rule "applyEqReverse" (formula "111") (term "1") (ifseqformula "112")) + (rule "hideAuxiliaryEq" (formula "112")) + (rule "replace_known_left" (formula "111") (term "0,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "111")) + (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "111")) + (rule "applyEqReverse" (formula "110") (term "2,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "6"))) + (rule "true_left" (formula "110")) + (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "110")) + (rule "hideAuxiliaryEq" (formula "110")) + (rule "replace_known_left" (formula "71") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "71")) + (rule "applyEqReverse" (formula "70") (term "1") (ifseqformula "71")) + (rule "hideAuxiliaryEq" (formula "71")) + (rule "replace_known_left" (formula "70") (term "0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "70")) + (rule "replace_known_left" (formula "69") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "69")) + (rule "applyEqReverse" (formula "70") (term "0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "hideAuxiliaryEq" (formula "69")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "notLeft" (formula "90")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "17")) + (rule "notLeft" (formula "17")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "185") (term "0,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "185") (ifInst "" (formula "120")) (ifInst "" (formula "119")) (ifInst "" (formula "124")) (ifInst "" (formula "126"))) + (rule "applyEq" (formula "123") (term "0") (ifseqformula "44")) + (rule "replace_known_right" (formula "185") (term "0,1") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "185")) + (rule "notRight" (formula "185")) + (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "44")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "77")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "41")) + (rule "close" (formula "120") (ifseqformula "1")) + ) + (branch + (builtin "One Step Simplification" (formula "169")) + (rule "polySimp_homoEq" (formula "106") (term "1,0")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "106") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "106") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "105") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "106") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "106") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "106") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "105") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "105") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "105") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "24")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "53") (ifseqformula "27")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "102") (term "0,0,0")) + (rule "leq_literals" (formula "102") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "102")) + (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0")) + (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "nnf_imp2or" (formula "110") (term "0")) + (rule "nnf_imp2or" (formula "95") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "103") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "102") (term "0")) + (rule "nnf_imp2or" (formula "94") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "86") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "70")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "86") (term "0,1,0,0,0,0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "166")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "69")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "114")) (ifInst "" (formula "72")) (ifInst "" (formula "115")) (ifInst "" (formula "81")) (ifInst "" (formula "87")) (ifInst "" (formula "80"))) + (rule "true_left" (formula "86")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "66")) + (rule "notLeft" (formula "65")) + (rule "replace_known_right" (formula "43") (term "0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "43")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "41") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "41")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "97")) + (rule "notLeft" (formula "97")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "9")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "80")) + (rule "notLeft" (formula "80")) + (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "85") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0,0") (ifseqformula "69")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "85") (term "1,0,0,0") (ifseqformula "69")) + (rule "wellFormedAnonEQ" (formula "85") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "wellFormedAnonEQ" (formula "85") (term "0,0,1,0,0,0") (ifseqformula "36")) + (rule "eqSymm" (formula "85") (term "0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "85") (term "4,0,0,1,1,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "85") (term "0,0,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "85") (term "1,0,1,0,0,0,0")) + (rule "replace_known_left" (formula "85") (term "0,1,1") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "76")) (ifInst "" (formula "164")) (ifInst "" (formula "166")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "68")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "114")) (ifInst "" (formula "71")) (ifInst "" (formula "115")) (ifInst "" (formula "79"))) + (rule "polySimp_elimSub" (formula "85") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "1,0,1,0")) + (rule "castedGetAny" (formula "85") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0")) + (rule "replace_known_left" (formula "85") (term "0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "85")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,0,0")) + (rule "replace_known_left" (formula "85") (term "1,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "85")) + (rule "applyEq" (formula "85") (term "1,0,0,1,0") (ifseqformula "73")) + (rule "replace_known_left" (formula "85") (term "0,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "85")) + (rule "applyEq" (formula "85") (term "1,4,0,0,1,0") (ifseqformula "75")) + (rule "polySimp_addAssoc" (formula "85") (term "4,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "85") (term "0,4,0,0,1,0")) + (rule "add_literals" (formula "85") (term "1,0,4,0,0,1,0")) + (rule "times_zero_1" (formula "85") (term "0,4,0,0,1,0")) + (rule "add_zero_left" (formula "85") (term "4,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "85") (term "0,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "85") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "85") (term "0,0,0,0")) + (rule "add_literals" (formula "85") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "85") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "85") (term "0,0,0,0")) + (rule "qeq_literals" (formula "85") (term "0,0,0")) + (builtin "One Step Simplification" (formula "85")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "96")) + (builtin "One Step Simplification" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "eqSymm" (formula "101")) + (rule "translateJavaMulInt" (formula "98") (term "1,1")) + (rule "translateJavaSubInt" (formula "101") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "101") (term "0,2,0")) + (rule "eqSymm" (formula "98")) + (rule "polySimp_elimSub" (formula "101") (term "0,2,1")) + (rule "mul_literals" (formula "101") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "101") (term "0,2,0")) + (rule "mul_literals" (formula "101") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0")) + (rule "polySimp_addComm0" (formula "101") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "101") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "applyEq" (formula "96") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "97") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "98") (term "1") (ifseqformula "33")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "97")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "95")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "57") (term "0,0") (ifseqformula "94")) + (rule "leq_literals" (formula "57") (term "0,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "pullOutSelect" (formula "99") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,0,1,1,0,0") (ifseqformula "34")) + (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "100")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,1,0,0") (ifseqformula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,1,0,0,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99") (term "1,0,0,0")) + (rule "replace_known_right" (formula "99") (term "1,0,0,0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0,0")) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "1,0,0,0")) + (rule "replace_known_right" (formula "100") (term "1,0,0,0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99") (term "1,0,0,0")) + (rule "replace_known_right" (formula "99") (term "1,0,0,0") (ifseqformula "150")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0,0")) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "1,0,0,0")) + (rule "replace_known_right" (formula "100") (term "1,0,0,0") (ifseqformula "150")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "147"))) + (rule "eqSymm" (formula "99") (term "0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0,0")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "147"))) + (rule "eqSymm" (formula "100") (term "0,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "100")) + (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "148")) + (builtin "One Step Simplification" (formula "99")) + (rule "pullOutSelect" (formula "101") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "101") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfArrayRangeConcrete" (formula "101") (term "0,0,0")) + (rule "replace_known_right" (formula "101") (term "0,0,0,0,0") (ifseqformula "149")) + (builtin "One Step Simplification" (formula "101")) + (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "99")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0,0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "99") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0,0,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "99")) + (rule "pullOutSelect" (formula "102") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnonEQ" (formula "102") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "102")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "0,1,1,0,0") (ifseqformula "34")) + (rule "elementOfUnion" (formula "102") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0")) + (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "153")) + (builtin "One Step Simplification" (formula "102")) + (rule "elementOfUnion" (formula "102") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0")) + (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "102")) + (rule "elementOfUnion" (formula "102") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "102") (term "1,0,0,0")) + (rule "replace_known_right" (formula "102") (term "0,0,1,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "102")) + (rule "elementOfArrayRangeConcrete" (formula "102") (term "0,0,0")) + (rule "replace_known_right" (formula "102") (term "0,0,0,0,0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "102")) + (rule "pullOutSelect" (formula "99") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "154")) + (builtin "One Step Simplification" (formula "99")) + (rule "pullOutSelect" (formula "103") (term "2,0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnonEQ" (formula "103") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "103")) + (rule "elementOfArrayRangeConcrete" (formula "103") (term "0,0,0")) + (rule "replace_known_right" (formula "103") (term "0,0,0,0,0") (ifseqformula "155")) + (builtin "One Step Simplification" (formula "103")) + (rule "Contract_axiom_for_initialReadAreasCountBucketElements_in_BucketPointers" (formula "85") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,0,0") (ifseqformula "67")) + (rule "wellFormedAnonEQ" (formula "85") (term "1,0,0,0") (ifseqformula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,0,0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "85") (term "0,1,0,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "wellFormedAnonEQ" (formula "85") (term "0,0,1,0,0,0") (ifseqformula "34")) + (rule "replace_known_right" (formula "85") (term "0,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "176")) (ifInst "" (formula "178")) (ifInst "" (formula "10")) (ifInst "" (formula "33")) (ifInst "" (formula "46")) (ifInst "" (formula "66")) (ifInst "" (formula "124")) (ifInst "" (formula "125")) (ifInst "" (formula "126")) (ifInst "" (formula "69")) (ifInst "" (formula "86")) (ifInst "" (formula "77"))) + (rule "Contract_axiom_for_isAtInitialState_in_BucketPointers" (formula "74") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "1,0,0") (ifseqformula "67")) + (rule "wellFormedAnonEQ" (formula "74") (term "1,0,0,0") (ifseqformula "67")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "0,1,0,0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "74") (term "0,1,0,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "74") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "wellFormedAnonEQ" (formula "74") (term "0,0,1,0,0,0") (ifseqformula "34")) + (rule "replace_known_right" (formula "74") (term "0,1,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "74") (ifInst "" (formula "10")) (ifInst "" (formula "33")) (ifInst "" (formula "46")) (ifInst "" (formula "66")) (ifInst "" (formula "125")) (ifInst "" (formula "126")) (ifInst "" (formula "127")) (ifInst "" (formula "69")) (ifInst "" (formula "78"))) + (rule "true_left" (formula "74")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "179")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "98"))) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "translateJavaSubInt" (formula "66") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "66") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "64") (term "1,1")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "64")) + (rule "polySimp_elimSub" (formula "66") (term "0,2,0")) + (rule "mul_literals" (formula "66") (term "1,0,2,0")) + (rule "eqSymm" (formula "66")) + (rule "polySimp_elimSub" (formula "66") (term "0,2,0")) + (rule "mul_literals" (formula "66") (term "1,0,2,0")) + (rule "eqSymm" (formula "66")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,1")) + (rule "replaceKnownSelect_taclet1012121200000121212001000000_10" (formula "66") (term "1")) + (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "66")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,1,1,0,0") (ifseqformula "34")) + (rule "polySimp_addComm0" (formula "66") (term "0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,2,0")) + (rule "replaceKnownSelect_taclet1012121200000121212001000000_13" (formula "66") (term "2,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "101") (term "0") (ifseqformula "63")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "62") (term "1") (ifseqformula "31")) + (rule "elementOfUnion" (formula "64") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0")) + (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0") (ifseqformula "158")) + (builtin "One Step Simplification" (formula "64")) + (rule "elementOfUnion" (formula "64") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0")) + (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0") (ifseqformula "157")) + (builtin "One Step Simplification" (formula "64")) + (rule "elementOfUnion" (formula "64") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "64") (term "0,0,0,0")) + (rule "replace_known_right" (formula "64") (term "0,0,0,0,0,0") (ifseqformula "142")) + (builtin "One Step Simplification" (formula "64")) + (rule "elementOfArrayRangeConcrete" (formula "64") (term "0,0,0")) + (rule "replace_known_right" (formula "64") (term "0,0,0,0,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "64")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "107")) + (rule "applyEqReverse" (formula "103") (term "1") (ifseqformula "64")) + (rule "applyEqReverse" (formula "104") (term "2,0") (ifseqformula "64")) + (rule "hideAuxiliaryEq" (formula "64")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "45")) + (rule "andLeft" (formula "45")) + (rule "notLeft" (formula "46")) + (rule "notLeft" (formula "45")) + (rule "Definition_axiom_for_bucketCountsToTotalCount_in_de_wiesler_Partition" (formula "118") (term "0") (inst "b=b") (inst "element=element") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "118")) + (rule "expand_inInt" (formula "118") (term "1,0,0")) + (rule "expand_inInt" (formula "118") (term "0,0,1,0")) + (rule "replace_int_MAX" (formula "118") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "118") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "118") (term "1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "118") (term "0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "2,2,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,2,1,3,2,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "3,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "118") (term "3,2,0,0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "118") (term "0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "118") (term "0,2,1,3,2,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "118") (term "1,0,0,1,0")) + (rule "Definition_axiom_for_initialReadAreasBlockClassified_in_de_wiesler_BucketPointers" (formula "85") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "85")) + (rule "expand_inInt" (formula "85") (term "1,0,0")) + (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "85") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "85") (term "1,1,0,0")) + (rule "applyEq" (formula "85") (term "0,1,0,0,1,0,0,0") (ifseqformula "72")) + (rule "inEqSimp_sepPosMonomial0" (formula "85") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "85") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "85") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "85") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "85") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18")) + (rule "close" (formula "179") (ifseqformula "18")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "169")) + (rule "closeTrue" (formula "169")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (cleanup)" + (builtin "One Step Simplification" (formula "104")) + (builtin "One Step Simplification" (formula "160")) + (rule "andLeft" (formula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "1,0") (ifseqformula "104")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,1,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,1,0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,1,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "105") (term "0,0,0,0,1,0") (ifseqformula "39")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "105")) + (rule "notLeft" (formula "105")) + (rule "close" (formula "107") (ifseqformula "106")) + ) + (branch "Pre (cleanup)" + (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "101")) (ifInst "" (formula "102")) (ifInst "" (formula "157")) (ifInst "" (formula "108")) (ifInst "" (formula "156")) (ifInst "" (formula "106")) (ifInst "" (formula "155")) (ifInst "" (formula "157")) (ifInst "" (formula "108")) (ifInst "" (formula "156")) (ifInst "" (formula "106")) (ifInst "" (formula "155"))) + (rule "andRight" (formula "158")) + (branch "Case 1" + (rule "andRight" (formula "158")) + (branch + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0")) + (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "nnf_imp2or" (formula "95") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "94") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "95") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "95") (term "0,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "95") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "95") (term "0,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "95") (term "1,0,0")) + (rule "mul_literals" (formula "95") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "95") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "95") (term "1,0,0")) + (rule "mul_literals" (formula "95") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "62") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "79") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "90") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "90") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "94") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "94") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "94") (term "1,0,0")) + (rule "mul_literals" (formula "94") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "78") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "78") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "83")) + (rule "andLeft" (formula "83")) + (rule "notLeft" (formula "84")) + (rule "notLeft" (formula "83")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "6")) + (rule "Contract_axiom_for_initialReadAreasCountBucketElements_in_BucketPointers" (formula "87") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,0,0") (ifseqformula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "87") (term "1,0,0,0") (ifseqformula "70")) + (rule "wellFormedAnonEQ" (formula "87") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "wellFormedAnonEQ" (formula "87") (term "0,0,1,0,0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "87") (term "0,1,1") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "81")) (ifInst "" (formula "154")) (ifInst "" (formula "156")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "69")) (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "104")) (ifInst "" (formula "72")) (ifInst "" (formula "105")) (ifInst "" (formula "81")) (ifInst "" (formula "80"))) + (rule "true_left" (formula "87")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "17")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "100") (term "0") (ifseqformula "74")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEq" (formula "101") (term "0") (ifseqformula "41")) + (rule "replace_known_right" (formula "40") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "40")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "102") (term "0") (ifseqformula "43")) + (rule "replace_known_right" (formula "42") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "42")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "translateJavaMod" (formula "54") (term "0")) + (rule "jmod_axiom" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "newSym_eq" (formula "54") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "54") (term "1,1,1")) + (rule "times_zero_1" (formula "54") (term "0,1,1")) + (rule "add_zero_left" (formula "54") (term "1,1")) + (rule "add_zero_right" (formula "54") (term "1")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "54")) + (rule "polySimp_homoEq" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1")) + (rule "applyEq" (formula "56") (term "4,0") (ifseqformula "55")) + (rule "applyEq" (formula "62") (term "3,0,1,0") (ifseqformula "55")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "polySimp_addComm0" (formula "52") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "times_zero_1" (formula "52") (term "1,0")) + (rule "add_zero_right" (formula "52") (term "0")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "applyEq" (formula "54") (term "1,0,0") (ifseqformula "55")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "50") (term "0")) + (rule "applyEq" (formula "89") (term "4,1,1,0") (ifseqformula "55")) + (rule "applyEq" (formula "76") (term "1,1") (ifseqformula "55")) + (rule "polySimp_addAssoc" (formula "76") (term "1")) + (rule "polySimp_addComm0" (formula "76") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "76") (term "1")) + (rule "add_literals" (formula "76") (term "1,1,1")) + (rule "times_zero_1" (formula "76") (term "1,1")) + (rule "add_zero_right" (formula "76") (term "1")) + (rule "applyEq" (formula "61") (term "4,1,0,1,0,1,0") (ifseqformula "55")) + (rule "inEqSimp_invertInEq0" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "times_zero_2" (formula "52") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "elimGcdGeq_antec" (formula "52") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,1,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "50")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "add_zero_left" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "elimGcdLeq_antec" (formula "18") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "neg_literal" (formula "18") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "52") (term "0,0")) + (rule "mul_literals" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_subsumption6" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "1,1,0")) + (rule "greater_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "54") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_subsumption0" (formula "51") (ifseqformula "54")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0")) + (rule "polySimp_addComm1" (formula "51") (term "0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "qeq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "54") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "polySimp_addComm1" (formula "54") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "1,1,0")) + (rule "times_zero_1" (formula "54") (term "1,0")) + (rule "polySimp_addLiterals" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "inEqSimp_subsumption4" (formula "54") (ifseqformula "18")) + (rule "greater_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "mul_literals" (formula "54") (term "0,0")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "53")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "86") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "71")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "86") (term "1,1,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "82")) (ifInst "" (formula "165")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "48")) (ifInst "" (formula "70")) (ifInst "" (formula "111")) (ifInst "" (formula "112")) (ifInst "" (formula "113")) (ifInst "" (formula "73")) (ifInst "" (formula "114")) (ifInst "" (formula "82")) (ifInst "" (formula "87"))) + (rule "true_left" (formula "86")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "84") (term "1")) + (builtin "One Step Simplification" (formula "84")) + (rule "translateJavaSubInt" (formula "84") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "84") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "84") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "1,1,1")) + (rule "mul_literals" (formula "84") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "84") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "84") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "84") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0")) + (rule "mul_literals" (formula "84") (term "1,0,0,0")) + (rule "add_zero_right" (formula "84") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "84") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "84") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "84") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "84") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "84") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "84") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "84") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "84") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "84") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0")) + (rule "replace_known_left" (formula "84") (term "1,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_subsumption1" (formula "84") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "84") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "84") (term "0,0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0,0")) + (rule "add_literals" (formula "84") (term "0,0,0")) + (rule "qeq_literals" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "85")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "87") (term "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "translateJavaAddInt" (formula "87") (term "0,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "87") (term "1,1")) + (rule "neg_literal" (formula "87") (term "1,1")) + (rule "translateJavaSubInt" (formula "87") (term "0,1")) + (rule "polySimp_elimSub" (formula "87") (term "0,1")) + (rule "mul_literals" (formula "87") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "87") (term "0,1")) + (rule "polySimp_addComm1" (formula "87") (term "0,1")) + (rule "polySimp_addComm0" (formula "87") (term "0,0,1")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "45") (term "0") (inst "element=element")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "45") (term "1,0,0") (ifseqformula "36")) + (rule "wellFormedAnonEQ" (formula "45") (term "1,0,0,0") (ifseqformula "36")) + (rule "expand_inInt" (formula "45") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "45") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "45") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "45") (term "0,0,1,1,1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "48")) (ifInst "" (formula "10")) (ifInst "" (formula "35")) (ifInst "" (formula "118")) (ifInst "" (formula "38")) (ifInst "" (formula "119")) (ifInst "" (formula "48")) (ifInst "" (formula "46")) (ifInst "" (formula "47"))) + (rule "andLeft" (formula "45")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,0,0")) + (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "80") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "80")) + (rule "expand_inInt" (formula "80") (term "1,0,0")) + (rule "replace_int_MIN" (formula "80") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "80") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "80") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "1,1,0,0")) + (rule "applyEq" (formula "80") (term "0,1,0,0,1,0,0,0") (ifseqformula "77")) + (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "80") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "80") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "101") (inst "b=b")) + (builtin "One Step Simplification" (formula "101")) + (rule "expand_inInt" (formula "101") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "101") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "101") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "translateJavaCastInt" (formula "108") (term "0")) + (rule "translateJavaAddInt" (formula "107") (term "1")) + (rule "translateJavaMulInt" (formula "102") (term "0")) + (rule "translateJavaMulInt" (formula "101") (term "1")) + (rule "translateJavaCastInt" (formula "105") (term "0")) + (rule "translateJavaCastInt" (formula "104") (term "1")) + (rule "polySimp_mulComm0" (formula "102") (term "0")) + (rule "polySimp_mulComm0" (formula "101") (term "1")) + (rule "polySimp_addComm0" (formula "107") (term "1")) + (rule "castedGetAny" (formula "108") (term "0")) + (rule "castedGetAny" (formula "105") (term "0")) + (rule "castedGetAny" (formula "104") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "110") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "110") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "103")) + (rule "inEqSimp_commuteLeq" (formula "101")) + (rule "inEqSimp_commuteLeq" (formula "104")) + (rule "applyEq" (formula "104") (term "1,0") (ifseqformula "77")) + (rule "applyEq" (formula "104") (term "1") (ifseqformula "79")) + (rule "applyEq" (formula "101") (term "0,0") (ifseqformula "77")) + (rule "applyEq" (formula "105") (term "1,0") (ifseqformula "77")) + (rule "applyEq" (formula "103") (term "0") (ifseqformula "79")) + (rule "applyEq" (formula "106") (term "0,0") (ifseqformula "79")) + (rule "applyEq" (formula "102") (term "0,0") (ifseqformula "77")) + (rule "inEqSimp_commuteLeq" (formula "102")) + (rule "applyEq" (formula "104") (term "0") (ifseqformula "63")) + (rule "inEqSimp_homoInEq1" (formula "104")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "104") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "104") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0")) + (rule "applyEq" (formula "107") (term "1,1") (ifseqformula "77")) + (rule "applyEq" (formula "110") (term "0,1,0,0,1,0,0,0") (ifseqformula "77")) + (rule "applyEq" (formula "105") (term "0") (ifseqformula "63")) + (rule "inEqSimp_homoInEq0" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1,0")) + (rule "polySimp_rightDist" (formula "105") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "105") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "105") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "105") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "109") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "109") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "109") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "polySimp_elimOne" (formula "104") (term "0")) + (rule "inEqSimp_subsumption6" (formula "103") (ifseqformula "54")) + (rule "greater_literals" (formula "103") (term "0,0")) + (builtin "One Step Simplification" (formula "103")) + (rule "mul_literals" (formula "103") (term "1,0")) + (rule "leq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "elimGcdGeq_antec" (formula "101") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=result_175") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "101") (term "0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "add_zero_right" (formula "101") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "101") (term "1,0,0")) + (rule "mul_literals" (formula "101") (term "1,0,0,0,0")) + (rule "add_literals" (formula "101") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "101") (term "0,0")) + (rule "add_literals" (formula "101") (term "1,1,0,0")) + (rule "times_zero_1" (formula "101") (term "1,0,0")) + (rule "add_literals" (formula "101") (term "0,0")) + (rule "leq_literals" (formula "101") (term "0")) + (builtin "One Step Simplification" (formula "101")) + (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "101")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "82") (inst "b=b")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "105"))) + (rule "expand_inInt" (formula "82") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "translateJavaCastInt" (formula "89") (term "0")) + (rule "translateJavaAddInt" (formula "88") (term "1")) + (rule "translateJavaMulInt" (formula "83") (term "0")) + (rule "translateJavaMulInt" (formula "82") (term "1")) + (rule "translateJavaCastInt" (formula "86") (term "0")) + (rule "translateJavaCastInt" (formula "85") (term "1")) + (rule "polySimp_mulComm0" (formula "83") (term "0")) + (rule "polySimp_mulComm0" (formula "82") (term "1")) + (rule "polySimp_addComm0" (formula "88") (term "1")) + (rule "castedGetAny" (formula "89") (term "0")) + (rule "castedGetAny" (formula "86") (term "0")) + (rule "castedGetAny" (formula "85") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "85")) + (rule "applyEq" (formula "110") (term "0") (ifseqformula "88")) + (rule "polySimp_homoEq" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0")) + (rule "mul_literals" (formula "110") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0")) + (rule "add_literals" (formula "110") (term "0,0,0")) + (rule "add_zero_left" (formula "110") (term "0,0")) + (rule "applyEq" (formula "87") (term "0,0") (ifseqformula "78")) + (rule "applyEq" (formula "83") (term "0,0") (ifseqformula "76")) + (rule "inEqSimp_commuteLeq" (formula "83")) + (rule "applyEq" (formula "82") (term "0,0") (ifseqformula "76")) + (rule "applyEq" (formula "84") (term "1") (ifseqformula "78")) + (rule "applyEq" (formula "85") (term "1,0") (ifseqformula "76")) + (rule "applyEq" (formula "83") (term "0") (ifseqformula "78")) + (rule "applyEq" (formula "84") (term "1,0") (ifseqformula "76")) + (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "76")) + (rule "applyEq" (formula "108") (term "0,1,0") (ifseqformula "76")) + (rule "polySimp_pullOutFactor1" (formula "108") (term "0")) + (rule "add_literals" (formula "108") (term "1,0")) + (rule "times_zero_1" (formula "108") (term "0")) + (builtin "One Step Simplification" (formula "108")) + (rule "true_left" (formula "108")) + (rule "applyEq" (formula "85") (term "0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq0" (formula "85")) + (rule "polySimp_mulComm0" (formula "85") (term "1,0")) + (rule "polySimp_rightDist" (formula "85") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "85") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "85") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "85") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "85") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "85") (term "0")) + (rule "applyEq" (formula "84") (term "0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq1" (formula "84")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0")) + (rule "applyEq" (formula "86") (term "1,1") (ifseqformula "76")) + (rule "inEqSimp_sepPosMonomial0" (formula "87") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "87") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "85")) + (rule "polySimp_mulLiterals" (formula "85") (term "0")) + (rule "polySimp_elimOne" (formula "85") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "84")) + (rule "polySimp_mulLiterals" (formula "84") (term "0")) + (rule "polySimp_elimOne" (formula "84") (term "0")) + (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "103")) + (rule "times_zero_1" (formula "82") (term "1,1,0")) + (rule "greater_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_subsumption6" (formula "82") (ifseqformula "53")) + (rule "mul_literals" (formula "82") (term "1,1,0")) + (rule "greater_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "leq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "67")) + (rule "andLeft" (formula "67")) + (rule "notLeft" (formula "68")) + (rule "notLeft" (formula "67")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "46") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "46") (term "1,0,0")) + (rule "replace_int_MAX" (formula "46") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "46") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "174")) + (rule "replace_known_right" (formula "174") (term "0,1") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "174") (ifInst "" (formula "112"))) + (rule "closeTrue" (formula "174")) + ) + (branch "Case 2" + (rule "notRight" (formula "158")) + (rule "replace_known_left" (formula "9") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "applyEq" (formula "147") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "147")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "147")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "147")) + (builtin "One Step Simplification" (formula "44")) + (rule "applyEq" (formula "98") (term "5,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "117") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "117")) + (rule "applyEq" (formula "149") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "149")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "149")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "149")) + (builtin "One Step Simplification" (formula "46")) + (rule "applyEq" (formula "151") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEq" (formula "124") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "124")) + (rule "applyEq" (formula "136") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "136")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "141") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "141")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "151") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "151")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "97") (term "6,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "130") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "95") (term "0,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "97") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "97") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "97") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "25")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "94") (term "0,0,0")) + (rule "leq_literals" (formula "94") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "commuteUnion" (formula "92") (term "0,0,0,1,0")) + (rule "nnf_imp2or" (formula "95") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "94") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "81")) + (rule "notLeft" (formula "81")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "96")) + (builtin "One Step Simplification" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "translateJavaSubInt" (formula "101") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "101") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "98") (term "1,1")) + (rule "eqSymm" (formula "101")) + (rule "eqSymm" (formula "98")) + (rule "polySimp_elimSub" (formula "101") (term "0,2,1")) + (rule "mul_literals" (formula "101") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "101") (term "0,2,0")) + (rule "mul_literals" (formula "101") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0")) + (rule "polySimp_addComm0" (formula "101") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "101") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "applyEq" (formula "97") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "96") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "98") (term "1") (ifseqformula "33")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "97")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "58") (term "0,0") (ifseqformula "95")) + (rule "leq_literals" (formula "58") (term "0,0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_subsumption1" (formula "31") (ifseqformula "95")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "pullOutSelect" (formula "99") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,0,1,0,0") (ifseqformula "34")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "100") (term "0,0,0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "100")) + (rule "replace_known_left" (formula "99") (term "0,0,0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "1,0,0")) + (rule "replace_known_right" (formula "100") (term "1,0,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99") (term "1,0,0")) + (rule "replace_known_right" (formula "99") (term "1,0,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "1,0,0")) + (rule "replace_known_right" (formula "100") (term "1,0,0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99") (term "1,0,0")) + (rule "replace_known_right" (formula "99") (term "1,0,0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")) (ifInst "" (formula "132"))) + (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "100") (term "0,0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "132")) + (builtin "One Step Simplification" (formula "100")) + (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "100") (term "0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")) (ifInst "" (formula "132"))) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "99") (term "0,0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "132")) + (builtin "One Step Simplification" (formula "99")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,0,0") (ifseqformula "34")) + (rule "replace_known_left" (formula "99") (term "0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "1,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,1,0,0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "1,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,1,0,0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfUnion" (formula "100") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,0,0,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "100")) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "100")) + (rule "simplifySelectOfAnonEQ" (formula "100") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "137")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "100") (term "0,0")) + (rule "replace_known_right" (formula "100") (term "0,0,0,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "100")) + (rule "applyEqReverse" (formula "99") (term "1") (ifseqformula "100")) + (rule "hideAuxiliaryEq" (formula "100")) + (rule "elementOfUnion" (formula "99") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0,0") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "99")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "99")) + (rule "pullOutSelect" (formula "99") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "99") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "137")) (ifInst "" (formula "7"))) + (rule "eqSymm" (formula "100")) + (rule "applyEqReverse" (formula "99") (term "1") (ifseqformula "100")) + (rule "hideAuxiliaryEq" (formula "100")) + (rule "elementOfArrayRangeConcrete" (formula "99") (term "0,0")) + (rule "replace_known_right" (formula "99") (term "0,0,0,0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "81") (term "0")) + (rule "translateJavaCastInt" (formula "81") (term "0,0")) + (rule "castedGetAny" (formula "81") (term "0,0")) + (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "54") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "54")) + (rule "expand_inInt" (formula "54") (term "1,0,0")) + (rule "replace_int_MAX" (formula "54") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "54") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "54") (term "4,0,1,0")) + (rule "translateJavaAddInt" (formula "54") (term "3,0,1,0")) + (rule "translateJavaDivInt" (formula "54") (term "1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "54") (term "1,4,0,1,0")) + (rule "translateJavaMulInt" (formula "54") (term "1,3,0,1,0")) + (rule "translateJavaSubInt" (formula "54") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "54") (term "0,1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "54") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "54") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "54") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "44") (inst "b=b")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "45")) + (rule "andLeft" (formula "44")) + (rule "andLeft" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "translateJavaMulInt" (formula "44") (term "1")) + (rule "mul_literals" (formula "44") (term "1")) + (rule "eqSymm" (formula "106")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "46")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "46") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "47") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "96")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "63") (inst "b=b")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "45"))) + (rule "expand_inInt" (formula "63") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "63") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "translateJavaMulInt" (formula "63") (term "1")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "eqSymm" (formula "106")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0,0") (ifseqformula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "translateJavaMod" (formula "55") (term "0")) + (rule "jmod_axiom" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "newSym_eq" (formula "55") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "55") (term "0,1,1")) + (rule "times_zero_1" (formula "55") (term "1,1,1")) + (rule "add_zero_right" (formula "55") (term "1,1")) + (rule "add_zero_right" (formula "55") (term "1")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "55")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "applyEq" (formula "57") (term "1,1,1,0,0,0") (ifseqformula "55")) + (rule "polySimp_sepPosMonomial" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1")) + (rule "polySimp_rightDist" (formula "56") (term "1")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1")) + (rule "polySimp_elimOne" (formula "56") (term "1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq0" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq1" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "52") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "56")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "56")) + (rule "inEqSimp_homoInEq1" (formula "53")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "53") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "1,1,0")) + (rule "times_zero_1" (formula "53") (term "1,0")) + (rule "add_zero_right" (formula "53") (term "0")) + (rule "applyEq" (formula "55") (term "1,0,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0")) + (rule "applyEq" (formula "63") (term "3,0,1,0") (ifseqformula "56")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "78") (term "1,1") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "78") (term "1")) + (rule "polySimp_addComm0" (formula "78") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "1")) + (rule "add_literals" (formula "78") (term "1,1,1")) + (rule "times_zero_1" (formula "78") (term "1,1")) + (rule "add_zero_right" (formula "78") (term "1")) + (rule "applyEq" (formula "90") (term "4,1,1,0") (ifseqformula "56")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "62") (term "4,1,0,1,0,1,0") (ifseqformula "56")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "53")) + (rule "times_zero_2" (formula "53") (term "1")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "97")) + (rule "leq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "elimGcdGeq_antec" (formula "53") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,1,0")) + (rule "leq_literals" (formula "53") (term "0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "53") (term "0,0,0,0,0")) + (rule "add_zero_right" (formula "53") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "51")) + (rule "times_zero_1" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "53") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0,0")) + (rule "mul_literals" (formula "53") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "mul_literals" (formula "53") (term "1")) + (rule "inEqSimp_subsumption6" (formula "53") (ifseqformula "55")) + (rule "greater_literals" (formula "53") (term "0,0")) + (builtin "One Step Simplification" (formula "53")) + (rule "mul_literals" (formula "53") (term "1,0")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "55") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_subsumption0" (formula "52") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0,0")) + (rule "add_literals" (formula "52") (term "1,1,0,0")) + (rule "times_zero_1" (formula "52") (term "1,0,0")) + (rule "add_zero_right" (formula "52") (term "0,0")) + (rule "qeq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "55") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "1,1,0")) + (rule "times_zero_1" (formula "55") (term "1,0")) + (rule "polySimp_addLiterals" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "inEqSimp_subsumption4" (formula "55") (ifseqformula "19")) + (rule "greater_literals" (formula "55") (term "0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "mul_literals" (formula "55") (term "0,0")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "54")) + (rule "times_zero_1" (formula "20") (term "0,0")) + (rule "add_zero_left" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "20") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "notLeft" (formula "49")) + (rule "notLeft" (formula "48")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "44") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1,0,0")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,0,0,1,0,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "86") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0,0") (ifseqformula "71")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0,0") (ifseqformula "49")) + (rule "wellFormedAnonEQ" (formula "86") (term "1,0,0,0") (ifseqformula "71")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,1,0,0,0") (ifseqformula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,0,1,0,0") (ifseqformula "35")) + (rule "wellFormedAnonEQ" (formula "86") (term "0,0,1,0,0,0") (ifseqformula "35")) + (rule "translateJavaAddInt" (formula "86") (term "4,0,0,1,1,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "86") (term "1,0,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "86") (term "0,0,1,0,0,0,0")) + (rule "eqSymm" (formula "86") (term "0,1,0,0,0,0")) + (rule "replace_known_right" (formula "86") (term "0,1,0") (ifseqformula "109")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "78")) (ifInst "" (formula "156")) (ifInst "" (formula "158")) (ifInst "" (formula "10")) (ifInst "" (formula "34")) (ifInst "" (formula "48")) (ifInst "" (formula "70")) (ifInst "" (formula "106")) (ifInst "" (formula "107")) (ifInst "" (formula "108")) (ifInst "" (formula "73")) (ifInst "" (formula "87")) (ifInst "" (formula "81"))) + (rule "polySimp_elimSub" (formula "86") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "86") (term "1,0,1,0")) + (rule "castedGetAny" (formula "86") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "1,0,0")) + (rule "replace_known_left" (formula "86") (term "1,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0")) + (rule "replace_known_left" (formula "86") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "86")) + (rule "applyEq" (formula "86") (term "1,0,0,1,0") (ifseqformula "75")) + (rule "replace_known_left" (formula "86") (term "0,1,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "86")) + (rule "applyEq" (formula "86") (term "1,4,0,0,1,0") (ifseqformula "77")) + (rule "polySimp_addComm0" (formula "86") (term "4,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "86") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0,0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "86") (term "0,0,0,0")) + (rule "qeq_literals" (formula "86") (term "0,0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "104")) + (rule "notLeft" (formula "104")) + (rule "Definition_axiom_for_initialReadAreasBlockClassified_in_de_wiesler_BucketPointers" (formula "87") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "87")) + (rule "expand_inInt" (formula "87") (term "1,0,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,1,0,0")) + (rule "applyEq" (formula "87") (term "0,1,0,0,1,0,0,0") (ifseqformula "75")) + (rule "inEqSimp_sepPosMonomial0" (formula "87") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "87") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_initialReadAreasCountBucketElements_in_de_wiesler_BucketPointers" (formula "88") (term "0") (inst "bucket=bucket")) + (builtin "One Step Simplification" (formula "88")) + (rule "expand_inInt" (formula "88") (term "1,0,0")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0")) + (rule "eqSymm" (formula "88") (term "1,0")) + (rule "translateJavaAddInt" (formula "88") (term "4,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "88") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0")) + (rule "applyEq" (formula "88") (term "0,1,0,0,1,0,0,0") (ifseqformula "75")) + (rule "applyEq" (formula "88") (term "1,4,1,1,0") (ifseqformula "77")) + (rule "polySimp_addComm0" (formula "88") (term "4,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "65")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "100"))) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "eqSymm" (formula "69")) + (rule "translateJavaMulInt" (formula "67") (term "1,1")) + (rule "translateJavaSubInt" (formula "69") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "69") (term "0,2,0")) + (rule "eqSymm" (formula "67")) + (rule "polySimp_elimSub" (formula "69") (term "0,2,1")) + (rule "mul_literals" (formula "69") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "69") (term "0,2,0")) + (rule "mul_literals" (formula "69") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,2,1")) + (rule "replaceKnownSelect_taclet1020000121212001000000_11" (formula "69") (term "1")) + (rule "replaceKnownAuxiliaryConstant_taclet1020000121212001000000_13" (formula "69") (term "1")) + (rule "polySimp_addComm0" (formula "69") (term "0,2,0")) + (rule "replaceKnownSelect_taclet1020000121212001000000_9" (formula "69") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet1020000121212001000000_13" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "applyEq" (formula "103") (term "0") (ifseqformula "67")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "32")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "close" (formula "106") (ifseqformula "1")) + ) + ) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "andRight" (formula "158")) + (branch + (rule "wellFormedAnonEQ" (formula "158") (ifseqformula "95")) + (rule "wellFormedAnonEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "158") (term "1,0,0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "158") (ifInst "" (formula "10")) (ifInst "" (formula "51")) (ifInst "" (formula "72")) (ifInst "" (formula "94"))) + (rule "closeTrue" (formula "158")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "close" (formula "158") (ifseqformula "11")) + ) + ) + (branch + (rule "expand_inInt" (formula "158")) + (rule "replace_int_MAX" (formula "158") (term "1,0")) + (rule "replace_int_MIN" (formula "158") (term "0,1")) + (rule "replace_known_left" (formula "158") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "158")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "158")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "98") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0")) + (rule "add_literals" (formula "63") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "63") (term "0,1,0,0")) + (rule "qeq_literals" (formula "63") (term "1,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "98") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "98") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "98") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "14")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch + (rule "expand_inInt" (formula "158")) + (rule "replace_int_MAX" (formula "158") (term "1,0")) + (rule "replace_int_MIN" (formula "158") (term "0,1")) + (rule "replace_known_left" (formula "158") (term "0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "158")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "158")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "98") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0")) + (rule "add_literals" (formula "63") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "63") (term "0,1,0,0")) + (rule "qeq_literals" (formula "63") (term "1,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "98") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "98") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "98") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "22")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq0" (formula "14") (ifseqformula "1")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "closeFalse" (formula "14")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "close" (formula "158") (ifseqformula "41")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "close" (formula "158") (ifseqformula "16")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "close" (formula "159") (ifseqformula "75")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "158") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "orRight" (formula "158")) + (rule "close" (formula "158") (ifseqformula "17")) + ) + ) + (branch + (rule "orRight" (formula "158")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "159") (term "0,0,0") (ifseqformula "39")) + (rule "orRight" (formula "159")) + (rule "orRight" (formula "159")) + (rule "orRight" (formula "159")) + (rule "orRight" (formula "159")) + (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "159")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "158"))) + (rule "closeFalse" (formula "8")) + ) + ) + ) + ) + (branch "Exceptional Post (permute)" + (builtin "One Step Simplification" (formula "95")) + (builtin "One Step Simplification" (formula "151")) + (rule "andLeft" (formula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "1,0") (ifseqformula "95")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,1,0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,0,1,0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,0,0,1,0") (ifseqformula "39")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "98")) + (rule "notLeft" (formula "96")) + (rule "close" (formula "100") (ifseqformula "99")) + ) + (branch "Pre (permute)" + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "84")) (ifInst "" (formula "86")) (ifInst "" (formula "148")) (ifInst "" (formula "146")) (ifInst "" (formula "97")) (ifInst "" (formula "148")) (ifInst "" (formula "146")) (ifInst "" (formula "97"))) + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "notRight" (formula "149")) + (rule "replace_known_left" (formula "6") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "applyEq" (formula "114") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "114")) + (rule "applyEq" (formula "131") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "131")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "138") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "138")) + (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "46")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "141") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "120") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "126") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "126")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEq" (formula "135") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "135")) + (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "44")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "142") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "142")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "142")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "106") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "106")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "62") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "79") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "90") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "90") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "78") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "78") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "32") (term "1,1")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "31")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "64") (term "0,0") (ifseqformula "30")) + (rule "leq_literals" (formula "64") (term "0,0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_subsumption1" (formula "37") (ifseqformula "30")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "notLeft" (formula "88")) + (rule "notLeft" (formula "87")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "5")) + (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "89") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "1,0,0") (ifseqformula "74")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,1,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "89") (term "1,0,0,0") (ifseqformula "74")) + (rule "wellFormedAnonEQ" (formula "89") (term "0,1,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "89") (term "0,0,1,0,0") (ifseqformula "40")) + (rule "wellFormedAnonEQ" (formula "89") (term "0,0,1,0,0,0") (ifseqformula "40")) + (rule "replace_known_left" (formula "89") (term "1,1,1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "85")) (ifInst "" (formula "148")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "52")) (ifInst "" (formula "73")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "76")) (ifInst "" (formula "99")) (ifInst "" (formula "85")) (ifInst "" (formula "90"))) + (rule "true_left" (formula "89")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "68")) + (builtin "One Step Simplification" (formula "68") (ifInst "" (formula "33"))) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "68")) + (rule "translateJavaSubInt" (formula "72") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "72") (term "0,2,1")) + (rule "translateJavaMulInt" (formula "70") (term "1,1")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "70")) + (rule "polySimp_elimSub" (formula "72") (term "0,2,1")) + (rule "mul_literals" (formula "72") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "72") (term "0,2,0")) + (rule "mul_literals" (formula "72") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "68")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "70")) + (rule "pullOutSelect" (formula "71") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "131"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "71") (term "0,1,0,0") (ifseqformula "39")) + (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "131"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "0,1,0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "72") (term "0,0,1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "72")) + (rule "replace_known_left" (formula "71") (term "0,0,1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "71")) + (rule "elementOfUnion" (formula "72") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "1,0,0")) + (rule "replace_known_right" (formula "72") (term "0,0,1,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "72")) + (rule "elementOfUnion" (formula "71") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0")) + (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "71")) + (rule "elementOfUnion" (formula "72") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "1,0,0")) + (rule "replace_known_right" (formula "72") (term "0,0,1,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "72")) + (rule "elementOfUnion" (formula "71") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0")) + (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "71")) + (rule "elementOfUnion" (formula "72") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0,0")) + (rule "replace_known_right" (formula "72") (term "0,0,0,0,0") (ifseqformula "115")) + (builtin "One Step Simplification" (formula "72")) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0")) + (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "72")) + (rule "simplifySelectOfAnonEQ" (formula "72") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "131")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "72") (term "0,0")) + (rule "replace_known_right" (formula "72") (term "0,0,0,0") (ifseqformula "130")) + (builtin "One Step Simplification" (formula "72")) + (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "72")) + (rule "hideAuxiliaryEq" (formula "72")) + (rule "applyEq" (formula "71") (term "1") (ifseqformula "34")) + (rule "elementOfUnion" (formula "71") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "71") (term "1,0,0")) + (rule "replace_known_right" (formula "71") (term "0,0,1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "71")) + (rule "elementOfArrayRangeConcrete" (formula "71") (term "0,0")) + (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "71")) + (rule "pullOutSelect" (formula "71") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "71") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "131")) (ifInst "" (formula "6"))) + (rule "eqSymm" (formula "72")) + (rule "applyEqReverse" (formula "71") (term "1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "71")) + (rule "hideAuxiliaryEq" (formula "72")) + (rule "elementOfArrayRangeConcrete" (formula "71") (term "0,0")) + (rule "replace_known_right" (formula "71") (term "0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "67") (term "1") (ifseqformula "36")) + (rule "Definition_axiom_for_initialReadAreasCount_in_de_wiesler_BucketPointers" (formula "90") (term "0") (inst "element=element")) + (builtin "One Step Simplification" (formula "90")) + (rule "expand_inInt" (formula "90") (term "0,0")) + (rule "replace_int_MAX" (formula "90") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1,0,0")) + (rule "eqSymm" (formula "90") (term "1,0")) + (rule "translateJavaAddInt" (formula "90") (term "3,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0")) + (rule "applyEq" (formula "90") (term "1,3,1,1,0") (ifseqformula "81")) + (rule "polySimp_addAssoc" (formula "90") (term "3,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "90") (term "0,3,1,1,0")) + (rule "add_literals" (formula "90") (term "1,0,3,1,1,0")) + (rule "times_zero_1" (formula "90") (term "0,3,1,1,0")) + (rule "add_zero_left" (formula "90") (term "3,1,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "translateJavaMod" (formula "58") (term "0")) + (rule "jmod_axiom" (formula "58") (term "0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "newSym_eq" (formula "58") (inst "newSymDef=add(mul(begin, Z(0(#))), mul(result_176, Z(0(#))))") (inst "l=l_0")) + (rule "times_zero_1" (formula "58") (term "0,1,1")) + (rule "times_zero_1" (formula "58") (term "1,1,1")) + (rule "add_zero_left" (formula "58") (term "1,1")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "58")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1")) + (rule "polySimp_elimOne" (formula "59") (term "1,1")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq1" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "applyEq" (formula "58") (term "1,0,0") (ifseqformula "59")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq0" (formula "54")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0")) + (rule "applyEq" (formula "66") (term "3,0,1,0") (ifseqformula "59")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "59")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "60") (term "4,0") (ifseqformula "59")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "56") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,1,0")) + (rule "times_zero_1" (formula "56") (term "1,0")) + (rule "add_zero_right" (formula "56") (term "0")) + (rule "applyEq" (formula "91") (term "3,1,1,0") (ifseqformula "59")) + (rule "applyEq" (formula "95") (term "4,1,1,0") (ifseqformula "59")) + (rule "applyEq" (formula "82") (term "1,1") (ifseqformula "59")) + (rule "polySimp_addAssoc" (formula "82") (term "1")) + (rule "polySimp_addComm0" (formula "82") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "82") (term "1")) + (rule "add_literals" (formula "82") (term "1,1,1")) + (rule "times_zero_1" (formula "82") (term "1,1")) + (rule "add_zero_right" (formula "82") (term "1")) + (rule "applyEq" (formula "65") (term "4,1,0,1,0,1,0") (ifseqformula "59")) + (rule "inEqSimp_sepNegMonomial0" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "polySimp_elimOne" (formula "54") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "times_zero_2" (formula "56") (term "1")) + (rule "elimGcdGeq_antec" (formula "56") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,1,0")) + (rule "leq_literals" (formula "56") (term "0,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "55") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "55") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0")) + (rule "mul_literals" (formula "55") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55")) + (rule "mul_literals" (formula "55") (term "1")) + (rule "inEqSimp_subsumption6" (formula "55") (ifseqformula "57")) + (rule "mul_literals" (formula "55") (term "1,1,0")) + (rule "greater_literals" (formula "55") (term "0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "54")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "add_zero_left" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "elimGcdLeq_antec" (formula "19") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "19") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption0" (formula "55") (ifseqformula "58")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0,0")) + (rule "add_literals" (formula "55") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0")) + (rule "add_literals" (formula "55") (term "0,0")) + (rule "qeq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "1,1,0")) + (rule "times_zero_1" (formula "58") (term "1,0")) + (rule "add_zero_right" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "inEqSimp_subsumption4" (formula "58") (ifseqformula "19")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "57")) + (rule "times_zero_1" (formula "20") (term "0,0")) + (rule "add_zero_left" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "elimGcdLeq_antec" (formula "20") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(2(1(#))))")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "neg_literal" (formula "20") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "notLeft" (formula "73")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "33") (term "1")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "translateJavaMulInt" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1")) + (rule "disjointDefinition" (formula "66")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "181"))) + (rule "true_left" (formula "66")) + (rule "disjointDefinition" (formula "65")) + (builtin "One Step Simplification" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "disjointDefinition" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "129")) + (rule "disjointDefinition" (formula "63")) + (builtin "One Step Simplification" (formula "63")) + (rule "notLeft" (formula "63")) + (rule "eqSymm" (formula "128")) + (rule "disjointDefinition" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "127")) + (rule "disjointDefinition" (formula "61")) + (builtin "One Step Simplification" (formula "61")) + (rule "notLeft" (formula "61")) + (rule "eqSymm" (formula "126")) + (rule "disjointDefinition" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "eqSymm" (formula "125")) + (rule "disjointDefinition" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "notLeft" (formula "59")) + (rule "eqSymm" (formula "124")) + (rule "disjointDefinition" (formula "58")) + (builtin "One Step Simplification" (formula "58")) + (rule "notLeft" (formula "58")) + (rule "eqSymm" (formula "123")) + (rule "disjointDefinition" (formula "57")) + (builtin "One Step Simplification" (formula "57")) + (rule "notLeft" (formula "57")) + (rule "eqSymm" (formula "122")) + (rule "disjointDefinition" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "notLeft" (formula "56")) + (rule "eqSymm" (formula "121")) + (rule "disjointDefinition" (formula "55")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "120")) + (rule "disjointDefinition" (formula "54")) + (builtin "One Step Simplification" (formula "54")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "119")) + (rule "disjointDefinition" (formula "53")) + (builtin "One Step Simplification" (formula "53")) + (rule "notLeft" (formula "53")) + (rule "eqSymm" (formula "118")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52")) + (rule "notLeft" (formula "52")) + (rule "eqSymm" (formula "117")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) + (rule "notLeft" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "115")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "114")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "applyEq" (formula "130") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "130")) + (rule "applyEq" (formula "128") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "128") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "126") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "127") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "124") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "125") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "125")) + (rule "applyEq" (formula "124") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "123") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "123") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "123")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "54")) + (rule "applyEq" (formula "34") (term "0,0") (ifseqformula "56")) + (rule "applyEq" (formula "32") (term "0,0") (ifseqformula "89")) + (rule "applyEq" (formula "38") (term "0,1,0,1,1") (ifseqformula "1")) + (rule "applyEq" (formula "38") (term "0,1,1,0,1") (ifseqformula "54")) + (rule "applyEq" (formula "122") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "121") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "120") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "118") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "119") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "120") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "38") (term "0,0,1,0,1") (ifseqformula "89")) + (rule "applyEq" (formula "35") (term "0,0") (ifseqformula "1")) + (rule "applyEq" (formula "38") (term "0,0,0,1,1") (ifseqformula "56")) + (rule "applyEq" (formula "118") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "117") (term "0") (ifseqformula "54")) + (rule "eqSymm" (formula "117")) + (rule "applyEq" (formula "114") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "114")) + (rule "applyEq" (formula "113") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "118") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "118")) + (rule "applyEq" (formula "111") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "112") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "107") (term "1") (ifseqformula "56")) + (rule "applyEq" (formula "106") (term "1") (ifseqformula "54")) + (rule "applyEq" (formula "104") (term "1") (ifseqformula "89")) + (rule "applyEq" (formula "108") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "117") (term "0") (ifseqformula "89")) + (rule "eqSymm" (formula "117")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "57") (term "0") (inst "element=element")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "57") (term "1,0,0") (ifseqformula "48")) + (rule "wellFormedAnonEQ" (formula "57") (term "1,0,0,0") (ifseqformula "48")) + (rule "expand_inInt" (formula "57") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "57") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "57") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_known_right" (formula "57") (term "0,1,0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "60")) (ifInst "" (formula "10")) (ifInst "" (formula "47")) (ifInst "" (formula "123")) (ifInst "" (formula "50")) (ifInst "" (formula "60")) (ifInst "" (formula "58")) (ifInst "" (formula "58")) (ifInst "" (formula "59"))) + (rule "andLeft" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "97")) + (rule "notLeft" (formula "97")) + (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "101") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "1,0,0") (ifseqformula "86")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,0,0") (ifseqformula "63")) + (rule "wellFormedAnonEQ" (formula "101") (term "1,0,0,0") (ifseqformula "86")) + (rule "wellFormedAnonEQ" (formula "101") (term "0,1,0,0,0") (ifseqformula "63")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,0,1,0,0") (ifseqformula "48")) + (rule "wellFormedAnonEQ" (formula "101") (term "0,0,1,0,0,0") (ifseqformula "48")) + (rule "translateJavaAddInt" (formula "101") (term "4,0,0,1,1,1,0,0,0,0")) + (rule "eqSymm" (formula "101") (term "0,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "101") (term "1,0,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "101") (term "0,0,1,0,0,0,0")) + (rule "replace_known_left" (formula "101") (term "1,1,1") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "93")) (ifInst "" (formula "170")) (ifInst "" (formula "172")) (ifInst "" (formula "10")) (ifInst "" (formula "47")) (ifInst "" (formula "62")) (ifInst "" (formula "85")) (ifInst "" (formula "120")) (ifInst "" (formula "121")) (ifInst "" (formula "122")) (ifInst "" (formula "88")) (ifInst "" (formula "123")) (ifInst "" (formula "102"))) + (rule "polySimp_elimSub" (formula "101") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "101") (term "1,0,1,0")) + (rule "castedGetAny" (formula "101") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "101") (term "1,0,0")) + (rule "replace_known_left" (formula "101") (term "1,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "101")) + (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0,0")) + (rule "replace_known_left" (formula "101") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "101")) + (rule "inEqSimp_commuteLeq" (formula "101") (term "0,0")) + (rule "applyEq" (formula "101") (term "1,0,0,1,0") (ifseqformula "90")) + (rule "replace_known_left" (formula "101") (term "0,1,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "101")) + (rule "applyEq" (formula "101") (term "1,4,0,0,1,0") (ifseqformula "92")) + (rule "polySimp_addComm0" (formula "101") (term "4,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "101") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "101") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "101") (term "0,0,0,0")) + (rule "add_literals" (formula "101") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "101") (term "1,0,0,0,0")) + (rule "add_literals" (formula "101") (term "0,0,0,0")) + (rule "qeq_literals" (formula "101") (term "0,0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "notLeft" (formula "62")) + (rule "notLeft" (formula "61")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "106") (ifseqformula "1")) + ) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "notRight" (formula "149")) + (rule "replace_known_left" (formula "8") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "applyEq" (formula "133") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "133")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "115") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "115")) + (rule "applyEq" (formula "107") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "107")) + (rule "applyEq" (formula "138") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "138")) + (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "46")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "138")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "120") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "142") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "142")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "142")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "140") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "140")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEq" (formula "135") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "135")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "44")) + (rule "applyEq" (formula "126") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "126")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "126")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "24")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "24")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "23")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "28")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "92") (ifseqformula "1")) + ) + (branch + (rule "notRight" (formula "149")) + (rule "replace_known_left" (formula "9") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "31")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "62") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "62") (term "0,1,0,0")) + (rule "add_literals" (formula "62") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "62") (term "0,1,0,0")) + (rule "qeq_literals" (formula "62") (term "1,0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0,1,0")) + (rule "applyEq" (formula "108") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "108")) + (rule "applyEq" (formula "122") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "137") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "137")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_right" (formula "44") (term "0") (ifseqformula "137")) + (builtin "One Step Simplification" (formula "44")) + (rule "applyEq" (formula "143") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "143")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "133") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "133")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "133")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "142") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "142")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEq" (formula "140") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "140")) + (rule "replace_known_right" (formula "46") (term "0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "46")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "128") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "128")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEq" (formula "115") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "115")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "64") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81") (term "1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "81") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "25")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "54")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "54")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "1")) + (rule "polySimp_elimOne" (formula "53") (term "1")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "53") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "53") (term "0,0")) + (rule "add_literals" (formula "53") (term "1,1,0,0")) + (rule "times_zero_1" (formula "53") (term "1,0,0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "qeq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "51")) + (rule "polySimp_mulComm0" (formula "53") (term "0,0")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "25")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "21")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "28")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_and_subsumption2" (formula "79") (term "0,0,0,0")) + (rule "leq_literals" (formula "79") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_and_subsumption3" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_and_subsumption3" (formula "61") (term "0,0,0")) + (rule "leq_literals" (formula "61") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "inEqSimp_and_subsumption3" (formula "78") (term "0,0,0")) + (rule "leq_literals" (formula "78") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "inEqSimp_and_subsumption3" (formula "90") (term "0,0,0")) + (rule "leq_literals" (formula "90") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "79") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "78") (term "0")) + (rule "nnf_imp2or" (formula "90") (term "0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "62") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "79") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "78") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "78") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "90") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "90") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "90") (term "1,0,0")) + (rule "mul_literals" (formula "90") (term "1,1,0,0")) + (rule "Definition_axiom_for_isAtInitialState_in_de_wiesler_BucketPointers" (formula "77") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "77")) + (rule "expand_inInt" (formula "77") (term "1,0,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0")) + (rule "applyEq" (formula "77") (term "0,1,0,0,1,0,0,0") (ifseqformula "74")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "32") (term "1,1")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,1")) + (rule "mul_literals" (formula "35") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "39")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "30")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "37") (ifseqformula "31")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "63") (term "0,0") (ifseqformula "30")) + (rule "leq_literals" (formula "63") (term "0,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "61") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61") (term "1,0,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "61") (term "0,4,0,1,0")) + (rule "translateJavaMulInt" (formula "61") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "61") (term "4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "1,1,0,0")) + (rule "applyEq" (formula "61") (term "0,1,0,0,1,0,0,0") (ifseqformula "44")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "61") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "70")) + (rule "andLeft" (formula "70")) + (rule "notLeft" (formula "71")) + (rule "notLeft" (formula "70")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "5")) + (rule "Contract_axiom_for_initialReadAreasBlockClassified_in_BucketPointers" (formula "90") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,0,0") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,0,0") (ifseqformula "53")) + (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "90") (term "0,1,0,0,0") (ifseqformula "53")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,0,1,0,0") (ifseqformula "40")) + (rule "wellFormedAnonEQ" (formula "90") (term "0,0,1,0,0,0") (ifseqformula "40")) + (rule "translateJavaSubInt" (formula "90") (term "0,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "90") (term "4,0,0,1,1,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "90") (term "1,0,1,0,0,0,0")) + (rule "eqSymm" (formula "90") (term "0,1,0,0,0,0")) + (rule "replace_known_left" (formula "90") (term "1,1,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "84")) (ifInst "" (formula "146")) (ifInst "" (formula "148")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "52")) (ifInst "" (formula "72")) (ifInst "" (formula "96")) (ifInst "" (formula "97")) (ifInst "" (formula "98")) (ifInst "" (formula "75")) (ifInst "" (formula "99")) (ifInst "" (formula "84")) (ifInst "" (formula "91"))) + (rule "true_left" (formula "90")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "99"))) + (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "87") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "87") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "87") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "87") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,1,1,1")) + (rule "applyEq" (formula "87") (term "0,1,0,0") (ifseqformula "77")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0")) + (rule "add_literals" (formula "87") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "87") (term "0,1,0,0")) + (rule "leq_literals" (formula "87") (term "1,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "1,0,1,0,1") (ifseqformula "77")) + (rule "applyEq" (formula "87") (term "1,1,0,1,1,1") (ifseqformula "88")) + (rule "applyEq" (formula "87") (term "0,0,0,1,1") (ifseqformula "88")) + (rule "applyEq" (formula "87") (term "0,1,0,0,0,1,1,1") (ifseqformula "77")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "87") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "1,0,1,0,0,1") (ifseqformula "77")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,0,1")) + (rule "add_literals" (formula "87") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "87") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "87") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "0,1,0,1,1,1") (ifseqformula "77")) + (rule "inEqSimp_homoInEq1" (formula "87") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "87") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "87") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "87") (term "0,1,0,1,1,1")) + (rule "leq_literals" (formula "87") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "0,0,0,1") (ifseqformula "88")) + (rule "applyEq" (formula "87") (term "0,1,0,1") (ifseqformula "88")) + (rule "applyEq" (formula "87") (term "1,1,1,1,1") (ifseqformula "88")) + (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "87") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "87") (term "0,0") (ifseqformula "30")) + (rule "leq_literals" (formula "87") (term "0,0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_subsumption1" (formula "87") (term "0,1,1,1") (ifseqformula "30")) + (rule "leq_literals" (formula "87") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "88") (term "0")) + (rule "translateJavaCastInt" (formula "88") (term "0,0")) + (rule "castedGetAny" (formula "88") (term "0,0")) + (rule "applyEq" (formula "88") (term "0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "49") (term "0") (inst "element=element")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "49") (term "1,0,0") (ifseqformula "40")) + (rule "wellFormedAnonEQ" (formula "49") (term "1,0,0,0") (ifseqformula "40")) + (rule "expand_inInt" (formula "49") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "49") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "49") (term "0,0,1,1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "49") (ifInst "" (formula "52")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "100")) (ifInst "" (formula "42")) (ifInst "" (formula "101")) (ifInst "" (formula "52")) (ifInst "" (formula "50")) (ifInst "" (formula "51"))) + (rule "andLeft" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,0")) + (rule "Contract_axiom_for_initialReadAreasCount_in_BucketPointers" (formula "91") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "1,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0,0") (ifseqformula "55")) + (rule "wellFormedAnonEQ" (formula "91") (term "1,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "91") (term "0,1,0,0,0") (ifseqformula "55")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,0,1,0,0") (ifseqformula "40")) + (rule "wellFormedAnonEQ" (formula "91") (term "0,0,1,0,0,0") (ifseqformula "40")) + (rule "replace_known_left" (formula "91") (term "1,1,1") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "86")) (ifInst "" (formula "150")) (ifInst "" (formula "10")) (ifInst "" (formula "39")) (ifInst "" (formula "54")) (ifInst "" (formula "74")) (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "100")) (ifInst "" (formula "77")) (ifInst "" (formula "101")) (ifInst "" (formula "86")) (ifInst "" (formula "92"))) + (rule "true_left" (formula "91")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "block=block")) + (builtin "One Step Simplification" (formula "62")) + (rule "expand_inInt" (formula "62") (term "1,0,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "62") (term "0,1,4,0,1,0")) + (rule "translateJavaDivInt" (formula "62") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "62") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "4,0,1,0")) + (rule "translateJavaSubInt" (formula "62") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "62") (term "1,3,0,1,0")) + (rule "translateJavaMulInt" (formula "62") (term "1,4,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,4,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "62") (term "1,1,4,0,1,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,4,0,1,0")) + (rule "mul_literals" (formula "62") (term "0,1,4,0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "4,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "19")) + (rule "close" (formula "97") (ifseqformula "1")) + ) + ) + ) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "andRight" (formula "149")) + (branch + (rule "wellFormedAnonEQ" (formula "149") (ifseqformula "73")) + (rule "wellFormedAnonEQ" (formula "149") (term "0") (ifseqformula "52")) + (rule "wellFormedAnonEQ" (formula "149") (term "0,0") (ifseqformula "39")) + (rule "replace_known_left" (formula "149") (term "1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "149") (ifInst "" (formula "10")) (ifInst "" (formula "38")) (ifInst "" (formula "51"))) + (rule "closeTrue" (formula "149")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "149")) + (rule "orRight" (formula "149")) + (rule "orRight" (formula "149")) + (rule "close" (formula "149") (ifseqformula "11")) + ) + ) + (branch + (rule "expand_inInt" (formula "149")) + (rule "replace_int_MAX" (formula "149") (term "1,0")) + (rule "replace_int_MIN" (formula "149") (term "0,1")) + (rule "replace_known_left" (formula "149") (term "0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "149")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "149")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0")) + (rule "add_literals" (formula "63") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "63") (term "0,1,0,0")) + (rule "qeq_literals" (formula "63") (term "1,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "31")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "1")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + (branch + (rule "expand_inInt" (formula "149")) + (rule "replace_int_MAX" (formula "149") (term "1,0")) + (rule "replace_int_MIN" (formula "149") (term "0,1")) + (rule "replace_known_left" (formula "149") (term "0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "149")) + (rule "polySimp_homoEq" (formula "64") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "149")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "32")) + (rule "mul_literals" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "63") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "63") (term "0,1,0,0")) + (rule "add_literals" (formula "63") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "63") (term "0,1,0,0")) + (rule "qeq_literals" (formula "63") (term "1,0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "65") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "94") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "26")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "149")) + (rule "orRight" (formula "149")) + (rule "orRight" (formula "149")) + (rule "close" (formula "149") (ifseqformula "17")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "149") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "149")) + (rule "close" (formula "150") (ifseqformula "75")) + ) + ) + (branch + (rule "orRight" (formula "149")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "149")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "150"))) + (rule "closeFalse" (formula "5")) + ) + ) + (branch + (rule "orRight" (formula "149")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "149")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "150"))) + (rule "closeFalse" (formula "7")) + ) + ) + (branch + (rule "orRight" (formula "149")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (ifseqformula "73")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0") (ifseqformula "52")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "150") (term "0,0") (ifseqformula "39")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "orRight" (formula "150")) + (rule "replace_known_right" (formula "8") (term "1") (ifseqformula "150")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "149"))) + (rule "closeFalse" (formula "8")) + ) + ) + ) + ) + (branch "Null Reference (_storage = null)" + (rule "false_right" (formula "150")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (_storage = null)" + (rule "false_right" (formula "150")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (_storage = null)" + (rule "false_right" (formula "150")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "146"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (BucketPointers)" + (builtin "One Step Simplification" (formula "68")) + (builtin "One Step Simplification" (formula "120")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,1,0,0,1,0,1") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "68") (term "0,0,0,1,0,0,1,0,1") (ifseqformula "36")) + (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "68") (term "1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "68") (term "1,0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "68") (term "0,1,1,0,0,0,1,1,1,1,1,0,1")) + (rule "andLeft" (formula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,0,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,0,0") (ifseqformula "36")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,1,0,0,1,0") (ifseqformula "68")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,1,1,0,0,1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "0,0,1,1,0,0,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "73")) + (rule "notLeft" (formula "69")) + (rule "close" (formula "76") (ifseqformula "75")) + ) + (branch "Pre (BucketPointers)" + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "116")) (ifInst "" (formula "116"))) + (rule "andRight" (formula "118")) + (branch + (rule "notRight" (formula "118")) + (rule "replace_known_left" (formula "7") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "60") (term "1,0")) + (rule "polySimp_homoEq" (formula "59") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0")) + (rule "add_literals" (formula "57") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "57") (term "0,1,0,0")) + (rule "qeq_literals" (formula "57") (term "1,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "101") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "102") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEq" (formula "99") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "99")) + (rule "applyEq" (formula "80") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "80")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "72")) + (rule "applyEq" (formula "85") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "91") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "91")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "98") (term "0") (ifseqformula "1")) + (rule "eqSymm" (formula "98")) + (rule "applyEq" (formula "101") (term "1") (ifseqformula "1")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1")) + (rule "polySimp_elimOne" (formula "58") (term "0,1")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0")) + (rule "add_zero_right" (formula "25") (term "0")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58")) + (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_invertInEq0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "times_zero_2" (formula "20") (term "1")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "27")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "49")) + (rule "mul_literals" (formula "47") (term "0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1")) + (rule "polySimp_rightDist" (formula "47") (term "1")) + (rule "mul_literals" (formula "47") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "46")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "add_zero_right" (formula "48") (term "0")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "25")) + (rule "leq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "26")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "20")) + (rule "times_zero_1" (formula "17") (term "0,0")) + (rule "add_zero_left" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "17")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_and_subsumption3" (formula "56") (term "0,0,0")) + (rule "leq_literals" (formula "56") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_and_subsumption3" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "nnf_imp2or" (formula "57") (term "0")) + (rule "nnf_imp2or" (formula "56") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "translateJavaAddInt" (formula "55") (term "3,0")) + (rule "translateJavaAddInt" (formula "54") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "3,0")) + (rule "polySimp_addComm0" (formula "54") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "54")) + (rule "mul_literals" (formula "54") (term "1,0")) + (rule "polySimp_addComm1" (formula "54") (term "0")) + (rule "add_literals" (formula "54") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "54")) + (rule "mul_literals" (formula "54") (term "1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "53")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "53")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "55") (term "0,0") (ifseqformula "51")) + (rule "leq_literals" (formula "55") (term "0,0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "applyEqReverse" (formula "42") (term "1,0,2,1,0,0,1,0") (ifseqformula "55")) + (rule "applyEqReverse" (formula "21") (term "0,1,1") (ifseqformula "55")) + (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "55")) + (rule "applyEqReverse" (formula "25") (term "0") (ifseqformula "55")) + (rule "applyEqReverse" (formula "22") (term "0,1") (ifseqformula "55")) + (rule "applyEqReverse" (formula "47") (term "0,1") (ifseqformula "55")) + (rule "applyEqReverse" (formula "58") (term "0,3,1,1,1,0") (ifseqformula "55")) + (rule "applyEqReverse" (formula "10") (term "0,1,1") (ifseqformula "55")) + (rule "applyEqReverse" (formula "56") (term "0,1") (ifseqformula "55")) + (rule "hideAuxiliaryEq" (formula "55")) + (rule "polySimp_homoEq" (formula "55")) + (rule "polySimp_addComm1" (formula "42") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1")) + (rule "polySimp_addComm0" (formula "47") (term "1")) + (rule "polySimp_addComm0" (formula "57") (term "3,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_rightDist" (formula "55") (term "1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,1")) + (rule "applyEq" (formula "47") (term "1,0") (ifseqformula "55")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "47") (term "0,0,0")) + (rule "add_literals" (formula "47") (term "1,0,0,0")) + (rule "times_zero_1" (formula "47") (term "0,0,0")) + (rule "add_zero_left" (formula "47") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "55")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEq" (formula "10") (term "0,1,0") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "applyEq" (formula "42") (term "1,2,1,0,0,1,0") (ifseqformula "55")) + (rule "polySimp_addAssoc" (formula "42") (term "2,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,2,1,0,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,2,1,0,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,2,1,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "applyEq" (formula "21") (term "0,1,0") (ifseqformula "55")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "21") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "55")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "applyEq" (formula "57") (term "1,3,1,1,1,0") (ifseqformula "55")) + (rule "polySimp_addAssoc" (formula "57") (term "3,1,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "57") (term "0,3,1,1,1,0")) + (rule "add_literals" (formula "57") (term "1,0,3,1,1,1,0")) + (rule "times_zero_1" (formula "57") (term "0,3,1,1,1,0")) + (rule "add_zero_left" (formula "57") (term "3,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "pullOutSelect" (formula "54") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "54") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "112"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "54") (term "0,1,0,0") (ifseqformula "31")) + (rule "replace_known_left" (formula "54") (term "0,0,1,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "54")) + (rule "applyEq" (formula "54") (term "1") (ifseqformula "55")) + (rule "ifEqualsInteger" (formula "54")) + (rule "elementOfUnion" (formula "54") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1")) + (rule "leq_literals" (formula "54") (term "1,0,1,0,0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "eqSymm" (formula "54") (term "0,1,0,0,1")) + (rule "replace_known_right" (formula "54") (term "0,1,0,0,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfUnion" (formula "54") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0")) + (rule "leq_literals" (formula "54") (term "1,0,1,0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "eqSymm" (formula "54") (term "0,1,0,0")) + (rule "replace_known_right" (formula "54") (term "0,1,0,0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfUnion" (formula "54") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1")) + (rule "leq_literals" (formula "54") (term "1,0,1,0,0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "eqSymm" (formula "54") (term "0,1,0,0,1")) + (rule "replace_known_right" (formula "54") (term "0,1,0,0,1") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfUnion" (formula "54") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0")) + (rule "leq_literals" (formula "54") (term "1,0,1,0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "eqSymm" (formula "54") (term "0,1,0,0")) + (rule "replace_known_right" (formula "54") (term "0,1,0,0") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfUnion" (formula "54") (term "0,0,1")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1,0,0,1")) + (rule "eqSymm" (formula "54") (term "0,0,1,0,0,1")) + (rule "replace_known_right" (formula "54") (term "0,0,1,0,0,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "0,0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "leq_literals" (formula "54") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1")) + (rule "inEqSimp_subsumption1" (formula "54") (term "0,0,1") (ifseqformula "51")) + (rule "leq_literals" (formula "54") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "elementOfUnion" (formula "54")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "leq_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "elementOfArrayRangeConcrete" (formula "54") (term "1")) + (rule "eqSymm" (formula "54") (term "0,0,1")) + (rule "replace_known_right" (formula "54") (term "0,0,1") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "51")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "1")) + (rule "polySimp_elimOne" (formula "46") (term "1")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "46") (term "0,0")) + (rule "add_literals" (formula "46") (term "1,1,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "qeq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "47")) + (rule "mul_literals" (formula "45") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45")) + (rule "mul_literals" (formula "45") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "25")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "18")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "Definition_axiom_for_isClassifiedWith_in_de_wiesler_Buffers" (formula "50") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "50")) + (rule "expand_inInt" (formula "50") (term "1,0,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "50") (term "4,0,1,0")) + (rule "translateJavaMulInt" (formula "50") (term "3,0,1,0")) + (rule "translateJavaMulInt" (formula "50") (term "0,4,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,1,0,0")) + (rule "applyEq" (formula "50") (term "0,1,0,0,1,0,0,0") (ifseqformula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "39") (inst "b=b")) + (builtin "One Step Simplification" (formula "39")) + (rule "expand_inInt" (formula "39") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "translateJavaMulInt" (formula "39") (term "1")) + (rule "mul_literals" (formula "39") (term "1")) + (rule "eqSymm" (formula "69")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "42") (term "0,1,0,0,1,0,0,0") (ifseqformula "35")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "54")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "62")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "67") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "64") (term "1,1")) + (rule "eqSymm" (formula "67")) + (rule "eqSymm" (formula "64")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,1")) + (rule "mul_literals" (formula "67") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "67") (term "0,2,0")) + (rule "mul_literals" (formula "67") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "62") (term "1") (ifseqformula "28")) + (rule "pullOutSelect" (formula "65") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "96"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "66") (term "0,1,0,0") (ifseqformula "31")) + (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "96"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,1,0,0") (ifseqformula "31")) + (rule "replace_known_left" (formula "66") (term "0,0,1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "66")) + (rule "replace_known_left" (formula "65") (term "0,0,1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "65")) + (rule "elementOfUnion" (formula "66") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "1,0,0")) + (rule "replace_known_right" (formula "66") (term "0,0,1,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "66")) + (rule "elementOfUnion" (formula "65") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "65")) + (rule "elementOfUnion" (formula "66") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "1,0,0")) + (rule "replace_known_right" (formula "66") (term "0,0,1,0,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "66")) + (rule "elementOfUnion" (formula "65") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "65")) + (rule "elementOfUnion" (formula "66") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0,0")) + (rule "replace_known_right" (formula "66") (term "0,0,0,0,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "66")) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0")) + (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "66")) + (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "96")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0")) + (rule "replace_known_right" (formula "66") (term "0,0,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "66")) + (rule "applyEqReverse" (formula "65") (term "1") (ifseqformula "66")) + (rule "hideAuxiliaryEq" (formula "66")) + (rule "elementOfUnion" (formula "65") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,1,0,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "65")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,0,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "65")) + (rule "pullOutSelect" (formula "65") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "96")) (ifInst "" (formula "4"))) + (rule "eqSymm" (formula "66")) + (rule "applyEqReverse" (formula "65") (term "1") (ifseqformula "66")) + (rule "hideAuxiliaryEq" (formula "66")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,0,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "65")) + (rule "eqSymm" (formula "65")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "15")) + (rule "close" (formula "71") (ifseqformula "1")) + ) + (branch + (rule "andRight" (formula "118")) + (branch + (rule "andRight" (formula "118")) + (branch + (rule "andRight" (formula "118")) + (branch + (rule "andRight" (formula "118")) + (branch + (rule "wellFormedAnonEQ" (formula "118") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "118") (term "0") (ifseqformula "36")) + (rule "replace_known_left" (formula "118") (term "1") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "118") (ifInst "" (formula "7")) (ifInst "" (formula "35"))) + (rule "closeTrue" (formula "118")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "118") (term "0") (ifseqformula "36")) + (rule "orRight" (formula "118")) + (rule "orRight" (formula "118")) + (rule "close" (formula "118") (ifseqformula "13")) + ) + ) + (branch + (rule "expand_inInt" (formula "118")) + (rule "replace_int_MIN" (formula "118") (term "0,1")) + (rule "replace_int_MAX" (formula "118") (term "1,0")) + (rule "replace_known_left" (formula "118") (term "0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "118")) + (rule "polySimp_homoEq" (formula "59") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "118")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "58") (term "0,1,0,0")) + (rule "add_literals" (formula "58") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "58") (term "0,1,0,0")) + (rule "qeq_literals" (formula "58") (term "1,0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1")) + (rule "polySimp_elimOne" (formula "59") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1")) + (rule "polySimp_elimOne" (formula "59") (term "0,1")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "applyEq" (formula "26") (term "0,1,0") (ifseqformula "59")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "59")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0")) + (rule "add_zero_right" (formula "29") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_zero_right" (formula "21") (term "0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "59")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "applyEq" (formula "53") (term "1") (ifseqformula "59")) + (rule "applyEq" (formula "25") (term "1") (ifseqformula "59")) + (rule "applyEq" (formula "48") (term "1,2,1,0,0,1,0") (ifseqformula "59")) + (rule "polySimp_addAssoc" (formula "48") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "61") (term "3,1,1,1,0") (ifseqformula "59")) + (rule "polySimp_sepNegMonomial" (formula "60") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_invertInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "33") (ifseqformula "1")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "closeFalse" (formula "33")) + ) + ) + (branch + (rule "expand_inInt" (formula "118")) + (rule "replace_int_MIN" (formula "118") (term "0,1")) + (rule "replace_int_MAX" (formula "118") (term "1,0")) + (rule "polySimp_homoEq" (formula "60") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_homoEq" (formula "59") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "57") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "57") (term "0,1,0,0")) + (rule "add_literals" (formula "57") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "57") (term "0,1,0,0")) + (rule "qeq_literals" (formula "57") (term "1,0,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "1")) + (rule "mul_literals" (formula "118") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "118") (term "0,1")) + (rule "polySimp_addComm0" (formula "118") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "0")) + (rule "polySimp_mulComm0" (formula "118") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "118") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "118") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "118") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "118") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "118") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "58") (term "0,1")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1")) + (rule "polySimp_elimOne" (formula "58") (term "0,1")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0")) + (rule "add_zero_right" (formula "25") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "58")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0")) + (rule "add_zero_right" (formula "28") (term "0")) + (rule "applyEq" (formula "52") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "11") (term "0") (ifseqformula "58")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "58")) + (rule "applyEq" (formula "60") (term "3,1,1,1,0") (ifseqformula "58")) + (rule "polySimp_sepNegMonomial" (formula "59") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "118") (term "1")) + (rule "polySimp_mulComm0" (formula "118") (term "1,1")) + (rule "polySimp_rightDist" (formula "118") (term "1,1")) + (rule "mul_literals" (formula "118") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "118") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "118") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "118") (term "0")) + (rule "polySimp_mulLiterals" (formula "118") (term "0,0")) + (rule "polySimp_elimOne" (formula "118") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "times_zero_2" (formula "20") (term "1")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption1" (formula "118") (term "1") (ifseqformula "51")) + (rule "inEqSimp_homoInEq0" (formula "118") (term "0,1")) + (rule "polySimp_mulComm0" (formula "118") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "118") (term "1,0,0,1")) + (rule "mul_literals" (formula "118") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "118") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "118") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "118") (term "0,0,1")) + (rule "add_literals" (formula "118") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "118") (term "1,0,0,1")) + (rule "add_zero_right" (formula "118") (term "0,0,1")) + (rule "qeq_literals" (formula "118") (term "0,1")) + (builtin "One Step Simplification" (formula "118")) + (rule "inEqSimp_leqRight" (formula "118")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "28")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "49") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "49") (term "0,0")) + (rule "add_literals" (formula "49") (term "1,1,0,0")) + (rule "times_zero_1" (formula "49") (term "1,0,0")) + (rule "add_zero_right" (formula "49") (term "0,0")) + (rule "qeq_literals" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "27")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "49")) + (rule "mul_literals" (formula "48") (term "0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "47")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "1")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "1")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + ) + (branch + (rule "orRight" (formula "118")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0") (ifseqformula "36")) + (rule "orRight" (formula "119")) + (rule "orRight" (formula "119")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "118")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "119"))) + (rule "closeFalse" (formula "6")) + ) + ) + ) + ) + (branch "Null Reference (_storage = null)" + (rule "false_right" (formula "119")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "115"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Exceptional Post (num_buckets)" + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "64"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0") (ifseqformula "47")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "0,1,0") (ifseqformula "36")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "65")) + (rule "notLeft" (formula "65")) + (rule "close" (formula "67") (ifseqformula "66")) + ) + (branch "Pre (num_buckets)" + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "64"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "116") (term "0") (ifseqformula "47")) + (rule "wellFormedAnonEQ" (formula "116") (term "0,0") (ifseqformula "36")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "0,1") (ifseqformula "36")) + (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "7")) (ifInst "" (formula "46")) (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "116")) + ) + (branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "113"))) + (rule "closeTrue" (formula "116")) + ) + ) + (branch "Exceptional Post (classify_locally)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "1,0") (ifseqformula "38")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "39") (term "0,1,0") (ifseqformula "27")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "39")) + (rule "close" (formula "42") (ifseqformula "41")) + ) + (branch "Pre (classify_locally)" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "87")) (ifInst "" (formula "86")) (ifInst "" (formula "38")) (ifInst "" (formula "87")) (ifInst "" (formula "86")) (ifInst "" (formula "38"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1") (ifseqformula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,1") (ifseqformula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,1") (ifseqformula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,0,0,0,0,0,1") (ifseqformula "27")) + (rule "wellFormedAnonEQ" (formula "88") (term "0,0,0,0,0,0,1") (ifseqformula "27")) + (rule "expand_inInt" (formula "88") (term "1,0,0,0,1")) + (rule "expand_inInt" (formula "88") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,0,1")) + (rule "replace_int_MIN" (formula "88") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "88") (term "1,0,1,0,0,1")) + (rule "replace_known_right" (formula "88") (term "0,1,1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "1")) (ifInst "" (formula "26")) (ifInst "" (formula "8")) (ifInst "" (formula "2")) (ifInst "" (formula "3")) (ifInst "" (formula "5")) (ifInst "" (formula "7")) (ifInst "" (formula "29"))) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,1")) + (rule "replace_known_left" (formula "88") (term "0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "88")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1")) + (rule "replace_known_left" (formula "88") (term "1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "88")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "17")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isEmpty_in_Buffers" (formula "32") (term "0") (inst "element=element")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "32") (term "1,0,0") (ifseqformula "25")) + (rule "wellFormedAnonEQ" (formula "32") (term "1,0,0,0") (ifseqformula "25")) + (rule "expand_inInt" (formula "32") (term "0,0,1,0,1,1,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,0,0,1,0,1,1,1")) + (rule "replace_int_MAX" (formula "32") (term "1,0,0,0,1,0,1,1,1")) + (rule "replace_known_left" (formula "32") (term "0,0,1,1,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "35")) (ifInst "" (formula "1")) (ifInst "" (formula "24")) (ifInst "" (formula "36")) (ifInst "" (formula "27")) (ifInst "" (formula "37")) (ifInst "" (formula "35")) (ifInst "" (formula "33")) (ifInst "" (formula "34"))) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "Definition_axiom_for_isEmpty_in_de_wiesler_Buffers" (formula "33") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1,0,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "applyEq" (formula "33") (term "0,1,0,0,1,0,0,0") (ifseqformula "28")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "33") (term "0")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "nnf_notAnd" (formula "33") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,1,0,0")) + (rule "mul_literals" (formula "33") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "33") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "translateJavaSubInt" (formula "23") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "23") (term "0,2,0")) + (rule "eqSymm" (formula "20")) + (rule "eqSymm" (formula "23")) + (rule "translateJavaMulInt" (formula "20") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0")) + (rule "mul_literals" (formula "23") (term "1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_elimSub" (formula "23") (term "0,2,0")) + (rule "mul_literals" (formula "23") (term "1,0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,0")) + (rule "eqSymm" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "20") (term "1") (ifseqformula "27")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "19")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "18")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "39")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Buffers" (formula "38") (inst "b=b")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "translateJavaMulInt" (formula "38") (term "1")) + (rule "mul_literals" (formula "38") (term "1")) + (rule "eqSymm" (formula "43")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "41") (term "0,1,0,0,1,0,0,0") (ifseqformula "32")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "18")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "10")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "32")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "132"))) + (rule "true_left" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "130"))) + (rule "true_left" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "73")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "72")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "71")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "70")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "69")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "68")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "67")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "66")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "65")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "64")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "63")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "62")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "61")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "41")) + (rule "applyEq" (formula "23") (term "0,0,0,1,1") (ifseqformula "40")) + (rule "applyEq" (formula "23") (term "0,1,1,0,1") (ifseqformula "39")) + (rule "applyEq" (formula "68") (term "1") (ifseqformula "40")) + (rule "applyEq" (formula "67") (term "1") (ifseqformula "40")) + (rule "applyEq" (formula "63") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "63") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "40")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "40")) + (rule "eqSymm" (formula "62")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "40")) + (rule "eqSymm" (formula "61")) + (rule "applyEq" (formula "62") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "39")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "38")) + (rule "eqSymm" (formula "59")) + (rule "applyEq" (formula "54") (term "1") (ifseqformula "38")) + (rule "applyEq" (formula "48") (term "1") (ifseqformula "38")) + (rule "applyEq" (formula "49") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "55") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "38")) + (rule "eqSymm" (formula "59")) + (rule "commuteUnion" (formula "22") (term "0,0,1")) + (rule "commuteUnion" (formula "22") (term "1,1,1")) + (rule "commuteUnion" (formula "22") (term "1,0,1")) + (rule "commuteUnion_2" (formula "22") (term "0,1")) + (rule "commuteUnion" (formula "22") (term "0,0,1")) + (rule "commuteUnion_2" (formula "22") (term "1")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "120")) + (rule "replace_known_right" (formula "120") (term "0,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "67"))) + (rule "closeTrue" (formula "120")) + ) + (branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "85"))) + (rule "closeTrue" (formula "88")) + ) + ) + (branch "Exceptional Post (Buffers)" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,0,0") (ifseqformula "27")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "27")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "28")) + (rule "close" (formula "35") (ifseqformula "34")) + ) + (branch "Pre (Buffers)" + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "75") (term "1,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,1")) + (rule "replace_known_left" (formula "75") (term "0,1,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,1")) + (rule "replace_known_left" (formula "75") (term "1,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "14")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "17")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_and_subsumption3" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "19")) + (builtin "One Step Simplification" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "24") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "21") (term "1,1")) + (rule "eqSymm" (formula "24")) + (rule "eqSymm" (formula "21")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,1")) + (rule "mul_literals" (formula "24") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "24") (term "0,2,0")) + (rule "mul_literals" (formula "24") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "28")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "19")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "20")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Class_invariant_axiom_for_de_wiesler_Storage" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "replace_known_right" (formula "84") (term "0,1,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "30")) (ifInst "" (formula "31")) (ifInst "" (formula "30"))) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Storage" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "translateJavaMulInt" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "translateJavaMulInt" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "disjointDefinition" (formula "52")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "116"))) + (rule "true_left" (formula "52")) + (rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "114"))) + (rule "true_left" (formula "51")) + (rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (rule "notLeft" (formula "50")) + (rule "eqSymm" (formula "59")) + (rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "58")) + (rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) + (rule "notLeft" (formula "48")) + (rule "eqSymm" (formula "57")) + (rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) + (rule "notLeft" (formula "47")) + (rule "eqSymm" (formula "56")) + (rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "55")) + (rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) + (rule "notLeft" (formula "45")) + (rule "eqSymm" (formula "54")) + (rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "notLeft" (formula "44")) + (rule "eqSymm" (formula "53")) + (rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) + (rule "notLeft" (formula "43")) + (rule "eqSymm" (formula "52")) + (rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) + (rule "notLeft" (formula "42")) + (rule "eqSymm" (formula "51")) + (rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "50")) + (rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "49")) + (rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "48")) + (rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "47")) + (rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) + (rule "notLeft" (formula "36")) + (rule "eqSymm" (formula "45")) + (rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "notLeft" (formula "35")) + (rule "eqSymm" (formula "44")) + (rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) + (rule "notLeft" (formula "32")) + (rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "27")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "notLeft" (formula "25")) + (rule "commuteUnion" (formula "24") (term "1,1,1")) + (rule "commuteUnion" (formula "24") (term "0,0,1")) + (rule "commuteUnion_2" (formula "24") (term "0,1")) + (rule "commuteUnion" (formula "24") (term "0,0,1")) + (rule "commuteUnion_2" (formula "24") (term "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "31") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "32") (term "1,0,0")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "32") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "32") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "31")) + (rule "notLeft" (formula "31")) + (rule "eqSymm" (formula "39") (term "1,0")) + (rule "translateJavaSubInt" (formula "37") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "33") (term "1")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "3,0")) + (rule "mul_literals" (formula "37") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "3,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "36") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "36") (term "0,0") (ifseqformula "28")) + (rule "inEqSimp_commuteGeq" (formula "36")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "33")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "29") (term "3,0") (ifseqformula "33")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "39") (term "1,0,1,0") (ifseqformula "28")) + (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "33")) + (rule "applyEq" (formula "37") (term "1,0") (ifseqformula "28")) + (rule "applyEq" (formula "27") (term "2,0") (ifseqformula "33")) + (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33")) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "39") (term "0,1,0,0,1,0,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "38") (term "0,1,0,0,1,0,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "33") (term "1")) + (rule "mod_axiom" (formula "33") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "36") (term "0")) + (rule "mod_axiom" (formula "36") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "35") (term "1")) + (rule "mod_axiom" (formula "35") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "29") (term "3,0")) + (rule "mod_axiom" (formula "29") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "34") (term "0")) + (rule "mod_axiom" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,3,0")) + (rule "mod_axiom" (formula "37") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "2,0")) + (rule "mod_axiom" (formula "27") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "30") (term "1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "mod_axiom" (formula "30") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "39") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "38") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "38") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "33") (term "0,1")) + (rule "eqSymm" (formula "33")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "36") (term "0,0")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "35") (term "0,1")) + (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,1")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "35") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "35")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "33")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "shiftLeftDef" (formula "29") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "29") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "29") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "29") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "29") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,3,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,3,0")) + (rule "applyEq" (formula "29") (term "3,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "34") (term "0,0")) + (rule "polySimp_elimNeg" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "34") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "34") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "34") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "37") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "37") (term "1,3,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "27") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,2,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,0")) + (rule "applyEq" (formula "27") (term "2,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "27") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "27") (term "0,1,0") (ifseqformula "33")) + (rule "javaShiftLeftIntDef" (formula "30") (term "1,0,2,0")) + (rule "mod_axiom" (formula "30") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "shiftLeftDef" (formula "39") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "39") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "39") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "39") (term "1,1,1,0,0,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "38") (term "1,1,1,1,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "38") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "38") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "38") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "38") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "38") (term "1,1,1,0,0,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "30") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33")) + (rule "shiftLeftDef" (formula "30") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_elimNeg" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "30") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "30") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "30") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "30") (term "1,0,2,0") (ifseqformula "33")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "36")) + (rule "mul_literals" (formula "34") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "expand_moduloInteger" (formula "33") (term "0")) + (rule "replace_int_HALFRANGE" (formula "33") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,0")) + (rule "replace_int_RANGE" (formula "33") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "39") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "39") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "39") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,0,1,0")) + (rule "commute_or" (formula "13") (term "0,0,0")) + (rule "inEqSimp_or_subsumption3" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "39") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "39") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "39") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "39") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "39") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "commute_and" (formula "39") (term "1,0,0")) + (rule "associativeLawUnion" (formula "24") (term "0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_notAnd" (formula "40") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,1,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "40") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "nnf_imp2or" (formula "29") (term "0,1,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "39") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,1,0,0")) + (rule "nnf_imp2or" (formula "38") (term "0,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "38") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "38") (term "0,0,1,0")) + (rule "arrayLengthNotNegative" (formula "22") (term "0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "arrayLengthNotNegative" (formula "21") (term "0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "arrayLengthIsAShort" (formula "23") (term "0")) + (rule "expand_inShort" (formula "23")) + (rule "replace_short_MAX" (formula "23") (term "1,0")) + (rule "replace_short_MIN" (formula "23") (term "0,1")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "25")) + (rule "leq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthNotNegative" (formula "23") (term "0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "arrayLengthIsAShort" (formula "18") (term "0")) + (rule "expand_inShort" (formula "18")) + (rule "replace_short_MAX" (formula "18") (term "1,0")) + (rule "replace_short_MIN" (formula "18") (term "0,1")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "arrayLengthIsAShort" (formula "19") (term "0")) + (rule "expand_inShort" (formula "19")) + (rule "replace_short_MAX" (formula "19") (term "1,0")) + (rule "replace_short_MIN" (formula "19") (term "0,1")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "21")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + ) + (branch "Exceptional Post (num_buckets)" + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "12"))) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "close" (formula "24") (ifseqformula "23")) + ) + (branch "Pre (num_buckets)" + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "12")) (ifInst "" (formula "1")) (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "71")) + ) + (branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "71") (ifInst "" (formula "68"))) + (rule "closeTrue" (formula "71")) + ) + ) + (branch "Null Reference (_storage = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "68"))) + (rule "closeFalse" (formula "1")) + ) +) +(branch "Null Reference (_storage = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "68"))) + (rule "closeFalse" (formula "1")) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..6089b22 --- /dev/null +++ b/src/main/key-overflow/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,165 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:09:03 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:09:03 CEST 2022 +contract=de.wiesler.PartitionResult[de.wiesler.PartitionResult\\:\\:PartitionResult(int,boolean)].JML normal_behavior operation contract.0 +name=de.wiesler.PartitionResult[de.wiesler.PartitionResult\\:\\:PartitionResult(int,boolean)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "60") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "assignment" (formula "5") (term "1")) + (builtin "One Step Simplification" (formula "5")) +(rule "variableDeclarationAssign" (formula "5") (term "1")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "self_103")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=p")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "p")) +(rule "methodBodyExpand" (formula "5") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "5")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "5") (term "1") (inst "#v0=p_1")) +(rule "variableDeclaration" (formula "5") (term "1") (newnames "p_1")) +(rule "allocateInstance" (formula "5")) + (builtin "One Step Simplification" (formula "6")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallWithinClass" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallSuper" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "8") (term "1")) +(rule "methodCallReturn" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "var")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "var_1")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallSuper" (formula "8") (term "1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "assignment_write_attribute_this" (formula "8")) + (builtin "One Step Simplification" (formula "8")) +(rule "methodCallEmpty" (formula "8") (term "1")) +(rule "blockEmpty" (formula "8") (term "1")) +(rule "assignment_write_attribute" (formula "8")) +(branch "Normal Execution (self_103 != null)" + (builtin "One Step Simplification" (formula "8")) + (rule "tryEmpty" (formula "8") (term "1")) + (rule "emptyModality" (formula "8") (term "1")) + (rule "andRight" (formula "8")) + (branch + (builtin "One Step Simplification" (formula "8")) + (rule "Class_invariant_axiom_for_de_wiesler_PartitionResult" (formula "8")) + (rule "closeTrue" (formula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "8")) + (rule "closeTrue" (formula "8")) + ) +) +(branch "Null Reference (self_103 = null)" + (rule "false_right" (formula "9")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8"))) + (rule "closeFalse" (formula "1")) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..b6afc4a --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__permute((I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,5204 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Sun Jun 05 14:58:55 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Sun Jun 05 14:58:55 CEST 2022 +contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Permute[de.wiesler.Permute\\:\\:permute([I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "164050") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "11")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "17")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "13")) +(rule "notLeft" (formula "12")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "15")) +(rule "notLeft" (formula "14")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "27")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "21")) +(rule "translateJavaSubInt" (formula "45") (term "0")) +(rule "translateJavaCastInt" (formula "46") (term "0")) +(rule "translateJavaSubInt" (formula "46") (term "1")) +(rule "translateJavaSubInt" (formula "47") (term "1")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "11")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "9")) +(rule "replace_known_right" (formula "8") (term "0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "8")) +(rule "replace_known_right" (formula "7") (term "0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "7")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "45") (term "0")) +(rule "polySimp_elimSub" (formula "46") (term "1")) +(rule "polySimp_elimSub" (formula "47") (term "1")) +(rule "polySimp_addComm0" (formula "45") (term "0")) +(rule "polySimp_addComm0" (formula "46") (term "1")) +(rule "polySimp_addComm0" (formula "47") (term "1")) +(rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) +(rule "notLeft" (formula "41")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "45")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "eqSymm" (formula "44")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "43")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "42")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "41")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "40")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "34")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "33")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "eqSymm" (formula "32")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "eqSymm" (formula "31")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21")) +(rule "notLeft" (formula "21")) +(rule "disjointDefinition" (formula "21")) + (builtin "One Step Simplification" (formula "21")) +(rule "notLeft" (formula "21")) +(rule "castedGetAny" (formula "25") (term "0")) +(rule "inEqSimp_commuteLeq" (formula "23")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "27") (term "1,1,0,0")) +(rule "assignment" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) +(rule "applyEq" (formula "25") (term "1,0") (ifseqformula "17")) +(rule "applyEq" (formula "27") (term "1,1,0,0,0") (ifseqformula "17")) +(rule "commute_and" (formula "27") (term "0,1,0")) +(rule "commute_and_2" (formula "27") (term "1,0")) +(rule "commute_and" (formula "27") (term "1,0,0")) +(rule "commute_and" (formula "27") (term "0,0,0")) +(rule "shift_paren_and" (formula "27") (term "0,0")) +(rule "commute_and_2" (formula "27") (term "0,0,0")) +(rule "methodBodyExpand" (formula "55") (term "1") (newnames "heapBefore_permute,savedHeapBefore_permute,_beginBefore_permute,_bucket_pointersBefore_permute,_classifierBefore_permute,_endBefore_permute,_overflowBefore_permute,_swap_1Before_permute,_swap_2Before_permute,_valuesBefore_permute")) + (builtin "One Step Simplification" (formula "55")) + (builtin "Block Contract (Internal)" (formula "55") (newnames "exc_311,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "56")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "12")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "28")) + (rule "eqSymm" (formula "55") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "55") (term "1")) + (rule "variableDeclaration" (formula "55") (term "1") (newnames "exc_311_1")) + (rule "assignment" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "emptyStatement" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "emptyStatement" (formula "55") (term "1")) + (rule "tryEmpty" (formula "55") (term "1")) + (rule "blockEmptyLabel" (formula "55") (term "1")) + (rule "blockEmpty" (formula "55") (term "1")) + (rule "methodCallEmpty" (formula "55") (term "1")) + (rule "emptyModality" (formula "55") (term "1")) + (rule "andRight" (formula "55")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "55")) + (rule "closeTrue" (formula "55")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "55")) + (rule "closeTrue" (formula "55")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "55")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "55")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "55")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "translateJavaSubInt" (formula "30") (term "0,1")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "polySimp_elimSub" (formula "29") (term "0,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,1")) + (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "17")) + (rule "elim_double_block_2" (formula "57") (term "1")) + (rule "ifUnfold" (formula "57") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "57") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "57") (term "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "replace_known_left" (formula "57") (term "0,0,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "57")) + (rule "ifSplit" (formula "57")) + (branch "if x true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "57") (term "1")) + (rule "variableDeclarationFinalAssign" (formula "57") (term "1")) + (rule "variableDeclarationFinal" (formula "57") (term "1") (newnames "num_buckets")) + (builtin "Use Operation Contract" (formula "57") (newnames "heapBefore_num_buckets,result,exc_0") (contract "de.wiesler.Classifier[de.wiesler.Classifier::num_buckets()].JML normal_behavior operation contract.0")) + (branch "Post (num_buckets)" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "16")) (ifInst "" (formula "14"))) + (rule "expand_inInt" (formula "30") (term "0,1,0")) + (rule "replace_int_MIN" (formula "30") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "30") (term "1,0,0,1,0")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "17")) + (rule "applyEq" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "29") (term "1,0") (ifseqformula "32")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "32")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "32")) + (rule "for_to_while" (formula "61") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "61") (term "1")) + (rule "variableDeclaration" (formula "61") (term "1") (newnames "bucket")) + (rule "assignment" (formula "61") (term "1")) + (builtin "One Step Simplification" (formula "61")) + (rule "loopScopeInvDia" (formula "61") (term "1") (newnames "bucket_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "61")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "62")) + (rule "expand_inInt" (formula "62") (term "0,0,1,0")) + (rule "expand_inInt" (formula "62") (term "1,0,0,1,0,0")) + (rule "expand_inInt" (formula "62") (term "1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "62") (term "0,1,1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "62") (term "1,0,1,0,0,1,0,0,0")) + (rule "impRight" (formula "62")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "6") (term "1,1,0,0,0") (ifseqformula "25")) + (rule "commuteUnion_2" (formula "69") (term "1,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "1,1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "6") (term "1,1,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "5") (term "1,1,0,0,1,0")) + (rule "commuteUnion" (formula "3") (term "1,1,0")) + (rule "commuteUnion" (formula "4") (term "1,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "3") (term "0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "5") (term "0,1,1,0,0,1,0")) + (rule "commuteUnion" (formula "7") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "6") (term "1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "6") (term "1,0,0,1,1,0")) + (rule "commuteUnion_2" (formula "3") (term "1,0")) + (rule "commuteUnion" (formula "4") (term "1,0")) + (rule "commuteUnion_2" (formula "69") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "5") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "3") (term "0,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0")) + (rule "commute_and" (formula "7") (term "0,0")) + (rule "commute_and" (formula "6") (term "1,0,0")) + (rule "commute_and" (formula "5") (term "1,0,0")) + (rule "commute_and" (formula "5") (term "0,0,0")) + (rule "commute_and" (formula "6") (term "0,0,0")) + (rule "commute_and" (formula "6") (term "0,1,0")) + (rule "commute_and_2" (formula "6") (term "1,0")) + (rule "shift_paren_and" (formula "5") (term "0,0")) + (rule "commute_and_2" (formula "5") (term "0,0,0")) + (rule "shift_paren_and" (formula "6") (term "0,0")) + (rule "commute_and_2" (formula "6") (term "0,0,0")) + (rule "associativeLawUnion" (formula "4") (term "1,0")) + (rule "associativeLawUnion" (formula "3") (term "0,0,1,0")) + (rule "associativeLawUnion" (formula "7") (term "1,0,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "0,0,1,0")) + (rule "associativeLawUnion" (formula "5") (term "1,0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "26") (term "0")) + (rule "expand_inShort" (formula "26")) + (rule "replace_short_MIN" (formula "26") (term "0,1")) + (rule "replace_short_MAX" (formula "26") (term "1,0")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "leq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "arrayLengthNotNegative" (formula "28") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "arrayLengthIsAShort" (formula "32") (term "0")) + (rule "expand_inShort" (formula "32")) + (rule "replace_short_MIN" (formula "32") (term "0,1")) + (rule "replace_short_MAX" (formula "32") (term "1,0")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthIsAShort" (formula "28") (term "0")) + (rule "expand_inShort" (formula "28")) + (rule "replace_short_MIN" (formula "28") (term "0,1")) + (rule "replace_short_MAX" (formula "28") (term "1,0")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "30")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "29")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (rule "expand_inShort" (formula "27")) + (rule "replace_short_MIN" (formula "27") (term "0,1")) + (rule "replace_short_MAX" (formula "27") (term "1,0")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "29")) + (rule "leq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "26") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "ifElseUnfold" (formula "72") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "72") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "72") (term "1")) + (builtin "One Step Simplification" (formula "72")) + (rule "associativeLawUnion" (formula "6") (term "1,0,0,1,1,0")) + (rule "associativeLawUnion" (formula "6") (term "1,0,0,1,0,1,0")) + (rule "seqGetAlphaCast" (formula "36") (term "0")) + (rule "castedGetAny" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "associativeLawUnion" (formula "7") (term "0,0,1,0,0,1,0")) + (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,0,0,1,0")) + (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,1,1,0")) + (rule "associativeLawUnion" (formula "6") (term "0,0,1,0,0,1,0,1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0") (ifseqformula "9") (ifseqformula "16")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0,0") (ifseqformula "10") (ifseqformula "16")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "66") (term "0") (ifseqformula "11") (ifseqformula "17")) + (rule "ifElseSplit" (formula "75")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "76")) + (builtin "One Step Simplification" (formula "1")) + (rule "elim_double_block_3" (formula "76") (term "1")) + (rule "loopScopeInvDia" (formula "76") (term "1") (newnames "o,f") (inst "#x=x_3") (inst "#variant=x_2") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_1") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_1") (inst "anon_heap_LOOP=anon_heap_LOOP_1")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "76")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "77")) + (rule "expand_inInt" (formula "77") (term "1,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "77") (term "1,0,0,1,0,0")) + (rule "expand_inInt" (formula "77") (term "0,0,1,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0,1,0,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0,1,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,0,0,1,0")) + (rule "impRight" (formula "77")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "82") (term "2,0,0,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "82") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "3") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "2") (term "2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "82") (term "2,0,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "82") (term "1,2,0,0,1,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "82") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "82") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "2") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "2") (term "1,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "2,0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "2") (term "2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "1,1,0,0")) + (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_3")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "35")) + (rule "commuteUnion" (formula "82") (term "1,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "82") (term "1,1,0,0,1,0")) + (rule "commuteUnion" (formula "5") (term "1,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "4") (term "1,1,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "4") (term "1,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "4") (term "1,1,0,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "3") (term "1,1,0,0,1,0")) + (rule "commuteUnion_2" (formula "2") (term "1,1,0")) + (rule "commuteUnion_2" (formula "1") (term "1,1,0")) + (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "3") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,0")) + (rule "commuteUnion" (formula "2") (term "0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,1,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "3") (term "0,1,1,0,0,1,0")) + (rule "commuteUnion" (formula "2") (term "0,1,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,1,0")) + (rule "commuteUnion" (formula "82") (term "1,0,0,1,1,0")) + (rule "commuteUnion_2" (formula "82") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "5") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "4") (term "1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "4") (term "1,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "4") (term "1,0,0,1,1,0")) + (rule "commuteUnion_2" (formula "3") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "2") (term "1,0")) + (rule "commuteUnion" (formula "1") (term "1,0")) + (rule "commuteUnion" (formula "82") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "3") (term "0,1,0,0,1,0")) + (rule "commute_and" (formula "5") (term "0,0")) + (rule "commute_and" (formula "4") (term "1,0,0")) + (rule "commute_and" (formula "3") (term "0,0,0")) + (rule "commute_and" (formula "3") (term "1,0,0")) + (rule "commute_and" (formula "4") (term "0,0,0")) + (rule "commute_and" (formula "4") (term "0,1,0")) + (rule "commute_and_2" (formula "4") (term "1,0")) + (rule "shift_paren_and" (formula "3") (term "0,0")) + (rule "commute_and_2" (formula "3") (term "0,0,0")) + (rule "associativeLawUnion" (formula "2") (term "1,0")) + (rule "shift_paren_and" (formula "4") (term "0,0")) + (rule "commute_and_2" (formula "4") (term "0,0,0")) + (rule "associativeLawUnion" (formula "1") (term "1,0")) + (rule "associativeLawUnion" (formula "5") (term "1,0,0,1,0")) + (rule "associativeLawUnion" (formula "82") (term "1,0,0,1,1,0")) + (rule "ifElseUnfold" (formula "82") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "82") (term "1") (newnames "x_4")) + (rule "associativeLawUnion" (formula "4") (term "1,0,0,1,1,0")) + (rule "associativeLawUnion" (formula "82") (term "0,0,1,0,0,1,0")) + (builtin "Use Operation Contract" (formula "82") (newnames "heapBefore_hasRemainingRead,result_0,exc_1") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::hasRemainingRead(int)].JML normal_behavior operation contract.0")) + (branch "Post (hasRemainingRead)" + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1"))) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "eqSymm" (formula "55")) + (rule "assignment" (formula "85") (term "1")) + (builtin "One Step Simplification" (formula "85")) + (rule "associativeLawUnion" (formula "5") (term "0,0,1,0,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,0,0,1,0")) + (rule "associativeLawUnion" (formula "85") (term "0,0,1,0,0,1,1,0,0")) + (builtin "Use Dependency Contract" (formula "13") (ifInst "" (formula "85") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "85") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "58") (term "1,1,0,0,0")) + (rule "replace_known_right" (formula "58") (term "0,0,0,0,0,0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "25")) (ifInst "" (formula "19")) (ifInst "" (formula "19")) (ifInst "" (formula "18")) (ifInst "" (formula "32")) (ifInst "" (formula "14")) (ifInst "" (formula "32"))) + (rule "true_left" (formula "58")) + (rule "ifElseSplit" (formula "85")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "variableDeclarationGhostAssign" (formula "86") (term "1")) + (rule "variableDeclarationGhost" (formula "86") (term "1") (newnames "heapAtLoopBegin")) + (rule "assignment" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (builtin "Block Contract (Internal)" (formula "86") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "87")) + (rule "eqSymm" (formula "87") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "87") (term "1")) + (rule "variableDeclaration" (formula "87") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "87") (term "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "emptyStatement" (formula "87") (term "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "emptyStatement" (formula "87") (term "1")) + (rule "applyEq" (formula "56") (term "1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "tryEmpty" (formula "87") (term "1")) + (rule "blockEmptyLabel" (formula "87") (term "1")) + (rule "blockEmpty" (formula "87") (term "1")) + (rule "methodCallEmpty" (formula "87") (term "1")) + (rule "emptyModality" (formula "87") (term "1")) + (rule "andRight" (formula "87")) + (branch + (builtin "One Step Simplification" (formula "87")) + (rule "closeTrue" (formula "87")) + ) + (branch + (builtin "One Step Simplification" (formula "87")) + (rule "closeTrue" (formula "87")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "86")) + (branch + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "86")) + ) + (branch + (builtin "One Step Simplification" (formula "86")) + (rule "wellFormedAnon" (formula "86")) + (rule "wellFormedAnon" (formula "86") (term "0")) + (rule "replace_known_left" (formula "86") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "20")) (ifInst "" (formula "19"))) + (rule "closeTrue" (formula "86")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "87")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "59")) + (rule "translateJavaSubInt" (formula "61") (term "5,0")) + (rule "translateJavaAddInt" (formula "62") (term "0,4,0")) + (rule "translateJavaAddInt" (formula "61") (term "0,5,0")) + (rule "translateJavaSubInt" (formula "62") (term "4,0")) + (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "polySimp_elimSub" (formula "60") (term "5,0")) + (rule "mul_literals" (formula "60") (term "1,5,0")) + (rule "polySimp_elimSub" (formula "61") (term "4,0")) + (rule "mul_literals" (formula "61") (term "1,4,0")) + (rule "polySimp_addComm1" (formula "60") (term "5,0")) + (rule "polySimp_addComm1" (formula "61") (term "4,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,5,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,4,0")) + (rule "applyEq" (formula "56") (term "1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "elim_double_block_2" (formula "89") (term "1")) + (rule "ifUnfold" (formula "89") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "89") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "89") (term "1")) + (builtin "One Step Simplification" (formula "89")) + (rule "replace_known_left" (formula "89") (term "0,0,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "89")) + (rule "ifSplit" (formula "89")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "89") (term "1")) + (rule "variableDeclarationAssign" (formula "89") (term "1")) + (rule "variableDeclaration" (formula "89") (term "1") (newnames "read")) + (builtin "Use Operation Contract" (formula "89") (newnames "heapBefore_decrement_read,result_1,exc_3,heapAfter_decrement_read,anon_heap_decrement_read") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::decrement_read(int)].JML normal_behavior operation contract.0")) + (branch "Post (decrement_read)" + (builtin "One Step Simplification" (formula "63")) + (builtin "One Step Simplification" (formula "91")) + (rule "expand_inInt" (formula "63") (term "0,1,0,1")) + (rule "replace_int_MIN" (formula "63") (term "0,1,0,1,0,1")) + (rule "replace_int_MAX" (formula "63") (term "1,0,0,1,0,1")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "68")) + (rule "andLeft" (formula "69")) + (rule "translateJavaMulInt" (formula "63") (term "0,1,1,0")) + (rule "eqSymm" (formula "67")) + (rule "eqSymm" (formula "68")) + (rule "translateJavaAddInt" (formula "69") (term "1")) + (rule "translateJavaAddInt" (formula "68") (term "1")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "1")) + (rule "polySimp_addComm0" (formula "68") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "66")) + (rule "assignment" (formula "99") (term "1")) + (builtin "One Step Simplification" (formula "99")) + (builtin "Block Contract (Internal)" (formula "99") (newnames "exc_4,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "100")) + (rule "eqSymm" (formula "100") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "100") (term "1")) + (rule "variableDeclaration" (formula "100") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "100") (term "1")) + (builtin "One Step Simplification" (formula "100")) + (rule "emptyStatement" (formula "100") (term "1")) + (builtin "One Step Simplification" (formula "100")) + (rule "emptyStatement" (formula "100") (term "1")) + (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "69")) + (rule "polySimp_addAssoc" (formula "61") (term "4,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,4,0")) + (rule "add_literals" (formula "61") (term "0,0,4,0")) + (rule "add_zero_left" (formula "61") (term "0,4,0")) + (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "69")) + (rule "polySimp_addAssoc" (formula "60") (term "5,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,5,0")) + (rule "add_literals" (formula "60") (term "0,0,5,0")) + (rule "add_zero_left" (formula "60") (term "0,5,0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "68")) + (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "67")) + (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "67")) + (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "67")) + (rule "tryEmpty" (formula "100") (term "1")) + (rule "blockEmptyLabel" (formula "100") (term "1")) + (rule "blockEmpty" (formula "100") (term "1")) + (rule "methodCallEmpty" (formula "100") (term "1")) + (rule "emptyModality" (formula "100") (term "1")) + (rule "andRight" (formula "100")) + (branch + (builtin "One Step Simplification" (formula "100")) + (rule "closeTrue" (formula "100")) + ) + (branch + (builtin "One Step Simplification" (formula "100")) + (rule "closeTrue" (formula "100")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "99")) + (branch + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "99")) + ) + (branch + (builtin "One Step Simplification" (formula "99")) + (rule "wellFormedAnonEQ" (formula "99") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "99") (term "0")) + (rule "wellFormedAnon" (formula "99") (term "0,0")) + (rule "replace_known_left" (formula "99") (term "1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "99")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "72")) + (builtin "One Step Simplification" (formula "100")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "72") (term "1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "72")) + (rule "translateJavaAddInt" (formula "74") (term "0")) + (rule "translateJavaAddInt" (formula "74") (term "0,0")) + (rule "replace_known_left" (formula "73") (term "0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "69")) + (rule "polySimp_addAssoc" (formula "60") (term "5,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,5,0")) + (rule "add_literals" (formula "60") (term "0,0,5,0")) + (rule "add_zero_left" (formula "60") (term "0,5,0")) + (rule "applyEq" (formula "101") (term "0,1,0,0,0,0") (ifseqformula "68")) + (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "69")) + (rule "polySimp_addAssoc" (formula "61") (term "4,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,4,0")) + (rule "add_literals" (formula "61") (term "0,0,4,0")) + (rule "add_zero_left" (formula "61") (term "0,4,0")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "68")) + (rule "applyEq" (formula "69") (term "1,1") (ifseqformula "67")) + (rule "applyEq" (formula "60") (term "1,5,0") (ifseqformula "67")) + (rule "applyEq" (formula "61") (term "1,4,0") (ifseqformula "67")) + (rule "elim_double_block_2" (formula "101") (term "1")) + (rule "ifUnfold" (formula "101") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "replace_known_left" (formula "101") (term "0,0,1,0") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "101")) + (rule "ifSplit" (formula "101")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "102")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "102")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "101") (term "1")) + (rule "methodCallUnfoldArguments" (formula "101") (term "1")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "var")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_1")) + (rule "assignmentAdditionInt" (formula "101") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "101")) + (rule "expand_inInt" (formula "101") (userinteraction)) + (rule "andRight" (formula "101")) + (branch + (rule "replace_int_MAX" (formula "101") (term "1")) + (rule "inEqSimp_leqRight" (formula "101")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "50")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "44")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "1")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "72")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "44") (ifseqformula "2")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "closeFalse" (formula "44")) + ) + (branch + (rule "replace_int_MIN" (formula "101") (term "0")) + (rule "inEqSimp_leqRight" (formula "101")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "times_zero_2" (formula "57") (term "1")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "64")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "63") (ifseqformula "38")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "closeFalse" (formula "63")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "101")) + (rule "translateJavaAddInt" (formula "101") (term "0,1,0")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_2")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_3")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "variableDeclarationAssign" (formula "101") (term "1")) + (rule "variableDeclaration" (formula "101") (term "1") (newnames "var_4")) + (rule "assignment" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (builtin "Use Operation Contract" (formula "101") (newnames "heapBefore_copy_nonoverlapping,exc_5,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "75")) + (rule "expand_inInt" (formula "75") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "75") (term "0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "75") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "translateJavaSubInt" (formula "75") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "76") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "76") (term "0,2,0,1,0")) + (rule "add_zero_left" (formula "76") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "3,0,1,0")) + (rule "add_zero_left" (formula "77") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "75") (term "0,2,1,0")) + (rule "add_zero_left" (formula "75") (term "0,2,1,0")) + (rule "sub_literals" (formula "75") (term "2,1,0")) + (rule "eqSymm" (formula "76") (term "1,0")) + (rule "eqSymm" (formula "77") (term "1,0")) + (rule "polySimp_addComm1" (formula "77") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,3,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,1,0,0")) + (rule "blockEmpty" (formula "106") (term "1")) + (builtin "Block Contract (Internal)" (formula "106") (newnames "exc_6,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "107")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "107") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "107") (term "1")) + (rule "variableDeclaration" (formula "107") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "107") (term "1")) + (builtin "One Step Simplification" (formula "107")) + (rule "emptyStatement" (formula "107") (term "1")) + (builtin "One Step Simplification" (formula "107")) + (rule "emptyStatement" (formula "107") (term "1")) + (rule "commute_and" (formula "77") (term "0,0")) + (rule "commute_and" (formula "76") (term "0,0,0")) + (rule "commute_and" (formula "76") (term "1,0,0")) + (rule "shift_paren_and" (formula "76") (term "0,0")) + (rule "commute_and_2" (formula "76") (term "0,0,0")) + (rule "tryEmpty" (formula "107") (term "1")) + (rule "blockEmptyLabel" (formula "107") (term "1")) + (rule "blockEmpty" (formula "107") (term "1")) + (rule "methodCallEmpty" (formula "107") (term "1")) + (rule "emptyModality" (formula "107") (term "1")) + (rule "andRight" (formula "107")) + (branch + (builtin "One Step Simplification" (formula "107")) + (rule "closeTrue" (formula "107")) + ) + (branch + (builtin "One Step Simplification" (formula "107")) + (rule "closeTrue" (formula "107")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "106")) + (branch + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "106")) + ) + (branch + (builtin "One Step Simplification" (formula "106")) + (rule "wellFormedAnonEQ" (formula "106") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "106") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "106") (term "0,0")) + (rule "wellFormedAnon" (formula "106") (term "0,0,0")) + (rule "replace_known_left" (formula "106") (term "0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "106")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "107")) + (builtin "One Step Simplification" (formula "79")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "79") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "79") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "81")) + (rule "replace_known_left" (formula "80") (term "0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "commute_and" (formula "77") (term "0,0")) + (rule "commute_and" (formula "76") (term "0,0,0")) + (rule "commute_and" (formula "76") (term "1,0,0")) + (rule "shift_paren_and" (formula "76") (term "0,0")) + (rule "commute_and_2" (formula "76") (term "0,0,0")) + (rule "elim_double_block_2" (formula "109") (term "1")) + (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "109")) + (rule "ifSplit" (formula "109")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "109") (term "1")) + (builtin "Block Contract (Internal)" (formula "109") (newnames "exc_7,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "110")) + (rule "eqSymm" (formula "110") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "110") (term "1")) + (rule "variableDeclaration" (formula "110") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "emptyStatement" (formula "110") (term "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "emptyStatement" (formula "110") (term "1")) + (rule "tryEmpty" (formula "110") (term "1")) + (rule "blockEmptyLabel" (formula "110") (term "1")) + (rule "blockEmpty" (formula "110") (term "1")) + (rule "methodCallEmpty" (formula "110") (term "1")) + (rule "emptyModality" (formula "110") (term "1")) + (rule "andRight" (formula "110")) + (branch + (builtin "One Step Simplification" (formula "110")) + (rule "closeTrue" (formula "110")) + ) + (branch + (builtin "One Step Simplification" (formula "110")) + (rule "closeTrue" (formula "110")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "109")) + (branch + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "109")) + ) + (branch + (builtin "One Step Simplification" (formula "109")) + (rule "wellFormedAnonEQ" (formula "109") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "109") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "109") (term "0,0")) + (rule "wellFormedAnon" (formula "109") (term "0,0,0")) + (rule "replace_known_left" (formula "109") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "109")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "110")) + (builtin "One Step Simplification" (formula "82")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "84")) + (rule "eqSymm" (formula "85")) + (rule "replace_known_left" (formula "83") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "elim_double_block_2" (formula "112") (term "1")) + (rule "ifUnfold" (formula "112") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "112") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "112") (term "1")) + (builtin "One Step Simplification" (formula "112")) + (rule "replace_known_left" (formula "112") (term "0,0,1,0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "112")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "112") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "112") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "85") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "85") (term "0,1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "111")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "33")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "85")) + (rule "ifSplit" (formula "112")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "113")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "113")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "112") (term "1")) + (builtin "Block Contract (Internal)" (formula "112") (newnames "exc_8,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "113")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "113") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "113") (term "1")) + (rule "variableDeclaration" (formula "113") (term "1") (newnames "exc_8_1")) + (rule "assignment" (formula "113") (term "1")) + (builtin "One Step Simplification" (formula "113")) + (rule "emptyStatement" (formula "113") (term "1")) + (builtin "One Step Simplification" (formula "113")) + (rule "emptyStatement" (formula "113") (term "1")) + (rule "tryEmpty" (formula "113") (term "1")) + (rule "blockEmptyLabel" (formula "113") (term "1")) + (rule "blockEmpty" (formula "113") (term "1")) + (rule "methodCallEmpty" (formula "113") (term "1")) + (rule "emptyModality" (formula "113") (term "1")) + (rule "andRight" (formula "113")) + (branch + (builtin "One Step Simplification" (formula "113")) + (rule "closeTrue" (formula "113")) + ) + (branch + (builtin "One Step Simplification" (formula "113")) + (rule "closeTrue" (formula "113")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "112")) + (branch + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "112")) + ) + (branch + (builtin "One Step Simplification" (formula "112")) + (rule "wellFormedAnonEQ" (formula "112") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "112") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "112") (term "0,0")) + (rule "wellFormedAnon" (formula "112") (term "0,0,0")) + (rule "replace_known_left" (formula "112") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "112")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "113")) + (builtin "One Step Simplification" (formula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "85")) + (rule "replace_known_left" (formula "86") (term "0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "applyEq" (formula "87") (term "1") (ifseqformula "68")) + (rule "elim_double_block_2" (formula "115") (term "1")) + (rule "ifUnfold" (formula "115") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "replace_known_left" (formula "115") (term "0,0,1,0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "115")) + (rule "ifSplit" (formula "115")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "115") (term "1")) + (builtin "Block Contract (Internal)" (formula "115") (newnames "exc_9,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "116")) + (rule "eqSymm" (formula "116") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "116") (term "1")) + (rule "variableDeclaration" (formula "116") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "emptyStatement" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "emptyStatement" (formula "116") (term "1")) + (rule "tryEmpty" (formula "116") (term "1")) + (rule "blockEmptyLabel" (formula "116") (term "1")) + (rule "blockEmpty" (formula "116") (term "1")) + (rule "methodCallEmpty" (formula "116") (term "1")) + (rule "emptyModality" (formula "116") (term "1")) + (rule "andRight" (formula "116")) + (branch + (builtin "One Step Simplification" (formula "116")) + (rule "closeTrue" (formula "116")) + ) + (branch + (builtin "One Step Simplification" (formula "116")) + (rule "closeTrue" (formula "116")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "115")) + (branch + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "115")) + ) + (branch + (builtin "One Step Simplification" (formula "115")) + (rule "wellFormedAnonEQ" (formula "115") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "115") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "115") (term "0,0")) + (rule "wellFormedAnon" (formula "115") (term "0,0,0")) + (rule "replace_known_left" (formula "115") (term "0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "115")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "88")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "88") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "88")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "88")) + (rule "replace_known_left" (formula "89") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "elim_double_block_2" (formula "117") (term "1")) + (rule "ifUnfold" (formula "117") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "117") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "117") (term "1")) + (builtin "One Step Simplification" (formula "117")) + (rule "replace_known_left" (formula "117") (term "0,0,1,0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "117")) + (builtin "Use Dependency Contract" (formula "67") (term "0") (ifInst "" (formula "69") (term "0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "115")) (ifInst "" (formula "2")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "90") (term "0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "90") (term "0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "90") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "90") (term "1")) + (rule "translateJavaMulInt" (formula "90") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "90") (term "1,0,0,0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "90") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "90") (term "1,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (builtin "Use Dependency Contract" (formula "68") (term "1,1") (ifInst "" (formula "68") (term "0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "115")) (ifInst "" (formula "2")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "90") (term "1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "90") (term "0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "90") (term "0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "90") (term "0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "90") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "90") (term "1")) + (rule "translateJavaMulInt" (formula "90") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "90") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "90") (term "1,0,0,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "90") (term "1,0")) + (rule "disjointWithSingleton2" (formula "90") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "0,1,0,0")) + (rule "replace_known_left" (formula "90") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "90")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0,0")) + (rule "applyEq" (formula "90") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "90") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "90")) + (rule "applyEq" (formula "90") (term "0,1") (ifseqformula "68")) + (rule "elementOfUnion" (formula "90") (term "0,1,0")) + (rule "elementOfSingleton" (formula "90") (term "1,0,1,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "elementOfSingleton" (formula "90") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "ifSplit" (formula "117")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "118")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "118")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "117") (term "1")) + (builtin "Block Contract (Internal)" (formula "117") (newnames "exc_10,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "118")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "118") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "118") (term "1")) + (rule "variableDeclaration" (formula "118") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (rule "emptyStatement" (formula "118") (term "1")) + (builtin "One Step Simplification" (formula "118")) + (rule "emptyStatement" (formula "118") (term "1")) + (rule "tryEmpty" (formula "118") (term "1")) + (rule "blockEmptyLabel" (formula "118") (term "1")) + (rule "blockEmpty" (formula "118") (term "1")) + (rule "methodCallEmpty" (formula "118") (term "1")) + (rule "emptyModality" (formula "118") (term "1")) + (rule "andRight" (formula "118")) + (branch + (builtin "One Step Simplification" (formula "118")) + (rule "closeTrue" (formula "118")) + ) + (branch + (builtin "One Step Simplification" (formula "118")) + (rule "closeTrue" (formula "118")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "117")) + (branch + (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "117")) + ) + (branch + (builtin "One Step Simplification" (formula "117")) + (rule "wellFormedAnonEQ" (formula "117") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "117") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "117") (term "0,0")) + (rule "wellFormedAnon" (formula "117") (term "0,0,0")) + (rule "replace_known_left" (formula "117") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "117")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "118")) + (builtin "One Step Simplification" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "90") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "translateJavaSubInt" (formula "92") (term "0,0")) + (rule "replace_known_left" (formula "91") (term "0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "91")) + (rule "true_left" (formula "91")) + (rule "polySimp_elimSub" (formula "91") (term "0,0")) + (rule "elim_double_block_2" (formula "119") (term "1")) + (builtin "Use Dependency Contract" (formula "68") (term "0") (ifInst "" (formula "16") (term "0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "117")) (ifInst "" (formula "14")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "92") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "92") (term "1,0,0,0,0")) + (rule "wellFormedAnon" (formula "92") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "92") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "92") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "92") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "92") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "92") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "92") (term "0,0,0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7"))) + (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "92") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "92") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "0,1,0,0")) + (rule "replace_known_left" (formula "92") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "92")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0,0")) + (rule "applyEq" (formula "92") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "92") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "92")) + (rule "applyEq" (formula "92") (term "0,1") (ifseqformula "68")) + (rule "eqSymm" (formula "92") (term "1")) + (rule "distributeIntersection" (formula "92") (term "0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "1,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,1,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,0,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,1,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,0,0,0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,0,0,1,0,1,0")) + (rule "unionEqualsEmpty" (formula "92") (term "1,0")) + (rule "unionEqualsEmpty" (formula "92") (term "0,1,0")) + (rule "disjointWithSingleton1" (formula "92") (term "1,0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,1,0,1,0")) + (rule "replace_known_right" (formula "92") (term "0,0,0,1,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "92")) + (rule "unionEqualsEmpty" (formula "92") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "92") (term "1,1,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "92") (term "0,1,1,1,0")) + (rule "replace_known_right" (formula "92") (term "0,0,0,1,1,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "92")) + (rule "unionEqualsEmpty" (formula "92") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "92") (term "1,1,1,0")) + (builtin "One Step Simplification" (formula "92")) + (rule "true_left" (formula "92")) + (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_11")) + (rule "inequality_comparison_simple" (formula "119") (term "1")) + (builtin "One Step Simplification" (formula "119")) + (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "90")) + (builtin "One Step Simplification" (formula "119")) + (builtin "Use Dependency Contract" (formula "56") (term "1,0") (ifInst "" (formula "16") (term "0,1,0")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "117")) (ifInst "" (formula "14")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "92") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "92") (term "1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "92") (term "0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "92") (term "0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "92") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "92") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "92") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "92") (term "1")) + (rule "translateJavaAddInt" (formula "92") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "92") (term "0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "92") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "92") (term "1,1,0,0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7"))) + (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "92") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "92") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "0,1,0,0")) + (rule "replace_known_left" (formula "92") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "92")) + (rule "applyEq" (formula "92") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "92") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "92")) + (rule "distributeIntersection_2" (formula "92") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "92") (term "1,0")) + (rule "disjointWithSingleton2" (formula "92") (term "0,1,0")) + (rule "distributeIntersection_2" (formula "92") (term "0,1,1,0")) + (rule "elementOfUnion" (formula "92") (term "0,0,1,0")) + (rule "elementOfSingleton" (formula "92") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "92")) + (rule "elementOfSingleton" (formula "92") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "92")) + (rule "true_left" (formula "92")) + (rule "ifSplit" (formula "119")) + (branch "if x_11 true" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_11 false" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "119") (term "1")) + (builtin "Block Contract (Internal)" (formula "119") (newnames "exc_11,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "120") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "120") (term "1")) + (rule "variableDeclaration" (formula "120") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "120") (term "1")) + (builtin "One Step Simplification" (formula "120")) + (rule "emptyStatement" (formula "120") (term "1")) + (builtin "One Step Simplification" (formula "120")) + (rule "emptyStatement" (formula "120") (term "1")) + (rule "tryEmpty" (formula "120") (term "1")) + (rule "blockEmptyLabel" (formula "120") (term "1")) + (rule "blockEmpty" (formula "120") (term "1")) + (rule "methodCallEmpty" (formula "120") (term "1")) + (rule "emptyModality" (formula "120") (term "1")) + (rule "andRight" (formula "120")) + (branch + (builtin "One Step Simplification" (formula "120")) + (rule "closeTrue" (formula "120")) + ) + (branch + (builtin "One Step Simplification" (formula "120")) + (rule "closeTrue" (formula "120")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "119")) + (branch + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "119")) + ) + (branch + (builtin "One Step Simplification" (formula "119")) + (rule "wellFormedAnonEQ" (formula "119") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "119") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "119") (term "0,0")) + (rule "wellFormedAnon" (formula "119") (term "0,0,0")) + (rule "replace_known_left" (formula "119") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "119")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "92")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "92")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "92")) + (rule "translateJavaSubInt" (formula "94") (term "1,0")) + (rule "replace_known_left" (formula "93") (term "0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "93")) + (rule "true_left" (formula "93")) + (rule "polySimp_elimSub" (formula "93") (term "1,0")) + (rule "elim_double_block_2" (formula "121") (term "1")) + (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "121")) + (builtin "Use Dependency Contract" (formula "83") (term "0") (ifInst "" (formula "67") (term "0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "94") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "94") (term "0,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "94") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "94") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "94") (term "1")) + (rule "translateJavaMulInt" (formula "94") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "94") (term "1,0")) + (rule "disjointWithSingleton1" (formula "94") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0")) + (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,1,0")) + (rule "replace_known_left" (formula "94") (term "0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "94")) + (rule "applyEq" (formula "94") (term "0,1") (ifseqformula "67")) + (rule "eqSymm" (formula "94") (term "1")) + (rule "replace_known_left" (formula "94") (term "1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (builtin "Use Dependency Contract" (formula "84") (term "1") (ifInst "" (formula "84") (term "0")) (ifInst "" (formula "75")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "2")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "94") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "94") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "94") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "94") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "94") (term "1")) + (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "94") (term "0,0,0,0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74")) (ifInst "" (formula "84"))) + (rule "true_left" (formula "94")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "121") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "121") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "94") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "94") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "120")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "15")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "94")) + (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "121") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "94") (term "1,1,0,0,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "119")) (ifInst "" (formula "74")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "94") (term "0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "94") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "94") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "94") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "94") (term "0,0,1,1,1,1,0")) + (rule "eqSymm" (formula "94") (term "1")) + (rule "translateJavaMulInt" (formula "94") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "94") (term "0,1,1,1,1,0")) + (rule "replace_known_left" (formula "94") (term "0,0,0,0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "94") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "94") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "94") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,1,0,0")) + (rule "replace_known_left" (formula "94") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "94")) + (rule "applyEq" (formula "94") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "94") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "94")) + (rule "distributeIntersection" (formula "94") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "94") (term "1,0")) + (rule "disjointWithSingleton1" (formula "94") (term "0,1,0")) + (rule "disjointWithSingleton1" (formula "94") (term "1,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,0,1,0")) + (rule "replace_known_right" (formula "94") (term "0,0,0,0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "94")) + (rule "elementOfArrayRangeConcrete" (formula "94") (term "0,1,0")) + (rule "replace_known_right" (formula "94") (term "0,0,0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "94")) + (rule "commute_and" (formula "94") (term "0")) + (rule "ifSplit" (formula "122")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "123")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "123")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "122") (term "1")) + (builtin "Block Contract (Internal)" (formula "122") (newnames "exc_12,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "123")) + (builtin "One Step Simplification" (formula "95") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "123") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "123") (term "1")) + (rule "variableDeclaration" (formula "123") (term "1") (newnames "exc_12_1")) + (rule "assignment" (formula "123") (term "1")) + (builtin "One Step Simplification" (formula "123")) + (rule "emptyStatement" (formula "123") (term "1")) + (builtin "One Step Simplification" (formula "123")) + (rule "emptyStatement" (formula "123") (term "1")) + (rule "tryEmpty" (formula "123") (term "1")) + (rule "blockEmptyLabel" (formula "123") (term "1")) + (rule "blockEmpty" (formula "123") (term "1")) + (rule "methodCallEmpty" (formula "123") (term "1")) + (rule "emptyModality" (formula "123") (term "1")) + (rule "andRight" (formula "123")) + (branch + (builtin "One Step Simplification" (formula "123")) + (rule "closeTrue" (formula "123")) + ) + (branch + (builtin "One Step Simplification" (formula "123")) + (rule "closeTrue" (formula "123")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "122")) + (branch + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "122")) + ) + (branch + (builtin "One Step Simplification" (formula "122")) + (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "122") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "122") (term "0,0")) + (rule "wellFormedAnon" (formula "122") (term "0,0,0")) + (rule "replace_known_left" (formula "122") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "122") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "95")) + (builtin "One Step Simplification" (formula "123")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "95") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "translateJavaSubInt" (formula "97") (term "0,0")) + (rule "translateJavaAddInt" (formula "97") (term "0,0,0")) + (rule "replace_known_left" (formula "96") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "polySimp_elimSub" (formula "96") (term "0,0")) + (rule "polySimp_addComm0" (formula "96") (term "0,0,0")) + (rule "elim_double_block_2" (formula "124") (term "1")) + (rule "ifUnfold" (formula "124") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "124") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "124") (term "1")) + (builtin "One Step Simplification" (formula "124")) + (rule "replace_known_left" (formula "124") (term "0,0,1,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "124")) + (rule "ifSplit" (formula "124")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "124") (term "1")) + (builtin "Block Contract (Internal)" (formula "124") (newnames "exc_13,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "97") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "125") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "125") (term "1")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_13_1")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (rule "tryEmpty" (formula "125") (term "1")) + (rule "blockEmptyLabel" (formula "125") (term "1")) + (rule "blockEmpty" (formula "125") (term "1")) + (rule "methodCallEmpty" (formula "125") (term "1")) + (rule "emptyModality" (formula "125") (term "1")) + (rule "andRight" (formula "125")) + (branch + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + (branch + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "124")) + (branch + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "124")) + ) + (branch + (builtin "One Step Simplification" (formula "124")) + (rule "wellFormedAnonEQ" (formula "124") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "124") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "124") (term "0,0")) + (rule "wellFormedAnon" (formula "124") (term "0,0,0")) + (rule "replace_known_left" (formula "124") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "124")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "97")) + (builtin "One Step Simplification" (formula "125")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "97") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "97")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "97")) + (rule "translateJavaAddInt" (formula "99") (term "3,0")) + (rule "translateJavaAddInt" (formula "99") (term "4,0")) + (rule "translateJavaAddInt" (formula "99") (term "0,4,0")) + (rule "replace_known_left" (formula "98") (term "0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "98")) + (rule "true_left" (formula "98")) + (rule "polySimp_addComm1" (formula "98") (term "4,0")) + (rule "polySimp_addComm0" (formula "98") (term "0,4,0")) + (rule "elim_double_block_2" (formula "126") (term "1")) + (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "126") (term "1")) + (builtin "One Step Simplification" (formula "126")) + (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "126")) + (rule "ifSplit" (formula "126")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "126") (term "1")) + (builtin "Block Contract (Internal)" (formula "126") (newnames "exc_14,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "127") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "127") (term "1")) + (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_14_1")) + (rule "assignment" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (rule "tryEmpty" (formula "127") (term "1")) + (rule "blockEmptyLabel" (formula "127") (term "1")) + (rule "blockEmpty" (formula "127") (term "1")) + (rule "methodCallEmpty" (formula "127") (term "1")) + (rule "emptyModality" (formula "127") (term "1")) + (rule "andRight" (formula "127")) + (branch + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + (branch + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "126")) + (branch + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "126")) + ) + (branch + (builtin "One Step Simplification" (formula "126")) + (rule "wellFormedAnonEQ" (formula "126") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "126") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "126") (term "0,0")) + (rule "wellFormedAnon" (formula "126") (term "0,0,0")) + (rule "replace_known_left" (formula "126") (term "1,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "126")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "One Step Simplification" (formula "127")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "translateJavaAddInt" (formula "101") (term "5,0")) + (rule "translateJavaAddInt" (formula "101") (term "3,0")) + (rule "translateJavaAddInt" (formula "101") (term "4,0")) + (rule "translateJavaAddInt" (formula "101") (term "0,5,0")) + (rule "replace_known_left" (formula "100") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "100")) + (rule "true_left" (formula "100")) + (rule "polySimp_addComm1" (formula "100") (term "5,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,5,0")) + (rule "elim_double_block_2" (formula "128") (term "1")) + (rule "ifUnfold" (formula "128") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "128") (term "1") (newnames "x_15")) + (rule "inequality_comparison_simple" (formula "128") (term "1")) + (builtin "One Step Simplification" (formula "128")) + (rule "replace_known_left" (formula "128") (term "0,0,1,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "128")) + (rule "ifSplit" (formula "128")) + (branch "if x_15 true" + (builtin "One Step Simplification" (formula "129")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_15 false" + (builtin "One Step Simplification" (formula "129")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "128") (term "1")) + (builtin "Block Contract (Internal)" (formula "128") (newnames "exc_15,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "129")) + (rule "eqSymm" (formula "129") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "129") (term "1")) + (rule "variableDeclaration" (formula "129") (term "1") (newnames "exc_15_1")) + (rule "assignment" (formula "129") (term "1")) + (builtin "One Step Simplification" (formula "129")) + (rule "emptyStatement" (formula "129") (term "1")) + (builtin "One Step Simplification" (formula "129")) + (rule "emptyStatement" (formula "129") (term "1")) + (rule "tryEmpty" (formula "129") (term "1")) + (rule "blockEmptyLabel" (formula "129") (term "1")) + (rule "blockEmpty" (formula "129") (term "1")) + (rule "methodCallEmpty" (formula "129") (term "1")) + (rule "emptyModality" (formula "129") (term "1")) + (rule "andRight" (formula "129")) + (branch + (builtin "One Step Simplification" (formula "129")) + (rule "closeTrue" (formula "129")) + ) + (branch + (builtin "One Step Simplification" (formula "129")) + (rule "closeTrue" (formula "129")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "128")) + (branch + (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "128")) + ) + (branch + (builtin "One Step Simplification" (formula "128")) + (rule "wellFormedAnonEQ" (formula "128") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "128") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "128") (term "0,0")) + (rule "wellFormedAnon" (formula "128") (term "0,0,0")) + (rule "replace_known_left" (formula "128") (term "1,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "128") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "128")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "129")) + (builtin "One Step Simplification" (formula "101")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "translateJavaAddInt" (formula "103") (term "3,0")) + (rule "translateJavaAddInt" (formula "103") (term "4,0")) + (rule "translateJavaAddInt" (formula "103") (term "0,4,0")) + (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "polySimp_addComm1" (formula "102") (term "4,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,4,0")) + (rule "elim_double_block_2" (formula "130") (term "1")) + (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_16")) + (rule "inequality_comparison_simple" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "130")) + (builtin "Use Dependency Contract" (formula "83") (term "0") (ifInst "" (formula "69") (term "0")) (ifInst "" (formula "75")) (ifInst "" (formula "63")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "128")) (ifInst "" (formula "2")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "103") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "103") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnon" (formula "103") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "103") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "103") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "103") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "103") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "103") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "103") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "103") (term "1")) + (rule "translateJavaMulInt" (formula "103") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "103") (term "1,0,0,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "103") (term "1,0")) + (rule "disjointWithSingleton1" (formula "103") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "0,1,0,0")) + (rule "replace_known_left" (formula "103") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "103")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "1,0,0,0")) + (rule "applyEq" (formula "103") (term "0,1") (ifseqformula "69")) + (rule "eqSymm" (formula "103") (term "1")) + (rule "applyEq" (formula "103") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "103") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "103")) + (rule "applyEq" (formula "103") (term "0,1") (ifseqformula "83")) + (rule "elementOfUnion" (formula "103") (term "0,1,0")) + (rule "elementOfSingleton" (formula "103") (term "1,0,1,0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "ifSplit" (formula "130")) + (branch "if x_16 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_16 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (rule "variableDeclarationAssign" (formula "130") (term "1")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "first_value")) + (rule "assignment_array2" (formula "130")) + (branch "Normal Execution (_swap_1 != null)" + (builtin "One Step Simplification" (formula "130")) + (builtin "Block Contract (Internal)" (formula "130") (newnames "exc_16,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "131") (term "0,0,1,0,1")) + (rule "pullOutSelect" (formula "131") (term "0,1,0,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "128"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "132") (term "0,1,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_16_1")) + (rule "assignment" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (rule "tryEmpty" (formula "131") (term "1")) + (rule "blockEmptyLabel" (formula "131") (term "1")) + (rule "blockEmpty" (formula "131") (term "1")) + (rule "methodCallEmpty" (formula "131") (term "1")) + (rule "emptyModality" (formula "131") (term "1")) + (rule "andRight" (formula "131")) + (branch + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + (branch + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "130")) + (branch + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "130")) + ) + (branch + (builtin "One Step Simplification" (formula "130")) + (rule "wellFormedAnonEQ" (formula "130") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "130") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "130") (term "0,0")) + (rule "wellFormedAnon" (formula "130") (term "0,0,0")) + (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "131")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "103")) + (rule "expand_inInt" (formula "103") (term "1")) + (rule "replace_int_MAX" (formula "103") (term "1,0,1")) + (rule "replace_int_MIN" (formula "103") (term "0,1,1")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "103")) + (rule "replace_known_left" (formula "104") (term "0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_commuteLeq" (formula "105")) + (rule "pullOutSelect" (formula "133") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "106") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "105") (term "0") (ifseqformula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "130"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "106") (term "0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "134") (term "0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "105") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "elim_double_block_2" (formula "133") (term "1")) + (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_17")) + (rule "inequality_comparison_simple" (formula "133") (term "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "133")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "133") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "133") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "106") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "106") (term "0,1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "132")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "33")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "106")) + (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "133") (term "1,0,1,0,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "106") (term "1,1,0,0,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "131")) (ifInst "" (formula "74")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "106") (term "0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "106") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "106") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "106") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "106") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "106") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "106") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "106") (term "0,1,1,1,1,0")) + (rule "eqSymm" (formula "106") (term "1")) + (rule "translateJavaMulInt" (formula "106") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "106") (term "0,0,0,0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "106") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "106") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "106") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "106") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "106") (term "1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "106") (term "0,1,0,0")) + (rule "replace_known_left" (formula "106") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "106")) + (rule "applyEq" (formula "106") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "106") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "106")) + (rule "distributeIntersection" (formula "106") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "106") (term "1,0")) + (rule "disjointWithSingleton1" (formula "106") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "106") (term "0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "106") (term "0,1,1,0")) + (rule "replace_known_right" (formula "106") (term "0,0,0,1,1,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "106")) + (rule "elementOfArrayRangeConcrete" (formula "106") (term "0,1,0")) + (rule "replace_known_right" (formula "106") (term "0,0,0,1,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "106")) + (rule "commute_and" (formula "106") (term "0")) + (rule "ifSplit" (formula "133")) + (branch "if x_17 true" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_17 false" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "133") (term "1")) + (rule "variableDeclarationAssign" (formula "133") (term "1")) + (rule "variableDeclaration" (formula "133") (term "1") (newnames "target_bucket")) + (builtin "Use Operation Contract" (formula "133") (newnames "heapBefore_classify,result_2,exc_17") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify(int)].JML normal_behavior operation contract.0")) + (branch "Post (classify)" + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "80"))) + (builtin "One Step Simplification" (formula "134")) + (rule "expand_inInt" (formula "106") (term "0,1,0")) + (rule "replace_int_MIN" (formula "106") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "106") (term "1,0,0,1,0")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "108")) + (rule "andLeft" (formula "110")) + (rule "andLeft" (formula "111")) + (rule "eqSymm" (formula "111")) + (rule "inEqSimp_commuteLeq" (formula "107")) + (rule "inEqSimp_commuteLeq" (formula "108")) + (rule "assignment" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (builtin "Block Contract (Internal)" (formula "141") (newnames "exc_18,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "114") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "142") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "142") (term "1")) + (rule "variableDeclaration" (formula "142") (term "1") (newnames "exc_18_1")) + (rule "assignment" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "emptyStatement" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "emptyStatement" (formula "142") (term "1")) + (rule "applyEq" (formula "109") (term "1") (ifseqformula "36")) + (rule "tryEmpty" (formula "142") (term "1")) + (rule "blockEmptyLabel" (formula "142") (term "1")) + (rule "blockEmpty" (formula "142") (term "1")) + (rule "methodCallEmpty" (formula "142") (term "1")) + (rule "emptyModality" (formula "142") (term "1")) + (rule "andRight" (formula "142")) + (branch + (builtin "One Step Simplification" (formula "142")) + (rule "closeTrue" (formula "142")) + ) + (branch + (builtin "One Step Simplification" (formula "142")) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "141")) + (branch + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "141")) + ) + (branch + (builtin "One Step Simplification" (formula "141")) + (rule "wellFormedAnonEQ" (formula "141") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "141") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "141") (term "0,0")) + (rule "wellFormedAnon" (formula "141") (term "0,0,0")) + (rule "replace_known_left" (formula "141") (term "0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "114")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "114") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "andLeft" (formula "114")) + (rule "translateJavaAddInt" (formula "116") (term "4,0")) + (rule "translateJavaAddInt" (formula "116") (term "3,0")) + (rule "translateJavaAddInt" (formula "116") (term "0,4,0")) + (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "115")) + (rule "true_left" (formula "115")) + (rule "polySimp_addComm1" (formula "115") (term "4,0")) + (rule "polySimp_addComm0" (formula "115") (term "0,4,0")) + (rule "applyEq" (formula "109") (term "1") (ifseqformula "36")) + (rule "elim_double_block_2" (formula "143") (term "1")) + (builtin "Use Dependency Contract" (formula "94") (term "1,1") (ifInst "" (formula "143") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "141")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "116") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "116") (term "0,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "116") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "116") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "116") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "116") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "116") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "116") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "116") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "116") (term "1")) + (rule "translateJavaMulInt" (formula "116") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "116") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "116") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "116") (term "1,0,0,0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "polySimp_mulComm0" (formula "116") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "116") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "116") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "116") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "0,1,0,0")) + (rule "replace_known_left" (formula "116") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "116")) + (rule "inEqSimp_commuteLeq" (formula "116") (term "1,0,0,0")) + (rule "distributeIntersection" (formula "116") (term "0,1,0")) + (rule "applyEq" (formula "116") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "116") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "116")) + (rule "unionEqualsEmpty" (formula "116") (term "1,0")) + (rule "disjointWithSingleton1" (formula "116") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "116") (term "0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "116") (term "0,1,1,0")) + (rule "replace_known_right" (formula "116") (term "0,0,0,1,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "116")) + (rule "elementOfArrayRangeConcrete" (formula "116") (term "0,1,0")) + (rule "replace_known_right" (formula "116") (term "0,0,0,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "116")) + (rule "commute_and" (formula "116") (term "0")) + (rule "ifUnfold" (formula "143") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "143") (term "1") (newnames "x_18")) + (rule "inequality_comparison_simple" (formula "143") (term "1")) + (builtin "One Step Simplification" (formula "143")) + (rule "replace_known_left" (formula "143") (term "0,0,1,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "143")) + (rule "ifSplit" (formula "143")) + (branch "if x_18 true" + (builtin "One Step Simplification" (formula "144")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_18 false" + (builtin "One Step Simplification" (formula "144")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "143") (term "1")) + (builtin "Block Contract (Internal)" (formula "143") (newnames "exc_19,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "144")) + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "144") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "144") (term "1")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "exc_19_1")) + (rule "assignment" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "emptyStatement" (formula "144") (term "1")) + (rule "tryEmpty" (formula "144") (term "1")) + (rule "blockEmptyLabel" (formula "144") (term "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (rule "methodCallEmpty" (formula "144") (term "1")) + (rule "emptyModality" (formula "144") (term "1")) + (rule "andRight" (formula "144")) + (branch + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + (branch + (builtin "One Step Simplification" (formula "144")) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "143")) + (branch + (builtin "One Step Simplification" (formula "143") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "143")) + ) + (branch + (builtin "One Step Simplification" (formula "143")) + (rule "wellFormedAnonEQ" (formula "143") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "143") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "143") (term "0,0")) + (rule "wellFormedAnon" (formula "143") (term "0,0,0")) + (rule "replace_known_left" (formula "143") (term "1,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "143") (ifInst "" (formula "20")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "74"))) + (rule "closeTrue" (formula "143")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "144")) + (builtin "One Step Simplification" (formula "116")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "116")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "118")) + (rule "translateJavaAddInt" (formula "118") (term "3,0")) + (rule "translateJavaAddInt" (formula "119") (term "3,0")) + (rule "translateJavaAddInt" (formula "118") (term "0,4,0")) + (rule "translateJavaAddInt" (formula "118") (term "4,0")) + (rule "replace_known_left" (formula "117") (term "0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "117")) + (rule "true_left" (formula "117")) + (rule "polySimp_addComm1" (formula "117") (term "4,0")) + (rule "polySimp_addComm0" (formula "117") (term "0,4,0")) + (rule "elim_double_block_2" (formula "146") (term "1")) + (rule "ifUnfold" (formula "146") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "146") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "146") (term "1")) + (builtin "One Step Simplification" (formula "146")) + (rule "replace_known_left" (formula "146") (term "0,0,1,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "146")) + (rule "ifSplit" (formula "146")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "146") (term "1")) + (builtin "Block Contract (Internal)" (formula "146") (newnames "exc_20,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "147") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "147") (term "1")) + (rule "variableDeclaration" (formula "147") (term "1") (newnames "exc_20_1")) + (rule "assignment" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "emptyStatement" (formula "147") (term "1")) + (builtin "One Step Simplification" (formula "147")) + (rule "emptyStatement" (formula "147") (term "1")) + (rule "tryEmpty" (formula "147") (term "1")) + (rule "blockEmptyLabel" (formula "147") (term "1")) + (rule "blockEmpty" (formula "147") (term "1")) + (rule "methodCallEmpty" (formula "147") (term "1")) + (rule "emptyModality" (formula "147") (term "1")) + (rule "andRight" (formula "147")) + (branch + (builtin "One Step Simplification" (formula "147")) + (rule "closeTrue" (formula "147")) + ) + (branch + (builtin "One Step Simplification" (formula "147")) + (rule "closeTrue" (formula "147")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "146")) + (branch + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "146")) + ) + (branch + (builtin "One Step Simplification" (formula "146")) + (rule "wellFormedAnonEQ" (formula "146") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "146") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "146") (term "0,0")) + (rule "wellFormedAnon" (formula "146") (term "0,0,0")) + (rule "replace_known_left" (formula "146") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "146") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "146")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "147")) + (builtin "One Step Simplification" (formula "119")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "119")) + (rule "andLeft" (formula "119")) + (rule "andLeft" (formula "119")) + (rule "translateJavaAddInt" (formula "121") (term "4,0")) + (rule "translateJavaAddInt" (formula "121") (term "3,0")) + (rule "translateJavaAddInt" (formula "121") (term "0,4,0")) + (rule "replace_known_left" (formula "120") (term "0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "120")) + (rule "true_left" (formula "120")) + (rule "polySimp_addComm1" (formula "120") (term "4,0")) + (rule "polySimp_addComm0" (formula "120") (term "0,4,0")) + (rule "elim_double_block_2" (formula "148") (term "1")) + (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_20")) + (rule "inequality_comparison_simple" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "119")) + (builtin "One Step Simplification" (formula "148")) + (rule "ifSplit" (formula "148")) + (branch "if x_20 true" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_20 false" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "148") (term "1")) + (builtin "Block Contract (Internal)" (formula "148") (newnames "exc_21,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "149") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "exc_21_1")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "emptyStatement" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "emptyStatement" (formula "149") (term "1")) + (rule "tryEmpty" (formula "149") (term "1")) + (rule "blockEmptyLabel" (formula "149") (term "1")) + (rule "blockEmpty" (formula "149") (term "1")) + (rule "methodCallEmpty" (formula "149") (term "1")) + (rule "emptyModality" (formula "149") (term "1")) + (rule "andRight" (formula "149")) + (branch + (builtin "One Step Simplification" (formula "149")) + (rule "closeTrue" (formula "149")) + ) + (branch + (builtin "One Step Simplification" (formula "149")) + (rule "closeTrue" (formula "149")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "148")) + (branch + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "148")) + ) + (branch + (builtin "One Step Simplification" (formula "148")) + (rule "wellFormedAnonEQ" (formula "148") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "148") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "148") (term "0,0")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0")) + (rule "replace_known_left" (formula "148") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "148")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "121")) + (builtin "One Step Simplification" (formula "149")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "121")) + (rule "expand_inInt" (formula "121") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "121") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "121") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "121")) + (rule "andLeft" (formula "121")) + (rule "translateJavaAddInt" (formula "123") (term "0,0,1,0")) + (rule "eqSymm" (formula "123") (term "1,1,0")) + (rule "replace_known_left" (formula "122") (term "0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "122")) + (rule "true_left" (formula "122")) + (rule "inEqSimp_commuteLeq" (formula "122") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "122") (term "1,1,0,0")) + (rule "applyEq" (formula "122") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commute_and" (formula "122") (term "1,0")) + (rule "commute_and" (formula "122") (term "1,0,0")) + (rule "commute_and" (formula "122") (term "0,0,0")) + (rule "shift_paren_and" (formula "122") (term "0,0")) + (rule "commute_and_2" (formula "122") (term "0,0,0")) + (rule "elim_double_block_2" (formula "150") (term "1")) + (rule "ifUnfold" (formula "150") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "150") (term "1") (newnames "x_21")) + (rule "inequality_comparison_simple" (formula "150") (term "1")) + (builtin "One Step Simplification" (formula "150")) + (rule "replace_known_left" (formula "150") (term "0,0,1,0") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "150")) + (builtin "Use Dependency Contract" (formula "14") (ifInst "" (formula "150") (term "0,0,1,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (builtin "Use Dependency Contract" (formula "15") (ifInst "" (formula "150") (term "1,0,1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "123") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "123") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "149")) (ifInst "" (formula "26")) (ifInst "" (formula "20")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "15")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "123")) + (builtin "Use Dependency Contract" (formula "87") (term "0") (ifInst "" (formula "150") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "148")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "123") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "123") (term "0,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "123") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "123") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "123") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "123") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "123") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "123") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "123") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "123") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "123") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "123") (term "0,1,1,1,1,0")) + (rule "eqSymm" (formula "123") (term "1")) + (rule "translateJavaMulInt" (formula "123") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "123") (term "1,1,0,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "123") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "123") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "123") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "123") (term "1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "123") (term "0,1,0,0")) + (rule "replace_known_left" (formula "123") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "123")) + (rule "applyEq" (formula "123") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "123") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "123")) + (rule "distributeIntersection" (formula "123") (term "0,1,0")) + (rule "unionEqualsEmpty" (formula "123") (term "1,0")) + (rule "disjointWithSingleton1" (formula "123") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "123") (term "0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "123") (term "0,1,1,0")) + (rule "replace_known_right" (formula "123") (term "0,0,0,1,1,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "123")) + (rule "elementOfArrayRangeConcrete" (formula "123") (term "0,1,0")) + (rule "replace_known_right" (formula "123") (term "0,0,0,1,0") (ifseqformula "134")) + (builtin "One Step Simplification" (formula "123")) + (rule "commute_and" (formula "123") (term "0")) + (rule "ifSplit" (formula "150")) + (branch "if x_21 true" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_21 false" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "150") (term "1")) + (builtin "Block Contract (Internal)" (formula "150") (newnames "exc_22,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "123") (ifInst "" (formula "31"))) + (rule "eqSymm" (formula "151") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "151") (term "1")) + (rule "variableDeclaration" (formula "151") (term "1") (newnames "exc_22_1")) + (rule "assignment" (formula "151") (term "1")) + (builtin "One Step Simplification" (formula "151")) + (rule "emptyStatement" (formula "151") (term "1")) + (builtin "One Step Simplification" (formula "151")) + (rule "emptyStatement" (formula "151") (term "1")) + (rule "tryEmpty" (formula "151") (term "1")) + (rule "blockEmptyLabel" (formula "151") (term "1")) + (rule "blockEmpty" (formula "151") (term "1")) + (rule "methodCallEmpty" (formula "151") (term "1")) + (rule "emptyModality" (formula "151") (term "1")) + (rule "andRight" (formula "151")) + (branch + (builtin "One Step Simplification" (formula "151")) + (rule "closeTrue" (formula "151")) + ) + (branch + (builtin "One Step Simplification" (formula "151")) + (rule "closeTrue" (formula "151")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "150")) + (branch + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "150")) + ) + (branch + (builtin "One Step Simplification" (formula "150")) + (rule "wellFormedAnonEQ" (formula "150") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "150") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "150") (term "0,0")) + (rule "wellFormedAnon" (formula "150") (term "0,0,0")) + (rule "replace_known_left" (formula "150") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "150") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "150")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "151")) + (builtin "One Step Simplification" (formula "123")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "123") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "123")) + (rule "expand_inInt" (formula "123") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "123") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "123") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "123")) + (rule "andLeft" (formula "123")) + (rule "translateJavaAddInt" (formula "125") (term "0,1,0")) + (rule "replace_known_left" (formula "124") (term "0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "124")) + (rule "true_left" (formula "124")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "124") (term "0,0,0,0")) + (rule "applyEq" (formula "124") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commute_and" (formula "124") (term "1,0,0")) + (rule "commute_and" (formula "124") (term "0,0,0")) + (rule "shift_paren_and" (formula "124") (term "0,0")) + (rule "commute_and_2" (formula "124") (term "0,0,0")) + (rule "elim_double_block_2" (formula "152") (term "1")) + (rule "ifUnfold" (formula "152") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "152") (term "1") (newnames "x_22")) + (rule "inequality_comparison_simple" (formula "152") (term "1")) + (builtin "One Step Simplification" (formula "152")) + (rule "replace_known_left" (formula "152") (term "0,0,1,0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "152")) + (builtin "Use Dependency Contract" (formula "94") (term "1,1") (ifInst "" (formula "152") (term "1,0,1,0,0,0,0,0")) (ifInst "" (formula "75")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,0,0,0,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "150")) (ifInst "" (formula "71")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "125") (term "1,0,0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "125") (term "0,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "125") (term "0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "125") (term "0,1,0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "125") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnon" (formula "125") (term "0,0,1,0,0,0,0")) + (rule "wellFormedAnon" (formula "125") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "125") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "125") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "125") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "125") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "125") (term "0,1,1,1,1,0")) + (rule "eqSymm" (formula "125") (term "1")) + (rule "translateJavaMulInt" (formula "125") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "125") (term "1,1,0,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "125") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "125") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "125") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "125") (term "0,1,0,0")) + (rule "replace_known_left" (formula "125") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "125")) + (rule "inEqSimp_commuteLeq" (formula "125") (term "1,0,0,0")) + (rule "distributeIntersection" (formula "125") (term "0,1,0")) + (rule "applyEq" (formula "125") (term "1,1,0,0") (ifseqformula "54")) + (rule "replace_known_left" (formula "125") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "125")) + (rule "unionEqualsEmpty" (formula "125") (term "1,0")) + (rule "disjointWithSingleton1" (formula "125") (term "1,1,0")) + (rule "disjointWithSingleton1" (formula "125") (term "0,1,0")) + (rule "elementOfArrayRangeConcrete" (formula "125") (term "0,1,1,0")) + (rule "replace_known_right" (formula "125") (term "0,0,0,1,1,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "125")) + (rule "elementOfArrayRangeConcrete" (formula "125") (term "0,1,0")) + (rule "replace_known_right" (formula "125") (term "0,0,0,1,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "125")) + (rule "commute_and" (formula "125") (term "0")) + (rule "ifSplit" (formula "152")) + (branch "if x_22 true" + (builtin "One Step Simplification" (formula "153")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_22 false" + (builtin "One Step Simplification" (formula "153")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "152") (term "1")) + (builtin "Block Contract (Internal)" (formula "152") (newnames "exc_23,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "153")) + (rule "eqSymm" (formula "153") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "153") (term "1")) + (rule "variableDeclaration" (formula "153") (term "1") (newnames "exc_23_1")) + (rule "assignment" (formula "153") (term "1")) + (builtin "One Step Simplification" (formula "153")) + (rule "emptyStatement" (formula "153") (term "1")) + (builtin "One Step Simplification" (formula "153")) + (rule "emptyStatement" (formula "153") (term "1")) + (rule "tryEmpty" (formula "153") (term "1")) + (rule "blockEmptyLabel" (formula "153") (term "1")) + (rule "blockEmpty" (formula "153") (term "1")) + (rule "methodCallEmpty" (formula "153") (term "1")) + (rule "emptyModality" (formula "153") (term "1")) + (rule "andRight" (formula "153")) + (branch + (builtin "One Step Simplification" (formula "153")) + (rule "closeTrue" (formula "153")) + ) + (branch + (builtin "One Step Simplification" (formula "153")) + (rule "closeTrue" (formula "153")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "152")) + (branch + (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "152")) + ) + (branch + (builtin "One Step Simplification" (formula "152")) + (rule "wellFormedAnonEQ" (formula "152") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "152") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "152") (term "0,0")) + (rule "wellFormedAnon" (formula "152") (term "0,0,0")) + (rule "replace_known_left" (formula "152") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "152")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "125")) + (builtin "One Step Simplification" (formula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "125") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "125")) + (rule "expand_inInt" (formula "125") (term "0,0,1")) + (rule "replace_int_MIN" (formula "125") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "125") (term "1,0,0,0,1")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "eqSymm" (formula "127") (term "1,1,0")) + (rule "eqSymm" (formula "127") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "127") (term "1,0,1,0")) + (rule "replace_known_left" (formula "126") (term "0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "126")) + (rule "true_left" (formula "126")) + (rule "polySimp_addComm0" (formula "126") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "126") (term "1,0,0")) + (rule "commute_and" (formula "126") (term "0,0")) + (rule "elim_double_block_2" (formula "154") (term "1")) + (rule "ifUnfold" (formula "154") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "154") (term "1") (newnames "x_23")) + (rule "inequality_comparison_simple" (formula "154") (term "1")) + (builtin "One Step Simplification" (formula "154")) + (rule "replace_known_left" (formula "154") (term "0,0,1,0") (ifseqformula "125")) + (builtin "One Step Simplification" (formula "154")) + (rule "ifSplit" (formula "154")) + (branch "if x_23 true" + (builtin "One Step Simplification" (formula "155")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_23 false" + (builtin "One Step Simplification" (formula "155")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "154") (term "1")) + (builtin "Block Contract (Internal)" (formula "154") (newnames "exc_24,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "31"))) + (builtin "One Step Simplification" (formula "155")) + (rule "eqSymm" (formula "155") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "155") (term "1")) + (rule "variableDeclaration" (formula "155") (term "1") (newnames "exc_24_1")) + (rule "assignment" (formula "155") (term "1")) + (builtin "One Step Simplification" (formula "155")) + (rule "emptyStatement" (formula "155") (term "1")) + (builtin "One Step Simplification" (formula "155")) + (rule "emptyStatement" (formula "155") (term "1")) + (rule "tryEmpty" (formula "155") (term "1")) + (rule "blockEmptyLabel" (formula "155") (term "1")) + (rule "blockEmpty" (formula "155") (term "1")) + (rule "methodCallEmpty" (formula "155") (term "1")) + (rule "emptyModality" (formula "155") (term "1")) + (rule "andRight" (formula "155")) + (branch + (builtin "One Step Simplification" (formula "155")) + (rule "closeTrue" (formula "155")) + ) + (branch + (builtin "One Step Simplification" (formula "155")) + (rule "closeTrue" (formula "155")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "154")) + (branch + (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "31"))) + (rule "closeTrue" (formula "154")) + ) + (branch + (builtin "One Step Simplification" (formula "154")) + (rule "wellFormedAnonEQ" (formula "154") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "154") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "154") (term "0,0")) + (rule "wellFormedAnon" (formula "154") (term "0,0,0")) + (rule "replace_known_left" (formula "154") (term "1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62"))) + (rule "closeTrue" (formula "154")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "155")) + (builtin "One Step Simplification" (formula "127")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "0,1,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "127")) + (rule "expand_inInt" (formula "127") (term "0,0,1")) + (rule "replace_int_MIN" (formula "127") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "127") (term "1,0,0,0,1")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "translateJavaAddInt" (formula "129") (term "0,1,0")) + (rule "replace_known_left" (formula "128") (term "0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "128")) + (rule "true_left" (formula "128")) + (rule "polySimp_addComm0" (formula "128") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "128") (term "1,0,0")) + (rule "commute_and" (formula "128") (term "0,0")) + (rule "elim_double_block_2" (formula "156") (term "1")) + (rule "ifUnfold" (formula "156") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "156") (term "1") (newnames "x_24")) + (rule "inequality_comparison_simple" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "replace_known_left" (formula "156") (term "0,0,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "156")) + (rule "ifSplit" (formula "156")) + (branch "if x_24 true" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_24 false" + (builtin "One Step Simplification" (formula "157")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "156") (term "1")) + (builtin "Use Operation Contract" (formula "156") (newnames "heapBefore_place_block,exc_25,heapAfter_place_block,anon_heap_place_block") (contract "de.wiesler.Permute[de.wiesler.Permute::place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0")) + (branch "Post (place_block)" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "158")) + (rule "expand_inInt" (formula "130") (term "0,0,0,1,1,1,0,1")) + (rule "expand_inInt" (formula "130") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "130") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "130") (term "0,1,0,0,0,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "130") (term "1,0,0,0,0,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "130") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "130") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "130") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "130") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "130")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "133")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "134")) + (rule "andLeft" (formula "133")) + (rule "andLeft" (formula "134")) + (rule "andLeft" (formula "135")) + (rule "translateJavaSubInt" (formula "130") (term "2,0,0,1,0")) + (rule "eqSymm" (formula "132") (term "0,0,1,0")) + (rule "translateJavaAddInt" (formula "134") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "132") (term "0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "130") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "130") (term "1,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "134") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "130") (term "2,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "132") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "132") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "133") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "133") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "134") (term "1,0,0")) + (rule "blockEmpty" (formula "166") (term "1")) + (rule "applyEq" (formula "132") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "applyEq" (formula "133") (term "1,1,0,0,0") (ifseqformula "36")) + (rule "commuteUnion_2" (formula "130") (term "1,1,0")) + (rule "commuteUnion" (formula "130") (term "0,1,0")) + (rule "commuteUnion" (formula "130") (term "0,1,1,0")) + (rule "commuteUnion" (formula "130") (term "1,0")) + (rule "commute_and" (formula "134") (term "0,0")) + (rule "commute_and" (formula "132") (term "0,1,0")) + (rule "commute_and_2" (formula "132") (term "1,0")) + (rule "commute_and" (formula "132") (term "1,0,0")) + (rule "commute_and" (formula "133") (term "1,0,0")) + (rule "commute_and" (formula "132") (term "0,0,0")) + (rule "commute_and" (formula "133") (term "0,0,0")) + (rule "shift_paren_and" (formula "132") (term "0,0")) + (rule "commute_and_2" (formula "132") (term "0,0,0")) + (rule "shift_paren_and" (formula "133") (term "0,0")) + (rule "commute_and_2" (formula "133") (term "0,0,0")) + (rule "associativeLawUnion" (formula "130") (term "1,0")) + (rule "lsContinue" (formula "166") (term "1")) + (builtin "One Step Simplification" (formula "166")) + (rule "precOfInt" (formula "166") (userinteraction)) + (rule "andRight" (formula "166") (userinteraction)) + (branch "Case 1" + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "166") (term "1") (userinteraction)) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "131")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,1,0,0") (ifseqformula "76")) + (rule "wellFormedAnonEQ" (formula "1") (term "1,0,0,0") (ifseqformula "131")) + (rule "wellFormedAnonEQ" (formula "1") (term "0,1,0,0,0") (ifseqformula "76")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "0,0,1,0,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "138")) (ifInst "" (formula "75")) (ifInst "" (formula "130")) (ifInst "" (formula "164")) (ifInst "" (formula "138")) (ifInst "" (formula "136")) (ifInst "" (formula "28"))) + (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "64")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "wellFormedAnon" (formula "1") (term "0,0,1,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")) (ifInst "" (formula "8")) (ifInst "" (formula "63"))) + (rule "polySimp_homoEq" (formula "133") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "123") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "129") (term "1,0")) + (rule "polySimp_homoEq" (formula "125") (term "1,0")) + (rule "polySimp_mulComm0" (formula "133") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "123") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "129") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "125") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "133") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "133") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "123") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "129") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "129") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "167")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_addAssoc" (formula "134") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "134") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "124") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "124") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "130") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "130") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "126") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "134") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "89")) + (rule "polySimp_rightDist" (formula "89") (term "1,0,0")) + (rule "mul_literals" (formula "89") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "126") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "135") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0")) + (rule "add_literals" (formula "89") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "89") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0")) + (rule "mul_literals" (formula "75") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "0,0")) + (rule "add_zero_left" (formula "58") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "applyEq" (formula "2") (term "0,1,0,0") (ifseqformula "56")) + (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_sepNegMonomial" (formula "135") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "135") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "135") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "125") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "125") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "131") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "131") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "131") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "127") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "127") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "127") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "135") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "135") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "112")) + (rule "polySimp_mulComm0" (formula "112") (term "1")) + (rule "polySimp_rightDist" (formula "112") (term "1")) + (rule "polySimp_mulLiterals" (formula "112") (term "1,1")) + (rule "mul_literals" (formula "112") (term "0,1")) + (rule "polySimp_elimOne" (formula "112") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "127") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "127") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "127") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "127") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "127") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "127") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "125") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "125") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "136") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "136") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "136") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "136") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "136") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "136") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "90")) + (rule "polySimp_mulLiterals" (formula "90") (term "0")) + (rule "polySimp_elimOne" (formula "90") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "polySimp_elimOne" (formula "76") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "59")) + (rule "times_zero_2" (formula "59") (term "1")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "43")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "96") (term "0,0") (ifseqformula "15")) + (rule "leq_literals" (formula "96") (term "0,0,0")) + (builtin "One Step Simplification" (formula "96")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "108") (ifseqformula "109")) + (rule "leq_literals" (formula "108") (term "0")) + (builtin "One Step Simplification" (formula "108")) + (rule "true_left" (formula "108")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "instAll" (formula "166") (term "2,0") (ifseqformula "133") (userinteraction)) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "9"))) + (rule "polySimp_homoEq" (formula "129") (term "1,0")) + (rule "polySimp_homoEq" (formula "123") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "125") (term "1,0")) + (rule "polySimp_homoEq" (formula "133") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "129") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "123") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "125") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "133") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "129") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "129") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "123") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "123") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "125") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "133") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "133") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "129") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "129") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "123") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "123") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "125") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "133") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "133") (term "0,0,1,1,0")) + (rule "inEqSimp_ltRight" (formula "167")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "126") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "134") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "89")) + (rule "polySimp_rightDist" (formula "89") (term "1,0,0")) + (rule "mul_literals" (formula "89") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "78") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "135") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "89") (term "0,0")) + (rule "add_literals" (formula "89") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "89") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "add_literals" (formula "58") (term "0,0")) + (rule "add_zero_left" (formula "58") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0")) + (rule "mul_literals" (formula "75") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "130") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "130") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "130") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "124") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "124") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "124") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "126") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "126") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "126") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "134") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "134") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "134") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "126") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "126") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "126") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "126") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "126") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "126") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "134") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "134") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "134") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "134") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "134") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "134") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "111")) + (rule "polySimp_mulComm0" (formula "111") (term "1")) + (rule "polySimp_rightDist" (formula "111") (term "1")) + (rule "polySimp_mulLiterals" (formula "111") (term "1,1")) + (rule "mul_literals" (formula "111") (term "0,1")) + (rule "polySimp_elimOne" (formula "111") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "78") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "135") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "135") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "135") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "135") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "135") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "135") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "124") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "124") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "124") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "124") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "124") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "0")) + (rule "polySimp_elimOne" (formula "89") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "58")) + (rule "times_zero_2" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "42")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "14")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "94") (term "0,0") (ifseqformula "14")) + (rule "leq_literals" (formula "94") (term "0,0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "inEqSimp_subsumption1" (formula "107") (ifseqformula "108")) + (rule "leq_literals" (formula "107") (term "0")) + (builtin "One Step Simplification" (formula "107")) + (rule "true_left" (formula "107")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_subsumption0" (formula "94") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "94") (term "0,0")) + (builtin "One Step Simplification" (formula "94")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "94")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "94")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0")) + (rule "add_literals" (formula "87") (term "1,1,0")) + (rule "times_zero_1" (formula "87") (term "1,0")) + (rule "add_zero_right" (formula "87") (term "0")) + (rule "leq_literals" (formula "87")) + (rule "true_left" (formula "87")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "93")) + (rule "applyEq" (formula "68") (term "1,1") (ifseqformula "93")) + (rule "inEqSimp_subsumption0" (formula "2") (term "0") (ifseqformula "10")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (place_block)" + (builtin "One Step Simplification" (formula "158")) + (builtin "One Step Simplification" (formula "130")) + (rule "andLeft" (formula "130")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,0") (ifseqformula "130")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "0,0,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "133")) + (rule "notLeft" (formula "131")) + (rule "close" (formula "135") (ifseqformula "134")) + ) + (branch "Pre (place_block)" + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "81")) (ifInst "" (formula "80")) (ifInst "" (formula "155")) (ifInst "" (formula "154")) (ifInst "" (formula "153")) (ifInst "" (formula "152")) (ifInst "" (formula "150")) (ifInst "" (formula "151")) (ifInst "" (formula "155")) (ifInst "" (formula "154")) (ifInst "" (formula "153")) (ifInst "" (formula "152")) (ifInst "" (formula "150")) (ifInst "" (formula "151"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "30"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "29"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "28"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "27"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "26"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "1,0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "156") (term "0,1,0,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "21"))) + (rule "wellFormedAnonEQ" (formula "156") (term "0,0,0") (ifseqformula "75")) + (rule "wellFormedAnonEQ" (formula "156") (term "0,0,0,0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "156") (term "0,0,0,0,0")) + (rule "wellFormedAnon" (formula "156") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "156") (term "1,0,0")) + (rule "expand_inInt" (formula "156") (term "1")) + (rule "expand_inInt" (formula "156") (term "1,0")) + (rule "replace_int_MIN" (formula "156") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "156") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "156") (term "0,1,1")) + (rule "replace_int_MAX" (formula "156") (term "1,0,1")) + (rule "replace_int_MAX" (formula "156") (term "1,0,1,0")) + (rule "replace_int_MIN" (formula "156") (term "0,1,1,0")) + (rule "replace_known_left" (formula "156") (term "1,0,0,0") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "156") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "62")) (ifInst "" (formula "106")) (ifInst "" (formula "22")) (ifInst "" (formula "24"))) + (rule "polySimp_homoEq" (formula "122") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "124") (term "1,0")) + (rule "polySimp_homoEq" (formula "128") (term "1,0")) + (rule "polySimp_mulComm0" (formula "122") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "124") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "128") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "122") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "122") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "124") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "124") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "128") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "128") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "76") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "124") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "124") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "87")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "109")) + (rule "polySimp_mulComm0" (formula "109") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "122") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "122") (term "1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "122") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "122") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "124") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "128") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "128") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "156") (term "1")) + (rule "replace_known_left" (formula "156") (term "1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "156")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "0,0")) + (rule "add_zero_left" (formula "56") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0")) + (rule "polySimp_rightDist" (formula "73") (term "0,1,0")) + (rule "mul_literals" (formula "73") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "156") (term "0")) + (rule "replace_known_left" (formula "156") (term "0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "156")) + (rule "inEqSimp_leqRight" (formula "156")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "123") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "123") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "123") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "125") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "125") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "129") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "129") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "129") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "125") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "125") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "125") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "125") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "125") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "125") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "110")) + (rule "polySimp_mulComm0" (formula "110") (term "1")) + (rule "polySimp_rightDist" (formula "110") (term "1")) + (rule "polySimp_mulLiterals" (formula "110") (term "1,1")) + (rule "mul_literals" (formula "110") (term "0,1")) + (rule "polySimp_elimOne" (formula "110") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "123") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "123") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "123") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "123") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "123") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "123") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "times_zero_2" (formula "57") (term "1")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "24") (ifseqformula "1")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "closeFalse" (formula "24")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "80"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "106")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "106")) + (rule "notLeft" (formula "106")) + (rule "close" (formula "108") (ifseqformula "107")) + ) + (branch "Pre (classify)" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "80"))) + (rule "wellFormedAnonEQ" (formula "133") (term "0,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "133") (term "0,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "74")) (ifInst "" (formula "26"))) + (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "133") (term "0,0")) + (rule "wellFormedAnon" (formula "133") (term "0,0,0")) + (rule "expand_inInt" (formula "133") (term "1")) + (rule "replace_int_MAX" (formula "133") (term "1,0,1")) + (rule "replace_int_MIN" (formula "133") (term "0,1,1")) + (rule "replace_known_left" (formula "133") (term "1,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7")) (ifInst "" (formula "104"))) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "87")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,0")) + (rule "mul_literals" (formula "87") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0")) + (rule "add_literals" (formula "87") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "76") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_leqRight" (formula "133")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "88")) + (rule "polySimp_mulLiterals" (formula "88") (term "0")) + (rule "polySimp_elimOne" (formula "88") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "times_zero_2" (formula "57") (term "1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "95") (term "0,0") (ifseqformula "13")) + (rule "leq_literals" (formula "95") (term "0,0,0")) + (builtin "One Step Simplification" (formula "95")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "106")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "131"))) + (rule "closeTrue" (formula "133")) + ) + ) + ) + ) + (branch "Null Reference (_swap_1 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "127"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_swap_1 != null, but 0 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "127"))) + (builtin "One Step Simplification" (formula "131")) + (rule "false_right" (formula "131")) + (rule "less_literals" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "88")) + (rule "polySimp_rightDist" (formula "88") (term "1,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0,0")) + (rule "add_literals" (formula "88") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "88") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "38")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0") (ifseqformula "75")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "0,1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "notLeft" (formula "76")) + (rule "close" (formula "78") (ifseqformula "77")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "100")) (ifInst "" (formula "97")) (ifInst "" (formula "100")) (ifInst "" (formula "97"))) + (rule "andRight" (formula "101")) + (branch "Case 1" + (rule "andRight" (formula "101")) + (branch "Case 1" + (rule "andRight" (formula "101")) + (branch "Case 1" + (rule "andRight" (formula "101")) + (branch + (rule "andRight" (formula "101")) + (branch + (rule "wellFormedAnonEQ" (formula "101") (ifseqformula "63")) + (rule "wellFormedAnon" (formula "101") (term "0")) + (rule "wellFormedAnon" (formula "101") (term "0,0")) + (rule "replace_known_left" (formula "101") (term "1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "20")) (ifInst "" (formula "19")) (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "101")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "101")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "101") (userinteraction)) + (rule "andRight" (formula "101")) + (branch "Case 1" + (rule "replace_int_MAX" (formula "101") (term "1")) + (rule "inEqSimp_leqRight" (formula "101")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "mul_literals" (formula "57") (term "1")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_subsumption1" (formula "45") (ifseqformula "43")) + (rule "leq_literals" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "40") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "50")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "44") (ifseqformula "43")) + (rule "polySimp_mulComm0" (formula "44") (term "0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "44")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "64")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "1")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "72")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "44") (ifseqformula "2")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "closeFalse" (formula "44")) + ) + (branch + (rule "replace_int_MIN" (formula "101") (term "0")) + (rule "inEqSimp_leqRight" (formula "101")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "0,0")) + (rule "add_zero_left" (formula "57") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_invertInEq0" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "times_zero_2" (formula "57") (term "1")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "41")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "polySimp_elimOne" (formula "64") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "64") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "64") (term "0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "1,1,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0")) + (rule "qeq_literals" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64")) + (rule "true_left" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "1")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "add_literals" (formula "64") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "64")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "63") (ifseqformula "38")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "closeFalse" (formula "63")) + ) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "101") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "101")) + ) + ) + (branch + (rule "expand_inInt" (formula "101")) + (rule "replace_int_MIN" (formula "101") (term "0,1")) + (rule "replace_int_MAX" (formula "101") (term "1,0")) + (rule "leq_literals" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "leq_literals" (formula "101")) + (rule "closeTrue" (formula "101")) + ) + ) + (branch + (rule "expand_inInt" (formula "101")) + (rule "replace_int_MIN" (formula "101") (term "0,1")) + (rule "replace_int_MAX" (formula "101") (term "1,0")) + (rule "leq_literals" (formula "101") (term "1")) + (builtin "One Step Simplification" (formula "101")) + (rule "leq_literals" (formula "101")) + (rule "closeTrue" (formula "101")) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (decrement_read)" + (builtin "One Step Simplification" (formula "91")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,0") (ifseqformula "63")) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "66")) + (rule "notLeft" (formula "64")) + (rule "close" (formula "67") (ifseqformula "66")) + ) + (branch "Pre (decrement_read)" + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "2")) (ifInst "" (formula "27"))) + (rule "wellFormedAnon" (formula "89") (term "0")) + (rule "wellFormedAnon" (formula "89") (term "0,0")) + (rule "expand_inInt" (formula "89") (term "1")) + (rule "replace_int_MIN" (formula "89") (term "0,1,1")) + (rule "replace_int_MAX" (formula "89") (term "1,0,1")) + (rule "replace_known_left" (formula "89") (term "1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "20")) (ifInst "" (formula "19"))) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "87") (term "1") (ifseqformula "12")) + (rule "leq_literals" (formula "87") (term "0,1")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_leqRight" (formula "87")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "42")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "43")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "Null reference (_bucket_pointers = null)" + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "86"))) + (rule "closeTrue" (formula "89")) + ) + ) + ) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "apply_eq_boolean" (formula "55") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "elim_double_block_2" (formula "86") (term "1")) + (rule "blockBreak" (formula "86") (term "1")) + (rule "lsBreak" (formula "86") (term "1")) + (rule "assignment" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "preincrement" (formula "86") (term "1")) + (rule "compound_int_cast_expression" (formula "86") (term "1") (inst "#v=x_2")) + (rule "variableDeclarationAssign" (formula "86") (term "1")) + (rule "variableDeclaration" (formula "86") (term "1") (newnames "x_5")) + (rule "remove_parentheses_right" (formula "86") (term "1")) + (rule "assignmentAdditionInt" (formula "86") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "86")) + (rule "expand_inInt" (formula "86")) + (rule "replace_int_MIN" (formula "86") (term "0,1")) + (rule "replace_int_MAX" (formula "86") (term "1,0")) + (rule "polySimp_addComm0" (formula "86") (term "0,0")) + (rule "polySimp_addComm0" (formula "86") (term "1,1")) + (rule "inEqSimp_geqRight" (formula "57")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0")) + (rule "polySimp_mulComm0" (formula "86") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "86") (term "1,0,0")) + (rule "mul_literals" (formula "86") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0")) + (rule "add_literals" (formula "86") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "1")) + (rule "mul_literals" (formula "86") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "86") (term "0,1")) + (rule "add_literals" (formula "86") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "86") (term "0")) + (rule "polySimp_mulLiterals" (formula "86") (term "0,0")) + (rule "polySimp_elimOne" (formula "86") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "86") (term "1")) + (rule "mul_literals" (formula "86") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "40")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "83") (term "1") (ifseqformula "12")) + (rule "leq_literals" (formula "83") (term "0,1")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_leqRight" (formula "83")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "49")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "86")) + (rule "translateJavaAddInt" (formula "86") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "86") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "86") (term "1")) + (rule "assignment" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "blockEmpty" (formula "86") (term "1")) + (rule "lsContinue" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "polySimp_mulComm0" (formula "86") (term "0,0")) + (rule "polySimp_rightDist" (formula "86") (term "0,0")) + (rule "mul_literals" (formula "86") (term "0,0,0")) + (rule "precOfInt" (formula "86")) + (rule "inEqSimp_geqRight" (formula "57")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "86") (term "1")) + (rule "polySimp_rightDist" (formula "86") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "86") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "86") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "86") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "86") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "86") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "86") (term "0,1")) + (rule "polySimp_addComm1" (formula "86") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "86") (term "0,1")) + (rule "add_literals" (formula "86") (term "1,1,0,1")) + (rule "times_zero_1" (formula "86") (term "1,0,1")) + (rule "add_zero_right" (formula "86") (term "0,1")) + (rule "polySimp_addAssoc" (formula "86") (term "0,1")) + (rule "polySimp_addComm1" (formula "86") (term "0,0,1")) + (rule "add_literals" (formula "86") (term "0,0,0,1")) + (rule "add_zero_left" (formula "86") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "86") (term "0,1")) + (rule "add_literals" (formula "86") (term "1,0,1")) + (rule "times_zero_1" (formula "86") (term "0,1")) + (rule "leq_literals" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "inEqSimp_leqRight" (formula "86")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "47") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "1")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_zero_right" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) + (branch "Exceptional Post (hasRemainingRead)" + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "1"))) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "55")) + (rule "close" (formula "57") (ifseqformula "56")) + ) + (branch "Pre (hasRemainingRead)" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "1")) (ifInst "" (formula "26"))) + (rule "wellFormedAnon" (formula "82") (term "0")) + (rule "wellFormedAnon" (formula "82") (term "0,0")) + (rule "expand_inInt" (formula "82") (term "1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1")) + (rule "replace_known_left" (formula "82") (term "1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "19")) (ifInst "" (formula "18"))) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "81") (term "1") (ifseqformula "11")) + (rule "leq_literals" (formula "81") (term "0,1")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_leqRight" (formula "81")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "41")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "42")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Null reference (_bucket_pointers = null)" + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "79"))) + (rule "closeTrue" (formula "82")) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "76")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockBreak" (formula "76") (term "1")) + (rule "lsBreak" (formula "76") (term "1")) + (rule "assignment" (formula "76") (term "1")) + (builtin "One Step Simplification" (formula "76")) + (rule "methodCallEmpty" (formula "76") (term "1")) + (rule "tryEmpty" (formula "76") (term "1")) + (rule "emptyModality" (formula "76") (term "1")) + (rule "andRight" (formula "76")) + (branch + (rule "impRight" (formula "76")) + (rule "andRight" (formula "77")) + (branch + (rule "andRight" (formula "77")) + (branch + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "77")) + ) + (branch + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "8"))) + (rule "closeTrue" (formula "77")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "closeTrue" (formula "77")) + ) + ) + (branch + (rule "impRight" (formula "76")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Exceptional Post (num_buckets)" + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "14"))) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "notLeft" (formula "30")) + (rule "close" (formula "32") (ifseqformula "31")) + ) + (branch "Pre (num_buckets)" + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "14")) (ifInst "" (formula "1")) (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "57")) + ) + (branch "Null reference (_classifier = null)" + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "55"))) + (rule "closeTrue" (formula "57")) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..6037f7d --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__place_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,5910 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Sep 05 21:31:30 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Sep 05 21:31:30 CEST 2022 +contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Permute[de.wiesler.Permute\\:\\:place_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "136003") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "8")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "13")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "12")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "19")) +(rule "andLeft" (formula "2")) +(rule "notLeft" (formula "13")) +(rule "notLeft" (formula "12")) +(rule "andLeft" (formula "24")) +(rule "andLeft" (formula "21")) +(rule "andLeft" (formula "18")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "29")) +(rule "andLeft" (formula "28")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "34")) +(rule "andLeft" (formula "22")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "37")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "23")) +(rule "translateJavaSubInt" (formula "47") (term "0")) +(rule "translateJavaCastInt" (formula "50") (term "0")) +(rule "translateJavaSubInt" (formula "50") (term "1")) +(rule "translateJavaSubInt" (formula "51") (term "1")) +(rule "translateJavaAddInt" (formula "53") (term "0,0,0,1,0")) +(rule "replace_known_right" (formula "13") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "13")) +(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "12")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "11")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "9")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "4")) +(rule "polySimp_elimSub" (formula "47") (term "0")) +(rule "polySimp_elimSub" (formula "50") (term "1")) +(rule "polySimp_elimSub" (formula "51") (term "1")) +(rule "polySimp_addComm0" (formula "47") (term "0")) +(rule "polySimp_addComm0" (formula "50") (term "1")) +(rule "polySimp_addComm0" (formula "51") (term "1")) +(rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) +(rule "notLeft" (formula "43")) +(rule "eqSymm" (formula "53")) +(rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) +(rule "notLeft" (formula "42")) +(rule "eqSymm" (formula "52")) +(rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) +(rule "notLeft" (formula "41")) +(rule "eqSymm" (formula "51")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "eqSymm" (formula "50")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "eqSymm" (formula "49")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "48")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "eqSymm" (formula "47")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "45")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "eqSymm" (formula "43")) +(rule "disjointDefinition" (formula "32")) + (builtin "One Step Simplification" (formula "32")) +(rule "notLeft" (formula "32")) +(rule "eqSymm" (formula "42")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "eqSymm" (formula "41")) +(rule "disjointDefinition" (formula "30")) + (builtin "One Step Simplification" (formula "30")) +(rule "notLeft" (formula "30")) +(rule "disjointDefinition" (formula "29")) + (builtin "One Step Simplification" (formula "29")) +(rule "notLeft" (formula "29")) +(rule "eqSymm" (formula "39")) +(rule "disjointDefinition" (formula "28")) + (builtin "One Step Simplification" (formula "28")) +(rule "notLeft" (formula "28")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "27")) + (builtin "One Step Simplification" (formula "27")) +(rule "notLeft" (formula "27")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "26")) + (builtin "One Step Simplification" (formula "26")) +(rule "notLeft" (formula "26")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "notLeft" (formula "25")) +(rule "disjointDefinition" (formula "24")) + (builtin "One Step Simplification" (formula "24")) +(rule "notLeft" (formula "24")) +(rule "disjointDefinition" (formula "23")) + (builtin "One Step Simplification" (formula "23")) +(rule "notLeft" (formula "23")) +(rule "castedGetAny" (formula "29") (term "0")) +(rule "inEqSimp_commuteLeq" (formula "25")) +(rule "inEqSimp_commuteLeq" (formula "24")) +(rule "inEqSimp_commuteLeq" (formula "23")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "27")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) +(rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) +(rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) +(rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "19")) +(rule "applyEq" (formula "29") (term "1,0") (ifseqformula "19")) +(rule "applyEq" (formula "28") (term "1") (ifseqformula "19")) +(rule "commute_and" (formula "32") (term "0,1,0")) +(rule "commute_and_2" (formula "32") (term "1,0")) +(rule "commute_and" (formula "32") (term "1,0,0")) +(rule "commute_and" (formula "32") (term "0,0,0")) +(rule "shift_paren_and" (formula "32") (term "0,0")) +(rule "commute_and_2" (formula "32") (term "0,0,0")) +(rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_place_block,savedHeapBefore_place_block,_beginBefore_place_block,_bucket_pointersBefore_place_block,_classifierBefore_place_block,_endBefore_place_block,_overflowBefore_place_block,_swap_1Before_place_block,_swap_2Before_place_block,_target_bucketBefore_place_block,_valuesBefore_place_block")) + (builtin "One Step Simplification" (formula "60")) +(rule "variableDeclarationGhostAssign" (formula "60") (term "1")) +(rule "variableDeclarationGhost" (formula "60") (term "1") (newnames "first_target_bucket")) +(rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) +(rule "variableDeclarationAssign" (formula "60") (term "1")) +(rule "variableDeclaration" (formula "60") (term "1") (newnames "first_is_current_swap")) +(rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) +(rule "arrayLengthNotNegative" (formula "22") (term "0")) +(rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) +(rule "qeq_literals" (formula "22")) +(rule "true_left" (formula "22")) +(rule "arrayLengthIsAShort" (formula "22") (term "0")) +(rule "expand_inShort" (formula "22")) +(rule "replace_short_MIN" (formula "22") (term "0,1")) +(rule "replace_short_MAX" (formula "22") (term "1,0")) +(rule "andLeft" (formula "22")) +(rule "inEqSimp_commuteLeq" (formula "23")) +(rule "applyEq" (formula "23") (term "0") (ifseqformula "24")) +(rule "qeq_literals" (formula "23")) +(rule "true_left" (formula "23")) +(rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) +(rule "leq_literals" (formula "22")) +(rule "true_left" (formula "22")) +(rule "arrayLengthIsAShort" (formula "20") (term "0")) +(rule "expand_inShort" (formula "20")) +(rule "replace_short_MIN" (formula "20") (term "0,1")) +(rule "replace_short_MAX" (formula "20") (term "1,0")) +(rule "andLeft" (formula "20")) +(rule "inEqSimp_commuteLeq" (formula "21")) +(rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) +(rule "leq_literals" (formula "20")) +(rule "true_left" (formula "20")) +(rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) +(rule "qeq_literals" (formula "20")) +(rule "true_left" (formula "20")) +(rule "arrayLengthNotNegative" (formula "21") (term "0")) +(rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) +(rule "qeq_literals" (formula "21")) +(rule "true_left" (formula "21")) +(rule "arrayLengthNotNegative" (formula "20") (term "0")) +(rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) +(rule "qeq_literals" (formula "20")) +(rule "true_left" (formula "20")) +(rule "arrayLengthIsAShort" (formula "21") (term "0")) +(rule "expand_inShort" (formula "21")) +(rule "replace_short_MIN" (formula "21") (term "0,1")) +(rule "replace_short_MAX" (formula "21") (term "1,0")) +(rule "andLeft" (formula "21")) +(rule "inEqSimp_commuteLeq" (formula "22")) +(rule "applyEq" (formula "22") (term "0") (ifseqformula "23")) +(rule "qeq_literals" (formula "22")) +(rule "true_left" (formula "22")) +(rule "applyEq" (formula "21") (term "0") (ifseqformula "22")) +(rule "leq_literals" (formula "21")) +(rule "true_left" (formula "21")) +(rule "loopScopeInvDia" (formula "60") (term "1") (newnames "_target_bucket_0,first_is_current_swap_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) +(branch "Invariant Initially Valid" + (rule "closeTrue" (formula "60")) +) +(branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "61")) + (rule "expand_inInt" (formula "61") (term "0,0,1,0")) + (rule "expand_inInt" (formula "61") (term "1,0,0,1,0,0,0")) + (rule "expand_inInt" (formula "61") (term "1,0,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,0,0,1,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "61") (term "0,1,1,0,0,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "61") (term "1,0,1,0,0,0,0,0,0,0,0")) + (rule "impRight" (formula "61")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "translateJavaCastInt" (formula "69") (term "0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "69") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "8") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "7") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "2,0,0,1,0,0")) + (rule "translateJavaAddInt" (formula "1") (term "1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "1") (term "0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "69") (term "2,0,0,1,0,2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,0,0,1,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,0,0,1,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "6") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "6") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "7") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "5") (term "1,2,0,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,0,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "1,2,0,0,1,0,0")) + (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "69") (term "2,0,0,1,0,2,0,1,1,0")) + (rule "mul_literals" (formula "69") (term "1,2,0,0,1,0,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,0,0,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "2,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "69") (term "2,0,0,1,0,2,0,1,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,0,0,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "2,0,0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "5") (term "1,1,0,0,0") (ifseqformula "28")) + (rule "applyEq" (formula "1") (term "1,1,0,0,0") (ifseqformula "28")) + (rule "applyEq" (formula "69") (term "1,0,1,1,0") (ifseqformula "28")) + (rule "applyEq" (formula "3") (term "1") (ifseqformula "28")) + (rule "commuteUnion_2" (formula "69") (term "1,1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "7") (term "1,1,0")) + (rule "commuteUnion_2" (formula "6") (term "1,1,0")) + (rule "commuteUnion" (formula "5") (term "1,1,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "1,1,0,0")) + (rule "commuteUnion" (formula "1") (term "1,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "1") (term "1,1,0,0,1,1,0")) + (rule "commuteUnion_2" (formula "69") (term "1,1,0,2,0,1,1,0")) + (rule "commuteUnion_2" (formula "1") (term "1,1,0,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,1,0")) + (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0")) + (rule "commuteUnion" (formula "1") (term "0,1,0,0,1,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,0,2,0,1,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "8") (term "1,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "8") (term "1,0,0,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "0,1,1,0")) + (rule "commuteUnion" (formula "6") (term "0,1,1,0")) + (rule "commuteUnion" (formula "69") (term "0,1,1,0,2,0,1,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,1,0,0,0,0,0,1,0")) + (rule "commuteUnion_2" (formula "5") (term "1,0,0,1,0")) + (rule "commuteUnion_2" (formula "4") (term "1,0,0")) + (rule "commuteUnion" (formula "1") (term "1,0,0,1,1,0")) + (rule "commuteUnion" (formula "1") (term "1,0,0,1,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,1,1,0,1,0,1,0")) + (rule "commuteUnion_2" (formula "8") (term "0,1,0,0,0,1,0")) + (rule "commuteUnion" (formula "8") (term "1,1,0,0,0,1,0")) + (rule "commuteUnion" (formula "69") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "7") (term "1,0")) + (rule "commuteUnion" (formula "6") (term "1,0")) + (rule "commuteUnion" (formula "69") (term "1,0,2,0,1,1,0")) + (rule "commuteUnion_2" (formula "1") (term "1,0,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "5") (term "0,1,0,0,1,0")) + (rule "commuteUnion" (formula "4") (term "0,1,0,0")) + (rule "commuteUnion_2" (formula "8") (term "1,0,1,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,0,1,0,0,0,1,0")) + (rule "commuteUnion" (formula "1") (term "0,1,0,0,0,0,0,1,0")) + (rule "commuteUnion" (formula "8") (term "0,1,0,1,0,1,0")) + (rule "commute_and" (formula "8") (term "0,0")) + (rule "commute_and" (formula "5") (term "1,0,0")) + (rule "commute_and" (formula "1") (term "1,0,0")) + (rule "commute_and" (formula "5") (term "0,0,0")) + (rule "commute_and" (formula "1") (term "0,0,0")) + (rule "commute_and" (formula "1") (term "0,1,0")) + (rule "commute_and_2" (formula "1") (term "1,0")) + (rule "associativeLawUnion" (formula "7") (term "1,0")) + (rule "associativeLawUnion" (formula "6") (term "1,0")) + (rule "shift_paren_and" (formula "5") (term "0,0")) + (rule "commute_and_2" (formula "5") (term "0,0,0")) + (rule "shift_paren_and" (formula "1") (term "0,0")) + (rule "commute_and_2" (formula "1") (term "0,0,0")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "seqGetAlphaCast" (formula "41") (term "0")) + (rule "castedGetAny" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0")) + (rule "associativeLawUnion" (formula "72") (term "1,0,1,0,1,0")) + (rule "associativeLawUnion" (formula "8") (term "1,0,0,0,1,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "64") (term "1") (ifseqformula "10") (ifseqformula "19")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "66") (term "0,0") (ifseqformula "11") (ifseqformula "19")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "67") (term "1") (ifseqformula "12") (ifseqformula "20")) + (rule "associativeLawUnion" (formula "75") (term "1,0,2,0,1,1,0")) + (rule "associativeLawUnion" (formula "8") (term "0,0,1,0,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "1,0,0,1,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "1,0,0,0,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,1,0,1,0")) + (rule "associativeLawUnion" (formula "4") (term "0,0,1,0,0,0,0,1,0")) + (rule "ifElseSplit" (formula "75")) + (branch "if true true" + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "new_target")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "75") (term "1")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_1")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_2")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_3")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_4")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_5")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_6")) + (rule "condition_simple" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_7")) + (rule "condition_simple" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (rule "variableDeclarationAssign" (formula "75") (term "1")) + (rule "variableDeclaration" (formula "75") (term "1") (newnames "var_8")) + (rule "assignment" (formula "75") (term "1")) + (builtin "One Step Simplification" (formula "75")) + (builtin "Use Operation Contract" (formula "75") (newnames "heapBefore_swap_block,result_21,exc_25,heapAfter_swap_block,anon_heap_swap_block") (contract "de.wiesler.Permute[de.wiesler.Permute::swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0")) + (branch "Post (swap_block)" + (builtin "One Step Simplification" (formula "49")) + (builtin "One Step Simplification" (formula "77")) + (rule "expand_inInt" (formula "49") (term "1,0,0,0,1,1,0,1")) + (rule "expand_inInt" (formula "49") (term "0,0,0,1,1,1,1,1,0,1")) + (rule "expand_inInt" (formula "49") (term "0,1,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "49") (term "1,0,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,0,0,0,1,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "49") (term "1,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "49") (term "0,1,0,1,0,1")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "52")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "57")) + (rule "translateJavaSubInt" (formula "49") (term "2,0,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "53") (term "1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "1,1,0")) + (rule "translateJavaMulInt" (formula "49") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "1,2,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "56") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,1,1,0,1,0")) + (rule "ifthenelse_negated" (formula "56") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0")) + (rule "assignment" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "blockEmpty" (formula "88") (term "1")) + (rule "applyEq" (formula "55") (term "1,1,1,1") (ifseqformula "31")) + (rule "applyEq" (formula "53") (term "1,1,0,0,0") (ifseqformula "31")) + (rule "commuteUnion" (formula "49") (term "1,1,0")) + (rule "commuteUnion" (formula "49") (term "0,1,0")) + (rule "commute_and" (formula "56") (term "0,0")) + (rule "commute_and_2" (formula "53") (term "0,1,0")) + (rule "commute_and" (formula "55") (term "1,1")) + (rule "commute_and" (formula "53") (term "1,0,0")) + (rule "commute_and" (formula "53") (term "0,0,0")) + (rule "shift_paren_and" (formula "55") (term "1")) + (rule "commute_and" (formula "53") (term "0,0,1,0")) + (rule "commute_and_2" (formula "53") (term "0,1,0")) + (rule "commute_and_2" (formula "53") (term "1,0")) + (rule "shift_paren_and" (formula "53") (term "0,0")) + (rule "commute_and_2" (formula "53") (term "0,0,0")) + (rule "associativeLawUnion" (formula "49") (term "1,0")) + (rule "commuteUnion_2" (formula "49") (term "0,1,0")) + (rule "commuteUnion" (formula "49") (term "0,0,1,0")) + (rule "ifUnfold" (formula "88") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "88") (term "1") (newnames "x_2")) + (rule "equality_comparison_simple" (formula "88") (term "1")) + (builtin "One Step Simplification" (formula "88")) + (rule "ifSplit" (formula "88")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_left" (formula "57") (term "0,0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "57")) + (rule "add_zero_left" (formula "57") (term "0,1,0")) + (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "applyEq" (formula "88") (term "0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "53") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "53")) + (rule "true_left" (formula "53")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "52")) + (rule "true_left" (formula "52")) + (rule "applyEq" (formula "52") (term "1,0,1,0,1,1,0") (ifseqformula "1")) + (rule "blockBreak" (formula "86") (term "1")) + (rule "blockBreak" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "lsBreak" (formula "86") (term "1")) + (rule "assignment" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "methodCallEmpty" (formula "86") (term "1")) + (rule "tryEmpty" (formula "86") (term "1")) + (rule "emptyModality" (formula "86") (term "1")) + (rule "andRight" (formula "86")) + (branch + (rule "impRight" (formula "86")) + (rule "andRight" (formula "87")) + (branch + (rule "andRight" (formula "87")) + (branch + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "87")) + ) + (branch + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "59"))) + (rule "closeTrue" (formula "87")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "87")) + (rule "closeTrue" (formula "87")) + ) + ) + (branch + (rule "impRight" (formula "86")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "89")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "56") (term "0,0,0,1,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "56")) + (rule "replace_known_right" (formula "55") (term "0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "compound_assignment_1_new" (formula "91") (term "1")) + (builtin "One Step Simplification" (formula "91")) + (rule "assignment" (formula "91") (term "1")) + (builtin "One Step Simplification" (formula "91")) + (rule "blockEmpty" (formula "91") (term "1")) + (rule "lsContinue" (formula "91") (term "1")) + (builtin "One Step Simplification" (formula "91")) + (rule "precOfInt" (formula "91") (userinteraction)) + (rule "andRight" (formula "91") (userinteraction)) + (branch "Case 1" + (rule "leq_to_geq" (formula "91") (userinteraction)) + (rule "bsum_positive" (formula "91") (userinteraction)) + (rule "allRight" (formula "91") (inst "sk=b_0") (userinteraction)) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "91") (term "0,1") (userinteraction)) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "91") (term "1,0,1") (userinteraction)) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "62")) (ifInst "" (formula "89")) (ifInst "" (formula "62")) (ifInst "" (formula "60")) (ifInst "" (formula "23"))) + (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "50")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "impRight" (formula "92")) + (rule "andLeft" (formula "1")) + (rule "translateJavaSubInt" (formula "94") (term "0")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "94") (term "1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,1,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "polySimp_homoEq" (formula "61") (term "1,0")) + (rule "polySimp_homoEq" (formula "56") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "7") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_elimSub" (formula "94") (term "0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "94") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,1,0")) + (rule "inEqSimp_geqRight" (formula "95")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0")) + (rule "inEqSimp_geqRight" (formula "95")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0,0,0,1")) + (rule "applyEq" (formula "2") (term "1,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "36")) + (rule "replace_known_left" (formula "5") (term "0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "polySimp_sepPosMonomial" (formula "67") (term "1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "67") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "62") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "13") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "polySimp_elimOne" (formula "52") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "62") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "66")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "47") (ifseqformula "48")) + (rule "leq_literals" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "50")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "43")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "63")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_contradInEq1" (formula "7") (ifseqformula "1")) + (rule "andLeft" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0")) + (rule "add_zero_right" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Case 2" + (rule "applyEqReverse" (formula "91") (term "1,1") (ifseqformula "31") (userinteraction)) + (rule "bsum_less_same_index" (formula "91") (userinteraction)) + (rule "andRight" (formula "91") (userinteraction)) + (branch "Case 1" + (rule "allRight" (formula "91") (inst "sk=b0_0") (userinteraction)) + (rule "impRight" (formula "91") (userinteraction)) + (rule "allLeftHide" (formula "54") (inst "t=b0_0") (userinteraction)) + (rule "impLeft" (formula "54") (userinteraction)) + (branch "Case 1" + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "64") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "64")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "59") (term "1,0")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0")) + (rule "inEqSimp_leqRight" (formula "93")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "94")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "57") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35")) + (rule "replace_known_left" (formula "66") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "66")) + (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "35")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "61") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "8") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradEq7" (formula "67") (ifseqformula "60")) + (rule "add_zero_left" (formula "67") (term "0,0")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "false_right" (formula "67")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "43")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "65") (term "0") (ifseqformula "3")) + (rule "leq_literals" (formula "65") (term "0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_leqRight" (formula "65")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "55") (ifseqformula "59")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "42")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "48") (term "0,0,0")) + (rule "leq_literals" (formula "48") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "57") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "57") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "57") (term "1,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "57") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "1,0,0")) + (rule "mul_literals" (formula "57") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "57") (term "0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0")) + (rule "mul_literals" (formula "57") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "48") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "48") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "59")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "eqSymm" (formula "64")) + (rule "translateJavaMulInt" (formula "61") (term "1,1")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,0")) + (rule "eqSymm" (formula "61")) + (rule "polySimp_elimSub" (formula "64") (term "0,2,1")) + (rule "mul_literals" (formula "64") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "64") (term "0,2,0")) + (rule "mul_literals" (formula "64") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "64") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "59")) + (rule "applyEq" (formula "60") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "59") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "61") (term "1") (ifseqformula "31")) + (rule "pullOutSelect" (formula "64") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "65") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "65")) + (rule "simplifySelectOfAnonEQ" (formula "64") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "64")) + (rule "elementOfUnion" (formula "65") (term "0,0,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "eqSymm" (formula "65") (term "1,0,0,0")) + (rule "elementOfUnion" (formula "64") (term "0,0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "eqSymm" (formula "64") (term "1,0,0,0")) + (rule "elementOfUnion" (formula "65") (term "0,0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "65") (term "1,0,0,0,0")) + (rule "replace_known_right" (formula "65") (term "0,0,1,0,0,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "65")) + (rule "elementOfUnion" (formula "64") (term "0,0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "64") (term "1,0,0,0,0")) + (rule "replace_known_right" (formula "64") (term "0,0,1,0,0,0,0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "64")) + (rule "elementOfUnion" (formula "65") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "85"))) + (rule "elementOfSingleton" (formula "65") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "87"))) + (rule "elementOfUnion" (formula "64") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "85"))) + (rule "elementOfSingleton" (formula "64") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "87"))) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "60")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "Case 2" + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "eqTermCut" (formula "96") (term "2,1") (inst "s=_target_bucket_0") (userinteraction)) + (branch "Assume b0_0 = _target_bucket_0" + (rule "eqSymm" (formula "59") (term "0,1,0")) + (rule "replace_known_left" (formula "59") (term "0,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_homoEq" (formula "7") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "14") (term "1,0")) + (rule "polySimp_homoEq" (formula "64") (term "1,0")) + (rule "polySimp_homoEq" (formula "59")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "97")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "98")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm1" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "58") (term "6,0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "59") (term "7,0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "60") (term "2,0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "2") (term "2,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "59") (term "2,1") (ifseqformula "3")) + (rule "applyEq" (formula "60") (term "4,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "2") (term "2,1,0,0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "59") (term "1,0,0,1,0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "59") (term "4,0,1,0,0,0") (ifseqformula "3")) + (rule "polySimp_sepPosMonomial" (formula "7") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "64") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "64") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "50") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "50") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "50") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "50") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "50") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradEq7" (formula "69") (ifseqformula "63")) + (rule "add_zero_left" (formula "69") (term "0,0")) + (rule "mul_literals" (formula "69") (term "0,0")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "false_right" (formula "69")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "42")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "38")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "53") (ifseqformula "61")) + (rule "leq_literals" (formula "53") (term "0")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "43")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "56") (ifseqformula "2")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_homoInEq1" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,1,0")) + (rule "times_zero_1" (formula "56") (term "1,0")) + (rule "add_zero_right" (formula "56") (term "0")) + (rule "leq_literals" (formula "56")) + (rule "closeFalse" (formula "56")) + ) + (branch "Assume b0_0 != _target_bucket_0" + (builtin "Use Dependency Contract" (formula "97") (term "0") (ifInst "" (formula "98") (term "2,1")) (ifInst "" (formula "52")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0") (userinteraction)) + (rule "impLeft" (formula "69") (userinteraction)) + (branch "Case 1" + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "95")) (ifInst "" (formula "12")) (ifInst "" (formula "25")) (userinteraction)) + (rule "andRight" (formula "69")) + (branch + (rule "andRight" (formula "69")) + (branch + (rule "andRight" (formula "69")) + (branch + (rule "andRight" (formula "69")) + (branch + (rule "wellFormedAnon" (formula "69")) + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "69")) + ) + (branch + (rule "wellFormedAnonEQ" (formula "69") (ifseqformula "52")) + (rule "wellFormedAnon" (formula "69") (term "0")) + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "replace_known_left" (formula "69") (term "1") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "15")) (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "69")) + ) + ) + (branch + (rule "expand_inInt" (formula "69")) + (rule "replace_int_MAX" (formula "69") (term "1,0")) + (rule "replace_int_MIN" (formula "69") (term "0,1")) + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "35")) + (rule "polySimp_sepNegMonomial" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "65") (term "1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "65") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "8") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "47")) + (rule "polySimp_mulLiterals" (formula "47") (term "0")) + (rule "polySimp_elimOne" (formula "47") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "64")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "71") (term "1") (ifseqformula "3")) + (rule "leq_literals" (formula "71") (term "0,1")) + (builtin "One Step Simplification" (formula "71")) + (rule "inEqSimp_leqRight" (formula "71")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "39")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "41")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "42")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "37")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_and_subsumption3" (formula "12") (term "0,0,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_and_subsumption3" (formula "48") (term "0,0,0")) + (rule "leq_literals" (formula "48") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "61") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "48") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "61") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "61") (term "0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "61") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "61") (term "0,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "61") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "61") (term "1,0,0")) + (rule "mul_literals" (formula "61") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "48") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "48") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "11") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "35") (term "0,2,0")) + (rule "eqSymm" (formula "32")) + (rule "eqSymm" (formula "35")) + (rule "translateJavaMulInt" (formula "32") (term "1,0")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_elimSub" (formula "35") (term "0,2,0")) + (rule "mul_literals" (formula "35") (term "1,0,2,0")) + (rule "eqSymm" (formula "35")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "37")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "50") (term "0,0")) + (rule "mul_literals" (formula "50") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "add_literals" (formula "50") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "0")) + (rule "polySimp_elimOne" (formula "50") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "50")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch + (rule "andRight" (formula "69")) + (branch + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "69")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "36")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "3")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "71")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "applyEq" (formula "3") (term "1,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "36")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "47")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "43")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + (branch "Case 2" + (rule "disjointDefinition" (formula "69") (userinteraction)) + (rule "distributeIntersection_2" (formula "69") (term "0") (userinteraction)) + (rule "distributeIntersection_2" (formula "69") (term "0,0") (userinteraction)) + (rule "unionEqualsEmpty" (formula "69") (userinteraction)) + (rule "unionEqualsEmpty" (formula "69") (term "0") (userinteraction)) + (rule "andRight" (formula "69")) + (branch + (rule "andRight" (formula "69")) + (branch + (rule "notLeft" (formula "1")) + (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0")) + (rule "disjointWithSingleton1" (formula "71")) + (rule "notRight" (formula "71")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "3") (term "1,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "36")) + (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "65")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "47")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "39")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "42")) + (rule "leq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "elementOfUnion" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "83"))) + (rule "elementOfSingleton" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_homoEq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "elimGcdEq" (formula "1") (inst "elimGcdRightDiv=_target_bucket_0") (inst "elimGcdLeftDiv=b0_0") (inst "elimGcd=Z(2(#))")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "67"))) + (rule "mul_literals" (formula "1") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,1,0")) + (rule "add_literals" (formula "1") (term "1,0,1,0")) + (rule "times_zero_1" (formula "1") (term "0,1,0")) + (rule "qeq_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch + (rule "notLeft" (formula "1")) + (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0")) + (rule "disjointWithSingleton1" (formula "71")) + (rule "notRight" (formula "71")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "elementOfArrayRangeConcrete" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "close" (formula "78") (ifseqformula "1")) + ) + ) + (branch "Case 2" + (rule "notLeft" (formula "1")) + (rule "translateJavaAddInt" (formula "69") (term "0,1,1,0")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "69") (term "0,0,1,1,0")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "inEqSimp_leqRight" (formula "98")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0,0,1,0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,1,0")) + (rule "disjointWithSingleton1" (formula "71")) + (builtin "One Step Simplification" (formula "71")) + (rule "notRight" (formula "71")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "62") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "52") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "36")) + (rule "applyEq" (formula "66") (term "1,0,0,0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "54") (term "0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "36")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "9") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "66") (term "1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "66") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "52") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradEq7" (formula "72") (ifseqformula "65")) + (rule "mul_literals" (formula "72") (term "1,0,0")) + (rule "add_zero_left" (formula "72") (term "0,0")) + (rule "leq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "false_right" (formula "72")) + (rule "inEqSimp_subsumption1" (formula "43") (ifseqformula "44")) + (rule "leq_literals" (formula "43") (term "0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "40")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "45")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "62")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "40")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "42")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "43")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "38")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "41")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "38")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_and_subsumption3" (formula "49") (term "0,0,0")) + (rule "leq_literals" (formula "49") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "49")) + (rule "inEqSimp_and_subsumption3" (formula "13") (term "0,0,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_and_subsumption3" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "commuteUnion_2" (formula "51") (term "1,0")) + (rule "commuteUnion_2" (formula "51") (term "0,1,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "62") (term "0")) + (rule "nnf_imp2or" (formula "49") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "62") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "62") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "62") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "0,0,0")) + (rule "mul_literals" (formula "62") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "49") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "49") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "1,0,0")) + (rule "mul_literals" (formula "49") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "31")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,1")) + (rule "eqSymm" (formula "33")) + (rule "eqSymm" (formula "36")) + (rule "translateJavaMulInt" (formula "33") (term "1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "38")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "53") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "53") (term "0,0")) + (rule "mul_literals" (formula "53") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "53") (term "0")) + (rule "add_literals" (formula "53") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "polySimp_elimOne" (formula "53") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "53")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "mul_literals" (formula "68") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "68") (term "0")) + (rule "add_literals" (formula "68") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "0")) + (rule "polySimp_elimOne" (formula "68") (term "0")) + (rule "inEqSimp_subsumption0" (formula "61") (ifseqformula "68")) + (rule "leq_literals" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "true_left" (formula "61")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "16")) (ifInst "" (formula "101")) (ifInst "" (formula "16")) (ifInst "" (formula "24"))) + (rule "wellFormedAnon" (formula "63") (term "1,0")) + (rule "replace_known_left" (formula "63") (term "1,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "20"))) + (rule "inEqSimp_ltToLeq" (formula "63") (term "1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "63") (term "0,0")) + (rule "replace_known_left" (formula "63") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "63")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,0")) + (rule "replace_known_left" (formula "63") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "66") (term "0")) + (rule "translateJavaSubInt" (formula "66") (term "1,0")) + (rule "polySimp_elimSub" (formula "66") (term "1,0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "66") (term "0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "31") (inst "b=b")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "translateJavaAddInt" (formula "37") (term "1")) + (rule "translateJavaCastInt" (formula "38") (term "0")) + (rule "translateJavaMulInt" (formula "32") (term "0")) + (rule "translateJavaMulInt" (formula "31") (term "1")) + (rule "translateJavaCastInt" (formula "35") (term "0")) + (rule "translateJavaCastInt" (formula "34") (term "1")) + (rule "polySimp_mulComm0" (formula "32") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_addComm0" (formula "37") (term "1")) + (rule "castedGetAny" (formula "38") (term "0")) + (rule "castedGetAny" (formula "35") (term "0")) + (rule "castedGetAny" (formula "34") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "63")) + (rule "inEqSimp_commuteGeq" (formula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "62")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption6" (formula "31") (ifseqformula "39")) + (rule "mul_literals" (formula "31") (term "1,1,0")) + (rule "greater_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_exactShadow2" (formula "13") (ifseqformula "31")) + (rule "greater_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow2" (formula "6") (ifseqformula "32")) + (rule "greater_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "63")) + (rule "times_zero_1" (formula "34") (term "0,0")) + (rule "add_zero_left" (formula "34") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "inEqSimp_exactShadow2" (formula "79") (ifseqformula "33")) + (rule "greater_literals" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "79") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0,0")) + (rule "mul_literals" (formula "79") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "79")) + (rule "polySimp_mulComm0" (formula "79") (term "1")) + (rule "polySimp_rightDist" (formula "79") (term "1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1")) + (rule "mul_literals" (formula "79") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "40") (ifseqformula "33")) + (rule "mul_literals" (formula "40") (term "1,0,0,1")) + (rule "greater_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "mul_literals" (formula "40") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40")) + (rule "mul_literals" (formula "40") (term "1")) + (rule "inEqSimp_exactShadow2" (formula "62") (ifseqformula "33")) + (rule "greater_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "polySimp_rightDist" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "mul_literals" (formula "62") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "translateJavaAddInt" (formula "72") (term "3,0,0,1")) + (rule "translateJavaAddInt" (formula "72") (term "3,0,2")) + (rule "translateJavaAddInt" (formula "72") (term "4,0,2")) + (rule "translateJavaSubInt" (formula "72") (term "4,0,0,1")) + (rule "translateJavaSubInt" (formula "72") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "72") (term "0,4,0,0,1")) + (rule "polySimp_elimSub" (formula "72") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "72") (term "4,0,0,1")) + (rule "mul_literals" (formula "72") (term "1,4,0,0,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "4,0,0,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,4,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "10")) + (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "translateJavaAddInt" (formula "70") (term "3,0,1")) + (rule "translateJavaAddInt" (formula "70") (term "4,0,1")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "70") (term "0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,1,0")) + (rule "mul_literals" (formula "70") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "70") (term "1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "65") (term "0")) + (rule "replace_known_right" (formula "65") (term "0,1,0,0,0,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "31")) (ifInst "" (formula "21")) (ifInst "" (formula "24")) (ifInst "" (formula "115")) (ifInst "" (formula "31"))) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "76") (term "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "115")) (ifInst "" (formula "86")) (ifInst "" (formula "25"))) + (rule "wellFormedAnonEQ" (formula "76") (term "1,0") (ifseqformula "69")) + (rule "wellFormedAnon" (formula "76") (term "0,1,0")) + (rule "replace_known_left" (formula "76") (term "1,1,0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "21")) (ifInst "" (formula "20"))) + (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "76")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "77") (term "1")) + (rule "translateJavaSubInt" (formula "77") (term "1,1")) + (rule "polySimp_elimSub" (formula "77") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,1")) + (rule "mul_literals" (formula "77") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "86") (inst "b=b")) + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "34")) (ifInst "" (formula "37"))) + (rule "expand_inInt" (formula "86") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "86") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "86") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "88")) + (rule "translateJavaCastInt" (formula "92") (term "0")) + (rule "translateJavaAddInt" (formula "91") (term "1")) + (rule "translateJavaMulInt" (formula "86") (term "1")) + (rule "translateJavaMulInt" (formula "87") (term "0")) + (rule "translateJavaCastInt" (formula "90") (term "0")) + (rule "translateJavaCastInt" (formula "89") (term "1")) + (rule "polySimp_mulComm0" (formula "86") (term "1")) + (rule "polySimp_mulComm0" (formula "87") (term "0")) + (rule "polySimp_addComm0" (formula "90") (term "1")) + (rule "castedGetAny" (formula "90") (term "0")) + (rule "castedGetAny" (formula "89") (term "0")) + (rule "castedGetAny" (formula "88") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "90") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "inEqSimp_commuteLeq" (formula "86")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "63")) + (rule "inEqSimp_commuteGeq" (formula "87")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "63")) + (rule "inEqSimp_homoInEq0" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "88") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "88") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "88") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "88") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "87")) + (rule "polySimp_mulLiterals" (formula "87") (term "0")) + (rule "polySimp_elimOne" (formula "87") (term "0")) + (rule "inEqSimp_subsumption6" (formula "86") (ifseqformula "40")) + (rule "greater_literals" (formula "86") (term "0,0")) + (builtin "One Step Simplification" (formula "86")) + (rule "mul_literals" (formula "86") (term "1,0")) + (rule "leq_literals" (formula "86") (term "0")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "87")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "43"))) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "translateJavaSubInt" (formula "91") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "91") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "89") (term "1,1")) + (rule "eqSymm" (formula "91")) + (rule "eqSymm" (formula "89")) + (rule "polySimp_elimSub" (formula "91") (term "0,2,1")) + (rule "mul_literals" (formula "91") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "91") (term "0,2,0")) + (rule "mul_literals" (formula "91") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm0" (formula "91") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "91") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "47")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "42")) + (rule "eqSymm" (formula "88")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "47")) + (rule "pullOutSelect" (formula "88") (term "1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "88") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "88")) + (rule "simplifySelectOfAnonEQ" (formula "89") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "89")) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "88") (term "1,0,0,0")) + (rule "replace_known_right" (formula "88") (term "0,0,1,0,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "88")) + (rule "elementOfUnion" (formula "89") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "89") (term "1,0,0,0")) + (rule "replace_known_right" (formula "89") (term "0,0,1,0,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "89")) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (rule "elementOfSingleton" (formula "88") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "112"))) + (rule "elementOfUnion" (formula "89") (term "0,0,0")) + (rule "elementOfSingleton" (formula "89") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "112"))) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "110")) (ifInst "" (formula "112"))) + (rule "elementOfUnion" (formula "89") (term "0,0,0")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "110")) (ifInst "" (formula "112"))) + (rule "pullOutSelect" (formula "88") (term "2,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "88")) + (builtin "One Step Simplification" (formula "88")) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "88") (term "1,0,0,0")) + (rule "replace_known_right" (formula "88") (term "0,0,1,0,0,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "88")) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "113"))) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "108"))) + (rule "elementOfUnion" (formula "88") (term "0,0,0")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "111")) (ifInst "" (formula "104"))) + (rule "pullOutSelect" (formula "90") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "90")) + (builtin "One Step Simplification" (formula "90")) + (rule "applyEq" (formula "90") (term "2,0") (ifseqformula "45")) + (rule "elementOfUnion" (formula "90") (term "0,0,0")) + (rule "elementOfArrayRangeConcrete" (formula "90") (term "1,0,0,0")) + (rule "replace_known_right" (formula "90") (term "0,0,1,0,0,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "90")) + (rule "elementOfUnion" (formula "90") (term "0,0,0")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "114"))) + (rule "elementOfUnion" (formula "90") (term "0,0,0")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "109"))) + (rule "elementOfUnion" (formula "90") (term "0,0,0")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "112")) (ifInst "" (formula "105"))) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "16") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "16") (term "1,0,0")) + (rule "replace_int_MIN" (formula "16") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "16") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "notLeft" (formula "18")) + (rule "replace_known_right" (formula "88") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "88")) + (rule "replace_known_right" (formula "90") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "90")) + (rule "replace_known_right" (formula "87") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "87")) + (rule "replace_known_right" (formula "89") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "89")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_left" (formula "88") (term "0,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "88")) + (rule "applyEqReverse" (formula "90") (term "1") (ifseqformula "88")) + (rule "hideAuxiliaryEq" (formula "88")) + (rule "replace_known_left" (formula "89") (term "0,0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "89")) + (rule "applyEqReverse" (formula "87") (term "1") (ifseqformula "89")) + (rule "hideAuxiliaryEq" (formula "89")) + (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEqReverse" (formula "88") (term "1") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "88") (ifInst "" (formula "8"))) + (rule "true_left" (formula "88")) + (rule "hideAuxiliaryEq" (formula "87")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "88")) + (rule "andLeft" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "notLeft" (formula "88")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "65") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "65")) + (rule "expand_inInt" (formula "65") (term "1,0,0")) + (rule "replace_int_MIN" (formula "65") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "65") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0,0")) + (rule "mul_literals" (formula "65") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "65") (term "1,0,0,0")) + (rule "mul_literals" (formula "65") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "29")) + (rule "nnf_notAnd" (formula "64") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "64") (term "1,0,0,0")) + (rule "times_zero_1" (formula "64") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "64") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0,0")) + (rule "mul_literals" (formula "64") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "64") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "64") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "64") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "77") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "77")) + (rule "expand_inInt" (formula "77") (term "1,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0")) + (rule "mul_literals" (formula "77") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "75") (term "0,0,1")) + (rule "translateJavaAddInt" (formula "75") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1")) + (rule "polySimp_addComm0" (formula "75") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "75") (term "0,1")) + (rule "polySimp_mulComm0" (formula "75") (term "0,0,1")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "75") (term "1,1")) + (rule "translateJavaAddInt" (formula "75") (term "1,1")) + (rule "polySimp_addComm0" (formula "75") (term "1,1")) + (rule "polySimp_addAssoc" (formula "75") (term "1")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "3") (term "1,1")) + (rule "translateJavaSubInt" (formula "3") (term "1,1")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "115")) (ifInst "" (formula "73")) (ifInst "" (formula "25"))) + (rule "wellFormedAnon" (formula "3") (term "1,0")) + (rule "replace_known_left" (formula "3") (term "0,1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "20"))) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "3") (term "0")) + (rule "translateJavaSubInt" (formula "3") (term "0")) + (rule "translateJavaAddInt" (formula "3") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "76") (term "1,1")) + (rule "translateJavaAddInt" (formula "76") (term "1,0,1,1")) + (rule "translateJavaSubInt" (formula "76") (term "1,1")) + (rule "polySimp_elimSub" (formula "76") (term "1,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1")) + (rule "polySimp_addAssoc" (formula "76") (term "1")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "115")) (ifInst "" (formula "72")) (ifInst "" (formula "24"))) + (rule "wellFormedAnon" (formula "76") (term "1,0")) + (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "19"))) + (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "76") (term "0")) + (rule "translateJavaAddInt" (formula "76") (term "1,0,0")) + (rule "translateJavaSubInt" (formula "76") (term "0")) + (rule "polySimp_elimSub" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "polySimp_elimOne" (formula "76") (term "1,1")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "2,1")) + (rule "translateJavaSubInt" (formula "2") (term "2,1")) + (rule "translateJavaAddInt" (formula "2") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "2") (term "2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,0,2,1")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "2") (term "2,0")) + (rule "translateJavaSubInt" (formula "2") (term "2,0")) + (rule "translateJavaAddInt" (formula "2") (term "1,0,2,0")) + (rule "polySimp_elimSub" (formula "2") (term "2,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,0,2,0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "18") (term "1,1,1,0")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "117")) (ifInst "" (formula "113")) (ifInst "" (formula "21")) (ifInst "" (formula "25")) (ifInst "" (formula "115")) (ifInst "" (formula "48"))) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,0")) + (rule "replace_known_left" (formula "18") (term "1,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0")) + (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "18")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "19") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "19") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "83") (term "1,1,1,0")) + (rule "translateJavaAddInt" (formula "83") (term "1,1,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "83") (term "1,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "83") (term "1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "0,0,0,1,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "65") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "65")) + (rule "translateJavaSubInt" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "4,0,2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "65") (term "4,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "3,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "3,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "0,4,0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "4,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "65") (term "1,4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,4,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0,1,0,1,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "17") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,1,1,0")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "11") (term "0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "11") (term "1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,1,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "11") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaAddInt" (formula "11") (term "0,4,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "3,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "4,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "11") (term "3,0,0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "11") (term "4,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,4,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "first_is_current_swap_0 = TRUE TRUE" + (rule "eqSymm" (formula "2")) + (rule "close" (formula "104") (ifseqformula "2")) + ) + (branch "first_is_current_swap_0 = TRUE FALSE" + (rule "eqSymm" (formula "1")) + (rule "close" (formula "100") (ifseqformula "1")) + ) + ) + ) + ) + (branch "Case 2" + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "58") (term "0,1,0")) + (rule "eqSymm" (formula "68")) + (rule "replace_known_right" (formula "58") (term "0,1,1") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "58")) + (rule "add_zero_right" (formula "58") (term "1")) + (rule "polySimp_homoEq" (formula "6") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "63") (term "1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "63") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "98")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "99")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "61")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,1,1,0")) + (rule "applyEq" (formula "4") (term "0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "70")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch "Case 2" + (rule "instEx" (formula "54") (term "2,1") (ifseqformula "91") (userinteraction)) + (rule "replace_known_left" (formula "63") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "54"))) + (rule "polySimp_homoEq" (formula "53") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "58") (term "1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "53") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "53") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_ltRight" (formula "93")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "inEqSimp_ltRight" (formula "64")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "93") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "56") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "2") (term "1,0,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "33")) + (rule "applyEq" (formula "93") (term "0,1,0,0,1,0,0") (ifseqformula "33")) + (rule "polySimp_sepNegMonomial" (formula "55") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "60") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "6") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "93") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "93") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "1,1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "65") (ifseqformula "59")) + (rule "add_zero_left" (formula "65") (term "0,0")) + (rule "mul_literals" (formula "65") (term "0,0")) + (rule "leq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "false_right" (formula "65")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "59")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "42")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "8") (ifseqformula "1")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + ) + ) + (branch "Exceptional Post (swap_block)" + (builtin "One Step Simplification" (formula "77")) + (builtin "One Step Simplification" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "52")) + (rule "notLeft" (formula "50")) + (rule "close" (formula "54") (ifseqformula "53")) + ) + (branch "Pre (swap_block)" + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "9")) (ifInst "" (formula "10")) (ifInst "" (formula "74")) (ifInst "" (formula "73")) (ifInst "" (formula "72")) (ifInst "" (formula "70")) (ifInst "" (formula "74")) (ifInst "" (formula "16")) (ifInst "" (formula "73")) (ifInst "" (formula "21")) (ifInst "" (formula "72")) (ifInst "" (formula "22")) (ifInst "" (formula "70")) (ifInst "" (formula "25"))) + (rule "andRight" (formula "75")) + (branch + (rule "andRight" (formula "75")) + (branch + (rule "notRight" (formula "75")) + (rule "polySimp_homoEq" (formula "5") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0")) + (rule "ifEqualsNull" (formula "1")) + (rule "replace_known_right" (formula "1") (term "1,1") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "72"))) + (rule "closeFalse" (formula "1")) + ) + (branch + (rule "notRight" (formula "75")) + (rule "polySimp_homoEq" (formula "5") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0")) + (rule "ifEqualsNull" (formula "1")) + (rule "replace_known_right" (formula "1") (term "1,1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "70"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "75")) + (branch "Case 1" + (rule "andRight" (formula "75")) + (branch + (rule "andRight" (formula "75")) + (branch + (rule "andRight" (formula "75")) + (branch + (rule "andRight" (formula "75")) + (branch + (rule "wellFormedAnon" (formula "75")) + (rule "replace_known_left" (formula "75") (term "1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "75")) + ) + (branch + (rule "expand_inInt" (formula "75")) + (rule "replace_int_MIN" (formula "75") (term "0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0")) + (rule "polySimp_homoEq" (formula "4") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "75") (term "1") (ifseqformula "5")) + (rule "leq_literals" (formula "75") (term "0,1")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_leqRight" (formula "75")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "42")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "38")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "33")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_and_subsumption3" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0")) + (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "9")) + (rule "notLeft" (formula "9")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "4")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "10")) (ifInst "" (formula "71")) (ifInst "" (formula "10")) (ifInst "" (formula "17"))) + (rule "wellFormedAnon" (formula "7") (term "1,0")) + (rule "replace_known_left" (formula "7") (term "0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "12"))) + (rule "ifEqualsNull" (formula "7") (term "0,0")) + (rule "replace_known_right" (formula "7") (term "1,0,0,0") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "67"))) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "translateJavaSubInt" (formula "31") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "31") (term "0,2,1")) + (rule "eqSymm" (formula "28")) + (rule "eqSymm" (formula "31")) + (rule "translateJavaMulInt" (formula "28") (term "1,0")) + (rule "polySimp_elimSub" (formula "31") (term "0,2,0")) + (rule "mul_literals" (formula "31") (term "1,0,2,0")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_elimSub" (formula "31") (term "0,2,0")) + (rule "mul_literals" (formula "31") (term "1,0,2,0")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "33")) + (rule "applyEq" (formula "28") (term "1") (ifseqformula "33")) + (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "46") (term "0,0")) + (rule "mul_literals" (formula "46") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "add_literals" (formula "46") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46")) + (rule "polySimp_mulLiterals" (formula "46") (term "0")) + (rule "polySimp_elimOne" (formula "46") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "46")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch + (rule "expand_inInt" (formula "75")) + (rule "replace_int_MIN" (formula "75") (term "0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "75")) + (rule "polySimp_homoEq" (formula "4") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "75")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "35") (ifseqformula "1")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "closeFalse" (formula "35")) + ) + ) + (branch + (rule "expand_inInt" (formula "75")) + (rule "replace_int_MIN" (formula "75") (term "0,1")) + (rule "replace_int_MAX" (formula "75") (term "1,0")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "75")) + (rule "polySimp_homoEq" (formula "4") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0")) + (rule "inEqSimp_leqRight" (formula "75")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "5") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "75")) + (rule "orRight" (formula "76")) + (rule "polySimp_homoEq" (formula "11") (term "1,0")) + (rule "polySimp_homoEq" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,1,0")) + (rule "ifEqualsNull" (formula "75")) + (rule "orRight" (formula "75")) + (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "75")) + (rule "false_right" (formula "75")) + (rule "replace_known_right" (formula "75") (term "1") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "75")) + (rule "false_right" (formula "75")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "11") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "41")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "37")) + (rule "leq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "38")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "33")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_and_subsumption3" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0")) + (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_and_subsumption3" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "1")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "7") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "7")) + (rule "expand_inInt" (formula "7") (term "1,0,0")) + (rule "replace_int_MIN" (formula "7") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "7") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "42") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "42")) + (rule "expand_inInt" (formula "42") (term "1,0,0")) + (rule "replace_int_MIN" (formula "42") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "42") (term "1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0,0")) + (rule "mul_literals" (formula "42") (term "1,1,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "22")) + (rule "notLeft" (formula "22")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "3")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaSubInt" (formula "29") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "29") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "26") (term "1,1")) + (rule "eqSymm" (formula "29")) + (rule "eqSymm" (formula "26")) + (rule "polySimp_elimSub" (formula "29") (term "0,2,0")) + (rule "mul_literals" (formula "29") (term "1,0,2,0")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_elimSub" (formula "29") (term "0,2,0")) + (rule "mul_literals" (formula "29") (term "1,0,2,0")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0")) + (rule "eqSymm" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "31")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "45") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "45") (term "0,0")) + (rule "mul_literals" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "add_literals" (formula "45") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "45")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21") (inst "b=b")) + (builtin "One Step Simplification" (formula "21")) + (rule "expand_inInt" (formula "21") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "translateJavaCastInt" (formula "28") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1")) + (rule "translateJavaMulInt" (formula "21") (term "1")) + (rule "translateJavaMulInt" (formula "22") (term "0")) + (rule "translateJavaCastInt" (formula "25") (term "0")) + (rule "translateJavaCastInt" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "27") (term "1")) + (rule "castedGetAny" (formula "28") (term "0")) + (rule "castedGetAny" (formula "25") (term "0")) + (rule "castedGetAny" (formula "24") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "53")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "52")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "29")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow2" (formula "7") (ifseqformula "21")) + (rule "greater_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "52")) + (rule "mul_literals" (formula "23") (term "0,0")) + (rule "add_zero_left" (formula "23") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1")) + (rule "polySimp_elimOne" (formula "23") (term "1")) + (rule "inEqSimp_exactShadow2" (formula "29") (ifseqformula "22")) + (rule "mul_literals" (formula "29") (term "1,0,0,1")) + (rule "greater_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "mul_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_exactShadow2" (formula "51") (ifseqformula "22")) + (rule "greater_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0")) + (rule "mul_literals" (formula "51") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "mul_literals" (formula "51") (term "0,1")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "nnf_imp2or" (formula "55") (term "0")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "87")) (ifInst "" (formula "83")) (ifInst "" (formula "85")) (ifInst "" (formula "41")) (ifInst "" (formula "18"))) + (rule "wellFormedAnon" (formula "11") (term "1,0")) + (rule "replace_known_left" (formula "11") (term "1,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "14"))) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "replace_known_left" (formula "11") (term "0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "11")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "12") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "4") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "translateJavaAddInt" (formula "4") (term "3,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "4,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_bucketSize_in_de_wiesler_BucketPointers" (formula "57") (term "0,1,1,1,0")) + (rule "translateJavaSubInt" (formula "57") (term "0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "1,0,0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "57") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "1,1,0,1,1,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_notAnd" (formula "56") (term "0,0")) + (rule "nnf_notAnd" (formula "9") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "9") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "29") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "56") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "1,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "56") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "1,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "0,0,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "0,0,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "56") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "56") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56") (term "0,1,0,0")) + (rule "mul_literals" (formula "56") (term "1,0,1,0,0")) + (rule "nnf_imp2or" (formula "4") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,1,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "56") (term "0,1,0")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "4") (term "1,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,1,1,1,0")) + (rule "Definition_axiom_for_elementsToReadCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0,1,1,0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "1,1,0")) + (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "57") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "57")) + (rule "translateJavaAddInt" (formula "57") (term "3,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "57") (term "4,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "57") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "57") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "57") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "57") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "57") (term "0,0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "57") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "57") (term "1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "57") (term "1,0,0,0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "4") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "translateJavaAddInt" (formula "4") (term "3,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,4,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "3,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "4,0,2,1,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "4,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,4,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0,1,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "0,1")) + (rule "replace_known_right" (formula "11") (term "0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "11")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "35") (term "0")) + (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "60")) (ifInst "" (formula "36"))) + (rule "Definition_axiom_for_writtenElementsCountElement_in_de_wiesler_BucketPointers" (formula "12") (term "0,1,0") (inst "b=b")) + (rule "translateJavaCastInt" (formula "12") (term "0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "38") (inst "i=i") (inst "i_0=i_0")) + (rule "andLeft" (formula "38")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "39") (term "1,0,0")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "39") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "39") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "eqSymm" (formula "46") (term "1,0")) + (rule "translateJavaSubInt" (formula "44") (term "3,0")) + (rule "translateJavaShiftLeftInt" (formula "40") (term "1")) + (rule "translateJavaSubInt" (formula "46") (term "0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "3,0")) + (rule "mul_literals" (formula "44") (term "1,3,0")) + (rule "polySimp_elimSub" (formula "46") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "46") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "3,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "applyEq" (formula "43") (term "0,0") (ifseqformula "34")) + (rule "inEqSimp_commuteGeq" (formula "43")) + (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "40")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "34")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40")) + (rule "eqSymm" (formula "37")) + (rule "applyEq" (formula "36") (term "3,0") (ifseqformula "40")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "40")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "34")) + (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "40")) + (rule "applyEq" (formula "33") (term "2,0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "45") (term "0,1,0,0,1,1,0") (ifseqformula "40")) + (rule "applyEq" (formula "46") (term "0,1,0,0,1,0,0,0") (ifseqformula "40")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40")) + (rule "eqSymm" (formula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "40") (term "1")) + (rule "mod_axiom" (formula "40") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "44") (term "1,3,0")) + (rule "mod_axiom" (formula "44") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "41") (term "0")) + (rule "mod_axiom" (formula "41") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "36") (term "3,0")) + (rule "mod_axiom" (formula "36") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,0")) + (rule "mod_axiom" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,0")) + (rule "javaShiftLeftIntDef" (formula "42") (term "1")) + (rule "mod_axiom" (formula "42") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "35") (term "3,0")) + (rule "mod_axiom" (formula "35") (term "1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,3,0")) + (rule "javaShiftLeftIntDef" (formula "33") (term "2,0")) + (rule "mod_axiom" (formula "33") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "43") (term "0")) + (rule "mod_axiom" (formula "43") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,0,2,1")) + (rule "mod_axiom" (formula "37") (term "1,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,2,1")) + (rule "javaShiftLeftIntDef" (formula "37") (term "1,0,2,0")) + (rule "mod_axiom" (formula "37") (term "1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "45") (term "1,1,1,1,0")) + (rule "mod_axiom" (formula "45") (term "1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "46") (term "1,1,1,0,0,0")) + (rule "mod_axiom" (formula "46") (term "1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftDef" (formula "40") (term "0,1")) + (rule "eqSymm" (formula "40")) + (rule "polySimp_elimNeg" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "40") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "40") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "40") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "44") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "44") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "44") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "44") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "44") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,0,0,1,3,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,1,3,0")) + (rule "applyEq" (formula "44") (term "1,3,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "41") (term "0,0")) + (rule "polySimp_elimNeg" (formula "41") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "41") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "41") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "41") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,0,0,0")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "36") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "36") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "36") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "36") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "36") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,0,3,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,3,0")) + (rule "applyEq" (formula "36") (term "3,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "33") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "33") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "42") (term "0,1")) + (rule "polySimp_elimNeg" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "42") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "42") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "42") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "42")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "40")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "shiftLeftDef" (formula "35") (term "0,3,0")) + (rule "polySimp_elimNeg" (formula "35") (term "1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,3,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,3,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,3,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,0,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "35") (term "2,0,3,0")) + (rule "polySimp_elimOneLeft0" (formula "35") (term "2,0,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "35") (term "1,0,3,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,0,3,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,3,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,3,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,3,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,3,0")) + (rule "applyEq" (formula "35") (term "3,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "33") (term "0,2,0")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,2,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0,2,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,2,0")) + (rule "applyEq" (formula "33") (term "2,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "43") (term "0,0")) + (rule "polySimp_elimNeg" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "43") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "43") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "43") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "37") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "37")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "45") (term "0,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "45") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,1,1,0,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "45") (term "2,0,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "45") (term "2,0,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "45") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,0,0,1,1,1,1,0")) + (rule "applyEq" (formula "45") (term "1,1,1,1,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "46") (term "0,1,1,1,0,0,0")) + (rule "polySimp_elimNeg" (formula "46") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,1,0,1,1,1,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "46") (term "2,0,1,1,1,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "46") (term "2,0,1,1,1,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "46") (term "1,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "40")) + (rule "shiftLeftDef" (formula "37") (term "0,1,0,2,1")) + (rule "eqSymm" (formula "37")) + (rule "polySimp_elimNeg" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,1,0,1,0,2,0")) + (rule "shiftLeftPositiveShiftDef" (formula "37") (term "2,0,1,0,2,0")) + (rule "polySimp_elimOneLeft0" (formula "37") (term "2,0,1,0,2,0")) + (rule "shiftRightPositiveShiftDef" (formula "37") (term "1,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0,2,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,2,0")) + (rule "applyEq" (formula "37") (term "1,0,2,0") (ifseqformula "40")) + (rule "inEqSimp_exactShadow3" (formula "41") (ifseqformula "43")) + (rule "mul_literals" (formula "41") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "41")) + (rule "mul_literals" (formula "41") (term "1")) + (rule "expand_moduloInteger" (formula "40") (term "0")) + (rule "replace_int_MIN" (formula "40") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "40") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "40") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "40")) + (rule "polySimp_mulLiterals" (formula "40") (term "0")) + (rule "polySimp_elimOne" (formula "40") (term "0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "10") (term "0,1,0,1,0")) + (rule "translateJavaMulInt" (formula "10") (term "0,2,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,2,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "1,0,1,0")) + (rule "Definition_axiom_for_isClassifiedBlocksRange_in_de_wiesler_Classifier" (formula "4") (term "0,1,0,0,1,0") (inst "block=block")) + (builtin "One Step Simplification" (formula "4")) + (rule "expand_inInt" (formula "4") (term "1,0,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "4") (term "1,0,1,0,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "4") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "translateJavaDivInt" (formula "4") (term "1,1,0,0,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,1,4,0,1,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "3,0,1,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "4") (term "1,4,0,1,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "4") (term "1,3,0,1,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "4") (term "4,0,1,0,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,4,0,1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "1,1,4,0,1,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,4,0,1,0,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,4,0,1,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,1,1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,1,1,0,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,1,1,0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "4,0,1,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,4,0,1,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,4,0,1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "1,1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0,0,1,0,0,1,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "67") (term "1,4,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "67") (term "0,2,1,4,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,2,1,4,0,1,0,0,1,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "1,1,1,0")) + (rule "polySimp_elimSub" (formula "10") (term "1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0,1,1,0")) + (rule "Definition_axiom_for_countBucketElementsEverywhere_in_de_wiesler_Permute" (formula "67") (term "0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "1,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "1,1,1,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "10") (term "0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "10") (term "0,2,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "10") (term "0,0,2,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,2,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,0,0,0,1,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "11") (term "1") (inst "b=b")) + (builtin "One Step Simplification" (formula "11") (ifInst "" (formula "25")) (ifInst "" (formula "28"))) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,1,1,0,0,0,1")) + (rule "translateJavaCastInt" (formula "11") (term "0,1,0,1")) + (rule "translateJavaCastInt" (formula "11") (term "1,1,0,1,0,0,0,1")) + (rule "translateJavaMulInt" (formula "11") (term "1,0,0,0,0,0,1")) + (rule "translateJavaAddInt" (formula "11") (term "1,1,0,0,1")) + (rule "translateJavaMulInt" (formula "11") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0,0,0,1")) + (rule "replace_known_left" (formula "11") (term "1,0,0,0,0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "11")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0,1")) + (rule "replace_known_left" (formula "11") (term "1,0,0,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "11")) + (rule "castedGetAny" (formula "11") (term "0,1,1,0,0,1")) + (rule "castedGetAny" (formula "11") (term "1,1,0,1,0,0,1")) + (rule "castedGetAny" (formula "11") (term "0,1,0,1")) + (rule "replace_known_left" (formula "11") (term "1,0,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,1,0,1")) + (rule "replace_known_left" (formula "11") (term "0,0,1,0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,1,0,1")) + (rule "applyEq" (formula "11") (term "0,0,1,0,1") (ifseqformula "64")) + (rule "inEqSimp_commuteGeq" (formula "11") (term "0,1,0,1")) + (rule "replace_known_left" (formula "11") (term "0,1,0,1") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "11") (term "0,1,0,1") (ifseqformula "64")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,1,0,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,1")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "11") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0,1")) + (rule "replace_known_left" (formula "11") (term "1,0,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_subsumption6" (formula "11") (term "0,1") (ifseqformula "31")) + (rule "mul_literals" (formula "11") (term "1,1,0,0,1")) + (rule "greater_literals" (formula "11") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "leq_literals" (formula "11") (term "0,0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "9") (term "0,1,0")) + (rule "Contract_axiom_for_countElement_in_BucketPointers" (formula "12") (term "1,0,1,1,0")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "99")) (ifInst "" (formula "95")) (ifInst "" (formula "15")) (ifInst "" (formula "19")) (ifInst "" (formula "97")) (ifInst "" (formula "52"))) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "12")) + (rule "Definition_axiom_for_elementsToReadOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "2,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,2,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "3,2,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,1,0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "68") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "68") (term "0,2,0,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "68") (term "0,0,2,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,2,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "29") (term "1,0,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0")) + (rule "translateJavaCastInt" (formula "29") (term "0,1,0,1,0")) + (rule "translateJavaCastInt" (formula "29") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "29") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "29") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0")) + (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0,0,1,0") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "68") (term "1,0,0,0,1,0")) + (rule "translateJavaMulInt" (formula "68") (term "0,2,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,2,1,0,0,0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "68") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "translateJavaSubInt" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "4,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "68") (term "3,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "68") (term "3,0,0,1,1,0,1,0")) + (rule "translateJavaAddInt" (formula "68") (term "4,0,2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "68") (term "0,4,0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "68") (term "4,0,0,1,1,0,1,0")) + (rule "mul_literals" (formula "68") (term "1,4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "4,0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,4,0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "68") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "68") (term "0,0,0,1,0,1,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaMod" (formula "26") (term "0")) + (rule "jmod_axiom" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "newSym_eq" (formula "26") (inst "l=l_0") (inst "newSymDef=mul(int::final(bucket_pointers, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))")) + (rule "times_zero_1" (formula "26") (term "1,1")) + (rule "add_zero_right" (formula "26") (term "1")) + (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "26")) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "applyEq" (formula "26") (term "0,0") (ifseqformula "27")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "27")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,1")) + (rule "elimGcdGeq_antec" (formula "25") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "59")) + (rule "polySimp_rightDist" (formula "67") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "67") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "68") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "68") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0")) + (rule "polySimp_addComm1" (formula "68") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "68") (term "0")) + (rule "add_literals" (formula "68") (term "1,1,0")) + (rule "times_zero_1" (formula "68") (term "1,0")) + (rule "polySimp_addLiterals" (formula "68") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "0")) + (rule "elimGcdLeq_antec" (formula "68") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,0")) + (rule "leq_literals" (formula "68") (term "0,0")) + (builtin "One Step Simplification" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "68") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "68") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "68") (term "0,0")) + (rule "add_literals" (formula "68") (term "1,1,0,0")) + (rule "times_zero_1" (formula "68") (term "1,0,0")) + (rule "add_zero_right" (formula "68") (term "0,0")) + (rule "qeq_literals" (formula "68") (term "0")) + (builtin "One Step Simplification" (formula "68")) + (rule "inEqSimp_exactShadow3" (formula "54") (ifseqformula "67")) + (rule "times_zero_1" (formula "54") (term "0,0")) + (rule "add_zero_left" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "elimGcdLeq_antec" (formula "54") (inst "elimGcdRightDiv=Z(7(2(1(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "54") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "54") (term "0,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,0")) + (rule "mul_literals" (formula "54") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0,0")) + (rule "add_literals" (formula "54") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "54") (term "0,0")) + (rule "add_literals" (formula "54") (term "1,1,0,0")) + (rule "times_zero_1" (formula "54") (term "1,0,0")) + (rule "add_zero_right" (formula "54") (term "0,0")) + (rule "qeq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "inEqSimp_subsumption0" (formula "69") (ifseqformula "54")) + (rule "leq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "13") (term "2,0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaSubInt" (formula "13") (term "3,0,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,2,2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "2,0,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "3,2,2,0,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "0,0,0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "0,3,0,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "13") (term "1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "0,0,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "13") (term "3,0,1,2,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,3,0,1,2,0,1,0")) + (rule "polySimp_homoEq" (formula "13") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,2,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0,2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "3,1,1,2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,3,1,1,2,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,2,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,2,0,1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,2,0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,2,0,1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,2,0,1,0,0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,2,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,2,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0,0,2,1,0,0,1,1,0")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "10") (term "1,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "10") (term "0,2,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,2,1,1,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "49") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "49") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "49") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "49") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "49") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "49") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "49") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "48") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "48") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "48") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "48") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,0,1,0")) + (rule "commute_or_2" (formula "31") (term "0,0")) + (rule "commute_or" (formula "9") (term "1,0,0")) + (rule "commute_or" (formula "70") (term "1,0,0")) + (rule "commute_or" (formula "10") (term "0,0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "48") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "48") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "48") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "48") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "48") (term "0,0,0,1,1,1,0")) + (rule "commute_and" (formula "49") (term "1,0,0")) + (rule "commute_and" (formula "48") (term "1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "47") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "38") (term "0")) + (rule "replace_known_left" (formula "38") (term "1,1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "75")) (ifInst "" (formula "15")) (ifInst "" (formula "39"))) + (rule "true_left" (formula "38")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "expand_inInt" (formula "38") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "4") (term "0,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "37") (term "0")) + (rule "replace_known_left" (formula "37") (term "1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "75")) (ifInst "" (formula "38"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "38") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "38")) + (rule "expand_inInt" (formula "38") (term "1,0,0")) + (rule "replace_int_MAX" (formula "38") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "38") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "38") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0")) + (rule "ifthenelse_split" (formula "105") (term "1,0")) + (branch "first_is_current_swap_0 = TRUE TRUE" + (rule "replace_known_left" (formula "105") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "105") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "105")) + ) + (branch "first_is_current_swap_0 = TRUE FALSE" + (rule "replace_known_right" (formula "9") (term "0,1,2,0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "104") (term "0,1,0") (ifseqformula "105")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "104")) + ) + ) + ) + (branch "Case 2" + (rule "ifthenelse_split" (formula "75") (term "0,0") (userinteraction)) + (branch "first_is_current_swap_0 = TRUE TRUE" + (rule "orRight" (formula "76")) + (rule "orRight" (formula "76")) + (rule "replace_known_left" (formula "12") (term "0,1,0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "12")) + (rule "replace_known_left" (formula "8") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "replace_known_left" (formula "77") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "77")) + (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "25"))) + (rule "closeTrue" (formula "76")) + ) + (branch "first_is_current_swap_0 = TRUE FALSE" + (rule "orRight" (formula "76")) + (rule "orRight" (formula "76")) + (rule "replace_known_right" (formula "76") (term "0,1,0") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "76")) + ) + ) + ) + ) + ) + (branch "if true false" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..f95bf9a --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Permute(de.wiesler.Permute__swap_block(int,(I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,(I,(I,(I)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,11704 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Jun 03 15:11:36 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Fri Jun 03 15:11:36 CEST 2022 +contract=de.wiesler.Permute[de.wiesler.Permute\\:\\:swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +name=de.wiesler.Permute[de.wiesler.Permute\\:\\:swap_block(int,[I,int,int,de.wiesler.Classifier,de.wiesler.BucketPointers,[I,[I,[I)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "2" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "194387") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "expand_inInt" (formula "1") (term "0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,0,0,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0,0,0,0,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0,0,0,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "6")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "8")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "14")) +(rule "andLeft" (formula "10")) +(rule "notLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "15")) +(rule "andLeft" (formula "17")) +(rule "notLeft" (formula "10")) +(rule "andLeft" (formula "10")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "16")) +(rule "andLeft" (formula "20")) +(rule "andLeft" (formula "19")) +(rule "notLeft" (formula "11")) +(rule "andLeft" (formula "11")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "23")) +(rule "andLeft" (formula "20")) +(rule "notLeft" (formula "12")) +(rule "andLeft" (formula "12")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "26")) +(rule "andLeft" (formula "28")) +(rule "notLeft" (formula "14")) +(rule "notLeft" (formula "14")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "29")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "32")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "andLeft" (formula "31")) +(rule "translateJavaSubInt" (formula "26") (term "0")) +(rule "translateJavaSubInt" (formula "29") (term "1")) +(rule "translateJavaCastInt" (formula "29") (term "0")) +(rule "translateJavaSubInt" (formula "30") (term "1")) +(rule "translateJavaAddInt" (formula "53") (term "0,0,0,1,0")) +(rule "replace_known_right" (formula "13") (term "0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "13")) +(rule "replace_known_right" (formula "11") (term "0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "11")) +(rule "replace_known_right" (formula "12") (term "0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "12")) +(rule "replace_known_right" (formula "10") (term "0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "10")) +(rule "replace_known_right" (formula "9") (term "0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "9")) +(rule "replace_known_right" (formula "4") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "4")) +(rule "polySimp_elimSub" (formula "26") (term "0")) +(rule "polySimp_elimSub" (formula "29") (term "1")) +(rule "polySimp_elimSub" (formula "30") (term "1")) +(rule "polySimp_addComm0" (formula "26") (term "0")) +(rule "polySimp_addComm0" (formula "29") (term "1")) +(rule "polySimp_addComm0" (formula "30") (term "1")) +(rule "disjointDefinition" (formula "51")) + (builtin "One Step Simplification" (formula "51")) +(rule "notLeft" (formula "51")) +(rule "eqSymm" (formula "53")) +(rule "disjointDefinition" (formula "50")) + (builtin "One Step Simplification" (formula "50")) +(rule "notLeft" (formula "50")) +(rule "eqSymm" (formula "52")) +(rule "disjointDefinition" (formula "49")) + (builtin "One Step Simplification" (formula "49")) +(rule "notLeft" (formula "49")) +(rule "eqSymm" (formula "51")) +(rule "disjointDefinition" (formula "48")) + (builtin "One Step Simplification" (formula "48")) +(rule "notLeft" (formula "48")) +(rule "eqSymm" (formula "50")) +(rule "disjointDefinition" (formula "47")) + (builtin "One Step Simplification" (formula "47")) +(rule "notLeft" (formula "47")) +(rule "eqSymm" (formula "49")) +(rule "disjointDefinition" (formula "46")) + (builtin "One Step Simplification" (formula "46")) +(rule "notLeft" (formula "46")) +(rule "eqSymm" (formula "48")) +(rule "disjointDefinition" (formula "45")) + (builtin "One Step Simplification" (formula "45")) +(rule "notLeft" (formula "45")) +(rule "eqSymm" (formula "47")) +(rule "disjointDefinition" (formula "44")) + (builtin "One Step Simplification" (formula "44")) +(rule "notLeft" (formula "44")) +(rule "eqSymm" (formula "46")) +(rule "disjointDefinition" (formula "43")) + (builtin "One Step Simplification" (formula "43")) +(rule "notLeft" (formula "43")) +(rule "eqSymm" (formula "45")) +(rule "disjointDefinition" (formula "42")) + (builtin "One Step Simplification" (formula "42")) +(rule "notLeft" (formula "42")) +(rule "eqSymm" (formula "44")) +(rule "disjointDefinition" (formula "41")) + (builtin "One Step Simplification" (formula "41")) +(rule "notLeft" (formula "41")) +(rule "eqSymm" (formula "43")) +(rule "disjointDefinition" (formula "40")) + (builtin "One Step Simplification" (formula "40")) +(rule "notLeft" (formula "40")) +(rule "eqSymm" (formula "42")) +(rule "disjointDefinition" (formula "39")) + (builtin "One Step Simplification" (formula "39")) +(rule "notLeft" (formula "39")) +(rule "eqSymm" (formula "41")) +(rule "disjointDefinition" (formula "38")) + (builtin "One Step Simplification" (formula "38")) +(rule "notLeft" (formula "38")) +(rule "eqSymm" (formula "40")) +(rule "disjointDefinition" (formula "37")) + (builtin "One Step Simplification" (formula "37")) +(rule "notLeft" (formula "37")) +(rule "eqSymm" (formula "39")) +(rule "disjointDefinition" (formula "36")) + (builtin "One Step Simplification" (formula "36")) +(rule "notLeft" (formula "36")) +(rule "eqSymm" (formula "38")) +(rule "disjointDefinition" (formula "35")) + (builtin "One Step Simplification" (formula "35")) +(rule "notLeft" (formula "35")) +(rule "eqSymm" (formula "37")) +(rule "disjointDefinition" (formula "34")) + (builtin "One Step Simplification" (formula "34")) +(rule "notLeft" (formula "34")) +(rule "eqSymm" (formula "36")) +(rule "disjointDefinition" (formula "33")) + (builtin "One Step Simplification" (formula "33")) +(rule "notLeft" (formula "33")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "disjointDefinition" (formula "31")) + (builtin "One Step Simplification" (formula "31")) +(rule "notLeft" (formula "31")) +(rule "castedGetAny" (formula "29") (term "0")) +(rule "inEqSimp_commuteLeq" (formula "25")) +(rule "inEqSimp_commuteLeq" (formula "24")) +(rule "inEqSimp_commuteLeq" (formula "23")) +(rule "inEqSimp_commuteLeq" (formula "8")) +(rule "inEqSimp_commuteLeq" (formula "27")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "inEqSimp_commuteLeq" (formula "32") (term "1,1,0,0")) +(rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0")) +(rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) +(rule "applyEq" (formula "28") (term "1") (ifseqformula "19")) +(rule "applyEq" (formula "29") (term "1,0") (ifseqformula "19")) +(rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "19")) +(rule "commute_and" (formula "32") (term "0,1,0")) +(rule "commute_and_2" (formula "32") (term "1,0")) +(rule "commute_and" (formula "32") (term "1,0,0")) +(rule "commute_and" (formula "32") (term "0,0,0")) +(rule "shift_paren_and" (formula "32") (term "0,0")) +(rule "commute_and_2" (formula "32") (term "0,0,0")) +(rule "methodBodyExpand" (formula "60") (term "1") (newnames "heapBefore_swap_block,savedHeapBefore_swap_block,_beginBefore_swap_block,_bucket_pointersBefore_swap_block,_classifierBefore_swap_block,_current_swapBefore_swap_block,_endBefore_swap_block,_other_swapBefore_swap_block,_overflowBefore_swap_block,_target_bucketBefore_swap_block,_valuesBefore_swap_block,writeBefore_swap_block")) + (builtin "One Step Simplification" (formula "60")) + (builtin "Block Contract (Internal)" (formula "60") (newnames "result_21,exc_25,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) +(branch "Validity" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "14")) (ifInst "" (formula "1"))) + (rule "true_left" (formula "33")) + (rule "eqSymm" (formula "60") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "60") (term "1")) + (rule "variableDeclaration" (formula "60") (term "1") (newnames "exc_25_1")) + (rule "assignment" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "emptyStatement" (formula "60") (term "1")) + (builtin "One Step Simplification" (formula "60")) + (rule "emptyStatement" (formula "60") (term "1")) + (rule "tryEmpty" (formula "60") (term "1")) + (rule "blockEmptyLabel" (formula "60") (term "1")) + (rule "blockEmpty" (formula "60") (term "1")) + (rule "methodCallEmpty" (formula "60") (term "1")) + (rule "emptyModality" (formula "60") (term "1")) + (rule "andRight" (formula "60")) + (branch + (builtin "One Step Simplification" (formula "60")) + (rule "closeTrue" (formula "60")) + ) + (branch + (builtin "One Step Simplification" (formula "60")) + (rule "closeTrue" (formula "60")) + ) +) +(branch "Precondition" + (rule "andRight" (formula "60")) + (branch + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "60")) + ) + (branch + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "60")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "61")) + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "0,1,0")) + (rule "replace_int_MAX" (formula "33") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "33") (term "0,1,0,1,0")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "translateJavaSubInt" (formula "37") (term "0,1")) + (rule "replace_known_left" (formula "36") (term "0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "polySimp_elimSub" (formula "36") (term "0,1")) + (rule "polySimp_addComm0" (formula "36") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "19")) + (rule "elim_double_block_2" (formula "65") (term "1")) + (rule "ifUnfold" (formula "65") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "65") (term "1") (newnames "x")) + (rule "inequality_comparison_simple" (formula "65") (term "1")) + (builtin "One Step Simplification" (formula "65")) + (rule "replace_known_left" (formula "65") (term "0,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "65")) + (rule "ifSplit" (formula "65")) + (branch "if x true" + (builtin "One Step Simplification" (formula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x false" + (builtin "One Step Simplification" (formula "66")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "65") (term "1")) + (rule "loopScopeInvDia" (formula "65") (term "1") (newnames "o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) + (branch "Invariant Initially Valid" + (rule "closeTrue" (formula "65")) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "66")) + (rule "expand_inInt" (formula "66") (term "0,0,1,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "66") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,0,0,1,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,0,0,1,0,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "66") (term "0,1,1,0,0,0,0,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "66") (term "1,0,1,0,0,0,0,0,0,0,0,0")) + (rule "impRight" (formula "66")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "translateJavaAddInt" (formula "74") (term "0,1,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "74") (term "0,0,1,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "6") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "8") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "7") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "5") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "4") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "3") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "1") (term "0,1,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "2") (term "0,1,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "74") (term "0,0,1,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "74") (term "0,1,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "6") (term "0,0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "8") (term "0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "7") (term "0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "5") (term "0,0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "4") (term "0,0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "3") (term "0,0,1,1,0,0")) + (rule "translateJavaMulInt" (formula "1") (term "0,0,1,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "2") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,1,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,1,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "variableDeclaration" (formula "74") (term "1") (newnames "x_1")) + (rule "applyEq" (formula "1") (term "1,1,0,0,0") (ifseqformula "28")) + (rule "commute_and" (formula "2") (term "0,0")) + (rule "commute_and" (formula "1") (term "1,0,0")) + (rule "commute_and" (formula "1") (term "0,0,0")) + (rule "shift_paren_and" (formula "1") (term "0,0")) + (rule "commute_and_2" (formula "1") (term "0,0,0")) + (rule "arrayLengthNotNegative" (formula "29") (term "0")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "arrayLengthNotNegative" (formula "30") (term "0")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "arrayLengthNotNegative" (formula "31") (term "0")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "seqGetAlphaCast" (formula "40") (term "0")) + (rule "castedGetAny" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "arrayLengthIsAShort" (formula "31") (term "0")) + (rule "expand_inShort" (formula "31")) + (rule "replace_short_MIN" (formula "31") (term "0,1")) + (rule "replace_short_MAX" (formula "31") (term "1,0")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "33")) + (rule "qeq_literals" (formula "32")) + (rule "true_left" (formula "32")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "leq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "arrayLengthNotNegative" (formula "36") (term "0")) + (rule "arrayLengthIsAShort" (formula "29") (term "0")) + (rule "expand_inShort" (formula "29")) + (rule "replace_short_MIN" (formula "29") (term "0,1")) + (rule "replace_short_MAX" (formula "29") (term "1,0")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "30")) + (rule "leq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "arrayLengthIsAShort" (formula "30") (term "0")) + (rule "expand_inShort" (formula "30")) + (rule "replace_short_MIN" (formula "30") (term "0,1")) + (rule "replace_short_MAX" (formula "30") (term "1,0")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "31")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "32")) + (rule "qeq_literals" (formula "31")) + (rule "true_left" (formula "31")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "31")) + (rule "leq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "ifElseSplit" (formula "77")) + (branch "if true true" + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "variableDeclarationGhostAssign" (formula "77") (term "1")) + (rule "variableDeclarationGhost" (formula "77") (term "1") (newnames "heapAtLoopBodyBegin")) + (rule "assignment" (formula "77") (term "1")) + (builtin "One Step Simplification" (formula "77")) + (builtin "Block Contract (Internal)" (formula "77") (newnames "result_0,exc_0,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "23"))) + (builtin "One Step Simplification" (formula "78")) + (rule "eqSymm" (formula "78") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "78") (term "1")) + (rule "variableDeclaration" (formula "78") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "emptyStatement" (formula "78") (term "1")) + (builtin "One Step Simplification" (formula "78")) + (rule "emptyStatement" (formula "78") (term "1")) + (rule "tryEmpty" (formula "78") (term "1")) + (rule "blockEmptyLabel" (formula "78") (term "1")) + (rule "blockEmpty" (formula "78") (term "1")) + (rule "methodCallEmpty" (formula "78") (term "1")) + (rule "emptyModality" (formula "78") (term "1")) + (rule "andRight" (formula "78")) + (branch + (builtin "One Step Simplification" (formula "78")) + (rule "closeTrue" (formula "78")) + ) + (branch + (builtin "One Step Simplification" (formula "78")) + (rule "closeTrue" (formula "78")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "77")) + (branch + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "77")) + ) + (branch + (builtin "One Step Simplification" (formula "77")) + (rule "wellFormedAnon" (formula "77")) + (rule "replace_known_left" (formula "77") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "77")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "50")) + (builtin "One Step Simplification" (formula "78")) + (rule "expand_inInt" (formula "50") (term "0,1,0")) + (rule "replace_int_MIN" (formula "50") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "50") (term "1,0,0,1,0")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "translateJavaAddInt" (formula "54") (term "0")) + (rule "replace_known_left" (formula "53") (term "0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "53")) + (rule "true_left" (formula "53")) + (rule "polySimp_addComm0" (formula "53") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "elim_double_block_2" (formula "81") (term "1")) + (rule "ifUnfold" (formula "81") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "81") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "replace_known_left" (formula "81") (term "0,0,1,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "81")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "69") (term "0") (ifseqformula "10") (ifseqformula "19")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "59") (term "0") (ifseqformula "11") (ifseqformula "19")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "61") (term "0,0") (ifseqformula "12") (ifseqformula "20")) + (rule "ifSplit" (formula "84")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "85")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "85")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "84") (term "1")) + (rule "variableDeclarationAssign" (formula "84") (term "1")) + (rule "variableDeclaration" (formula "84") (term "1") (newnames "increment")) + (builtin "Use Operation Contract" (formula "84") (newnames "heapBefore_increment_write,result_1,exc_1,heapAfter_increment_write,anon_heap_increment_write") (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::increment_write(int)].JML normal_behavior operation contract.0")) + (branch "Post (increment_write)" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "61")) + (rule "notLeft" (formula "64")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "65")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "translateJavaAddInt" (formula "58") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "61") (term "0")) + (rule "translateJavaAddInt" (formula "62") (term "1")) + (rule "translateJavaAddInt" (formula "63") (term "0")) + (rule "eqSymm" (formula "64")) + (rule "eqSymm" (formula "66")) + (rule "eqSymm" (formula "67")) + (rule "translateJavaMulInt" (formula "58") (term "0,0,1,1,0")) + (rule "replace_known_right" (formula "60") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "60")) + (rule "polySimp_mulComm0" (formula "58") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "62") (term "1")) + (rule "polySimp_addComm0" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,1,1,0")) + (rule "assignment" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "occupied")) + (rule "assignment_read_attribute_final" (formula "98")) + (branch "Normal Execution (increment != null)" + (builtin "One Step Simplification" (formula "98")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "write")) + (rule "applyEq" (formula "61") (term "1,0") (ifseqformula "66")) + (rule "eqSymm" (formula "61")) + (rule "applyEq" (formula "98") (term "0,1,0,0,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "62")) + (rule "compound_addition_2" (formula "98") (term "1") (inst "#v0=x_2") (inst "#v1=x_3")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_4")) + (rule "assignment" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "variableDeclarationAssign" (formula "98") (term "1")) + (rule "variableDeclaration" (formula "98") (term "1") (newnames "x_3")) + (rule "assignment_read_attribute_final" (formula "98")) + (branch "Normal Execution (increment != null)" + (builtin "One Step Simplification" (formula "98")) + (rule "assignmentAdditionInt" (formula "98") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "98")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "66") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "96")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "66") (term "1,0")) + (rule "expand_inInt" (formula "99")) + (rule "replace_int_MIN" (formula "99") (term "0,1")) + (rule "replace_int_MAX" (formula "99") (term "1,0")) + (rule "translateJavaAddInt" (formula "66") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "66") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "66") (term "1,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "13"))) + (rule "polySimp_homoEq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_addComm0" (formula "66") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "66") (term "1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "mul_literals" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "66") (term "0")) + (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "67")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "andLeft" (formula "66")) + (rule "inEqSimp_commuteLeq" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "104") (term "1")) + (rule "mul_literals" (formula "104") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "104") (term "0,1")) + (rule "polySimp_addComm0" (formula "104") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "104") (term "0")) + (rule "polySimp_mulComm0" (formula "104") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "72")) + (rule "applyEq" (formula "70") (term "0,0") (ifseqformula "72")) + (rule "applyEq" (formula "68") (term "0") (ifseqformula "72")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "51")) + (rule "inEqSimp_commuteGeq" (formula "69")) + (rule "polySimp_sepNegMonomial" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "63")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm1" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "0,0,0")) + (rule "add_zero_left" (formula "56") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "1")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,1")) + (rule "polySimp_elimOne" (formula "65") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41")) + (rule "polySimp_mulLiterals" (formula "41") (term "0")) + (rule "polySimp_elimOne" (formula "41") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "47") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "104") (term "1")) + (rule "polySimp_mulComm0" (formula "104") (term "1,1")) + (rule "polySimp_rightDist" (formula "104") (term "1,1")) + (rule "mul_literals" (formula "104") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "104") (term "0")) + (rule "polySimp_mulLiterals" (formula "104") (term "0,0")) + (rule "polySimp_elimOne" (formula "104") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "0")) + (rule "polySimp_elimOne" (formula "56") (term "0")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "41")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "34")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "38")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "34")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "37") (ifseqformula "35")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "37")) + (rule "polySimp_mulLiterals" (formula "37") (term "0")) + (rule "polySimp_elimOne" (formula "37") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "37")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "33")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "67")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0")) + (rule "polySimp_addComm0" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "64")) + (rule "times_zero_1" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_and_subsumption3" (formula "44") (term "0,0,0")) + (rule "leq_literals" (formula "44") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "nnf_imp2or" (formula "44") (term "0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "1,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "44") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "44") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "44") (term "1,0,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0,1,0,0,0")) + (rule "add_zero_right" (formula "44") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,0")) + (rule "mul_literals" (formula "44") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "48") (term "1")) + (builtin "One Step Simplification" (formula "48")) + (rule "translateJavaSubInt" (formula "48") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "48") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "1,1,1")) + (rule "mul_literals" (formula "48") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "48") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0,0")) + (rule "times_zero_2" (formula "48") (term "1,0,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "48") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,0")) + (rule "replace_known_left" (formula "48") (term "0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0")) + (rule "replace_known_left" (formula "48") (term "0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "49")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "50")) + (rule "times_zero_1" (formula "66") (term "0,0")) + (rule "add_zero_left" (formula "66") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "polySimp_mulComm0" (formula "66") (term "1")) + (rule "polySimp_rightDist" (formula "66") (term "1")) + (rule "mul_literals" (formula "66") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1")) + (rule "polySimp_elimOne" (formula "66") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "66") (ifseqformula "33")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0")) + (rule "mul_literals" (formula "66") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "66") (term "0,0")) + (rule "add_literals" (formula "66") (term "1,1,0,0")) + (rule "times_zero_1" (formula "66") (term "1,0,0")) + (rule "add_zero_right" (formula "66") (term "0,0")) + (rule "qeq_literals" (formula "66") (term "0")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "62") (term "1,1")) + (rule "translateJavaSubInt" (formula "62") (term "1,1")) + (rule "translateJavaAddInt" (formula "62") (term "1,0,1,1")) + (rule "polySimp_elimSub" (formula "62") (term "1,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,0,1,1")) + (rule "polySimp_addAssoc" (formula "62") (term "1")) + (rule "applyEq" (formula "62") (term "0,1,1") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "62") (term "1,1")) + (rule "polySimp_rightDist" (formula "62") (term "1,1")) + (rule "mul_literals" (formula "62") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "62") (term "1")) + (rule "polySimp_addComm1" (formula "62") (term "0,1")) + (rule "add_literals" (formula "62") (term "0,0,1")) + (rule "add_zero_left" (formula "62") (term "0,1")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "43") (term "0")) + (rule "replace_known_left" (formula "43") (term "0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "24")) (ifInst "" (formula "104")) (ifInst "" (formula "13")) (ifInst "" (formula "17")) (ifInst "" (formula "106")) (ifInst "" (formula "26"))) + (rule "true_left" (formula "43")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "3")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "60") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "78")) (ifInst "" (formula "105")) (ifInst "" (formula "78")) (ifInst "" (formula "77")) (ifInst "" (formula "18"))) + (rule "wellFormedAnonEQ" (formula "60") (term "1,0") (ifseqformula "57")) + (rule "wellFormedAnon" (formula "60") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "60") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "60") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "60") (term "1,1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "13")) (ifInst "" (formula "12"))) + (rule "polySimp_addComm0" (formula "60") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "60") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "60") (term "1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "60") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0")) + (rule "replace_known_left" (formula "60") (term "0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "60") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "60") (term "0,0,0,0,1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "60")) + (rule "applyEq" (formula "60") (term "0,0,1,1") (ifseqformula "61")) + (rule "applyEq" (formula "60") (term "0,0,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "60") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0,0,0,1")) + (rule "mul_literals" (formula "60") (term "0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,0,0,0,1")) + (rule "applyEq" (formula "60") (term "0,1,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0,0,1")) + (rule "mul_literals" (formula "60") (term "0,1,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "60") (term "0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,1,0,0,1")) + (rule "applyEq" (formula "60") (term "0,1,0,1") (ifseqformula "50")) + (rule "inEqSimp_commuteGeq" (formula "60") (term "1,0,1")) + (rule "replace_known_left" (formula "60") (term "1,0,1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "60")) + (rule "inEqSimp_sepNegMonomial1" (formula "60") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "60") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0")) + (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "inEqSimp_subsumption0" (formula "73") (ifseqformula "61")) + (rule "inEqSimp_homoInEq0" (formula "73") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0")) + (rule "mul_literals" (formula "73") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,1,0,0")) + (rule "times_zero_1" (formula "73") (term "1,0,0")) + (rule "add_zero_right" (formula "73") (term "0,0")) + (rule "qeq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "72")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "qeq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "60")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "mul_literals" (formula "71") (term "0,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "70") (ifseqformula "71")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "qeq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "72")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_subsumption0" (formula "69") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0")) + (rule "mul_literals" (formula "69") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69")) + (rule "times_zero_1" (formula "68") (term "0,0")) + (rule "add_zero_left" (formula "68") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "mul_literals" (formula "68") (term "1")) + (rule "inEqSimp_subsumption1" (formula "67") (ifseqformula "68")) + (rule "leq_literals" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67")) + (rule "true_left" (formula "67")) + (rule "inEqSimp_exactShadow3" (formula "67") (ifseqformula "49")) + (rule "mul_literals" (formula "67") (term "0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0")) + (rule "add_literals" (formula "67") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1")) + (rule "polySimp_rightDist" (formula "67") (term "1")) + (rule "mul_literals" (formula "67") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1")) + (rule "polySimp_elimOne" (formula "67") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "67")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "66") (term "0,0")) + (rule "mul_literals" (formula "66") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0")) + (rule "add_literals" (formula "66") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_subsumption0" (formula "31") (ifseqformula "66")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "notLeft" (formula "11")) + (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "79")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "2")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "75") (term "0,0,0")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "10")) (ifInst "" (formula "107")) (ifInst "" (formula "10")) (ifInst "" (formula "73")) (ifInst "" (formula "17"))) + (rule "wellFormedAnon" (formula "75") (term "1,0")) + (rule "replace_known_left" (formula "75") (term "1,1,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "12"))) + (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0")) + (rule "replace_known_left" (formula "75") (term "0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0")) + (rule "polySimp_elimOne" (formula "75") (term "0,0")) + (rule "replace_known_left" (formula "75") (term "0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "8")) + (rule "times_zero_1" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "8") (term "1")) + (rule "translateJavaSubInt" (formula "8") (term "1,1")) + (rule "polySimp_elimSub" (formula "8") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "10")) (ifInst "" (formula "110")) (ifInst "" (formula "10")) (ifInst "" (formula "77")) (ifInst "" (formula "78")) (ifInst "" (formula "74")) (ifInst "" (formula "17"))) + (rule "true_left" (formula "63")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "59") (term "0")) + (rule "translateJavaAddInt" (formula "59") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "59") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,0")) + (rule "pullOutSelect" (formula "59") (term "0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "59") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "84")) (ifInst "" (formula "3"))) + (rule "polySimp_homoEq" (formula "60")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "elementOfSingleton" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "applyEqReverse" (formula "60") (term "0,1,0,0") (ifseqformula "59")) + (rule "hideAuxiliaryEq" (formula "59")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "59")) + (rule "polySimp_mulLiterals" (formula "59") (term "0")) + (rule "polySimp_elimOne" (formula "59") (term "0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "63") (term "0,0")) + (rule "translateJavaSubInt" (formula "63") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "63") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "63") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,0,0,0")) + (rule "applyEq" (formula "63") (term "1,0,0,0,0") (ifseqformula "74")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0,0")) + (rule "applyEq" (formula "63") (term "0,1,1,0,0") (ifseqformula "74")) + (rule "polySimp_addComm0" (formula "63") (term "1,0,0")) + (rule "applyEq" (formula "63") (term "0,1,0,0,0,0") (ifseqformula "62")) + (rule "applyEq" (formula "63") (term "1,1,0,0") (ifseqformula "62")) + (rule "inEqSimp_sepNegMonomial0" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "0,0,0,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "47") (term "1")) + (builtin "One Step Simplification" (formula "47")) + (rule "translateJavaUnaryMinusInt" (formula "47") (term "1,1")) + (rule "neg_literal" (formula "47") (term "1,1")) + (rule "translateJavaAddInt" (formula "47") (term "0,0,1")) + (rule "translateJavaSubInt" (formula "47") (term "0,1")) + (rule "polySimp_elimSub" (formula "47") (term "0,1")) + (rule "mul_literals" (formula "47") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "47") (term "0,1")) + (rule "polySimp_addComm1" (formula "47") (term "0,1")) + (rule "polySimp_addComm0" (formula "47") (term "0,0,1")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "translateJavaSubInt" (formula "29") (term "0,2,1")) + (rule "translateJavaSubInt" (formula "29") (term "0,2,0")) + (rule "eqSymm" (formula "26")) + (rule "eqSymm" (formula "29")) + (rule "translateJavaMulInt" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "29") (term "0,2,1")) + (rule "mul_literals" (formula "29") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "29") (term "0,2,0")) + (rule "mul_literals" (formula "29") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "31")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "31")) + (rule "inEqSimp_exactShadow3" (formula "42") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "42") (term "0,0")) + (rule "mul_literals" (formula "42") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0")) + (rule "add_literals" (formula "42") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "42")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Contract_axiom_for_elementsToReadOfBucketBlockClassified_in_BucketPointers" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "11")) (ifInst "" (formula "117")) (ifInst "" (formula "118")) (ifInst "" (formula "116")) (ifInst "" (formula "11")) (ifInst "" (formula "80")) (ifInst "" (formula "17"))) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "84") (term "0,0,0")) + (rule "translateJavaSubInt" (formula "84") (term "1,0,0,0")) + (rule "polySimp_elimSub" (formula "84") (term "1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "84") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0,0,0,0,0,0")) + (rule "applyEq" (formula "84") (term "0,1,1,0,0,0") (ifseqformula "80")) + (rule "polySimp_addComm0" (formula "84") (term "1,0,0,0")) + (rule "applyEq" (formula "84") (term "1,0,0,0,0,0") (ifseqformula "80")) + (rule "polySimp_addComm1" (formula "84") (term "0,0,0,0,0")) + (rule "applyEq" (formula "84") (term "1,1,0,0,0") (ifseqformula "68")) + (rule "applyEq" (formula "84") (term "0,1,0,0,0,0,0") (ifseqformula "68")) + (rule "inEqSimp_sepNegMonomial0" (formula "84") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,0,0,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "79") (term "0")) + (rule "translateJavaMulInt" (formula "79") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "79") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,2,0")) + (rule "pullOutSelect" (formula "79") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "79")) + (builtin "One Step Simplification" (formula "79") (ifInst "" (formula "89")) (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "80")) + (rule "applyEqReverse" (formula "79") (term "1") (ifseqformula "80")) + (rule "hideAuxiliaryEq" (formula "80")) + (rule "elementOfSingleton" (formula "79") (term "0,0")) + (builtin "One Step Simplification" (formula "79")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "84") (inst "b=b")) + (builtin "One Step Simplification" (formula "84")) + (rule "expand_inInt" (formula "84") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "translateJavaCastInt" (formula "91") (term "0")) + (rule "translateJavaAddInt" (formula "90") (term "1")) + (rule "translateJavaMulInt" (formula "84") (term "1")) + (rule "translateJavaMulInt" (formula "85") (term "0")) + (rule "translateJavaCastInt" (formula "88") (term "0")) + (rule "translateJavaCastInt" (formula "87") (term "1")) + (rule "polySimp_mulComm0" (formula "84") (term "1")) + (rule "polySimp_mulComm0" (formula "85") (term "0")) + (rule "polySimp_addComm0" (formula "90") (term "1")) + (rule "castedGetAny" (formula "91") (term "0")) + (rule "castedGetAny" (formula "88") (term "0")) + (rule "castedGetAny" (formula "87") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86")) + (rule "inEqSimp_commuteLeq" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "applyEq" (formula "88") (term "0") (ifseqformula "42")) + (rule "inEqSimp_homoInEq0" (formula "88")) + (rule "polySimp_mulComm0" (formula "88") (term "1,0")) + (rule "polySimp_rightDist" (formula "88") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "88") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "88") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "88") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "88") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "88") (term "0")) + (rule "applyEq" (formula "87") (term "0") (ifseqformula "42")) + (rule "inEqSimp_commuteGeq" (formula "87")) + (rule "inEqSimp_sepPosMonomial0" (formula "92") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "92") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "92") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "92") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "92") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "87")) + (rule "polySimp_mulLiterals" (formula "87") (term "0")) + (rule "polySimp_elimOne" (formula "87") (term "0")) + (rule "inEqSimp_subsumption6" (formula "84") (ifseqformula "22")) + (rule "mul_literals" (formula "84") (term "1,1,0")) + (rule "greater_literals" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "leq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "true_left" (formula "84")) + (rule "inEqSimp_exactShadow2" (formula "22") (ifseqformula "84")) + (rule "mul_literals" (formula "22") (term "1,0,0,1")) + (rule "greater_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "86") (ifseqformula "44")) + (rule "mul_literals" (formula "86") (term "0,0")) + (rule "add_zero_left" (formula "86") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "1")) + (rule "polySimp_elimOne" (formula "86") (term "1")) + (rule "inEqSimp_subsumption1" (formula "86") (ifseqformula "71")) + (rule "inEqSimp_homoInEq0" (formula "86") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "86") (term "0,0")) + (rule "add_literals" (formula "86") (term "1,1,0,0")) + (rule "times_zero_1" (formula "86") (term "1,0,0")) + (rule "add_zero_right" (formula "86") (term "0,0")) + (rule "qeq_literals" (formula "86") (term "0")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "inEqSimp_exactShadow2" (formula "42") (ifseqformula "85")) + (rule "greater_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0")) + (rule "mul_literals" (formula "42") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1")) + (rule "polySimp_rightDist" (formula "42") (term "1")) + (rule "mul_literals" (formula "42") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "69") (term "1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "69") (term "1,0,0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "94")) (ifInst "" (formula "123")) (ifInst "" (formula "94")) (ifInst "" (formula "16"))) + (rule "wellFormedAnonEQ" (formula "69") (term "1,0") (ifseqformula "61")) + (rule "wellFormedAnon" (formula "69") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "69") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "69") (term "1,0,1,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "12")) (ifInst "" (formula "60"))) + (rule "polySimp_addComm0" (formula "69") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "69") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0")) + (rule "replace_known_left" (formula "69") (term "0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "69") (term "0,0,0,0,1") (ifseqformula "75")) + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1")) + (rule "applyEq" (formula "69") (term "0,0,1,1,1") (ifseqformula "54")) + (rule "inEqSimp_commuteGeq" (formula "69") (term "0,1,1,1")) + (rule "applyEq" (formula "69") (term "0,1,0,1") (ifseqformula "54")) + (rule "inEqSimp_commuteGeq" (formula "69") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,0")) + (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "1")) + (rule "polySimp_elimOne" (formula "69") (term "1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "84")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "inEqSimp_exactShadow3" (formula "94") (ifseqformula "73")) + (rule "mul_literals" (formula "94") (term "0,0")) + (rule "add_zero_left" (formula "94") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "83") (term "0,0")) + (rule "mul_literals" (formula "83") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "83") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "83")) + (rule "times_zero_1" (formula "81") (term "0,0")) + (rule "add_zero_left" (formula "81") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "mul_literals" (formula "81") (term "1")) + (rule "inEqSimp_subsumption1" (formula "96") (ifseqformula "81")) + (rule "leq_literals" (formula "96") (term "0")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "Contract_axiom_for_disjointBucketsLemma_in_BucketPointers" (formula "55") (term "0")) + (rule "replace_known_left" (formula "55") (term "1,0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "16")) (ifInst "" (formula "132")) (ifInst "" (formula "56")) (ifInst "" (formula "21"))) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "55") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0")) + (rule "replace_known_left" (formula "55") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_sepNegMonomial0" (formula "55") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0,0")) + (rule "replace_known_left" (formula "55") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "55") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "55")) + (rule "expand_inInt" (formula "55") (term "1,0,0")) + (rule "replace_int_MIN" (formula "55") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "55") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "55") (term "1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "55") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "55") (term "1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55") (term "1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_writtenElementsOfBucketClassified_in_BucketPointers" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "11")) (ifInst "" (formula "133")) (ifInst "" (formula "134")) (ifInst "" (formula "129")) (ifInst "" (formula "132")) (ifInst "" (formula "11")) (ifInst "" (formula "90")) (ifInst "" (formula "34")) (ifInst "" (formula "17"))) + (rule "true_left" (formula "7")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "translateJavaAddInt" (formula "7") (term "3,0,0,1")) + (rule "translateJavaSubInt" (formula "7") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "7") (term "3,0,2")) + (rule "translateJavaSubInt" (formula "7") (term "4,0,0,1")) + (rule "translateJavaAddInt" (formula "7") (term "4,0,2")) + (rule "translateJavaAddInt" (formula "7") (term "0,4,0,0,1")) + (rule "polySimp_elimSub" (formula "7") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "7") (term "4,0,0,1")) + (rule "mul_literals" (formula "7") (term "1,4,0,0,1")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "4,0,0,1")) + (rule "polySimp_addComm0" (formula "7") (term "0,4,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "7") (term "1,0")) + (rule "applyEq" (formula "7") (term "0,1,0") (ifseqformula "68")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "67") (term "0")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "10")) (ifInst "" (formula "132")) (ifInst "" (formula "10")) (ifInst "" (formula "90")) (ifInst "" (formula "16"))) + (rule "true_left" (formula "67")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "10")) (ifInst "" (formula "132")) (ifInst "" (formula "10")) (ifInst "" (formula "90")) (ifInst "" (formula "16"))) + (rule "wellFormedAnon" (formula "76") (term "1,0")) + (rule "translateJavaAddInt" (formula "76") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "76") (term "0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "11"))) + (rule "polySimp_addComm0" (formula "76") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "76") (term "0,0,0,0,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0")) + (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1")) + (rule "applyEq" (formula "76") (term "0,0,0,0,1") (ifseqformula "77")) + (rule "replace_known_left" (formula "76") (term "0,0,0,1") (ifseqformula "69")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "76") (term "0,0,1,1,1") (ifseqformula "54")) + (rule "inEqSimp_commuteGeq" (formula "76") (term "0,1,1,1")) + (rule "replace_known_left" (formula "76") (term "0,1,1,1") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "76") (term "0,0,1,1,1") (ifseqformula "77")) + (rule "replace_known_left" (formula "76") (term "1,1,1") (ifseqformula "74")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "76") (term "0,0,1,1") (ifseqformula "77")) + (rule "applyEq" (formula "76") (term "0,1,1,1") (ifseqformula "77")) + (rule "replace_known_left" (formula "76") (term "1,1") (ifseqformula "72")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "76") (term "0,1,1") (ifseqformula "54")) + (rule "inEqSimp_commuteGeq" (formula "76") (term "1,1")) + (rule "replace_known_left" (formula "76") (term "1,1") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "76")) + (rule "applyEq" (formula "76") (term "0,1") (ifseqformula "77")) + (rule "replace_known_left" (formula "76") (term "1") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "Definition_axiom_for_lastReadOf_in_de_wiesler_BucketPointers" (formula "76") (term "0")) + (rule "translateJavaMulInt" (formula "76") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,2,0")) + (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "76")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "106")) (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "77")) + (rule "applyEqReverse" (formula "76") (term "1") (ifseqformula "77")) + (rule "hideAuxiliaryEq" (formula "77")) + (rule "elementOfSingleton" (formula "76") (term "0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "polySimp_homoEq" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "equal_literals" (formula "76") (term "0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "eqSymm" (formula "76")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "76")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "76")) + (rule "applyEq" (formula "72") (term "0,0") (ifseqformula "76")) + (rule "applyEq" (formula "72") (term "0,1") (ifseqformula "76")) + (rule "applyEq" (formula "77") (term "1,1,0,0") (ifseqformula "76")) + (rule "applyEq" (formula "74") (term "0,0") (ifseqformula "76")) + (rule "applyEq" (formula "94") (term "1,1,0,0,0") (ifseqformula "76")) + (rule "applyEq" (formula "94") (term "0,0,0,0,0") (ifseqformula "76")) + (rule "applyEq" (formula "77") (term "0,0,0,0") (ifseqformula "76")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "1")) + (rule "polySimp_elimOne" (formula "69") (term "1")) + (rule "inEqSimp_subsumption1" (formula "69") (ifseqformula "86")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "qeq_literals" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "67") (term "0")) + (rule "translateJavaSubInt" (formula "67") (term "0")) + (rule "translateJavaAddInt" (formula "67") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "67") (term "0")) + (rule "polySimp_homoEq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0")) + (rule "polySimp_addComm0" (formula "67") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "67") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0")) + (rule "polySimp_addComm1" (formula "67") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "67") (term "0,0,0")) + (rule "add_literals" (formula "67") (term "1,0,0,0")) + (rule "times_zero_1" (formula "67") (term "0,0,0")) + (rule "add_zero_left" (formula "67") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "1")) + (rule "polySimp_elimOne" (formula "67") (term "1")) + (rule "applyEq" (formula "7") (term "0,0,0") (ifseqformula "67")) + (rule "applyEq" (formula "7") (term "1,4,0,0,1") (ifseqformula "67")) + (rule "applyEq" (formula "7") (term "1,4,0,2") (ifseqformula "67")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "102")) + (rule "notLeft" (formula "102")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "21") (inst "b=b")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "97")) (ifInst "" (formula "100"))) + (rule "expand_inInt" (formula "21") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "21") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "21") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "23")) + (rule "translateJavaCastInt" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "26") (term "1")) + (rule "translateJavaCastInt" (formula "25") (term "0")) + (rule "translateJavaMulInt" (formula "22") (term "0")) + (rule "translateJavaMulInt" (formula "21") (term "1")) + (rule "translateJavaCastInt" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_addComm0" (formula "25") (term "1")) + (rule "castedGetAny" (formula "25") (term "0")) + (rule "castedGetAny" (formula "24") (term "0")) + (rule "castedGetAny" (formula "23") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "47")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "47")) + (rule "inEqSimp_commuteGeq" (formula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption6" (formula "21") (ifseqformula "24")) + (rule "mul_literals" (formula "21") (term "1,1,0")) + (rule "greater_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "10")) + (rule "notLeft" (formula "10")) + (rule "Contract_axiom_for_toReadCountOfBucket_in_BucketPointers" (formula "76") (term "0,2")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,0,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "130")) (ifInst "" (formula "74")) (ifInst "" (formula "15"))) + (rule "wellFormedAnonEQ" (formula "76") (term "1,0") (ifseqformula "60")) + (rule "wellFormedAnon" (formula "76") (term "0,1,0")) + (rule "replace_known_left" (formula "76") (term "1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "11")) (ifInst "" (formula "10"))) + (rule "inEqSimp_ltToLeq" (formula "76") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "76")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "77") (term "0,2")) + (builtin "One Step Simplification" (formula "77")) + (rule "translateJavaSubInt" (formula "77") (term "0,1,2")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,2")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "0,0,2")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,2")) + (rule "applyEq" (formula "77") (term "0,0,1,2") (ifseqformula "75")) + (rule "applyEq" (formula "77") (term "0,1,0,0,0,0,2") (ifseqformula "75")) + (rule "polySimp_sepNegMonomial" (formula "77") (term "1,2")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,2")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,2")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "0,0,2")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,2")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,2")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,2")) + (rule "mul_literals" (formula "77") (term "0,1,0,0,2")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,2")) + (rule "Definition_axiom_for_elementsToReadOfBucketBlockClassified_in_de_wiesler_BucketPointers" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaAddInt" (formula "6") (term "3,0,1")) + (rule "translateJavaAddInt" (formula "6") (term "4,0,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "66")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,3,0,1") (ifseqformula "66")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "45") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "45")) + (rule "expand_inInt" (formula "45") (term "1,0,0")) + (rule "replace_int_MAX" (formula "45") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "45") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "89") (inst "b=b")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "97")) (ifInst "" (formula "100"))) + (rule "expand_inInt" (formula "89") (term "1,0,0,1")) + (rule "replace_int_MAX" (formula "89") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "89") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "translateJavaCastInt" (formula "95") (term "0")) + (rule "translateJavaAddInt" (formula "94") (term "1")) + (rule "translateJavaMulInt" (formula "90") (term "0")) + (rule "translateJavaMulInt" (formula "89") (term "1")) + (rule "translateJavaCastInt" (formula "93") (term "0")) + (rule "translateJavaCastInt" (formula "92") (term "1")) + (rule "polySimp_mulComm0" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "89") (term "1")) + (rule "polySimp_addComm0" (formula "93") (term "1")) + (rule "castedGetAny" (formula "93") (term "0")) + (rule "castedGetAny" (formula "92") (term "0")) + (rule "castedGetAny" (formula "91") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "90")) + (rule "inEqSimp_commuteLeq" (formula "89")) + (rule "inEqSimp_commuteLeq" (formula "90")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "43")) + (rule "inEqSimp_commuteGeq" (formula "90")) + (rule "applyEq" (formula "90") (term "0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq0" (formula "90")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "90") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "91") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "91") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "91") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "91") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "91") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "91") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "90")) + (rule "polySimp_mulLiterals" (formula "90") (term "0")) + (rule "polySimp_elimOne" (formula "90") (term "0")) + (rule "inEqSimp_subsumption6" (formula "89") (ifseqformula "22")) + (rule "greater_literals" (formula "89") (term "0,0")) + (builtin "One Step Simplification" (formula "89")) + (rule "mul_literals" (formula "89") (term "1,0")) + (rule "leq_literals" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89")) + (rule "true_left" (formula "89")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "131"))) + (rule "translateJavaAddInt" (formula "82") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "82") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "82") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "82") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "82") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "82") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "82") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,1")) + (rule "replace_known_left" (formula "82") (term "0,0,0,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0")) + (rule "replace_known_left" (formula "82") (term "0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1")) + (rule "applyEq" (formula "82") (term "0,1,0,1") (ifseqformula "53")) + (rule "applyEq" (formula "82") (term "0,0,0,1") (ifseqformula "53")) + (rule "inEqSimp_commuteGeq" (formula "82") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "82") (term "0,0,1,1,1") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_sepNegMonomial0" (formula "82") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "82") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_subsumption0" (formula "82") (term "0,0,1") (ifseqformula "85")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,1")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "82") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,0,1")) + (rule "add_literals" (formula "82") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "82") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "82") (term "0,0,0,0,1")) + (rule "qeq_literals" (formula "82") (term "0,0,0,1")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_subsumption1" (formula "82") (term "1,0,1,1,1,1") (ifseqformula "42")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "82") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "82") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "82") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "82") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_subsumption1" (formula "82") (term "0,0") (ifseqformula "42")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "82") (term "0,0,0,0")) + (rule "qeq_literals" (formula "82") (term "0,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_subsumption1" (formula "82") (term "0,1,1,1") (ifseqformula "86")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "82") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "82") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "82") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "82") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "82") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "82")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "83") (term "0")) + (rule "translateJavaCastInt" (formula "83") (term "0,0")) + (rule "castedGetAny" (formula "83") (term "0,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "87") (term "1")) + (rule "translateJavaCastInt" (formula "87") (term "0,1")) + (rule "castedGetAny" (formula "87") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "87")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "87")) + (rule "times_zero_1" (formula "83") (term "0,0")) + (rule "add_zero_left" (formula "83") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "63")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "add_zero_left" (formula "83") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "mul_literals" (formula "83") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "70")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "mul_literals" (formula "83") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "83") (ifseqformula "90")) + (rule "mul_literals" (formula "83") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "mul_literals" (formula "83") (term "1")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "91") (term "0")) + (builtin "One Step Simplification" (formula "91")) + (rule "translateJavaMod" (formula "91") (term "0")) + (rule "jmod_axiom" (formula "91") (term "0")) + (rule "polySimp_mulLiterals" (formula "91") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "91")) + (rule "polySimp_mulLiterals" (formula "91") (term "0")) + (rule "newSym_eq" (formula "91") (inst "newSymDef=mul(int::final(result_1, + de.wiesler.Increment::$position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "91") (term "1,1")) + (rule "add_zero_right" (formula "91") (term "1")) + (rule "applyEq" (formula "92") (term "0,0") (ifseqformula "91")) + (rule "eqSymm" (formula "92")) + (rule "applyEq" (formula "89") (term "1") (ifseqformula "92")) + (rule "applyEq" (formula "137") (term "0,1") (ifseqformula "92")) + (rule "inEqSimp_homoInEq1" (formula "137") (term "1")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "137") (term "0,1")) + (rule "applyEq" (formula "7") (term "0,0,0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0")) + (rule "applyEq" (formula "7") (term "1,4,0,0,1") (ifseqformula "92")) + (rule "polySimp_addComm1" (formula "7") (term "4,0,0,1")) + (rule "applyEq" (formula "84") (term "0") (ifseqformula "92")) + (rule "applyEq" (formula "64") (term "1,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "98") (term "1,1,0,0,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "91") (term "0,0") (ifseqformula "92")) + (rule "applyEq" (formula "6") (term "1,3,0,1") (ifseqformula "92")) + (rule "polySimp_addComm0" (formula "6") (term "3,0,1")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq0" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "applyEq" (formula "6") (term "1,1,0") (ifseqformula "92")) + (rule "applyEq" (formula "137") (term "0,0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq0" (formula "137") (term "0")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0")) + (rule "applyEq" (formula "77") (term "1,1,0,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "7") (term "1,4,0,2") (ifseqformula "92")) + (rule "polySimp_addComm0" (formula "7") (term "4,0,2")) + (rule "applyEq" (formula "77") (term "0,0,1,0,0") (ifseqformula "92")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,0")) + (rule "applyEq" (formula "65") (term "1,1") (ifseqformula "92")) + (rule "applyEq" (formula "66") (term "1") (ifseqformula "92")) + (rule "applyEq" (formula "98") (term "0,0,1,0,0,0") (ifseqformula "92")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0,0,0")) + (rule "applyEq" (formula "94") (term "1") (ifseqformula "92")) + (rule "inEqSimp_sepNegMonomial0" (formula "137") (term "1")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,1")) + (rule "polySimp_elimOne" (formula "137") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "137") (term "0")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,0")) + (rule "polySimp_elimOne" (formula "137") (term "0,0")) + (rule "elimGcdGeq_antec" (formula "84") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,0,1,0")) + (rule "add_zero_right" (formula "84") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "polySimp_mulLiterals" (formula "84") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "84") (term "1,0,0,0,0")) + (rule "add_literals" (formula "84") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "84") (term "0,0")) + (rule "add_literals" (formula "84") (term "1,1,0,0")) + (rule "times_zero_1" (formula "84") (term "1,0,0")) + (rule "add_zero_right" (formula "84") (term "0,0")) + (rule "leq_literals" (formula "84") (term "0")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "90")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1")) + (rule "mul_literals" (formula "63") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "71")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1")) + (rule "polySimp_rightDist" (formula "64") (term "1")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1")) + (rule "mul_literals" (formula "64") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "87") (ifseqformula "91")) + (rule "mul_literals" (formula "87") (term "0,0")) + (rule "add_zero_left" (formula "87") (term "0")) + (rule "inEqSimp_subsumption6" (formula "87") (ifseqformula "86")) + (rule "greater_literals" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "mul_literals" (formula "87") (term "1,0")) + (rule "leq_literals" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87")) + (rule "true_left" (formula "87")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "52")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addAssoc" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_rightDist" (formula "63") (term "1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1")) + (rule "polySimp_elimOne" (formula "63") (term "1,1")) + (rule "polySimp_rightDist" (formula "63") (term "0,1")) + (rule "mul_literals" (formula "63") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0,0") (ifseqformula "63")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "leq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm1" (formula "63") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "1,1,0")) + (rule "times_zero_1" (formula "63") (term "1,0")) + (rule "polySimp_addLiterals" (formula "63") (term "0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "add_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "elimGcdLeq_antec" (formula "63") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(6(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,1,0")) + (rule "leq_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "neg_literal" (formula "63") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "63") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0,0")) + (rule "add_literals" (formula "63") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "63") (term "0,0")) + (rule "add_literals" (formula "63") (term "1,1,0,0")) + (rule "times_zero_1" (formula "63") (term "1,0,0")) + (rule "add_zero_right" (formula "63") (term "0,0")) + (rule "qeq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_rightDist" (formula "64") (term "0,0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,0")) + (rule "add_literals" (formula "64") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_subsumption0" (formula "142") (term "0") (ifseqformula "64")) + (rule "inEqSimp_homoInEq0" (formula "142") (term "0,0")) + (rule "polySimp_mulComm0" (formula "142") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "142") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "142") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "142") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "142") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "142") (term "0,0,0,0")) + (rule "add_literals" (formula "142") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "142") (term "0,0,0")) + (rule "add_literals" (formula "142") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "142") (term "1,0,0,0")) + (rule "add_literals" (formula "142") (term "0,0,0")) + (rule "qeq_literals" (formula "142") (term "0,0")) + (builtin "One Step Simplification" (formula "142")) + (rule "inEqSimp_geqRight" (formula "142")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "65") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "65") (term "0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "1,1,0,0")) + (rule "mul_literals" (formula "65") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,0,0")) + (rule "add_literals" (formula "65") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "65") (term "0,0")) + (rule "add_literals" (formula "65") (term "1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "1,0,0")) + (rule "add_zero_right" (formula "65") (term "0,0")) + (rule "qeq_literals" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65")) + (rule "true_left" (formula "65")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1")) + (rule "times_zero_1" (formula "34") (term "0,0")) + (rule "add_zero_left" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "34") (ifseqformula "90")) + (rule "mul_literals" (formula "34") (term "1,1,0")) + (rule "greater_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "closeFalse" (formula "34")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98")) + (builtin "Block Contract (Internal)" (formula "98") (newnames "result_2,exc_2,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "70") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "99")) + (rule "eqSymm" (formula "99") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "99") (term "0,1,0,0")) + (rule "variableDeclarationAssign" (formula "99") (term "1")) + (rule "variableDeclaration" (formula "99") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "99") (term "1")) + (builtin "One Step Simplification" (formula "99")) + (rule "emptyStatement" (formula "99") (term "1")) + (builtin "One Step Simplification" (formula "99")) + (rule "emptyStatement" (formula "99") (term "1")) + (rule "tryEmpty" (formula "99") (term "1")) + (rule "blockEmptyLabel" (formula "99") (term "1")) + (rule "blockEmpty" (formula "99") (term "1")) + (rule "methodCallEmpty" (formula "99") (term "1")) + (rule "emptyModality" (formula "99") (term "1")) + (rule "andRight" (formula "99")) + (branch + (builtin "One Step Simplification" (formula "99")) + (rule "closeTrue" (formula "99")) + ) + (branch + (builtin "One Step Simplification" (formula "99")) + (rule "closeTrue" (formula "99")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "98")) + (branch + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "98")) + ) + (branch + (builtin "One Step Simplification" (formula "98")) + (rule "wellFormedAnonEQ" (formula "98") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "98") (term "0")) + (rule "replace_known_left" (formula "98") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "13")) (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "98")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "One Step Simplification" (formula "70")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "70") (term "1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "70")) + (rule "expand_inInt" (formula "70") (term "0,1,0")) + (rule "replace_int_MAX" (formula "70") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "70") (term "0,1,0,1,0")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "70")) + (rule "andLeft" (formula "72")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "75")) + (rule "translateJavaAddInt" (formula "106") (term "0,1,0")) + (rule "eqSymm" (formula "77")) + (rule "translateJavaAddInt" (formula "76") (term "0")) + (rule "translateJavaAddInt" (formula "75") (term "1")) + (rule "replace_known_left" (formula "73") (term "0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "elim_double_block_2" (formula "104") (term "1")) + (rule "ifUnfold" (formula "104") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "104") (term "1") (newnames "x_5")) + (rule "inequality_comparison_simple" (formula "104") (term "1")) + (builtin "One Step Simplification" (formula "104")) + (rule "replace_known_left" (formula "104") (term "0,0,1,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "104")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "104") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "76") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "76") (term "1,0,0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "103")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "76")) + (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "104") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "76") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "76") (term "0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "102")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "27")) (ifInst "" (formula "27"))) + (rule "true_left" (formula "76")) + (rule "ifSplit" (formula "104")) + (branch "if x_5 true" + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_5 false" + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "104") (term "1")) + (builtin "Block Contract (Internal)" (formula "104") (newnames "result_3,exc_3,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "105")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "105") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "105") (term "1")) + (rule "variableDeclaration" (formula "105") (term "1") (newnames "exc_3_1")) + (rule "assignment" (formula "105") (term "1")) + (builtin "One Step Simplification" (formula "105")) + (rule "emptyStatement" (formula "105") (term "1")) + (builtin "One Step Simplification" (formula "105")) + (rule "emptyStatement" (formula "105") (term "1")) + (rule "tryEmpty" (formula "105") (term "1")) + (rule "blockEmptyLabel" (formula "105") (term "1")) + (rule "blockEmpty" (formula "105") (term "1")) + (rule "methodCallEmpty" (formula "105") (term "1")) + (rule "emptyModality" (formula "105") (term "1")) + (rule "andRight" (formula "105")) + (branch + (builtin "One Step Simplification" (formula "105")) + (rule "closeTrue" (formula "105")) + ) + (branch + (builtin "One Step Simplification" (formula "105")) + (rule "closeTrue" (formula "105")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "104")) + (branch + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "104")) + ) + (branch + (builtin "One Step Simplification" (formula "104")) + (rule "wellFormedAnonEQ" (formula "104") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "104") (term "0")) + (rule "replace_known_left" (formula "104") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "13")) (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "104")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "76")) + (builtin "One Step Simplification" (formula "105")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "76") (term "1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "76")) + (rule "expand_inInt" (formula "76") (term "0,1,0")) + (rule "replace_int_MAX" (formula "76") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "76") (term "0,1,0,1,0")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "78")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "translateJavaAddInt" (formula "80") (term "7,0")) + (rule "translateJavaAddInt" (formula "81") (term "7,0")) + (rule "replace_known_left" (formula "79") (term "0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "79")) + (rule "true_left" (formula "79")) + (rule "polySimp_addComm1" (formula "79") (term "7,0")) + (rule "polySimp_addComm1" (formula "80") (term "7,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,7,0")) + (rule "polySimp_addComm0" (formula "80") (term "0,7,0")) + (rule "inEqSimp_commuteLeq" (formula "78")) + (rule "elim_double_block_2" (formula "109") (term "1")) + (rule "ifUnfold" (formula "109") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "109") (term "1") (newnames "x_6")) + (rule "inequality_comparison_simple" (formula "109") (term "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "replace_known_left" (formula "109") (term "0,0,1,0") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "109")) + (builtin "Use Dependency Contract" (formula "8") (term "0") (ifInst "" (formula "8") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "81") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,0,1,1,1,1,0")) + (rule "replace_known_right" (formula "81") (term "0,0,0,0,0,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "27"))) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "81") (term "1,0")) + (rule "disjointWithSingleton2" (formula "81") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0")) + (rule "replace_known_left" (formula "81") (term "0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0")) + (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfSingleton" (formula "81") (term "0,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfSingleton" (formula "81") (term "1,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (builtin "Use Dependency Contract" (formula "7") (term "0") (ifInst "" (formula "47") (term "0,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenElementsOfBucketClassified(de.wiesler.Classifier,[I,int,int,[I,int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "107")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "108")) (ifInst "" (formula "21")) (ifInst "" (formula "109")) (ifInst "" (formula "16")) (ifInst "" (formula "104")) (ifInst "" (formula "25")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "109")) (ifInst "" (formula "104")) (ifInst "" (formula "34"))) + (rule "wellFormedAnon" (formula "81") (term "0,0,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0,0")) + (rule "translateJavaAddInt" (formula "81") (term "1,0,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "81") (term "2,0,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,0,1,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,1,1,0,0,1,1,0")) + (rule "replace_known_left" (formula "81") (term "0,0,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "12")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14"))) + (rule "polySimp_elimSub" (formula "81") (term "2,0,0,0,0,1,1,0")) + (rule "mul_literals" (formula "81") (term "1,2,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,1,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "81") (term "2,0,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,1,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "81") (term "1,0")) + (rule "disjointWithSingleton2" (formula "81") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0,0,0")) + (rule "replace_known_left" (formula "81") (term "0,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0")) + (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEq" (formula "81") (term "0,1") (ifseqformula "7")) + (rule "eqSymm" (formula "81") (term "1")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "eqSymm" (formula "81") (term "1,0,0")) + (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "eqSymm" (formula "81") (term "1,0,0")) + (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfSingleton" (formula "81") (term "1,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "47") (term "0,0,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "81") (term "1,1,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "81") (term "1,0,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "81") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "81") (term "1,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "81") (term "2,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "1,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "81") (term "2,0,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "1,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "81") (term "0,2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,2,0,0,0,1,1,0")) + (rule "replace_known_left" (formula "81") (term "0,1,0,0,0,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "81") (ifInst "" (formula "107")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "108")) (ifInst "" (formula "21")) (ifInst "" (formula "109")) (ifInst "" (formula "16")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "108")) (ifInst "" (formula "109"))) + (rule "polySimp_elimSub" (formula "81") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "81") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "81") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "81") (term "1,0")) + (rule "disjointWithSingleton2" (formula "81") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "1,0,0")) + (rule "replace_known_left" (formula "81") (term "1,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "81") (term "0,0")) + (rule "replace_known_left" (formula "81") (term "0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "81")) + (rule "applyEq" (formula "81") (term "0,1") (ifseqformula "6")) + (rule "eqSymm" (formula "81") (term "1")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "eqSymm" (formula "81") (term "1,0,0")) + (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "eqSymm" (formula "81") (term "1,0,0")) + (rule "replace_known_right" (formula "81") (term "1,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfUnion" (formula "81") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "1,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "elementOfArrayRangeConcrete" (formula "81") (term "0,0,0")) + (rule "replace_known_right" (formula "81") (term "0,0,0,0,0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "81")) + (rule "ifSplit" (formula "110")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "111")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "110") (term "1")) + (builtin "Use Dependency Contract" (formula "65") (term "0,2") (ifInst "" (formula "67") (term "0,0,0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "82") (term "1")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "1,1,0,0,0,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (rule "disjointWithSingleton2" (formula "82") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0")) + (rule "replace_known_left" (formula "82") (term "0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "82")) + (rule "elementOfUnion" (formula "82") (term "0,0")) + (rule "elementOfSingleton" (formula "82") (term "1,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "65") (term "0,1") (ifInst "" (formula "8") (term "1")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "43")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "82") (term "0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,1,0,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "1,0,0,0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "57")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (rule "disjointWithSingleton2" (formula "82") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,0")) + (rule "replace_known_left" (formula "82") (term "1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0")) + (rule "replace_known_left" (formula "82") (term "0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "82")) + (rule "elementOfUnion" (formula "82") (term "0,0")) + (rule "elementOfSingleton" (formula "82") (term "1,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "64") (term "1") (ifInst "" (formula "64") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,1,1,1,0")) + (rule "eqSymm" (formula "82") (term "1")) + (rule "replace_known_left" (formula "82") (term "0,0,1,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14")) (ifInst "" (formula "64"))) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "62") (term "0") (ifInst "" (formula "9") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "82") (term "1,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "1,1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14")) (ifInst "" (formula "43"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "62") (term "1,1") (ifInst "" (formula "62") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "82") (term "1")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "1,1,0,0,0,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "63") (term "1") (ifInst "" (formula "63") (term "1,0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "82") (term "1")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "61") (term "0") (ifInst "" (formula "66") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "eqSymm" (formula "82") (term "1")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (builtin "Use Dependency Contract" (formula "9") (term "1,0") (ifInst "" (formula "9") (term "1")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::remainingWriteCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "108")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "43")) (ifInst "" (formula "27"))) + (rule "wellFormedAnonEQ" (formula "82") (term "0,0,0,0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "82") (term "0,0,0,0,0")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "82") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "82") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "82") (term "0,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "82") (term "1,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "ifElseSplit" (formula "110")) + (branch "if occupied true" + (builtin "Block Contract (Internal)" (formula "111") (newnames "result_4,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "112") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "112") (term "1")) + (rule "variableDeclaration" (formula "112") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "112") (term "1")) + (builtin "One Step Simplification" (formula "112")) + (rule "emptyStatement" (formula "112") (term "1")) + (builtin "One Step Simplification" (formula "112")) + (rule "emptyStatement" (formula "112") (term "1")) + (rule "applyEq" (formula "68") (term "1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "66")) + (rule "tryEmpty" (formula "112") (term "1")) + (rule "blockEmptyLabel" (formula "112") (term "1")) + (rule "blockEmpty" (formula "112") (term "1")) + (rule "methodCallEmpty" (formula "112") (term "1")) + (rule "emptyModality" (formula "112") (term "1")) + (rule "andRight" (formula "112")) + (branch + (builtin "One Step Simplification" (formula "112")) + (rule "closeTrue" (formula "112")) + ) + (branch + (builtin "One Step Simplification" (formula "112")) + (rule "closeTrue" (formula "112")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "111")) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "111")) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "111")) + (rule "wellFormedAnonEQ" (formula "111") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "111") (term "0")) + (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "111")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "83")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "83") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "83")) + (rule "expand_inInt" (formula "83") (term "0,1,0")) + (rule "replace_int_MAX" (formula "83") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "83") (term "0,1,0,1,0")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "84")) + (rule "translateJavaSubInt" (formula "87") (term "0")) + (rule "replace_known_left" (formula "86") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "86")) + (rule "true_left" (formula "86")) + (rule "polySimp_elimSub" (formula "86") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "85")) + (rule "applyEq" (formula "68") (term "1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "68")) + (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "66")) + (rule "applyEq" (formula "86") (term "0,1,0") (ifseqformula "67")) + (rule "polySimp_addComm0" (formula "86") (term "0")) + (rule "applyEq" (formula "86") (term "1,0") (ifseqformula "65")) + (rule "elim_double_block_2" (formula "115") (term "1")) + (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "115") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "87") (term "0,1,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "114")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "29")) (ifInst "" (formula "12")) (ifInst "" (formula "29"))) + (rule "true_left" (formula "87")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "115") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "87") (term "1,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "113")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "11"))) + (rule "true_left" (formula "87")) + (rule "ifUnfold" (formula "115") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "replace_known_left" (formula "115") (term "0,0,1,0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "115")) + (builtin "Use Dependency Contract" (formula "7") (term "0") (ifInst "" (formula "82") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "87") (term "1,1,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "87") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "87") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "87") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "87") (term "1,0,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "87") (term "1,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "87") (term "0,2,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "87") (term "2,0,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "2,1,0,0,1,1,0")) + (rule "replace_known_right" (formula "87") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "113")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "22")) (ifInst "" (formula "115")) (ifInst "" (formula "17")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15")) (ifInst "" (formula "44")) (ifInst "" (formula "29")) (ifInst "" (formula "28")) (ifInst "" (formula "114")) (ifInst "" (formula "115"))) + (rule "polySimp_elimSub" (formula "87") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "87") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "87") (term "1,0")) + (rule "disjointWithSingleton2" (formula "87") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "87") (term "1,0,0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0,0")) + (rule "replace_known_left" (formula "87") (term "1,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "replace_known_left" (formula "87") (term "1,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0")) + (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "0,1") (ifseqformula "7")) + (rule "eqSymm" (formula "87") (term "1")) + (rule "elementOfUnion" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "eqSymm" (formula "87") (term "1,0,0")) + (rule "replace_known_right" (formula "87") (term "1,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "87")) + (rule "elementOfUnion" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "eqSymm" (formula "87") (term "1,0,0")) + (rule "replace_known_right" (formula "87") (term "1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "87")) + (rule "elementOfUnion" (formula "87") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,0,0")) + (rule "replace_known_right" (formula "87") (term "0,0,0,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "87")) + (rule "elementOfArrayRangeConcrete" (formula "87") (term "0,0")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "82"))) + (rule "true_left" (formula "87")) + (rule "ifSplit" (formula "115")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "115") (term "1")) + (builtin "Block Contract (Internal)" (formula "115") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "116")) + (rule "eqSymm" (formula "116") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "116") (term "1")) + (rule "variableDeclaration" (formula "116") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "emptyStatement" (formula "116") (term "1")) + (builtin "One Step Simplification" (formula "116")) + (rule "emptyStatement" (formula "116") (term "1")) + (rule "tryEmpty" (formula "116") (term "1")) + (rule "blockEmptyLabel" (formula "116") (term "1")) + (rule "blockEmpty" (formula "116") (term "1")) + (rule "methodCallEmpty" (formula "116") (term "1")) + (rule "emptyModality" (formula "116") (term "1")) + (rule "andRight" (formula "116")) + (branch + (builtin "One Step Simplification" (formula "116")) + (rule "closeTrue" (formula "116")) + ) + (branch + (builtin "One Step Simplification" (formula "116")) + (rule "closeTrue" (formula "116")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "115")) + (branch + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "115")) + ) + (branch + (builtin "One Step Simplification" (formula "115")) + (rule "wellFormedAnonEQ" (formula "115") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "115") (term "0")) + (rule "replace_known_left" (formula "115") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "115")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "87")) + (builtin "One Step Simplification" (formula "116")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "87")) + (rule "expand_inInt" (formula "87") (term "0,1,0")) + (rule "replace_int_MIN" (formula "87") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "87") (term "1,0,0,1,0")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "87")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "88")) + (rule "translateJavaAddInt" (formula "92") (term "0,4,0")) + (rule "translateJavaAddInt" (formula "91") (term "5,0")) + (rule "translateJavaAddInt" (formula "92") (term "4,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,5,0")) + (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "90")) + (rule "true_left" (formula "90")) + (rule "polySimp_addComm1" (formula "91") (term "4,0")) + (rule "polySimp_addComm1" (formula "90") (term "5,0")) + (rule "polySimp_addComm0" (formula "91") (term "0,4,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,5,0")) + (rule "inEqSimp_commuteLeq" (formula "89")) + (rule "applyEq" (formula "92") (term "2,0") (ifseqformula "67")) + (rule "applyEq" (formula "91") (term "1,4,0") (ifseqformula "67")) + (rule "applyEq" (formula "90") (term "1,5,0") (ifseqformula "67")) + (rule "elim_double_block_2" (formula "121") (term "1")) + (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "121")) + (rule "ifSplit" (formula "121")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "121") (term "1")) + (builtin "Block Contract (Internal)" (formula "121") (newnames "result_6,exc_6,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "122")) + (rule "eqSymm" (formula "122") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "122") (term "1")) + (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (rule "tryEmpty" (formula "122") (term "1")) + (rule "blockEmptyLabel" (formula "122") (term "1")) + (rule "blockEmpty" (formula "122") (term "1")) + (rule "methodCallEmpty" (formula "122") (term "1")) + (rule "emptyModality" (formula "122") (term "1")) + (rule "andRight" (formula "122")) + (branch + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + (branch + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "121")) + (branch + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "121")) + ) + (branch + (builtin "One Step Simplification" (formula "121")) + (rule "wellFormedAnonEQ" (formula "121") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "121") (term "0")) + (rule "replace_known_left" (formula "121") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "121")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "93")) + (builtin "One Step Simplification" (formula "122")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "93") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "93")) + (rule "expand_inInt" (formula "93") (term "0,1,0")) + (rule "replace_int_MAX" (formula "93") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "93") (term "0,1,0,1,0")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "translateJavaSubInt" (formula "98") (term "0,0")) + (rule "translateJavaAddInt" (formula "97") (term "0")) + (rule "replace_known_left" (formula "96") (term "0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "96")) + (rule "true_left" (formula "96")) + (rule "polySimp_elimSub" (formula "97") (term "0,0")) + (rule "polySimp_addComm1" (formula "96") (term "0")) + (rule "polySimp_addComm0" (formula "96") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "95")) + (rule "applyEq" (formula "97") (term "0,1,0,0") (ifseqformula "67")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "elim_double_block_2" (formula "126") (term "1")) + (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "126") (term "1")) + (builtin "One Step Simplification" (formula "126")) + (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "126")) + (rule "ifSplit" (formula "126")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "126") (term "1")) + (builtin "Block Contract (Internal)" (formula "126") (newnames "result_7,exc_7,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "127")) + (rule "eqSymm" (formula "127") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "127") (term "1")) + (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (rule "tryEmpty" (formula "127") (term "1")) + (rule "blockEmptyLabel" (formula "127") (term "1")) + (rule "blockEmpty" (formula "127") (term "1")) + (rule "methodCallEmpty" (formula "127") (term "1")) + (rule "emptyModality" (formula "127") (term "1")) + (rule "andRight" (formula "127")) + (branch + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + (branch + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "126")) + (branch + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "126")) + ) + (branch + (builtin "One Step Simplification" (formula "126")) + (rule "wellFormedAnonEQ" (formula "126") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "126") (term "0")) + (rule "replace_known_left" (formula "126") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "126")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "127")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "98")) + (rule "expand_inInt" (formula "98") (term "0,1,0")) + (rule "expand_inInt" (formula "98") (term "1")) + (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "98") (term "0,1,1")) + (rule "replace_int_MAX" (formula "98") (term "1,0,1")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "inEqSimp_commuteLeq" (formula "102")) + (rule "inEqSimp_commuteLeq" (formula "100")) + (rule "pullOutSelect" (formula "101") (term "0") (inst "selectSK=arr_0")) + (rule "applyEq" (formula "103") (term "0") (ifseqformula "101")) + (rule "simplifySelectOfAnonEQ" (formula "101") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "131")) (ifInst "" (formula "17"))) + (rule "elementOfSingleton" (formula "101") (term "0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "eqSymm" (formula "101") (term "0,0,0")) + (rule "replace_known_right" (formula "101") (term "0,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "101")) + (rule "simplifySelectOfAnon" (formula "101")) + (builtin "One Step Simplification" (formula "101") (ifInst "" (formula "131")) (ifInst "" (formula "17"))) + (rule "elementOfSingleton" (formula "101") (term "0,0")) + (builtin "One Step Simplification" (formula "101")) + (rule "eqSymm" (formula "101") (term "0,0,0")) + (rule "replace_known_right" (formula "101") (term "0,0,0") (ifseqformula "108")) + (builtin "One Step Simplification" (formula "101")) + (rule "applyEqReverse" (formula "103") (term "0") (ifseqformula "101")) + (rule "applyEqReverse" (formula "102") (term "0") (ifseqformula "101")) + (rule "hideAuxiliaryEq" (formula "101")) + (rule "elim_double_block_2" (formula "131") (term "1")) + (rule "ifUnfold" (formula "131") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "replace_known_left" (formula "131") (term "0,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "131")) + (rule "ifSplit" (formula "131")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "132")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "132")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "131") (term "1")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "new_target")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "131") (term "1")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "var")) + (rule "assignment" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "var_1")) + (rule "assignment_array2" (formula "131")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "131")) + (rule "replaceKnownSelect_taclet2121212012121000120112_0" (formula "131") (term "0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2121212012121000120112_2" (formula "131") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "131") (newnames "heapBefore_classify,result_8,exc_8") (contract "de.wiesler.Classifier[de.wiesler.Classifier::classify(int)].JML normal_behavior operation contract.0")) + (branch "Post (classify)" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "132")) + (rule "expand_inInt" (formula "103") (term "0,1,0")) + (rule "replace_int_MAX" (formula "103") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "103") (term "0,1,0,1,0")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "105")) + (rule "andLeft" (formula "108")) + (rule "eqSymm" (formula "108")) + (rule "inEqSimp_commuteLeq" (formula "104")) + (rule "inEqSimp_commuteLeq" (formula "105")) + (rule "assignment" (formula "140") (term "1")) + (builtin "One Step Simplification" (formula "140")) + (rule "blockEmpty" (formula "140") (term "1")) + (builtin "Block Contract (Internal)" (formula "140") (newnames "result_9,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "112") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "141") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "141") (term "1")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "applyEq" (formula "106") (term "1") (ifseqformula "32")) + (rule "tryEmpty" (formula "141") (term "1")) + (rule "blockEmptyLabel" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "methodCallEmpty" (formula "141") (term "1")) + (rule "emptyModality" (formula "141") (term "1")) + (rule "andRight" (formula "141")) + (branch + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + (branch + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "140")) + (branch + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "140")) + ) + (branch + (builtin "One Step Simplification" (formula "140")) + (rule "wellFormedAnonEQ" (formula "140") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "140") (term "0")) + (rule "replace_known_left" (formula "140") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "140")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "141")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "112") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "112")) + (rule "expand_inInt" (formula "112") (term "0,1,0")) + (rule "replace_int_MAX" (formula "112") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "112") (term "0,1,0,1,0")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "113")) + (rule "andLeft" (formula "113")) + (rule "translateJavaAddInt" (formula "116") (term "4,0")) + (rule "replace_known_left" (formula "115") (term "0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "115")) + (rule "true_left" (formula "115")) + (rule "inEqSimp_commuteLeq" (formula "114")) + (rule "applyEq" (formula "106") (term "1") (ifseqformula "32")) + (rule "elim_double_block_2" (formula "144") (term "1")) + (rule "arrayLengthNotNegative" (formula "34") (term "0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthIsAShort" (formula "38") (term "0")) + (rule "expand_inShort" (formula "38")) + (rule "replace_short_MIN" (formula "38") (term "0,1")) + (rule "replace_short_MAX" (formula "38") (term "1,0")) + (rule "andLeft" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "arrayLengthNotNegative" (formula "33") (term "0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "arrayLengthIsAShort" (formula "33") (term "0")) + (rule "expand_inShort" (formula "33")) + (rule "replace_short_MAX" (formula "33") (term "1,0")) + (rule "replace_short_MIN" (formula "33") (term "0,1")) + (rule "andLeft" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "35")) + (rule "leq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "34")) + (rule "qeq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "arrayLengthNotNegative" (formula "40") (term "0")) + (rule "arrayLengthIsAShort" (formula "35") (term "0")) + (rule "expand_inShort" (formula "35")) + (rule "replace_short_MIN" (formula "35") (term "0,1")) + (rule "replace_short_MAX" (formula "35") (term "1,0")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "37")) + (rule "qeq_literals" (formula "36")) + (rule "true_left" (formula "36")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "leq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "arrayLengthIsAShort" (formula "34") (term "0")) + (rule "expand_inShort" (formula "34")) + (rule "replace_short_MAX" (formula "34") (term "1,0")) + (rule "replace_short_MIN" (formula "34") (term "0,1")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "36")) + (rule "leq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "35")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "arrayLengthNotNegative" (formula "35") (term "0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "36")) + (rule "qeq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "seqGetAlphaCast" (formula "45") (term "0")) + (rule "castedGetAny" (formula "45") (term "0")) + (builtin "One Step Simplification" (formula "45")) + (rule "true_left" (formula "45")) + (rule "ifUnfold" (formula "144") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "144") (term "1") (newnames "x_11")) + (rule "inequality_comparison_simple" (formula "144") (term "1")) + (builtin "One Step Simplification" (formula "144")) + (rule "replace_known_left" (formula "144") (term "0,0,1,0") (ifseqformula "112")) + (builtin "One Step Simplification" (formula "144")) + (rule "ifSplit" (formula "144")) + (branch "if x_11 true" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_11 false" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "144") (term "1")) + (builtin "Block Contract (Internal)" (formula "144") (newnames "result_10,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "116") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "145")) + (rule "eqSymm" (formula "145") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "145") (term "1")) + (rule "variableDeclaration" (formula "145") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "145") (term "1")) + (builtin "One Step Simplification" (formula "145")) + (rule "emptyStatement" (formula "145") (term "1")) + (builtin "One Step Simplification" (formula "145")) + (rule "emptyStatement" (formula "145") (term "1")) + (rule "tryEmpty" (formula "145") (term "1")) + (rule "blockEmptyLabel" (formula "145") (term "1")) + (rule "blockEmpty" (formula "145") (term "1")) + (rule "methodCallEmpty" (formula "145") (term "1")) + (rule "emptyModality" (formula "145") (term "1")) + (rule "andRight" (formula "145")) + (branch + (builtin "One Step Simplification" (formula "145")) + (rule "closeTrue" (formula "145")) + ) + (branch + (builtin "One Step Simplification" (formula "145")) + (rule "closeTrue" (formula "145")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "144")) + (branch + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "144")) + ) + (branch + (builtin "One Step Simplification" (formula "144")) + (rule "wellFormedAnonEQ" (formula "144") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "144") (term "0")) + (rule "replace_known_left" (formula "144") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "144") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "144")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "145")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "116") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "116")) + (rule "expand_inInt" (formula "116") (term "0,1,0")) + (rule "replace_int_MAX" (formula "116") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "116") (term "0,1,0,1,0")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "116")) + (rule "andLeft" (formula "117")) + (rule "andLeft" (formula "117")) + (rule "translateJavaAddInt" (formula "120") (term "5,0")) + (rule "translateJavaAddInt" (formula "120") (term "4,0")) + (rule "replace_known_left" (formula "119") (term "0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "119")) + (rule "true_left" (formula "119")) + (rule "polySimp_addComm1" (formula "119") (term "4,0")) + (rule "polySimp_addComm0" (formula "119") (term "0,4,0")) + (rule "inEqSimp_commuteLeq" (formula "118")) + (rule "elim_double_block_2" (formula "148") (term "1")) + (rule "ifUnfold" (formula "148") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "148") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "148") (term "1")) + (builtin "One Step Simplification" (formula "148")) + (rule "replace_known_left" (formula "148") (term "0,0,1,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "148")) + (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "68") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "146")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "120") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "120") (term "1,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "120") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "120") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "120") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "120") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "120") (term "0,0,1,1,1,1,0")) + (rule "eqSymm" (formula "120") (term "1")) + (rule "translateJavaMulInt" (formula "120") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "120") (term "0,1,1,1,1,0")) + (rule "replace_known_left" (formula "120") (term "0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "120") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "120") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "120") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "120") (term "1,0")) + (rule "disjointWithSingleton2" (formula "120") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "120") (term "1,0,0")) + (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "120")) + (rule "inEqSimp_commuteLeq" (formula "120") (term "0,0")) + (rule "replace_known_left" (formula "120") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "120")) + (rule "elementOfUnion" (formula "120") (term "0,0")) + (rule "elementOfSingleton" (formula "120") (term "0,0,0")) + (builtin "One Step Simplification" (formula "120")) + (rule "elementOfSingleton" (formula "120") (term "1,0,0")) + (builtin "One Step Simplification" (formula "120")) + (rule "true_left" (formula "120")) + (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "148") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "120") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "147")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29"))) + (rule "true_left" (formula "120")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "148") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "120") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "120") (term "1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "146")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "11")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "120")) + (rule "ifSplit" (formula "148")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "149")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "148") (term "1")) + (builtin "Block Contract (Internal)" (formula "148") (newnames "result_11,exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "149")) + (rule "eqSymm" (formula "149") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "149") (term "1")) + (rule "variableDeclaration" (formula "149") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "emptyStatement" (formula "149") (term "1")) + (builtin "One Step Simplification" (formula "149")) + (rule "emptyStatement" (formula "149") (term "1")) + (rule "tryEmpty" (formula "149") (term "1")) + (rule "blockEmptyLabel" (formula "149") (term "1")) + (rule "blockEmpty" (formula "149") (term "1")) + (rule "methodCallEmpty" (formula "149") (term "1")) + (rule "emptyModality" (formula "149") (term "1")) + (rule "andRight" (formula "149")) + (branch + (builtin "One Step Simplification" (formula "149")) + (rule "closeTrue" (formula "149")) + ) + (branch + (builtin "One Step Simplification" (formula "149")) + (rule "closeTrue" (formula "149")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "148")) + (branch + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "148")) + ) + (branch + (builtin "One Step Simplification" (formula "148")) + (rule "wellFormedAnonEQ" (formula "148") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "148") (term "0")) + (rule "replace_known_left" (formula "148") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "148")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "149")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "120") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "120")) + (rule "expand_inInt" (formula "120") (term "0,1,0")) + (rule "replace_int_MAX" (formula "120") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "120") (term "0,1,0,1,0")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "120")) + (rule "andLeft" (formula "121")) + (rule "andLeft" (formula "121")) + (rule "translateJavaAddInt" (formula "124") (term "4,0")) + (rule "replace_known_left" (formula "123") (term "0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "123")) + (rule "true_left" (formula "123")) + (rule "polySimp_addComm1" (formula "123") (term "4,0")) + (rule "polySimp_addComm0" (formula "123") (term "0,4,0")) + (rule "inEqSimp_commuteLeq" (formula "122")) + (rule "elim_double_block_2" (formula "152") (term "1")) + (rule "ifUnfold" (formula "152") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "152") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "152") (term "1")) + (builtin "One Step Simplification" (formula "152")) + (rule "replace_known_left" (formula "152") (term "0,0,1,0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "152")) + (rule "ifSplit" (formula "152")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "153")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "152") (term "1")) + (builtin "Block Contract (Internal)" (formula "152") (newnames "result_12,exc_12,heap_Before_BLOCK_10,savedHeap_Before_BLOCK_10,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "153")) + (rule "eqSymm" (formula "153") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "153") (term "1")) + (rule "variableDeclaration" (formula "153") (term "1") (newnames "exc_12_1")) + (rule "assignment" (formula "153") (term "1")) + (builtin "One Step Simplification" (formula "153")) + (rule "emptyStatement" (formula "153") (term "1")) + (builtin "One Step Simplification" (formula "153")) + (rule "emptyStatement" (formula "153") (term "1")) + (rule "tryEmpty" (formula "153") (term "1")) + (rule "blockEmptyLabel" (formula "153") (term "1")) + (rule "blockEmpty" (formula "153") (term "1")) + (rule "methodCallEmpty" (formula "153") (term "1")) + (rule "emptyModality" (formula "153") (term "1")) + (rule "andRight" (formula "153")) + (branch + (builtin "One Step Simplification" (formula "153")) + (rule "closeTrue" (formula "153")) + ) + (branch + (builtin "One Step Simplification" (formula "153")) + (rule "closeTrue" (formula "153")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "152")) + (branch + (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "152")) + ) + (branch + (builtin "One Step Simplification" (formula "152")) + (rule "wellFormedAnonEQ" (formula "152") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "152") (term "0")) + (rule "replace_known_left" (formula "152") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "152") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "152")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "153")) + (builtin "One Step Simplification" (formula "124")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "124") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "124")) + (rule "expand_inInt" (formula "124") (term "0,1,0")) + (rule "replace_int_MAX" (formula "124") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "124") (term "0,1,0,1,0")) + (rule "andLeft" (formula "124")) + (rule "andLeft" (formula "124")) + (rule "andLeft" (formula "125")) + (rule "andLeft" (formula "125")) + (rule "translateJavaAddInt" (formula "128") (term "4,0")) + (rule "replace_known_left" (formula "127") (term "0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "127")) + (rule "true_left" (formula "127")) + (rule "polySimp_addComm1" (formula "127") (term "4,0")) + (rule "polySimp_addComm0" (formula "127") (term "0,4,0")) + (rule "inEqSimp_commuteLeq" (formula "126")) + (rule "elim_double_block_2" (formula "155") (term "1")) + (rule "ifUnfold" (formula "155") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "155") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "155") (term "1")) + (builtin "One Step Simplification" (formula "155")) + (rule "replace_known_left" (formula "155") (term "0,0,1,0") (ifseqformula "124")) + (builtin "One Step Simplification" (formula "155")) + (rule "ifSplit" (formula "155")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "155") (term "1")) + (builtin "Block Contract (Internal)" (formula "155") (newnames "result_13,exc_13,heap_Before_BLOCK_11,savedHeap_Before_BLOCK_11,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "127") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "156")) + (rule "eqSymm" (formula "156") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "156") (term "1")) + (rule "variableDeclaration" (formula "156") (term "1") (newnames "exc_13_1")) + (rule "assignment" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "emptyStatement" (formula "156") (term "1")) + (builtin "One Step Simplification" (formula "156")) + (rule "emptyStatement" (formula "156") (term "1")) + (rule "tryEmpty" (formula "156") (term "1")) + (rule "blockEmptyLabel" (formula "156") (term "1")) + (rule "blockEmpty" (formula "156") (term "1")) + (rule "methodCallEmpty" (formula "156") (term "1")) + (rule "emptyModality" (formula "156") (term "1")) + (rule "andRight" (formula "156")) + (branch + (builtin "One Step Simplification" (formula "156")) + (rule "closeTrue" (formula "156")) + ) + (branch + (builtin "One Step Simplification" (formula "156")) + (rule "closeTrue" (formula "156")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "155")) + (branch + (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "155")) + ) + (branch + (builtin "One Step Simplification" (formula "155")) + (rule "wellFormedAnonEQ" (formula "155") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "155") (term "0")) + (rule "replace_known_left" (formula "155") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "155") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "155")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "156")) + (builtin "One Step Simplification" (formula "127")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "127") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "127")) + (rule "expand_inInt" (formula "127") (term "0,1,0")) + (rule "replace_int_MAX" (formula "127") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "127") (term "0,1,0,1,0")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "127")) + (rule "andLeft" (formula "128")) + (rule "andLeft" (formula "128")) + (rule "translateJavaAddInt" (formula "131") (term "4,0")) + (rule "replace_known_left" (formula "130") (term "0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "130")) + (rule "true_left" (formula "130")) + (rule "polySimp_addComm1" (formula "130") (term "4,0")) + (rule "polySimp_addComm0" (formula "130") (term "0,4,0")) + (rule "inEqSimp_commuteLeq" (formula "129")) + (rule "elim_double_block_2" (formula "159") (term "1")) + (rule "ifUnfold" (formula "159") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "159") (term "1") (newnames "x_15")) + (rule "inequality_comparison_simple" (formula "159") (term "1")) + (builtin "One Step Simplification" (formula "159")) + (rule "replace_known_left" (formula "159") (term "0,0,1,0") (ifseqformula "127")) + (builtin "One Step Simplification" (formula "159")) + (rule "ifSplit" (formula "159")) + (branch "if x_15 true" + (builtin "One Step Simplification" (formula "160")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_15 false" + (builtin "One Step Simplification" (formula "160")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "159") (term "1")) + (builtin "Block Contract (Internal)" (formula "159") (newnames "result_14,exc_14,heap_Before_BLOCK_12,savedHeap_Before_BLOCK_12,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "160")) + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "160") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "160") (term "1")) + (rule "variableDeclaration" (formula "160") (term "1") (newnames "exc_14_1")) + (rule "assignment" (formula "160") (term "1")) + (builtin "One Step Simplification" (formula "160")) + (rule "emptyStatement" (formula "160") (term "1")) + (builtin "One Step Simplification" (formula "160")) + (rule "emptyStatement" (formula "160") (term "1")) + (rule "tryEmpty" (formula "160") (term "1")) + (rule "blockEmptyLabel" (formula "160") (term "1")) + (rule "blockEmpty" (formula "160") (term "1")) + (rule "methodCallEmpty" (formula "160") (term "1")) + (rule "emptyModality" (formula "160") (term "1")) + (rule "andRight" (formula "160")) + (branch + (builtin "One Step Simplification" (formula "160")) + (rule "closeTrue" (formula "160")) + ) + (branch + (builtin "One Step Simplification" (formula "160")) + (rule "closeTrue" (formula "160")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "159")) + (branch + (builtin "One Step Simplification" (formula "159") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "159")) + ) + (branch + (builtin "One Step Simplification" (formula "159")) + (rule "wellFormedAnonEQ" (formula "159") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "159") (term "0")) + (rule "replace_known_left" (formula "159") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "159") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "159")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "160")) + (builtin "One Step Simplification" (formula "131")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "131")) + (rule "expand_inInt" (formula "131") (term "0,1,0")) + (rule "replace_int_MAX" (formula "131") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "131") (term "0,1,0,1,0")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "131")) + (rule "andLeft" (formula "132")) + (rule "andLeft" (formula "132")) + (rule "replace_known_left" (formula "134") (term "0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "134")) + (rule "true_left" (formula "134")) + (rule "inEqSimp_commuteLeq" (formula "133")) + (rule "elim_double_block_2" (formula "163") (term "1")) + (rule "ifUnfold" (formula "163") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "163") (term "1") (newnames "x_16")) + (rule "inequality_comparison_simple" (formula "163") (term "1")) + (builtin "One Step Simplification" (formula "163")) + (rule "replace_known_left" (formula "163") (term "0,0,1,0") (ifseqformula "131")) + (builtin "One Step Simplification" (formula "163")) + (rule "ifSplit" (formula "163")) + (branch "if x_16 true" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_16 false" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "163") (term "1")) + (builtin "Block Contract (Internal)" (formula "163") (newnames "result_15,exc_15,heap_Before_BLOCK_13,savedHeap_Before_BLOCK_13,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "164")) + (rule "eqSymm" (formula "164") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "164") (term "1")) + (rule "variableDeclaration" (formula "164") (term "1") (newnames "exc_15_1")) + (rule "assignment" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (builtin "One Step Simplification" (formula "164")) + (rule "emptyStatement" (formula "164") (term "1")) + (rule "tryEmpty" (formula "164") (term "1")) + (rule "blockEmptyLabel" (formula "164") (term "1")) + (rule "blockEmpty" (formula "164") (term "1")) + (rule "methodCallEmpty" (formula "164") (term "1")) + (rule "emptyModality" (formula "164") (term "1")) + (rule "andRight" (formula "164")) + (branch + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + (branch + (builtin "One Step Simplification" (formula "164")) + (rule "closeTrue" (formula "164")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "163")) + (branch + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "163")) + ) + (branch + (builtin "One Step Simplification" (formula "163")) + (rule "wellFormedAnonEQ" (formula "163") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "163") (term "0")) + (rule "replace_known_left" (formula "163") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "163") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "163")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "135")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "135") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "135")) + (rule "expand_inInt" (formula "135") (term "0,1,0")) + (rule "replace_int_MAX" (formula "135") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "135") (term "0,1,0,1,0")) + (rule "andLeft" (formula "135")) + (rule "andLeft" (formula "135")) + (rule "andLeft" (formula "136")) + (rule "andLeft" (formula "136")) + (rule "replace_known_left" (formula "138") (term "0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "138")) + (rule "true_left" (formula "138")) + (rule "inEqSimp_commuteLeq" (formula "137")) + (rule "elim_double_block_2" (formula "167") (term "1")) + (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_17")) + (rule "inequality_comparison_simple" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "replace_known_left" (formula "167") (term "0,0,1,0") (ifseqformula "135")) + (builtin "One Step Simplification" (formula "167")) + (rule "ifSplit" (formula "167")) + (branch "if x_17 true" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_17 false" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "167") (term "1")) + (rule "ifUnfold" (formula "167") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "167") (term "1") (newnames "x_18")) + (rule "inequality_comparison_simple" (formula "167") (term "1")) + (builtin "One Step Simplification" (formula "167")) + (rule "eqSymm" (formula "167") (term "0,0,1,0")) + (rule "ifSplit" (formula "167")) + (branch "if x_18 true" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationGhostAssign" (formula "168") (term "1")) + (rule "variableDeclarationGhost" (formula "168") (term "1") (newnames "heapBeforeWrite")) + (rule "assignment" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (builtin "Use Operation Contract" (formula "168") (newnames "heapBefore_copy_nonoverlapping,exc_16,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "140")) + (builtin "One Step Simplification" (formula "170")) + (builtin "Block Contract (Internal)" (formula "170") (newnames "result_16,exc_17,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "171")) + (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1")) + (rule "andLeft" (formula "140")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "eqSymm" (formula "174") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0")) + (rule "add_zero_left" (formula "140") (term "0,2,1,0")) + (rule "eqSymm" (formula "141") (term "1,0")) + (rule "eqSymm" (formula "142") (term "1,0")) + (rule "translateJavaSubInt" (formula "140") (term "2,1,0")) + (rule "sub_literals" (formula "140") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "141") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0")) + (rule "add_zero_left" (formula "142") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "142") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "142") (term "0,3,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "141") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "141") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "142") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "174") (term "1")) + (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_17_1")) + (rule "assignment" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (rule "commute_and" (formula "142") (term "0,0")) + (rule "commute_and" (formula "141") (term "0,0,0")) + (rule "commute_and" (formula "141") (term "1,0,0")) + (rule "shift_paren_and" (formula "141") (term "0,0")) + (rule "commute_and_2" (formula "141") (term "0,0,0")) + (rule "tryEmpty" (formula "174") (term "1")) + (rule "blockEmptyLabel" (formula "174") (term "1")) + (rule "blockEmpty" (formula "174") (term "1")) + (rule "methodCallEmpty" (formula "174") (term "1")) + (rule "emptyModality" (formula "174") (term "1")) + (rule "andRight" (formula "174")) + (branch + (builtin "One Step Simplification" (formula "174")) + (rule "closeTrue" (formula "174")) + ) + (branch + (builtin "One Step Simplification" (formula "174")) + (rule "closeTrue" (formula "174")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "170")) + (branch + (builtin "One Step Simplification" (formula "170") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "170")) + ) + (branch + (builtin "One Step Simplification" (formula "170")) + (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "140")) + (rule "wellFormedAnonEQ" (formula "171") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "171") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "171") (term "0,0")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "translateJavaSubInt" (formula "140") (term "2,1,0")) + (rule "eqSymm" (formula "141") (term "1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0")) + (rule "add_zero_left" (formula "142") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0")) + (rule "add_zero_left" (formula "140") (term "0,2,1,0")) + (rule "sub_literals" (formula "140") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "141") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0")) + (rule "eqSymm" (formula "142") (term "1,0")) + (rule "replace_known_left" (formula "173") (term "1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "139"))) + (rule "closeTrue" (formula "173")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "141")) + (builtin "One Step Simplification" (formula "171")) + (rule "expand_inInt" (formula "140") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "140") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "141") (term "0,1,0")) + (rule "replace_int_MIN" (formula "140") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "140") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "140") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "141") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "141") (term "1,0,0,1,0")) + (rule "andLeft" (formula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "142") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "142")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "143")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "143")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "145")) + (rule "andLeft" (formula "145")) + (rule "translateJavaSubInt" (formula "140") (term "2,1,0")) + (rule "eqSymm" (formula "142") (term "1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "141") (term "0,2,0,1,0")) + (rule "add_zero_left" (formula "141") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "140") (term "0,2,1,0")) + (rule "add_zero_left" (formula "140") (term "0,2,1,0")) + (rule "sub_literals" (formula "140") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "142") (term "3,1,1,0")) + (rule "add_literals" (formula "142") (term "3,1,1,0")) + (rule "eqSymm" (formula "141") (term "1,0")) + (rule "replace_known_left" (formula "147") (term "0") (ifseqformula "144")) + (builtin "One Step Simplification" (formula "147")) + (rule "true_left" (formula "147")) + (rule "polySimp_addComm1" (formula "142") (term "3,0,1,0")) + (rule "polySimp_addComm0" (formula "142") (term "0,3,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "142") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "141") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "141") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "146")) + (rule "commute_and" (formula "142") (term "0,0")) + (rule "commute_and" (formula "141") (term "1,0,0")) + (rule "commute_and" (formula "141") (term "0,0,0")) + (rule "elim_double_block_2" (formula "177") (term "1")) + (rule "shift_paren_and" (formula "141") (term "0,0")) + (rule "commute_and_2" (formula "141") (term "0,0,0")) + (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "134") (term "1")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "175")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "44")) (ifInst "" (formula "28"))) + (rule "wellFormedAnonEQ" (formula "148") (term "0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "148") (term "0,0,0,0,0")) + (rule "expand_inInt" (formula "148") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "148") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "148") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "148") (term "0,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "148") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "148") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "148") (term "1,0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "14")) (ifInst "" (formula "58")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "148") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "148") (term "1,0")) + (rule "disjointWithSingleton2" (formula "148") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "148") (term "0,0,0")) + (rule "replace_known_left" (formula "148") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "148")) + (rule "inEqSimp_commuteLeq" (formula "148") (term "0,0")) + (rule "replace_known_left" (formula "148") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "148")) + (rule "elementOfUnion" (formula "148") (term "0,0")) + (rule "elementOfSingleton" (formula "148") (term "0,0,0")) + (builtin "One Step Simplification" (formula "148")) + (rule "elementOfSingleton" (formula "148") (term "1,0,0")) + (builtin "One Step Simplification" (formula "148")) + (rule "true_left" (formula "148")) + (rule "ifUnfold" (formula "177") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "177") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "177") (term "1")) + (builtin "One Step Simplification" (formula "177")) + (rule "replace_known_left" (formula "177") (term "0,0,1,0") (ifseqformula "144")) + (builtin "One Step Simplification" (formula "177")) + (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "177") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "148") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "148") (term "1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "176")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29"))) + (rule "true_left" (formula "148")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "177") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "148") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "148") (term "1,0,0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "175")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "148")) + (rule "ifSplit" (formula "177")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "178")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "177") (term "1")) + (builtin "Block Contract (Internal)" (formula "177") (newnames "result_17,exc_18,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "178")) + (builtin "One Step Simplification" (formula "148") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "178") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "178") (term "1")) + (rule "variableDeclaration" (formula "178") (term "1") (newnames "exc_18_1")) + (rule "assignment" (formula "178") (term "1")) + (builtin "One Step Simplification" (formula "178")) + (rule "emptyStatement" (formula "178") (term "1")) + (builtin "One Step Simplification" (formula "178")) + (rule "emptyStatement" (formula "178") (term "1")) + (rule "tryEmpty" (formula "178") (term "1")) + (rule "blockEmptyLabel" (formula "178") (term "1")) + (rule "blockEmpty" (formula "178") (term "1")) + (rule "methodCallEmpty" (formula "178") (term "1")) + (rule "emptyModality" (formula "178") (term "1")) + (rule "andRight" (formula "178")) + (branch + (builtin "One Step Simplification" (formula "178")) + (rule "closeTrue" (formula "178")) + ) + (branch + (builtin "One Step Simplification" (formula "178")) + (rule "closeTrue" (formula "178")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "177")) + (branch + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "177")) + ) + (branch + (builtin "One Step Simplification" (formula "177")) + (rule "wellFormedAnonEQ" (formula "177") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "177") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "177") (term "0,0")) + (rule "replace_known_left" (formula "177") (term "1") (ifseqformula "139")) + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "177")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "178")) + (builtin "One Step Simplification" (formula "148")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "148") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "148")) + (rule "expand_inInt" (formula "148") (term "0,1,0")) + (rule "replace_int_MIN" (formula "148") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "148") (term "1,0,0,1,0")) + (rule "andLeft" (formula "148")) + (rule "andLeft" (formula "148")) + (rule "andLeft" (formula "149")) + (rule "andLeft" (formula "149")) + (rule "replace_known_left" (formula "151") (term "0") (ifseqformula "148")) + (builtin "One Step Simplification" (formula "151")) + (rule "true_left" (formula "151")) + (rule "inEqSimp_commuteLeq" (formula "150")) + (rule "elim_double_block_2" (formula "181") (term "1")) + (rule "ifUnfold" (formula "181") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "181") (term "1") (newnames "x_20")) + (rule "inequality_comparison_simple" (formula "181") (term "1")) + (builtin "One Step Simplification" (formula "181")) + (rule "replace_known_left" (formula "181") (term "0,0,1,0") (ifseqformula "148")) + (builtin "One Step Simplification" (formula "181")) + (rule "ifSplit" (formula "181")) + (branch "if x_20 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_20 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "182")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "181") (term "1")) + (builtin "Use Operation Contract" (formula "181") (newnames "heapBefore_copy_nonoverlapping_0,exc_19,heapAfter_copy_nonoverlapping_0,anon_heap_copy_nonoverlapping_0") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "153")) + (builtin "One Step Simplification" (formula "183")) + (builtin "Block Contract (Internal)" (formula "183") (newnames "result_18,exc_20,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "154") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "184")) + (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "153")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "eqSymm" (formula "187") (term "0,0,1,0,1")) + (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0")) + (rule "add_zero_left" (formula "155") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "154") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "153") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "153") (term "2,1,0")) + (rule "mul_literals" (formula "153") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "153") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "155") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "153") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "155") (term "0,3,0,1,0")) + (rule "polySimp_addComm0" (formula "153") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "154") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "155") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "154") (term "0,0,0,0")) + (rule "variableDeclarationAssign" (formula "187") (term "1")) + (rule "variableDeclaration" (formula "187") (term "1") (newnames "exc_20_1")) + (rule "assignment" (formula "187") (term "1")) + (builtin "One Step Simplification" (formula "187")) + (rule "emptyStatement" (formula "187") (term "1")) + (builtin "One Step Simplification" (formula "187")) + (rule "emptyStatement" (formula "187") (term "1")) + (rule "commute_and" (formula "155") (term "0,0")) + (rule "commute_and" (formula "154") (term "1,0,0")) + (rule "commute_and" (formula "154") (term "0,0,0")) + (rule "shift_paren_and" (formula "154") (term "0,0")) + (rule "commute_and_2" (formula "154") (term "0,0,0")) + (rule "tryEmpty" (formula "187") (term "1")) + (rule "blockEmptyLabel" (formula "187") (term "1")) + (rule "blockEmpty" (formula "187") (term "1")) + (rule "methodCallEmpty" (formula "187") (term "1")) + (rule "emptyModality" (formula "187") (term "1")) + (rule "andRight" (formula "187")) + (branch + (builtin "One Step Simplification" (formula "187")) + (rule "closeTrue" (formula "187")) + ) + (branch + (builtin "One Step Simplification" (formula "187")) + (rule "closeTrue" (formula "187")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "183")) + (branch + (builtin "One Step Simplification" (formula "183") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "183")) + ) + (branch + (builtin "One Step Simplification" (formula "183")) + (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "153")) + (rule "wellFormedAnonEQ" (formula "184") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "184") (term "0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "184") (term "0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "184") (term "0,0,0")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "translateJavaSubInt" (formula "153") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0")) + (rule "add_zero_left" (formula "155") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "154") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0")) + (rule "replace_known_left" (formula "186") (term "1") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "186") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139"))) + (rule "closeTrue" (formula "186")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "184")) + (builtin "One Step Simplification" (formula "154")) + (rule "expand_inInt" (formula "153") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "153") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "154") (term "0,1,0")) + (rule "replace_int_MAX" (formula "153") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "153") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "153") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "154") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "154") (term "0,1,0,1,0")) + (rule "andLeft" (formula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "1,1,1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "0,1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "155") (term "0,0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "155")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "156")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "157")) + (rule "andLeft" (formula "156")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "159")) + (rule "andLeft" (formula "158")) + (rule "andLeft" (formula "160")) + (rule "andLeft" (formula "158")) + (rule "translateJavaSubInt" (formula "153") (term "2,1,0")) + (rule "eqSymm" (formula "164")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "154") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,1,1,0")) + (rule "add_zero_left" (formula "155") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "154") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "155") (term "3,0,1,0")) + (rule "eqSymm" (formula "163")) + (rule "translateJavaAddInt" (formula "153") (term "0,2,1,0")) + (rule "replace_known_left" (formula "160") (term "0") (ifseqformula "157")) + (builtin "One Step Simplification" (formula "160")) + (rule "true_left" (formula "160")) + (rule "polySimp_elimSub" (formula "153") (term "2,1,0")) + (rule "mul_literals" (formula "153") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "153") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "155") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "153") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "155") (term "0,3,0,1,0")) + (rule "polySimp_addComm0" (formula "153") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "154") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "155") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "154") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "159")) + (rule "applyEq" (formula "92") (term "1,0") (ifseqformula "162")) + (rule "applyEq" (formula "86") (term "1,0") (ifseqformula "162")) + (rule "applyEq" (formula "97") (term "1,0,0") (ifseqformula "162")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "163")) + (rule "applyEq" (formula "119") (term "1,5,0") (ifseqformula "162")) + (rule "applyEq" (formula "115") (term "1,4,0") (ifseqformula "162")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "162")) + (rule "applyEq" (formula "163") (term "1") (ifseqformula "62")) + (rule "commute_and" (formula "155") (term "0,0")) + (rule "commute_and" (formula "154") (term "0,0,0")) + (rule "commute_and" (formula "154") (term "1,0,0")) + (rule "elim_double_block_2" (formula "193") (term "1")) + (rule "shift_paren_and" (formula "154") (term "0,0")) + (rule "commute_and_2" (formula "154") (term "0,0,0")) + (rule "ifUnfold" (formula "193") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "193") (term "1") (newnames "x_21")) + (rule "inequality_comparison_simple" (formula "193") (term "1")) + (builtin "One Step Simplification" (formula "193")) + (rule "replace_known_left" (formula "193") (term "0,0,1,0") (ifseqformula "157")) + (builtin "One Step Simplification" (formula "193")) + (builtin "Use Dependency Contract" (formula "138") (term "0") (ifInst "" (formula "7") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "191")) (ifInst "" (formula "192")) (ifInst "" (formula "193")) (ifInst "" (formula "44")) (ifInst "" (formula "12")) (ifInst "" (formula "11")) (ifInst "" (formula "192")) (ifInst "" (formula "193")) (ifInst "" (formula "23")) (ifInst "" (formula "22")) (ifInst "" (formula "17"))) + (rule "wellFormedAnon" (formula "164") (term "0,0,0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "164") (term "1,0,0,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "164") (term "0,1,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "164") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "164") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "164") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "164") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "164") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "164") (term "1")) + (rule "translateJavaAddInt" (formula "164") (term "1,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "164") (term "2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "164") (term "1,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "164") (term "2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "164") (term "0,2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "164") (term "0,2,1,0,0,1,1,0")) + (rule "replace_known_left" (formula "164") (term "0,0,0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15"))) + (rule "polySimp_elimSub" (formula "164") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "164") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "164") (term "1,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "164") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "164") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "164") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "164") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "164") (term "1,0")) + (rule "disjointWithSingleton2" (formula "164") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "164") (term "1,0,0")) + (rule "replace_known_left" (formula "164") (term "1,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "164")) + (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0,0,0")) + (rule "replace_known_left" (formula "164") (term "0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "164")) + (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0,0")) + (rule "replace_known_left" (formula "164") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "164")) + (rule "inEqSimp_commuteLeq" (formula "164") (term "0,0")) + (rule "replace_known_left" (formula "164") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "164")) + (rule "applyEq" (formula "164") (term "1,2,0,0,0,2,0,0") (ifseqformula "65")) + (rule "applyEq" (formula "164") (term "1,1,0,0,0,2,0,0") (ifseqformula "67")) + (rule "applyEq" (formula "164") (term "1,1") (ifseqformula "138")) + (rule "replace_known_left" (formula "164") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "164")) + (rule "true_left" (formula "164")) + (rule "ifSplit" (formula "193")) + (branch "if x_21 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_21 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "194")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "193") (term "1")) + (builtin "Block Contract (Internal)" (formula "193") (newnames "result_19,exc_21,heap_Before_BLOCK_17,savedHeap_Before_BLOCK_17,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "164") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "194")) + (rule "eqSymm" (formula "194") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "194") (term "1")) + (rule "variableDeclaration" (formula "194") (term "1") (newnames "exc_21_1")) + (rule "assignment" (formula "194") (term "1")) + (builtin "One Step Simplification" (formula "194")) + (rule "emptyStatement" (formula "194") (term "1")) + (builtin "One Step Simplification" (formula "194")) + (rule "emptyStatement" (formula "194") (term "1")) + (rule "tryEmpty" (formula "194") (term "1")) + (rule "blockEmptyLabel" (formula "194") (term "1")) + (rule "blockEmpty" (formula "194") (term "1")) + (rule "methodCallEmpty" (formula "194") (term "1")) + (rule "emptyModality" (formula "194") (term "1")) + (rule "andRight" (formula "194")) + (branch + (builtin "One Step Simplification" (formula "194")) + (rule "closeTrue" (formula "194")) + ) + (branch + (builtin "One Step Simplification" (formula "194")) + (rule "closeTrue" (formula "194")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "193")) + (branch + (builtin "One Step Simplification" (formula "193") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "193")) + ) + (branch + (builtin "One Step Simplification" (formula "193")) + (rule "wellFormedAnonEQ" (formula "193") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "193") (term "0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "193") (term "0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "193") (term "0,0,0")) + (rule "replace_known_left" (formula "193") (term "0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "193") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152"))) + (rule "closeTrue" (formula "193")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "164")) + (builtin "One Step Simplification" (formula "194")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "1,1,1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "0,1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "164") (term "0,0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "164")) + (rule "expand_inInt" (formula "164") (term "0,1,0")) + (rule "replace_int_MIN" (formula "164") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "164") (term "1,0,0,1,0")) + (rule "andLeft" (formula "164")) + (rule "andLeft" (formula "164")) + (rule "andLeft" (formula "165")) + (rule "andLeft" (formula "165")) + (rule "replace_known_left" (formula "167") (term "0") (ifseqformula "164")) + (builtin "One Step Simplification" (formula "167")) + (rule "true_left" (formula "167")) + (rule "inEqSimp_commuteLeq" (formula "166")) + (rule "elim_double_block_2" (formula "197") (term "1")) + (rule "ifUnfold" (formula "197") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "197") (term "1") (newnames "x_22")) + (rule "inequality_comparison_simple" (formula "197") (term "1")) + (builtin "One Step Simplification" (formula "197")) + (rule "replace_known_left" (formula "197") (term "0,0,1,0") (ifseqformula "164")) + (builtin "One Step Simplification" (formula "197")) + (rule "ifSplit" (formula "197")) + (branch "if x_22 true" + (builtin "One Step Simplification" (formula "198")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_22 false" + (builtin "One Step Simplification" (formula "198")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "197") (term "1")) + (builtin "Block Contract (Internal)" (formula "197") (newnames "result_20,exc_22,heap_Before_BLOCK_18,savedHeap_Before_BLOCK_18,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "198")) + (rule "eqSymm" (formula "198") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "198") (term "1")) + (rule "variableDeclaration" (formula "198") (term "1") (newnames "exc_22_1")) + (rule "assignment" (formula "198") (term "1")) + (builtin "One Step Simplification" (formula "198")) + (rule "emptyStatement" (formula "198") (term "1")) + (builtin "One Step Simplification" (formula "198")) + (rule "emptyStatement" (formula "198") (term "1")) + (rule "tryEmpty" (formula "198") (term "1")) + (rule "blockEmptyLabel" (formula "198") (term "1")) + (rule "blockEmpty" (formula "198") (term "1")) + (rule "methodCallEmpty" (formula "198") (term "1")) + (rule "emptyModality" (formula "198") (term "1")) + (rule "andRight" (formula "198")) + (branch + (builtin "One Step Simplification" (formula "198")) + (rule "closeTrue" (formula "198")) + ) + (branch + (builtin "One Step Simplification" (formula "198")) + (rule "closeTrue" (formula "198")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "197")) + (branch + (builtin "One Step Simplification" (formula "197") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "197")) + ) + (branch + (builtin "One Step Simplification" (formula "197")) + (rule "wellFormedAnonEQ" (formula "197") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "197") (term "0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "197") (term "0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "197") (term "0,0,0")) + (rule "replace_known_left" (formula "197") (term "1,0") (ifseqformula "139")) + (builtin "One Step Simplification" (formula "197") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "152"))) + (rule "closeTrue" (formula "197")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "168")) + (builtin "One Step Simplification" (formula "198")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "1,1,1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "0,1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (term "0,0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "168")) + (rule "expand_inInt" (formula "168") (term "0,1,0")) + (rule "replace_int_MIN" (formula "168") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "168") (term "1,0,0,1,0")) + (rule "andLeft" (formula "168")) + (rule "andLeft" (formula "168")) + (rule "andLeft" (formula "170")) + (rule "andLeft" (formula "169")) + (rule "andLeft" (formula "169")) + (rule "translateJavaAddInt" (formula "172") (term "5,0")) + (rule "translateJavaAddInt" (formula "172") (term "3,0")) + (rule "replace_known_left" (formula "171") (term "0") (ifseqformula "168")) + (builtin "One Step Simplification" (formula "171")) + (rule "true_left" (formula "171")) + (rule "polySimp_addComm1" (formula "171") (term "5,0")) + (rule "polySimp_addComm0" (formula "171") (term "0,5,0")) + (rule "inEqSimp_commuteLeq" (formula "170")) + (rule "elim_double_block_2" (formula "202") (term "1")) + (rule "ifUnfold" (formula "202") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "202") (term "1") (newnames "x_23")) + (rule "inequality_comparison_simple" (formula "202") (term "1")) + (builtin "One Step Simplification" (formula "202")) + (rule "replace_known_left" (formula "202") (term "0,0,1,0") (ifseqformula "168")) + (builtin "One Step Simplification" (formula "202")) + (builtin "Use Dependency Contract" (formula "12") (ifInst "" (formula "202") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "173") (term "1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "201")) (ifInst "" (formula "22")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "29"))) + (rule "true_left" (formula "173")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "202") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "173") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "173") (term "0,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "200")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "28")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "173")) + (rule "ifSplit" (formula "202")) + (branch "if x_23 true" + (builtin "One Step Simplification" (formula "203")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_23 false" + (builtin "One Step Simplification" (formula "203")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "202") (term "1")) + (builtin "Block Contract (Internal)" (formula "202") (newnames "result_22,exc_23,heap_Before_BLOCK_19,savedHeap_Before_BLOCK_19,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "203")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "203") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "203") (term "1")) + (rule "variableDeclaration" (formula "203") (term "1") (newnames "exc_23_1")) + (rule "assignment" (formula "203") (term "1")) + (builtin "One Step Simplification" (formula "203")) + (rule "emptyStatement" (formula "203") (term "1")) + (builtin "One Step Simplification" (formula "203")) + (rule "emptyStatement" (formula "203") (term "1")) + (rule "tryEmpty" (formula "203") (term "1")) + (rule "blockEmptyLabel" (formula "203") (term "1")) + (rule "blockEmpty" (formula "203") (term "1")) + (rule "methodCallEmpty" (formula "203") (term "1")) + (rule "emptyModality" (formula "203") (term "1")) + (rule "andRight" (formula "203")) + (branch + (builtin "One Step Simplification" (formula "203")) + (rule "closeTrue" (formula "203")) + ) + (branch + (builtin "One Step Simplification" (formula "203")) + (rule "closeTrue" (formula "203")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "202")) + (branch + (builtin "One Step Simplification" (formula "202") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "202")) + ) + (branch + (builtin "One Step Simplification" (formula "202")) + (rule "wellFormedAnonEQ" (formula "202") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "202") (term "0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "202") (term "0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "202") (term "0,0,0")) + (rule "replace_known_left" (formula "202") (term "1") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "202") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139"))) + (rule "closeTrue" (formula "202")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "203")) + (builtin "One Step Simplification" (formula "173")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "1,1,1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "173") (term "0,0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "173")) + (rule "expand_inInt" (formula "173") (term "0,1,0")) + (rule "expand_inInt" (formula "173") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "173") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "173") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "173") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "173") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "173")) + (rule "andLeft" (formula "173")) + (rule "andLeft" (formula "174")) + (rule "andLeft" (formula "174")) + (rule "eqSymm" (formula "177") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "177") (term "0,0,1,0")) + (rule "translateJavaAddInt" (formula "177") (term "0,1,1,0")) + (rule "replace_known_left" (formula "176") (term "0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "176")) + (rule "true_left" (formula "176")) + (rule "inEqSimp_commuteLeq" (formula "176") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "176") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "175")) + (rule "applyEq" (formula "176") (term "1,1,0,0,0") (ifseqformula "32")) + (rule "commute_and" (formula "176") (term "1,0,0")) + (rule "commute_and" (formula "176") (term "0,0,0")) + (rule "elim_double_block_2" (formula "206") (term "1")) + (rule "shift_paren_and" (formula "176") (term "0,0")) + (rule "commute_and_2" (formula "176") (term "0,0,0")) + (rule "ifUnfold" (formula "206") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "206") (term "1") (newnames "x_24")) + (rule "inequality_comparison_simple" (formula "206") (term "1")) + (builtin "One Step Simplification" (formula "206")) + (rule "replace_known_left" (formula "206") (term "0,0,1,0") (ifseqformula "173")) + (builtin "One Step Simplification" (formula "206")) + (builtin "Use Dependency Contract" (formula "162") (term "0") (ifInst "" (formula "65") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "204")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "177") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "177") (term "1,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "177") (term "0,1,0,0,0,0")) + (rule "expand_inInt" (formula "177") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "177") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "177") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "177") (term "1")) + (rule "translateJavaMulInt" (formula "177") (term "0,1,1,1,0")) + (rule "replace_known_left" (formula "177") (term "0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "177") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "177") (term "1,0")) + (rule "disjointWithSingleton1" (formula "177") (term "1,0")) + (rule "elementOfSingleton" (formula "177") (term "0,1,0")) + (builtin "One Step Simplification" (formula "177")) + (rule "inEqSimp_commuteLeq" (formula "177") (term "0,0,0")) + (rule "replace_known_left" (formula "177") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "177")) + (rule "inEqSimp_commuteLeq" (formula "177") (term "0,0")) + (rule "replace_known_left" (formula "177") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "177")) + (rule "applyEq" (formula "177") (term "0,1") (ifseqformula "65")) + (rule "eqSymm" (formula "177") (term "1")) + (rule "replace_known_left" (formula "177") (term "1") (ifseqformula "162")) + (builtin "One Step Simplification" (formula "177")) + (rule "true_left" (formula "177")) + (builtin "Use Dependency Contract" (formula "162") (term "1") (ifInst "" (formula "162") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "177") (term "0,1,0,0,0,0") (ifseqformula "59")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "1,0,0,0,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "204")) (ifInst "" (formula "58")) (ifInst "" (formula "44")) (ifInst "" (formula "70")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "177") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "177") (term "1,0,0,0,0") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "177") (term "0,1,0,0,0,0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "177") (term "0,0,1,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "177") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "177") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "177") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "177") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "177") (term "0,1,1,1,0")) + (rule "eqSymm" (formula "177") (term "1")) + (rule "replace_known_left" (formula "177") (term "0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152")) (ifInst "" (formula "15")) (ifInst "" (formula "162"))) + (rule "true_left" (formula "177")) + (rule "ifSplit" (formula "206")) + (branch "if x_24 true" + (builtin "One Step Simplification" (formula "207")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_24 false" + (builtin "One Step Simplification" (formula "207")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "206") (term "1")) + (builtin "Block Contract (Internal)" (formula "206") (newnames "result_23,exc_24,heap_Before_BLOCK_20,savedHeap_Before_BLOCK_20,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "177") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "207")) + (rule "eqSymm" (formula "207") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "207") (term "1")) + (rule "variableDeclaration" (formula "207") (term "1") (newnames "exc_24_1")) + (rule "assignment" (formula "207") (term "1")) + (builtin "One Step Simplification" (formula "207")) + (rule "emptyStatement" (formula "207") (term "1")) + (builtin "One Step Simplification" (formula "207")) + (rule "emptyStatement" (formula "207") (term "1")) + (rule "tryEmpty" (formula "207") (term "1")) + (rule "blockEmptyLabel" (formula "207") (term "1")) + (rule "blockEmpty" (formula "207") (term "1")) + (rule "methodCallEmpty" (formula "207") (term "1")) + (rule "emptyModality" (formula "207") (term "1")) + (rule "andRight" (formula "207")) + (branch + (builtin "One Step Simplification" (formula "207")) + (rule "closeTrue" (formula "207")) + ) + (branch + (builtin "One Step Simplification" (formula "207")) + (rule "closeTrue" (formula "207")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "206")) + (branch + (builtin "One Step Simplification" (formula "206") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "206")) + ) + (branch + (builtin "One Step Simplification" (formula "206")) + (rule "wellFormedAnonEQ" (formula "206") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "206") (term "0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "206") (term "0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "206") (term "0,0,0")) + (rule "replace_known_left" (formula "206") (term "1") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "206") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139"))) + (rule "closeTrue" (formula "206")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "177")) + (builtin "One Step Simplification" (formula "207")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "1,1,1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "0,1,1,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "177") (term "0,0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "177")) + (rule "expand_inInt" (formula "177") (term "0,0,1")) + (rule "expand_inInt" (formula "177") (term "0,1,0")) + (rule "replace_int_MAX" (formula "177") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "177") (term "0,1,0,0,1")) + (rule "replace_int_MIN" (formula "177") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "177") (term "1,0,0,1,0")) + (rule "andLeft" (formula "177")) + (rule "andLeft" (formula "177")) + (rule "andLeft" (formula "178")) + (rule "andLeft" (formula "178")) + (rule "eqSymm" (formula "181") (term "0,1,0")) + (rule "eqSymm" (formula "181") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "181") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "181") (term "0,1,1,0")) + (rule "replace_known_left" (formula "180") (term "0") (ifseqformula "177")) + (builtin "One Step Simplification" (formula "180")) + (rule "true_left" (formula "180")) + (rule "polySimp_addComm0" (formula "180") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "180") (term "0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "180") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "179")) + (rule "commute_and" (formula "180") (term "0,0")) + (rule "elim_double_block_2" (formula "210") (term "1")) + (builtin "Use Dependency Contract" (formula "92") (term "1,0") (ifInst "" (formula "65") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::lastReadOf(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "181") (term "1,0,0,0,0") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "181") (term "0,0,1,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "181") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "181") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "181") (term "0,1,1,1,0")) + (rule "eqSymm" (formula "181") (term "1")) + (rule "replace_known_left" (formula "181") (term "0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "152")) (ifInst "" (formula "15")) (ifInst "" (formula "65"))) + (rule "true_left" (formula "181")) + (builtin "Use Dependency Contract" (formula "62") (term "0") (ifInst "" (formula "163") (term "0")) (ifInst "" (formula "153")) (ifInst "" (formula "140")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::nextWriteOf(int)].JML accessible clause.0")) + (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "59")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "1,0,0,0,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "58")) (ifInst "" (formula "44")) (ifInst "" (formula "70")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0")) + (rule "wellFormedAnonEQ" (formula "181") (term "1,0,0,0,0") (ifseqformula "153")) + (rule "wellFormedAnonEQ" (formula "181") (term "0,1,0,0,0,0") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "181") (term "0,0,1,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "181") (term "0,0,0,1,0,0,0,0")) + (rule "expand_inInt" (formula "181") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0")) + (rule "eqSymm" (formula "181") (term "1")) + (rule "translateJavaAddInt" (formula "181") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "181") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "181") (term "1,1,0,0,0,0") (ifseqformula "152")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "139")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "181") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "181") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "181") (term "1,0")) + (rule "disjointWithSingleton1" (formula "181") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "1,0,0")) + (rule "replace_known_left" (formula "181") (term "1,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "181")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0")) + (rule "replace_known_left" (formula "181") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "181")) + (rule "applyEq" (formula "181") (term "0,1") (ifseqformula "163")) + (rule "eqSymm" (formula "181") (term "1")) + (rule "replace_known_left" (formula "181") (term "1") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "181")) + (rule "true_left" (formula "181")) + (rule "ifUnfold" (formula "210") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "210") (term "1") (newnames "x_25")) + (rule "inequality_comparison_simple" (formula "210") (term "1")) + (builtin "One Step Simplification" (formula "210")) + (rule "replace_known_left" (formula "210") (term "0,0,1,0") (ifseqformula "177")) + (builtin "One Step Simplification" (formula "210")) + (builtin "Use Dependency Contract" (formula "138") (term "0") (ifInst "" (formula "82") (term "0,1")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "208")) (ifInst "" (formula "23")) (ifInst "" (formula "14")) (ifInst "" (formula "209")) (ifInst "" (formula "22")) (ifInst "" (formula "210")) (ifInst "" (formula "17")) (ifInst "" (formula "44")) (ifInst "" (formula "29")) (ifInst "" (formula "28")) (ifInst "" (formula "209")) (ifInst "" (formula "210"))) + (rule "wellFormedAnonEQ" (formula "181") (term "0,0,0,0,0,0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "181") (term "0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "181") (term "1,0,0,0")) + (rule "expand_inInt" (formula "181") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "181") (term "1,0,0,0,0")) + (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "181") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "181") (term "1,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "181") (term "1,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "181") (term "2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "181") (term "1,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "181") (term "2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "181") (term "0,2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "181") (term "0,2,1,0,0,1,1,0")) + (rule "replace_known_left" (formula "181") (term "0,0,0,0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "18")) (ifInst "" (formula "20")) (ifInst "" (formula "15"))) + (rule "polySimp_elimSub" (formula "181") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "181") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "181") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "181") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "181") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "181") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "181") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "181") (term "1,0")) + (rule "disjointWithSingleton2" (formula "181") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "1,0,0,0")) + (rule "replace_known_left" (formula "181") (term "1,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "181")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0,0,0")) + (rule "replace_known_left" (formula "181") (term "0,0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "181")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0,0")) + (rule "replace_known_left" (formula "181") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "181")) + (rule "inEqSimp_commuteLeq" (formula "181") (term "0,0")) + (rule "replace_known_left" (formula "181") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "181")) + (rule "applyEq" (formula "181") (term "0,1") (ifseqformula "138")) + (rule "eqSymm" (formula "181") (term "1")) + (rule "elementOfUnion" (formula "181") (term "0,0")) + (builtin "One Step Simplification" (formula "181")) + (rule "eqSymm" (formula "181") (term "1,0,0")) + (rule "replace_known_right" (formula "181") (term "1,0,0") (ifseqformula "203")) + (builtin "One Step Simplification" (formula "181")) + (rule "elementOfUnion" (formula "181") (term "0,0")) + (builtin "One Step Simplification" (formula "181")) + (rule "eqSymm" (formula "181") (term "1,0,0")) + (rule "replace_known_right" (formula "181") (term "1,0,0") (ifseqformula "202")) + (builtin "One Step Simplification" (formula "181")) + (rule "elementOfUnion" (formula "181") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "181") (term "0,0,0")) + (rule "replace_known_right" (formula "181") (term "0,0,0,0,0") (ifseqformula "187")) + (builtin "One Step Simplification" (formula "181")) + (rule "elementOfArrayRangeConcrete" (formula "181") (term "0,0")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "82"))) + (rule "true_left" (formula "181")) + (rule "ifSplit" (formula "210")) + (branch "if x_25 true" + (builtin "One Step Simplification" (formula "211")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_25 false" + (builtin "One Step Simplification" (formula "211")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "210") (term "1")) + (rule "blockReturn" (formula "210") (term "1")) + (rule "blockReturn" (formula "210") (term "1")) + (builtin "One Step Simplification" (formula "210")) + (rule "lsReturnNonVoid" (formula "210") (term "1")) + (rule "assignment" (formula "210") (term "1")) + (builtin "One Step Simplification" (formula "210")) + (rule "methodCallReturn" (formula "210") (term "1")) + (rule "assignment" (formula "210") (term "1")) + (builtin "One Step Simplification" (formula "210")) + (rule "methodCallEmpty" (formula "210") (term "1")) + (rule "tryEmpty" (formula "210") (term "1")) + (rule "emptyModality" (formula "210") (term "1")) + (rule "andRight" (formula "210")) + (branch + (rule "impRight" (formula "210")) + (rule "andRight" (formula "211")) + (branch + (rule "andRight" (formula "211")) + (branch + (builtin "One Step Simplification" (formula "211") (ifInst "" (formula "162"))) + (rule "closeTrue" (formula "211")) + ) + (branch + (builtin "One Step Simplification" (formula "211") (ifInst "" (formula "161"))) + (rule "closeTrue" (formula "211")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "211")) + (rule "closeTrue" (formula "211")) + ) + ) + (branch + (rule "impRight" (formula "210")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "153")) + (builtin "One Step Simplification" (formula "183")) + (rule "andLeft" (formula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "1,0") (ifseqformula "153")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "0,1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "154") (term "0,0,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "notLeft" (formula "154")) + (rule "close" (formula "156") (ifseqformula "155")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "177")) (ifInst "" (formula "180")) (ifInst "" (formula "177")) (ifInst "" (formula "180"))) + (rule "andRight" (formula "181")) + (branch "Case 1" + (rule "andRight" (formula "181")) + (branch + (rule "andRight" (formula "181")) + (branch + (rule "andRight" (formula "181")) + (branch + (rule "andRight" (formula "181")) + (branch + (rule "wellFormedAnonEQ" (formula "181") (ifseqformula "140")) + (rule "wellFormedAnonEQ" (formula "181") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "181") (term "0,0")) + (rule "replace_known_left" (formula "181") (term "1") (ifseqformula "139")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "181")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "24"))) + (rule "closeTrue" (formula "181")) + ) + ) + (branch + (rule "expand_inInt" (formula "181")) + (rule "replace_int_MIN" (formula "181") (term "0,1")) + (rule "replace_int_MAX" (formula "181") (term "1,0")) + (rule "leq_literals" (formula "181") (term "1")) + (builtin "One Step Simplification" (formula "181")) + (rule "leq_literals" (formula "181")) + (rule "closeTrue" (formula "181")) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "181") (term "0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "181") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "181")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "181") (userinteraction)) + (rule "andRight" (formula "181")) + (branch "Case 1" + (rule "replace_int_MAX" (formula "181") (term "1")) + (rule "polySimp_homoEq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "181")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "142") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "142") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "142") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,1,0,0")) + (rule "add_literals" (formula "83") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "83") (term "0,1,0,0")) + (rule "qeq_literals" (formula "83") (term "1,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "141") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "141") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "103") (ifseqformula "104")) + (rule "leq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "94")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "92")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "38") (ifseqformula "1")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + (branch + (rule "replace_int_MIN" (formula "181") (term "0")) + (rule "polySimp_homoEq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "181")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "142") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "142") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "142") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "141") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "141") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "104") (ifseqformula "105")) + (rule "leq_literals" (formula "104") (term "0")) + (builtin "One Step Simplification" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "qeq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "40")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "1")) + (rule "times_zero_1" (formula "73") (term "0,0")) + (rule "add_zero_left" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "73")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "72") (ifseqformula "34")) + (rule "qeq_literals" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72")) + (rule "closeFalse" (formula "72")) + ) + ) + ) + (branch + (rule "expand_inInt" (formula "181")) + (rule "replace_int_MIN" (formula "181") (term "0,1")) + (rule "replace_int_MAX" (formula "181") (term "1,0")) + (rule "leq_literals" (formula "181") (term "1")) + (builtin "One Step Simplification" (formula "181")) + (rule "leq_literals" (formula "181")) + (rule "closeTrue" (formula "181")) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "140")) + (builtin "One Step Simplification" (formula "170")) + (rule "andLeft" (formula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "1,0") (ifseqformula "140")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "0,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "notLeft" (formula "141")) + (rule "close" (formula "143") (ifseqformula "142")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "167")) (ifInst "" (formula "163")) (ifInst "" (formula "167")) (ifInst "" (formula "163"))) + (rule "andRight" (formula "168")) + (branch "Case 1" + (rule "andRight" (formula "168")) + (branch "Case 1" + (rule "andRight" (formula "168")) + (branch "Case 1" + (rule "andRight" (formula "168")) + (branch + (rule "andRight" (formula "168")) + (branch + (rule "wellFormedAnonEQ" (formula "168") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "168") (term "0")) + (rule "replace_known_left" (formula "168") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "168")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "17"))) + (rule "closeTrue" (formula "168")) + ) + ) + (branch "Case 2" + (rule "expand_inInt" (formula "168") (userinteraction)) + (rule "andRight" (formula "168") (userinteraction)) + (branch "Case 1" + (rule "replace_int_MAX" (formula "168") (term "1")) + (rule "polySimp_homoEq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "168")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "41")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "103") (ifseqformula "104")) + (rule "leq_literals" (formula "103") (term "0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "75") (ifseqformula "94")) + (rule "inEqSimp_homoInEq0" (formula "75") (term "0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "75") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "75") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,1,0,0")) + (rule "times_zero_1" (formula "75") (term "1,0,0")) + (rule "add_zero_right" (formula "75") (term "0,0")) + (rule "qeq_literals" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75")) + (rule "true_left" (formula "75")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "42")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "64") (term "0,0")) + (rule "mul_literals" (formula "64") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_subsumption0" (formula "130") (ifseqformula "64")) + (rule "inEqSimp_homoInEq0" (formula "130") (term "0")) + (rule "polySimp_mulComm0" (formula "130") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "130") (term "1,0,0")) + (rule "mul_literals" (formula "130") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "130") (term "0,0")) + (rule "polySimp_addComm0" (formula "130") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "130") (term "0,0")) + (rule "add_literals" (formula "130") (term "1,1,0,0")) + (rule "times_zero_1" (formula "130") (term "1,0,0")) + (rule "add_zero_right" (formula "130") (term "0,0")) + (rule "qeq_literals" (formula "130") (term "0")) + (builtin "One Step Simplification" (formula "130")) + (rule "true_left" (formula "130")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "93")) + (rule "times_zero_1" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "93")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "1")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "37") (ifseqformula "1")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "closeFalse" (formula "37")) + ) + (branch "Case 2" + (rule "replace_int_MIN" (formula "168") (term "0")) + (rule "polySimp_homoEq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "168")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "107")) + (rule "polySimp_mulComm0" (formula "107") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "107") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "106")) + (rule "polySimp_mulLiterals" (formula "106") (term "0")) + (rule "polySimp_elimOne" (formula "106") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "104") (ifseqformula "105")) + (rule "leq_literals" (formula "104") (term "0")) + (builtin "One Step Simplification" (formula "104")) + (rule "true_left" (formula "104")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "76") (ifseqformula "95")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "0,1,0,0")) + (rule "mul_literals" (formula "76") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "76") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "10")) + (rule "mul_literals" (formula "66") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66")) + (rule "mul_literals" (formula "66") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "40")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "35")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "93")) + (rule "mul_literals" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1")) + (rule "polySimp_rightDist" (formula "74") (term "1")) + (rule "mul_literals" (formula "74") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,1")) + (rule "polySimp_elimOne" (formula "74") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "74")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_subsumption0" (formula "131") (ifseqformula "63")) + (rule "inEqSimp_homoInEq0" (formula "131") (term "0")) + (rule "polySimp_mulComm0" (formula "131") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "131") (term "1,0,0")) + (rule "mul_literals" (formula "131") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "131") (term "0,0")) + (rule "polySimp_addComm0" (formula "131") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "131") (term "0,0")) + (rule "add_literals" (formula "131") (term "1,1,0,0")) + (rule "times_zero_1" (formula "131") (term "1,0,0")) + (rule "add_zero_right" (formula "131") (term "0,0")) + (rule "qeq_literals" (formula "131") (term "0")) + (builtin "One Step Simplification" (formula "131")) + (rule "true_left" (formula "131")) + (rule "inEqSimp_exactShadow3" (formula "75") (ifseqformula "1")) + (rule "times_zero_1" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "34") (ifseqformula "75")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "closeFalse" (formula "34")) + ) + ) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "168") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "25"))) + (rule "closeTrue" (formula "168")) + ) + ) + (branch + (rule "expand_inInt" (formula "168")) + (rule "replace_int_MIN" (formula "168") (term "0,1")) + (rule "replace_int_MAX" (formula "168") (term "1,0")) + (rule "leq_literals" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "leq_literals" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + ) + (branch + (rule "expand_inInt" (formula "168")) + (rule "replace_int_MIN" (formula "168") (term "0,1")) + (rule "replace_int_MAX" (formula "168") (term "1,0")) + (rule "leq_literals" (formula "168") (term "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "leq_literals" (formula "168")) + (rule "closeTrue" (formula "168")) + ) + ) + ) + (branch "if x_18 false" + (builtin "Block Contract (Internal)" (formula "168") (newnames "result_16,exc_16,heap_Before_BLOCK_14,savedHeap_Before_BLOCK_14,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "140") (ifInst "" (formula "28"))) + (builtin "One Step Simplification" (formula "169")) + (rule "eqSymm" (formula "169") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "169") (term "1")) + (rule "variableDeclaration" (formula "169") (term "1") (newnames "exc_16_1")) + (rule "assignment" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "emptyStatement" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "emptyStatement" (formula "169") (term "1")) + (rule "applyEq" (formula "82") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "83") (term "6,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "7,0") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "7") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "135") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "69") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "92") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "86") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "115") (term "2,1,4,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "90") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "65") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "89") (term "7,0") (ifseqformula "1")) + (rule "applyEq" (formula "52") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "58") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "66") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "56") (term "0,1,0,1,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "57") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "63") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "62") (term "0,1,0,1,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "13") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "65") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "95") (term "2,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "0,1,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "90") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "117") (term "2,1,5,0") (ifseqformula "1")) + (rule "applyEq" (formula "132") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "78") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "79") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "128") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "55") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "88") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "63") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "135") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "1,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "62") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "2,1,1") (ifseqformula "1")) + (rule "applyEq" (formula "61") (term "2,1") (ifseqformula "1")) + (rule "tryEmpty" (formula "165") (term "1")) + (rule "blockEmptyLabel" (formula "165") (term "1")) + (rule "blockEmpty" (formula "165") (term "1")) + (rule "methodCallEmpty" (formula "165") (term "1")) + (rule "emptyModality" (formula "165") (term "1")) + (rule "andRight" (formula "165")) + (branch + (builtin "One Step Simplification" (formula "165")) + (rule "closeTrue" (formula "165")) + ) + (branch + (builtin "One Step Simplification" (formula "165")) + (rule "closeTrue" (formula "165")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "168")) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "28"))) + (rule "closeTrue" (formula "168")) + ) + (branch + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "168")) + (rule "wellFormedAnonEQ" (formula "168") (ifseqformula "60")) + (rule "wellFormedAnon" (formula "168") (term "0")) + (rule "replace_known_left" (formula "168") (term "1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "168") (ifInst "" (formula "15")) (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "168")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "140")) + (builtin "One Step Simplification" (formula "169")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "140") (term "1,1,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "140")) + (rule "expand_inInt" (formula "140") (term "0,1,0")) + (rule "replace_int_MAX" (formula "140") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "140") (term "0,1,0,1,0")) + (rule "andLeft" (formula "140")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "140")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "translateJavaAddInt" (formula "144") (term "3,0")) + (rule "translateJavaAddInt" (formula "144") (term "5,0")) + (rule "replace_known_left" (formula "143") (term "0") (ifseqformula "140")) + (builtin "One Step Simplification" (formula "143")) + (rule "true_left" (formula "143")) + (rule "polySimp_addComm1" (formula "143") (term "5,0")) + (rule "polySimp_addComm0" (formula "143") (term "0,5,0")) + (rule "inEqSimp_commuteLeq" (formula "142")) + (rule "applyEq" (formula "143") (term "1,1,3,0") (ifseqformula "1")) + (rule "applyEq" (formula "143") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "173") (term "0,0,0,0,0,0,0,0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "83") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "116") (term "2,1,4,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "135") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "173") (term "0,1,0,1,1,0,1,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "58") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "91") (term "7,0") (ifseqformula "1")) + (rule "applyEq" (formula "7") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "87") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "63") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "139") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "83") (term "0,1,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "13") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "144") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "54") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "68") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "65") (term "0,1,0,1,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "12") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "92") (term "6,0") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "66") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "65") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "66") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0,1,0,1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "7,0") (ifseqformula "1")) + (rule "applyEq" (formula "69") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "93") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "69") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "67") (term "0,1,0,1,1,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "172") (term "2,1,0,1,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "91") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "119") (term "2,1,5,0") (ifseqformula "1")) + (rule "applyEq" (formula "97") (term "2,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "82") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "44") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "58") (term "0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "55") (term "0,1,0,1,1,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "61") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "55") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "88") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "132") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "80") (term "6,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "127") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "77") (term "5,0") (ifseqformula "1")) + (rule "applyEq" (formula "64") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "61") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "62") (term "2,1") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "1,0,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "60") (term "2,1,1") (ifseqformula "1")) + (rule "elim_double_block_2" (formula "169") (term "1")) + (rule "ifUnfold" (formula "169") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "169") (term "1") (newnames "x_19")) + (rule "inequality_comparison_simple" (formula "169") (term "1")) + (builtin "One Step Simplification" (formula "169")) + (rule "replace_known_left" (formula "169") (term "0,0,1,0") (ifseqformula "136")) + (builtin "One Step Simplification" (formula "169")) + (rule "ifSplit" (formula "169")) + (branch "if x_19 true" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_19 false" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "169") (term "1")) + (builtin "Block Contract (Internal)" (formula "169") (newnames "result_17,exc_17,heap_Before_BLOCK_15,savedHeap_Before_BLOCK_15,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "170") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "170") (term "1")) + (rule "variableDeclaration" (formula "170") (term "1") (newnames "exc_17_1")) + (rule "assignment" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (builtin "One Step Simplification" (formula "170")) + (rule "emptyStatement" (formula "170") (term "1")) + (rule "tryEmpty" (formula "170") (term "1")) + (rule "blockEmptyLabel" (formula "170") (term "1")) + (rule "blockEmpty" (formula "170") (term "1")) + (rule "methodCallEmpty" (formula "170") (term "1")) + (rule "emptyModality" (formula "170") (term "1")) + (rule "andRight" (formula "170")) + (branch + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + (branch + (builtin "One Step Simplification" (formula "170")) + (rule "closeTrue" (formula "170")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "169")) + (branch + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "169")) + ) + (branch + (builtin "One Step Simplification" (formula "169")) + (rule "wellFormedAnonEQ" (formula "169") (ifseqformula "56")) + (rule "wellFormedAnon" (formula "169") (term "0")) + (rule "replace_known_left" (formula "169") (term "1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "169") (ifInst "" (formula "15")) (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "169")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "170")) + (builtin "One Step Simplification" (formula "141")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "141") (term "1,1,1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "141")) + (rule "expand_inInt" (formula "141") (term "0,1,0")) + (rule "expand_inInt" (formula "141") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "141") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "141") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "141") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "141") (term "0,1,1,0,0,1")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "141")) + (rule "andLeft" (formula "142")) + (rule "andLeft" (formula "142")) + (rule "eqSymm" (formula "145") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "145") (term "0,0,1,0")) + (rule "translateJavaAddInt" (formula "145") (term "0,1,1,0")) + (rule "replace_known_left" (formula "144") (term "0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "144")) + (rule "true_left" (formula "144")) + (rule "inEqSimp_commuteLeq" (formula "144") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "144") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "143")) + (rule "applyEq" (formula "144") (term "1,1,0,0,0") (ifseqformula "31")) + (rule "commute_and" (formula "144") (term "1,0")) + (rule "commute_and" (formula "144") (term "1,0,0")) + (rule "commute_and" (formula "144") (term "0,0,0")) + (rule "elim_double_block_2" (formula "173") (term "1")) + (rule "shift_paren_and" (formula "144") (term "0,0")) + (rule "commute_and_2" (formula "144") (term "0,0,0")) + (rule "ifUnfold" (formula "173") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "173") (term "1") (newnames "x_20")) + (rule "inequality_comparison_simple" (formula "173") (term "1")) + (builtin "One Step Simplification" (formula "173")) + (rule "replace_known_left" (formula "173") (term "0,0,1,0") (ifseqformula "141")) + (builtin "One Step Simplification" (formula "173")) + (rule "ifSplit" (formula "173")) + (branch "if x_20 true" + (builtin "One Step Simplification" (formula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_20 false" + (builtin "One Step Simplification" (formula "174")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "173") (term "1")) + (builtin "Block Contract (Internal)" (formula "173") (newnames "result_18,exc_18,heap_Before_BLOCK_16,savedHeap_Before_BLOCK_16,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "174")) + (rule "eqSymm" (formula "174") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "174") (term "1")) + (rule "variableDeclaration" (formula "174") (term "1") (newnames "exc_18_1")) + (rule "assignment" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (builtin "One Step Simplification" (formula "174")) + (rule "emptyStatement" (formula "174") (term "1")) + (rule "tryEmpty" (formula "174") (term "1")) + (rule "blockEmptyLabel" (formula "174") (term "1")) + (rule "blockEmpty" (formula "174") (term "1")) + (rule "methodCallEmpty" (formula "174") (term "1")) + (rule "emptyModality" (formula "174") (term "1")) + (rule "andRight" (formula "174")) + (branch + (builtin "One Step Simplification" (formula "174")) + (rule "closeTrue" (formula "174")) + ) + (branch + (builtin "One Step Simplification" (formula "174")) + (rule "closeTrue" (formula "174")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "173")) + (branch + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "173")) + ) + (branch + (builtin "One Step Simplification" (formula "173")) + (rule "wellFormedAnonEQ" (formula "173") (ifseqformula "56")) + (rule "wellFormedAnon" (formula "173") (term "0")) + (rule "replace_known_left" (formula "173") (term "1") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "173") (ifInst "" (formula "15")) (ifInst "" (formula "14"))) + (rule "closeTrue" (formula "173")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "145")) + (builtin "One Step Simplification" (formula "174")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "145") (term "1,1,1,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "145")) + (rule "expand_inInt" (formula "145") (term "0,1,0")) + (rule "expand_inInt" (formula "145") (term "0,0,1")) + (rule "replace_int_MIN" (formula "145") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "145") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "145") (term "0,1,0,0,1")) + (rule "replace_int_MAX" (formula "145") (term "1,0,0,0,1")) + (rule "andLeft" (formula "145")) + (rule "andLeft" (formula "145")) + (rule "andLeft" (formula "146")) + (rule "andLeft" (formula "146")) + (rule "translateJavaAddInt" (formula "149") (term "3,1,0,0,1,0")) + (rule "eqSymm" (formula "149") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "149") (term "0,0,1,0")) + (rule "translateJavaAddInt" (formula "149") (term "0,1,1,0")) + (rule "eqSymm" (formula "149") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "149") (term "3,1,0,1,1,0")) + (rule "replace_known_left" (formula "148") (term "0") (ifseqformula "145")) + (builtin "One Step Simplification" (formula "148")) + (rule "true_left" (formula "148")) + (rule "polySimp_addComm0" (formula "148") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "148") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "148") (term "3,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "148") (term "3,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "148") (term "0,3,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "148") (term "0,3,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "148") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "147")) + (rule "commute_and" (formula "148") (term "0,0")) + (rule "elim_double_block_2" (formula "177") (term "1")) + (rule "elim_double_block_9" (formula "177") (term "1")) + (rule "ifUnfold" (formula "177") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "177") (term "1") (newnames "x_21")) + (rule "inequality_comparison_simple" (formula "177") (term "1")) + (builtin "One Step Simplification" (formula "177")) + (rule "replace_known_left" (formula "177") (term "0,0,1,0") (ifseqformula "145")) + (builtin "One Step Simplification" (formula "177")) + (rule "ifSplit" (formula "177")) + (branch "if x_21 true" + (builtin "One Step Simplification" (formula "178")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_21 false" + (builtin "One Step Simplification" (formula "178")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "177") (term "1")) + (rule "blockEmpty" (formula "177") (term "1")) + (rule "lsContinue" (formula "177") (term "1")) + (builtin "One Step Simplification" (formula "177")) + (rule "polySimp_homoEq" (formula "61")) + (rule "polySimp_homoEq" (formula "148") (term "1,1,0")) + (rule "polySimp_homoEq" (formula "144") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "144") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0")) + (rule "mul_literals" (formula "61") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "148") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "148") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "144") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0")) + (rule "precOfInt" (formula "177")) + (rule "polySimp_addAssoc" (formula "148") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "148") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "144") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "144") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "144") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "103")) + (rule "polySimp_mulComm0" (formula "103") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "103") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "177") (term "1")) + (rule "polySimp_rightDist" (formula "177") (term "1,0,0,1")) + (rule "mul_literals" (formula "177") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "177") (term "0,0,1")) + (rule "add_literals" (formula "177") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "177") (term "0,1")) + (rule "add_literals" (formula "177") (term "1,1,0,1")) + (rule "times_zero_1" (formula "177") (term "1,0,1")) + (rule "add_zero_right" (formula "177") (term "0,1")) + (rule "leq_literals" (formula "177") (term "1")) + (builtin "One Step Simplification" (formula "177")) + (rule "inEqSimp_leqRight" (formula "177")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "46") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "46") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "55")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "73")) + (rule "polySimp_addComm1" (formula "73") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0")) + (rule "add_literals" (formula "73") (term "1,0,0")) + (rule "times_zero_1" (formula "73") (term "0,0")) + (rule "add_zero_left" (formula "73") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0,0")) + (rule "add_literals" (formula "80") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "80") (term "0,1,0,0")) + (rule "qeq_literals" (formula "80") (term "1,0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "94")) + (rule "polySimp_mulComm0" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0")) + (rule "polySimp_rightDist" (formula "94") (term "0,1,0")) + (rule "mul_literals" (formula "94") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0")) + (rule "polySimp_addComm0" (formula "94") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "84")) + (rule "polySimp_mulComm0" (formula "84") (term "1,0")) + (rule "polySimp_rightDist" (formula "84") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "84") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "84") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "84") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "84") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "80") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0,0")) + (rule "add_literals" (formula "80") (term "0,0,0")) + (rule "qeq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "true_left" (formula "80")) + (rule "polySimp_sepNegMonomial" (formula "62")) + (rule "polySimp_mulLiterals" (formula "62") (term "0")) + (rule "polySimp_elimOne" (formula "62") (term "0")) + (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "62")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0")) + (rule "mul_literals" (formula "55") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0")) + (rule "polySimp_addComm1" (formula "55") (term "0,0")) + (rule "add_literals" (formula "55") (term "0,0,0")) + (rule "add_zero_left" (formula "55") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "148") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "148") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "148") (term "0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "144") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "144") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "144") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "144") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "144") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "144") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "144") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "144") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "144") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "144") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "144") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "144") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "0")) + (rule "polySimp_elimOne" (formula "103") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "46") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "0")) + (rule "polySimp_elimOne" (formula "74") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55")) + (rule "polySimp_mulLiterals" (formula "55") (term "0")) + (rule "polySimp_elimOne" (formula "55") (term "0")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "qeq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "99") (ifseqformula "100")) + (rule "leq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "40")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "36")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "90")) + (rule "mul_literals" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulComm0" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1")) + (rule "mul_literals" (formula "71") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1")) + (rule "polySimp_elimOne" (formula "71") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "35") (ifseqformula "71")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "qeq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "true_left" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "11")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "61") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "61") (term "0,0")) + (rule "mul_literals" (formula "61") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "61") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "61")) + (rule "polySimp_mulLiterals" (formula "61") (term "0")) + (rule "polySimp_elimOne" (formula "61") (term "0")) + (rule "inEqSimp_subsumption0" (formula "129") (ifseqformula "61")) + (rule "inEqSimp_homoInEq0" (formula "129") (term "0")) + (rule "polySimp_mulComm0" (formula "129") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "129") (term "1,0,0")) + (rule "mul_literals" (formula "129") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "129") (term "0,0")) + (rule "polySimp_addComm0" (formula "129") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "129") (term "0,0")) + (rule "add_literals" (formula "129") (term "1,1,0,0")) + (rule "times_zero_1" (formula "129") (term "1,0,0")) + (rule "add_literals" (formula "129") (term "0,0")) + (rule "qeq_literals" (formula "129") (term "0")) + (builtin "One Step Simplification" (formula "129")) + (rule "true_left" (formula "129")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "37")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "mul_literals" (formula "72") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "add_literals" (formula "72") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "72")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_and_subsumption3" (formula "141") (term "0,0,0")) + (rule "leq_literals" (formula "141") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "141")) + (rule "inEqSimp_and_subsumption3" (formula "7") (term "0,0,0")) + (rule "leq_literals" (formula "7") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_and_subsumption3" (formula "42") (term "0,0,0")) + (rule "leq_literals" (formula "42") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "145") (term "0")) + (rule "Contract_axiom_for_disjointBucketsLemma_in_BucketPointers" (formula "47") (term "0")) + (rule "replace_known_left" (formula "47") (term "1,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "47") (ifInst "" (formula "25")) (ifInst "" (formula "16")) (ifInst "" (formula "172")) (ifInst "" (formula "25")) (ifInst "" (formula "48")) (ifInst "" (formula "27"))) + (rule "true_left" (formula "47")) + (rule "Definition_axiom_for_writtenElementsCountElementSplitBucket_in_de_wiesler_BucketPointers" (formula "137") (term "0") (inst "element=element") (inst "b=b")) + (builtin "One Step Simplification" (formula "137")) + (rule "expand_inInt" (formula "137") (term "0,0")) + (rule "replace_int_MAX" (formula "137") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "137") (term "0,1,0,0")) + (rule "translateJavaAddInt" (formula "137") (term "0,2,2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "137") (term "3,1,2,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "137") (term "0,0,0,1,1,1,0")) + (rule "translateJavaAddInt" (formula "137") (term "2,1,2,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "137") (term "3,2,1,1,1,0")) + (rule "translateJavaSubInt" (formula "137") (term "2,2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "137") (term "0,3,1,2,0,0,1,1,0")) + (rule "eqSymm" (formula "137") (term "1,0")) + (rule "translateJavaAddInt" (formula "137") (term "0,1,0")) + (rule "translateJavaCastInt" (formula "137") (term "0,0,1,0")) + (rule "polySimp_elimSub" (formula "137") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "137") (term "2,2,1,0,1,0")) + (rule "mul_literals" (formula "137") (term "1,2,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "137") (term "3,1,2,0,0,1,0")) + (rule "mul_literals" (formula "137") (term "1,3,1,2,0,0,1,0")) + (rule "polySimp_homoEq" (formula "137") (term "1,0")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "3,1,2,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "0,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "2,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "0,3,1,2,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "0,2,2,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "137") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "137") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "137") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "137") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "137") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "137") (term "1,0,0,0,0,0,1,0")) + (rule "applyEq" (formula "137") (term "1,3,1,2,0,1,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "137") (term "3,1,2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,3,1,2,0,1,0,1,0")) + (rule "add_literals" (formula "137") (term "0,0,3,1,2,0,1,0,1,0")) + (rule "add_zero_left" (formula "137") (term "0,3,1,2,0,1,0,1,0")) + (rule "applyEq" (formula "137") (term "1,2,2,0,0,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "137") (term "2,2,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,2,2,0,0,0,0,1,0")) + (rule "add_literals" (formula "137") (term "0,0,2,2,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "137") (term "0,2,2,0,0,0,0,1,0")) + (rule "applyEq" (formula "137") (term "1,3,2,0,0,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_addAssoc" (formula "137") (term "3,2,0,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "137") (term "0,3,2,0,0,0,0,1,0")) + (rule "applyEq" (formula "137") (term "0,1,0,0,0,0,0,0,0,1,0") (ifseqformula "56")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "137") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "137") (term "0,1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "137") (term "0,0,0,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "137") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "137") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "137") (term "0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "137") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "137") (term "0,0,0,0,0,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "137") (term "0,0,0,0,1,1,0") (ifseqformula "92")) + (rule "inEqSimp_homoInEq1" (formula "137") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "137") (term "1,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "137") (term "1,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "137") (term "0,1,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "137") (term "1,0,1,0,0,0,0,0,0,1,1,0")) + (rule "mul_literals" (formula "137") (term "0,0,1,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "137") (term "1,0,1,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "137") (term "0,0,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "137") (term "0,0,0,0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "137") (term "1,1,0,0,0,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "137") (term "1,0,0,0,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "137") (term "0,0,0,0,0,0,1,1,0")) + (rule "leq_literals" (formula "137") (term "0,0,0,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "137")) + (rule "Contract_axiom_for_disjointBucketsAreaLemma_in_BucketPointers" (formula "77") (term "0")) + (rule "translateJavaAddInt" (formula "77") (term "0,0,0,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "77") (term "1,1,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "77") (term "1,1,1,1,0,1,0,0,0,0")) + (rule "replace_known_left" (formula "77") (term "0,1,1,1,0,0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "47")) (ifInst "" (formula "174")) (ifInst "" (formula "16")) (ifInst "" (formula "20")) (ifInst "" (formula "172")) (ifInst "" (formula "25")) (ifInst "" (formula "78")) (ifInst "" (formula "27"))) + (rule "true_left" (formula "77")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "11") (term "1")) + (rule "translateJavaSubInt" (formula "11") (term "1,1")) + (rule "polySimp_elimSub" (formula "11") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,1")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0")) + (rule "Free_class_invariant_axiom_for_de_wiesler_Classifier" (formula "104")) + (builtin "One Step Simplification" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "translateJavaSubInt" (formula "109") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "109") (term "0,2,1")) + (rule "eqSymm" (formula "106")) + (rule "eqSymm" (formula "109")) + (rule "translateJavaMulInt" (formula "106") (term "1,0")) + (rule "polySimp_elimSub" (formula "109") (term "0,2,1")) + (rule "mul_literals" (formula "109") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "109") (term "0,2,0")) + (rule "mul_literals" (formula "109") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "106") (term "1,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "109") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "104")) + (rule "applyEq" (formula "105") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "104") (term "0") (ifseqformula "29")) + (rule "applyEq" (formula "106") (term "1") (ifseqformula "29")) + (rule "pullOutSelect" (formula "109") (term "1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "109") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "109")) + (rule "simplifySelectOfAnonEQ" (formula "110") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "110")) + (rule "elementOfSingleton" (formula "109") (term "0,0,0")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "172"))) + (rule "elementOfSingleton" (formula "110") (term "0,0,0")) + (builtin "One Step Simplification" (formula "110") (ifInst "" (formula "172"))) + (rule "inEqSimp_exactShadow3" (formula "101") (ifseqformula "105")) + (rule "polySimp_rightDist" (formula "101") (term "0,0")) + (rule "mul_literals" (formula "101") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "101") (term "0")) + (rule "add_literals" (formula "101") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "101")) + (rule "polySimp_mulLiterals" (formula "101") (term "0")) + (rule "polySimp_elimOne" (formula "101") (term "0")) + (rule "inEqSimp_subsumption0" (formula "99") (ifseqformula "101")) + (rule "leq_literals" (formula "99") (term "0")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "pullOutSelect" (formula "109") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "109")) + (builtin "One Step Simplification" (formula "109")) + (rule "elementOfSingleton" (formula "109") (term "0,0,0")) + (builtin "One Step Simplification" (formula "109") (ifInst "" (formula "173"))) + (rule "pullOutSelect" (formula "111") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "111")) + (builtin "One Step Simplification" (formula "111")) + (rule "elementOfSingleton" (formula "111") (term "0,0,0")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "174"))) + (rule "Contract_axiom_for_elementsToReadCountElementSplitBucket_in_BucketPointers" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "13")) (ifInst "" (formula "183")) (ifInst "" (formula "181")) (ifInst "" (formula "13")) (ifInst "" (formula "88")) (ifInst "" (formula "20"))) + (rule "wellFormedAnon" (formula "87") (term "1,0")) + (rule "translateJavaAddInt" (formula "87") (term "0,0,1,0,0")) + (rule "translateJavaAddInt" (formula "87") (term "1,1,1,0,0")) + (rule "replace_known_left" (formula "87") (term "1,1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "16"))) + (rule "inEqSimp_ltToLeq" (formula "87") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "0,0,0")) + (rule "replace_known_left" (formula "87") (term "0,0,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_homoInEq0" (formula "87") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "87") (term "0,1,0,1,1,0")) + (rule "mul_literals" (formula "87") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "87") (term "0,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "87") (term "0,0,0,0,1,0")) + (rule "applyEq" (formula "87") (term "0,1,0,0,1,0") (ifseqformula "62")) + (rule "polySimp_pullOutFactor1b" (formula "87") (term "0,0,1,0")) + (rule "add_literals" (formula "87") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "87") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "87") (term "0,0,1,0")) + (rule "qeq_literals" (formula "87") (term "0,1,0")) + (builtin "One Step Simplification" (formula "87")) + (rule "applyEq" (formula "87") (term "1,0,1,0") (ifseqformula "59")) + (rule "inEqSimp_sepNegMonomial0" (formula "87") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,0,0")) + (rule "replace_known_left" (formula "87") (term "0,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "87")) + (rule "inEqSimp_sepPosMonomial1" (formula "87") (term "0")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "1,1,0")) + (rule "mul_literals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "1,1,0")) + (rule "replace_known_left" (formula "87") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "87")) + (rule "Definition_axiom_for_disjointBucketsAreaLemma_in_de_wiesler_BucketPointers" (formula "77") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "77")) + (rule "expand_inInt" (formula "77") (term "1,0,0")) + (rule "replace_int_MIN" (formula "77") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "77") (term "1,0,1,0,0")) + (rule "translateJavaAddInt" (formula "77") (term "1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "2,0,0,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "2,1,0,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "2,0,1,1,0")) + (rule "translateJavaSubInt" (formula "77") (term "2,1,1,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "0,2,0,0,1,0")) + (rule "translateJavaAddInt" (formula "77") (term "0,2,0,1,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "77") (term "1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,1,1,1,0")) + (rule "mul_literals" (formula "77") (term "1,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,0,0,1,0")) + (rule "mul_literals" (formula "77") (term "1,2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "77") (term "2,0,1,1,0")) + (rule "mul_literals" (formula "77") (term "1,2,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "2,1,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "2,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "2,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,2,1,0,1,0")) + (rule "add_literals" (formula "77") (term "0,0,2,1,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,2,1,1,1,0")) + (rule "add_literals" (formula "77") (term "0,0,2,1,1,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,2,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,0,0,0,0")) + (rule "disjointDefinition" (formula "77") (term "0,1,0")) + (rule "disjointDefinition" (formula "77") (term "1,1,0")) + (rule "disjointArrayRanges" (formula "77") (term "0,1,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "disjointArrayRanges" (formula "77") (term "1,1,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "77") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,1,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,0,0,0,0,0,1,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "0,0,0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "77") (term "0,0,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,1,1,0")) + (rule "add_literals" (formula "77") (term "0,1,0,0,1,1,0")) + (rule "qeq_literals" (formula "77") (term "1,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,0,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,0,0,0,0,0,1,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "0,0,0,0,0,1,0,1,1,0")) + (rule "add_zero_left" (formula "77") (term "0,0,0,0,1,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,1,1,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,1,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,0,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,0,1,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,0,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,0,1,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,1,1,0,1,1,0")) + (rule "add_literals" (formula "77") (term "1,0,0,0,0,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "77") (term "0,0,0,0,1,1,0,1,1,0")) + (rule "add_zero_left" (formula "77") (term "0,0,0,1,1,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "qeq_literals" (formula "77") (term "1,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,0,1,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "77") (term "0,0,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,0,0,0,0,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "0,0,0,0,1,1,0,0,1,0")) + (rule "add_zero_left" (formula "77") (term "0,0,0,1,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0,1,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,1,1,1,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0,1,1,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0,1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0,1,1,1,0,0,1,0")) + (rule "add_literals" (formula "77") (term "0,0,0,1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,1,0,0,1,0")) + (rule "mul_literals" (formula "77") (term "0,1,1,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,0,1,0,1,1,0")) + (rule "mul_literals" (formula "77") (term "0,1,1,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "77") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "77") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,1,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,1,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "56") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "67")) (ifInst "" (formula "182")) (ifInst "" (formula "67")) (ifInst "" (formula "66")) (ifInst "" (formula "20"))) + (rule "wellFormedAnonEQ" (formula "56") (term "1,0") (ifseqformula "53")) + (rule "wellFormedAnon" (formula "56") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "56") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "56") (term "1,1,0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "56") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "56") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0")) + (rule "replace_known_left" (formula "56") (term "0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,1,0,0,1")) + (rule "mul_literals" (formula "56") (term "0,1,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "56") (term "0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0,0,1")) + (rule "applyEq" (formula "56") (term "0,1,0,0,0,1") (ifseqformula "57")) + (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,1,0,0,0,1")) + (rule "mul_literals" (formula "56") (term "0,1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "56") (term "0,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,1,0,0,0,1")) + (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "46")) + (rule "inEqSimp_commuteGeq" (formula "56") (term "1,0,1")) + (rule "applyEq" (formula "56") (term "0,0,1,1") (ifseqformula "57")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0")) + (rule "replace_known_left" (formula "56") (term "0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "58")) + (rule "times_zero_1" (formula "78") (term "0,0")) + (rule "add_zero_left" (formula "78") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "mul_literals" (formula "78") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_rightDist" (formula "57") (term "0,0")) + (rule "mul_literals" (formula "57") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "1")) + (rule "polySimp_elimOne" (formula "57") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "100")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "mul_literals" (formula "58") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "58")) + (rule "times_zero_1" (formula "56") (term "0,0")) + (rule "add_zero_left" (formula "56") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "56")) + (rule "polySimp_mulLiterals" (formula "56") (term "1")) + (rule "polySimp_elimOne" (formula "56") (term "1")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "80")) + (rule "inEqSimp_homoInEq0" (formula "56") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0")) + (rule "add_literals" (formula "56") (term "1,1,0,0")) + (rule "times_zero_1" (formula "56") (term "1,0,0")) + (rule "add_zero_right" (formula "56") (term "0,0")) + (rule "qeq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_exactShadow3" (formula "80") (ifseqformula "61")) + (rule "mul_literals" (formula "80") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "80")) + (rule "mul_literals" (formula "80") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "56") (ifseqformula "57")) + (rule "times_zero_1" (formula "56") (term "0,0")) + (rule "add_zero_left" (formula "56") (term "0")) + (rule "inEqSimp_subsumption1" (formula "56") (ifseqformula "82")) + (rule "leq_literals" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "104") (term "0")) + (builtin "One Step Simplification" (formula "104")) + (rule "translateJavaMod" (formula "104") (term "0")) + (rule "jmod_axiom" (formula "104") (term "0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "104")) + (rule "polySimp_mulLiterals" (formula "104") (term "0")) + (rule "newSym_eq" (formula "104") (inst "l=l_0") (inst "newSymDef=add(mul(int::final(result_1, + de.wiesler.Increment::$position), + Z(0(#))), + mul(de.wiesler.BucketPointers::lastReadOf(heapAfter_increment_write, + bucket_pointers, + result_8), + Z(0(#))))")) + (rule "times_zero_1" (formula "104") (term "1,1,1")) + (rule "times_zero_1" (formula "104") (term "0,1,1")) + (rule "add_zero_left" (formula "104") (term "1,1")) + (rule "add_zero_right" (formula "104") (term "1")) + (rule "applyEq" (formula "105") (term "0,0") (ifseqformula "104")) + (rule "polySimp_homoEq" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,0")) + (rule "polySimp_addComm1" (formula "105") (term "0")) + (rule "polySimp_addComm0" (formula "105") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "105")) + (rule "polySimp_mulComm0" (formula "105") (term "1")) + (rule "polySimp_rightDist" (formula "105") (term "1")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,1")) + (rule "polySimp_elimOne" (formula "105") (term "1,1")) + (rule "polySimp_mulComm0" (formula "105") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "105") (term "0,1")) + (rule "applyEq" (formula "135") (term "1,5,0") (ifseqformula "105")) + (rule "polySimp_addAssoc" (formula "135") (term "5,0")) + (rule "polySimp_addComm0" (formula "135") (term "0,5,0")) + (rule "applyEq" (formula "104") (term "1,0,0") (ifseqformula "105")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0")) + (rule "polySimp_addComm0" (formula "104") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "104") (term "0,0")) + (rule "add_literals" (formula "104") (term "1,1,0,0")) + (rule "times_zero_1" (formula "104") (term "1,0,0")) + (rule "add_zero_right" (formula "104") (term "0,0")) + (rule "applyEq" (formula "99") (term "1,0") (ifseqformula "105")) + (rule "applyEq" (formula "92") (term "0") (ifseqformula "105")) + (rule "inEqSimp_homoInEq1" (formula "92")) + (rule "polySimp_mulComm0" (formula "92") (term "1,0")) + (rule "polySimp_rightDist" (formula "92") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "92") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "92") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "92") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "92") (term "0")) + (rule "polySimp_addComm1" (formula "92") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "92") (term "0")) + (rule "add_literals" (formula "92") (term "1,1,0")) + (rule "times_zero_1" (formula "92") (term "1,0")) + (rule "add_zero_right" (formula "92") (term "0")) + (rule "applyEq" (formula "131") (term "1,4,0") (ifseqformula "105")) + (rule "polySimp_addAssoc" (formula "131") (term "4,0")) + (rule "polySimp_addComm0" (formula "131") (term "0,4,0")) + (rule "applyEq" (formula "67") (term "1") (ifseqformula "105")) + (rule "inEqSimp_sepNegMonomial0" (formula "92")) + (rule "polySimp_mulLiterals" (formula "92") (term "0")) + (rule "elimGcdGeq_antec" (formula "92") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "mul_literals" (formula "92") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "92") (term "0,0")) + (builtin "One Step Simplification" (formula "92")) + (rule "mul_literals" (formula "92") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "92") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "92") (term "0,0,0,0")) + (rule "add_zero_right" (formula "92") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "92") (term "0,0")) + (rule "add_literals" (formula "92") (term "1,1,0,0")) + (rule "times_zero_1" (formula "92") (term "1,0,0")) + (rule "add_zero_right" (formula "92") (term "0,0")) + (rule "leq_literals" (formula "92") (term "0")) + (builtin "One Step Simplification" (formula "92")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "64") (term "0")) + (rule "translateJavaMulInt" (formula "64") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "64") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "64") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "64") (term "0,2,0")) + (rule "pullOutSelect" (formula "64") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "64") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "64")) + (rule "polySimp_homoEq" (formula "65")) + (rule "polySimp_addComm1" (formula "65") (term "0")) + (rule "elementOfSingleton" (formula "64") (term "0,0,0")) + (builtin "One Step Simplification" (formula "64")) + (rule "applyEqReverse" (formula "65") (term "0,1,0,0") (ifseqformula "64")) + (rule "hideAuxiliaryEq" (formula "64")) + (rule "polySimp_addComm1" (formula "64") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "Definition_axiom_for_elementsToReadCountElementSplitBucket_in_de_wiesler_BucketPointers" (formula "98") (term "0") (inst "element=element") (inst "b=b")) + (builtin "One Step Simplification" (formula "98")) + (rule "expand_inInt" (formula "98") (term "0,0")) + (rule "replace_int_MAX" (formula "98") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "98") (term "0,1,0,0")) + (rule "translateJavaAddInt" (formula "98") (term "3,1,2,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "98") (term "2,1,1,1,0")) + (rule "translateJavaCastInt" (formula "98") (term "0,1,1,0")) + (rule "eqSymm" (formula "98") (term "1,0")) + (rule "translateJavaAddInt" (formula "98") (term "0,1,0")) + (rule "polySimp_homoEq" (formula "98") (term "1,0")) + (rule "polySimp_mulComm0" (formula "98") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "98") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "98") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "98") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "98") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "98") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "98") (term "1,0,0")) + (rule "applyEq" (formula "98") (term "1,2,0,0,0,0,1,0") (ifseqformula "70")) + (rule "polySimp_sepNegMonomial" (formula "98") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "98") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "98") (term "0,1,0")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "65") (term "1,1")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "65") (term "1,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "75")) (ifInst "" (formula "193")) (ifInst "" (formula "75")) (ifInst "" (formula "74")) (ifInst "" (formula "20"))) + (rule "true_left" (formula "65")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "73") (inst "b=b")) + (builtin "One Step Simplification" (formula "73")) + (rule "expand_inInt" (formula "73") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "73") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "73") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "74")) + (rule "andLeft" (formula "73")) + (rule "andLeft" (formula "75")) + (rule "andLeft" (formula "75")) + (rule "translateJavaAddInt" (formula "79") (term "1")) + (rule "translateJavaCastInt" (formula "80") (term "0")) + (rule "translateJavaMulInt" (formula "74") (term "0")) + (rule "translateJavaMulInt" (formula "73") (term "1")) + (rule "translateJavaCastInt" (formula "77") (term "0")) + (rule "translateJavaCastInt" (formula "76") (term "1")) + (rule "polySimp_mulComm0" (formula "74") (term "0")) + (rule "polySimp_mulComm0" (formula "73") (term "1")) + (rule "polySimp_addComm0" (formula "79") (term "1")) + (rule "castedGetAny" (formula "80") (term "0")) + (rule "castedGetAny" (formula "77") (term "0")) + (rule "castedGetAny" (formula "76") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "82") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "73")) + (rule "inEqSimp_commuteLeq" (formula "76")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "39")) + (rule "inEqSimp_commuteGeq" (formula "76")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "76") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "76") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "81") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "polySimp_elimOne" (formula "76") (term "0")) + (rule "inEqSimp_subsumption6" (formula "73") (ifseqformula "123")) + (rule "mul_literals" (formula "73") (term "1,1,0")) + (rule "greater_literals" (formula "73") (term "0,0")) + (builtin "One Step Simplification" (formula "73")) + (rule "leq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "true_left" (formula "73")) + (rule "inEqSimp_exactShadow2" (formula "119") (ifseqformula "73")) + (rule "greater_literals" (formula "119") (term "0")) + (builtin "One Step Simplification" (formula "119")) + (rule "polySimp_rightDist" (formula "119") (term "1,0,0")) + (rule "mul_literals" (formula "119") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "119") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,0,0")) + (rule "mul_literals" (formula "119") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "119")) + (rule "polySimp_mulComm0" (formula "119") (term "1")) + (rule "polySimp_rightDist" (formula "119") (term "1")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,1")) + (rule "mul_literals" (formula "119") (term "0,1")) + (rule "inEqSimp_exactShadow2" (formula "123") (ifseqformula "73")) + (rule "mul_literals" (formula "123") (term "1,0,0,1")) + (rule "greater_literals" (formula "123") (term "0")) + (builtin "One Step Simplification" (formula "123")) + (rule "mul_literals" (formula "123") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "123")) + (rule "mul_literals" (formula "123") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "74") (ifseqformula "40")) + (rule "times_zero_1" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "74")) + (rule "polySimp_mulLiterals" (formula "74") (term "1")) + (rule "polySimp_elimOne" (formula "74") (term "1")) + (rule "inEqSimp_subsumption1" (formula "74") (ifseqformula "87")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "qeq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "Contract_axiom_for_isClassOfSliceSplit_in_Classifier" (formula "165") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "165") (term "1,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "134")) (ifInst "" (formula "203")) (ifInst "" (formula "202")) (ifInst "" (formula "134")) (ifInst "" (formula "166")) (ifInst "" (formula "19"))) + (rule "wellFormedAnonEQ" (formula "165") (term "1,0") (ifseqformula "53")) + (rule "wellFormedAnon" (formula "165") (term "0,1,0")) + (rule "replace_known_left" (formula "165") (term "1,0,1,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "165") (ifInst "" (formula "16")) (ifInst "" (formula "52"))) + (rule "inEqSimp_homoInEq0" (formula "165") (term "1,0")) + (rule "polySimp_mulComm0" (formula "165") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "165") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "165") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "165") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "165") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "165") (term "0,1,0")) + (rule "add_literals" (formula "165") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "165") (term "1,0,1,0")) + (rule "add_zero_right" (formula "165") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "165") (term "0,1,0")) + (rule "add_literals" (formula "165") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "165") (term "1,0,1,0")) + (rule "add_zero_right" (formula "165") (term "0,1,0")) + (rule "qeq_literals" (formula "165") (term "1,0")) + (builtin "One Step Simplification" (formula "165")) + (rule "inEqSimp_homoInEq0" (formula "165") (term "0")) + (rule "polySimp_mulComm0" (formula "165") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "165") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "165") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "165") (term "0,0")) + (rule "polySimp_addAssoc" (formula "165") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "165") (term "0,0,0,0")) + (rule "add_literals" (formula "165") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "165") (term "0,0,0,0")) + (rule "add_zero_left" (formula "165") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "165") (term "0")) + (rule "polySimp_mulLiterals" (formula "165") (term "1,0")) + (rule "polySimp_elimOne" (formula "165") (term "1,0")) + (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "47") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "47")) + (rule "expand_inInt" (formula "47") (term "1,0,0")) + (rule "replace_int_MAX" (formula "47") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "47") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "47") (term "1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "47") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "1,0,1,1,1,0")) + (rule "inEqSimp_gtToGeq" (formula "47") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "47") (term "1,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "47") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "47") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "47") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "47") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "47") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_isClassifiedAs_in_Classifier" (formula "121") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "121") (term "1,0,0") (ifseqformula "53")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "135")) (ifInst "" (formula "203")) (ifInst "" (formula "135")) (ifInst "" (formula "19"))) + (rule "wellFormedAnonEQ" (formula "121") (term "0") (ifseqformula "53")) + (rule "wellFormedAnon" (formula "121") (term "0,0")) + (rule "replace_known_left" (formula "121") (term "1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "16")) (ifInst "" (formula "52"))) + (rule "replace_known_left" (formula "166") (term "1") (ifseqformula "121")) + (builtin "One Step Simplification" (formula "166")) + (rule "true_left" (formula "166")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46") (ifInst "" (formula "25")) (ifInst "" (formula "202"))) + (rule "translateJavaAddInt" (formula "46") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "46") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "46") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "46") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "46") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "46") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "46") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "46") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "46") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "46") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "46") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_ltToLeq" (formula "46") (term "0,0,1,1,1")) + (rule "add_zero_right" (formula "46") (term "0,0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "46") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0,0,1")) + (rule "add_literals" (formula "46") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "46") (term "0,1,0,0,1")) + (rule "qeq_literals" (formula "46") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "46") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "46") (term "0,1,0,1,1,1")) + (rule "qeq_literals" (formula "46") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_homoInEq0" (formula "46") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "46") (term "0,1,0")) + (rule "add_literals" (formula "46") (term "1,0,1,0")) + (rule "times_zero_1" (formula "46") (term "0,1,0")) + (rule "qeq_literals" (formula "46") (term "1,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "applyEq" (formula "46") (term "1,1,1,1,1") (ifseqformula "47")) + (rule "applyEq" (formula "46") (term "0,0,0,1") (ifseqformula "47")) + (rule "applyEq" (formula "46") (term "0,1,0,1") (ifseqformula "47")) + (rule "applyEq" (formula "46") (term "0,0,0,1,1") (ifseqformula "47")) + (rule "inEqSimp_sepNegMonomial0" (formula "46") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "46") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "46") (term "0,1,1,1") (ifseqformula "126")) + (rule "leq_literals" (formula "46") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "46") (term "0") (ifseqformula "126")) + (rule "leq_literals" (formula "46") (term "0,0")) + (builtin "One Step Simplification" (formula "46")) + (rule "andLeft" (formula "46")) + (rule "andLeft" (formula "47")) + (rule "andLeft" (formula "46")) + (rule "inEqSimp_subsumption1" (formula "46") (ifseqformula "91")) + (rule "leq_literals" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "49") (term "0")) + (rule "translateJavaCastInt" (formula "49") (term "0,0")) + (rule "castedGetAny" (formula "49") (term "0,0")) + (rule "applyEq" (formula "49") (term "0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "49")) + (rule "true_left" (formula "49")) + (rule "Contract_axiom_for_lastReadOf_in_BucketPointers" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "13")) (ifInst "" (formula "204")) (ifInst "" (formula "13")) (ifInst "" (formula "106")) (ifInst "" (formula "20"))) + (rule "wellFormedAnon" (formula "69") (term "1,0")) + (rule "translateJavaAddInt" (formula "69") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "69") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "69") (term "0,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "15"))) + (rule "polySimp_addComm0" (formula "69") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "69") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "69") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,0,1")) + (rule "replace_known_left" (formula "69") (term "0,0,0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0")) + (rule "replace_known_left" (formula "69") (term "0,0") (ifseqformula "120")) + (builtin "One Step Simplification" (formula "69")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,1,1,1")) + (rule "applyEq" (formula "69") (term "0,0,1,1,1,1") (ifseqformula "70")) + (rule "applyEq" (formula "69") (term "0,1,0,0,1") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,1,0,0,1")) + (rule "applyEq" (formula "69") (term "0,0,0,1,1") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "69") (term "0,0,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,0,0,1,1")) + (rule "applyEq" (formula "69") (term "0,0,0,0,1") (ifseqformula "70")) + (rule "inEqSimp_homoInEq1" (formula "69") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,0,0,0,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,0,0,0,1")) + (rule "applyEq" (formula "69") (term "0,1,0,1,1") (ifseqformula "70")) + (rule "polySimp_homoEq" (formula "69") (term "1,0,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,1,0,1,1")) + (rule "polySimp_rightDist" (formula "69") (term "1,0,1,0,1,1")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,0,1,1")) + (rule "polySimp_addAssoc" (formula "69") (term "0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,1,0,1,1")) + (rule "polySimp_sepNegMonomial" (formula "69") (term "1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0,1,1")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "69") (term "0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,0")) + (rule "replace_known_left" (formula "69") (term "0") (ifseqformula "123")) + (builtin "One Step Simplification" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "69")) + (rule "andLeft" (formula "73")) + (rule "inEqSimp_sepNegMonomial1" (formula "72") (term "0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0")) + (rule "polySimp_elimOne" (formula "72") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "0")) + (rule "polySimp_elimOne" (formula "69") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "70")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "polySimp_pullOutFactor0" (formula "69") (term "0,0,0")) + (rule "add_literals" (formula "69") (term "1,0,0,0")) + (rule "times_zero_1" (formula "69") (term "0,0,0")) + (rule "add_zero_left" (formula "69") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulLiterals" (formula "69") (term "1")) + (rule "polySimp_elimOne" (formula "69") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "69") (ifseqformula "63")) + (rule "polySimp_rightDist" (formula "69") (term "0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_addComm1" (formula "69") (term "0,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1")) + (rule "polySimp_rightDist" (formula "69") (term "1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,1")) + (rule "polySimp_elimOne" (formula "69") (term "1,1")) + (rule "polySimp_rightDist" (formula "69") (term "0,1")) + (rule "mul_literals" (formula "69") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "69") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "118")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "72")) + (rule "polySimp_rightDist" (formula "62") (term "0,0")) + (rule "mul_literals" (formula "62") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "62")) + (rule "polySimp_mulComm0" (formula "62") (term "1")) + (rule "polySimp_rightDist" (formula "62") (term "1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,1")) + (rule "polySimp_elimOne" (formula "62") (term "1,1")) + (rule "polySimp_rightDist" (formula "62") (term "0,1")) + (rule "mul_literals" (formula "62") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "100") (ifseqformula "73")) + (rule "mul_literals" (formula "100") (term "0,0")) + (rule "add_zero_left" (formula "100") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "100")) + (rule "polySimp_mulLiterals" (formula "100") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "65")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0")) + (rule "polySimp_rightDist" (formula "70") (term "0,0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "70")) + (rule "polySimp_mulLiterals" (formula "70") (term "0")) + (rule "polySimp_elimOne" (formula "70") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "72")) + (rule "times_zero_1" (formula "58") (term "0,0")) + (rule "add_zero_left" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "polySimp_rightDist" (formula "58") (term "0,1")) + (rule "mul_literals" (formula "58") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "66")) + (rule "polySimp_rightDist" (formula "63") (term "0,0")) + (rule "polySimp_addComm1" (formula "63") (term "0")) + (rule "polySimp_rightDist" (formula "63") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,0,0,0")) + (rule "mul_literals" (formula "63") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "63")) + (rule "polySimp_mulLiterals" (formula "63") (term "0")) + (rule "polySimp_elimOne" (formula "63") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "103") (ifseqformula "67")) + (rule "polySimp_mulAssoc" (formula "103") (term "0,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "103") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "103")) + (rule "polySimp_mulLiterals" (formula "103") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "72")) + (rule "times_zero_1" (formula "59") (term "0,0")) + (rule "add_zero_left" (formula "59") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "polySimp_mulComm0" (formula "59") (term "1")) + (rule "polySimp_rightDist" (formula "59") (term "1")) + (rule "mul_literals" (formula "59") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "64")) + (rule "mul_literals" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_rightDist" (formula "60") (term "1")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1")) + (rule "mul_literals" (formula "60") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "60") (ifseqformula "105")) + (rule "inEqSimp_homoInEq0" (formula "60") (term "0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,1,0,0")) + (rule "mul_literals" (formula "60") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "60") (term "0,0")) + (rule "add_literals" (formula "60") (term "1,1,0,0")) + (rule "times_zero_1" (formula "60") (term "1,0,0")) + (rule "add_zero_right" (formula "60") (term "0,0")) + (rule "qeq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "58") (term "0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_rightDist" (formula "58") (term "0,0,0")) + (rule "mul_literals" (formula "58") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "105") (ifseqformula "46")) + (rule "polySimp_mulAssoc" (formula "105") (term "0,0")) + (rule "polySimp_mulComm0" (formula "105") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "0,0")) + (rule "polySimp_addComm0" (formula "105") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "105")) + (rule "polySimp_mulLiterals" (formula "105") (term "0")) + (rule "elimGcdLeq_antec" (formula "105") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(5(2(#))))")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "105") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "105") (term "0,0")) + (builtin "One Step Simplification" (formula "105")) + (rule "mul_literals" (formula "105") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "105") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "105") (term "0,0,0,0")) + (rule "add_zero_right" (formula "105") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "105") (term "0,0")) + (rule "add_literals" (formula "105") (term "1,1,0,0")) + (rule "times_zero_1" (formula "105") (term "1,0,0")) + (rule "add_zero_right" (formula "105") (term "0,0")) + (rule "qeq_literals" (formula "105") (term "0")) + (builtin "One Step Simplification" (formula "105")) + (rule "inEqSimp_exactShadow3" (formula "59") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "59") (term "0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "1,1,0")) + (rule "times_zero_1" (formula "59") (term "1,0")) + (rule "add_zero_right" (formula "59") (term "0")) + (rule "polySimp_addComm1" (formula "59") (term "0")) + (rule "add_literals" (formula "59") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59")) + (rule "mul_literals" (formula "59") (term "1")) + (rule "inEqSimp_subsumption6" (formula "59") (ifseqformula "118")) + (rule "mul_literals" (formula "59") (term "1,1,0")) + (rule "greater_literals" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "leq_literals" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59")) + (rule "true_left" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "46")) + (rule "polySimp_rightDist" (formula "60") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "60") (term "1,0,0")) + (rule "mul_literals" (formula "60") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "60") (term "0")) + (rule "add_literals" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "mul_literals" (formula "60") (term "1")) + (rule "inEqSimp_subsumption6" (formula "60") (ifseqformula "118")) + (rule "greater_literals" (formula "60") (term "0,0")) + (builtin "One Step Simplification" (formula "60")) + (rule "mul_literals" (formula "60") (term "1,0")) + (rule "leq_literals" (formula "60") (term "0")) + (builtin "One Step Simplification" (formula "60")) + (rule "true_left" (formula "60")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "58")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "add_zero_left" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "mul_literals" (formula "33") (term "1")) + (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "118")) + (rule "greater_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "mul_literals" (formula "33") (term "1,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "154")) + (rule "andLeft" (formula "154")) + (rule "notLeft" (formula "154")) + (rule "notLeft" (formula "154")) + (rule "replace_known_right" (formula "150") (term "0,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "150")) + (rule "replace_known_right" (formula "152") (term "0,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "152")) + (rule "replace_known_right" (formula "151") (term "0,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "151")) + (rule "replace_known_right" (formula "149") (term "0,0,0,0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "149")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "195")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "194")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "149") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "149")) + (rule "applyEqReverse" (formula "150") (term "2,0") (ifseqformula "149")) + (rule "hideAuxiliaryEq" (formula "149")) + (rule "replace_known_left" (formula "150") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "150")) + (rule "applyEqReverse" (formula "151") (term "2,0") (ifseqformula "150")) + (rule "hideAuxiliaryEq" (formula "150")) + (rule "replace_known_left" (formula "149") (term "0,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "149")) + (rule "applyEqReverse" (formula "150") (term "1") (ifseqformula "149")) + (rule "hideAuxiliaryEq" (formula "149")) + (rule "replace_known_left" (formula "149") (term "0,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "149")) + (rule "Free_class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27") (inst "b=b")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "91")) (ifInst "" (formula "94"))) + (rule "expand_inInt" (formula "27") (term "1,0,0,1")) + (rule "replace_int_MIN" (formula "27") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "27") (term "1,0,1,0,0,1")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "translateJavaCastInt" (formula "33") (term "0")) + (rule "translateJavaAddInt" (formula "32") (term "1")) + (rule "translateJavaMulInt" (formula "27") (term "1")) + (rule "translateJavaMulInt" (formula "28") (term "0")) + (rule "translateJavaCastInt" (formula "31") (term "0")) + (rule "translateJavaCastInt" (formula "30") (term "1")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "31") (term "1")) + (rule "castedGetAny" (formula "31") (term "0")) + (rule "castedGetAny" (formula "30") (term "0")) + (rule "castedGetAny" (formula "29") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "42")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "41")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "145")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "41") (term "0")) + (rule "replace_known_right" (formula "41") (term "0,1,0,0,0,0") (ifseqformula "218")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "26")) (ifInst "" (formula "16")) (ifInst "" (formula "19")) (ifInst "" (formula "220")) (ifInst "" (formula "26")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "41")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "72") (term "0")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "13")) (ifInst "" (formula "219")) (ifInst "" (formula "13")) (ifInst "" (formula "123")) (ifInst "" (formula "20"))) + (rule "true_left" (formula "72")) + (rule "Definition_axiom_for_remainingWriteCountOfBucket_in_de_wiesler_BucketPointers" (formula "72") (term "0")) + (rule "translateJavaSubInt" (formula "72") (term "0")) + (rule "translateJavaAddInt" (formula "72") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "72") (term "0")) + (rule "polySimp_homoEq" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0")) + (rule "polySimp_addComm0" (formula "72") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "72") (term "0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0")) + (rule "applyEq" (formula "72") (term "1,0") (ifseqformula "86")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "72")) + (rule "polySimp_mulComm0" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "1")) + (rule "polySimp_rightDist" (formula "72") (term "0,1")) + (rule "mul_literals" (formula "72") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "72") (term "1,0,1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "72")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "72")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "68")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "132")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "103")) + (rule "notLeft" (formula "103")) + (rule "close" (formula "106") (ifseqformula "105")) + ) + (branch "Pre (classify)" + (builtin "One Step Simplification" (formula "131")) + (rule "andRight" (formula "131")) + (branch "Case 1" + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "131") (userinteraction)) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "29") (userinteraction)) + (rule "close" (formula "131") (ifseqformula "29")) + ) + (branch + (rule "andRight" (formula "131")) + (branch + (rule "andRight" (formula "131")) + (branch + (rule "wellFormedAnonEQ" (formula "131") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "131") (term "0")) + (rule "replace_known_left" (formula "131") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "14")) (ifInst "" (formula "13"))) + (rule "closeTrue" (formula "131")) + ) + (branch + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "131") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "22"))) + (rule "closeTrue" (formula "131")) + ) + ) + (branch + (rule "expand_inInt" (formula "131")) + (rule "replace_int_MAX" (formula "131") (term "1,0")) + (rule "replace_int_MIN" (formula "131") (term "0,1")) + (rule "replace_known_left" (formula "131") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "131")) + (rule "polySimp_homoEq" (formula "64")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,0")) + (rule "mul_literals" (formula "64") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "64") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "131")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "44")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "100") (ifseqformula "1")) + (rule "qeq_literals" (formula "100") (term "0")) + (builtin "One Step Simplification" (formula "100")) + (rule "closeFalse" (formula "100")) + ) + ) + ) + (branch "Null reference (var = null)" + (builtin "One Step Simplification" (formula "131") (ifInst "" (formula "129"))) + (rule "closeTrue" (formula "131")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "131"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but write Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "131")) (userinteraction)) + (rule "orLeft" (formula "1") (userinteraction)) + (branch "values.length <= begin + result_1.position" + (builtin "One Step Simplification" (formula "132")) + (rule "false_right" (formula "132")) + (rule "polySimp_homoEq" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "mul_literals" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption0" (formula "77") (ifseqformula "96")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "77") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "77") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_zero_right" (formula "77") (term "0,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "77") (term "0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0")) + (rule "add_zero_right" (formula "77") (term "0,0")) + (rule "qeq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "43")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "40")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "35")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "92")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "40") (ifseqformula "1")) + (rule "andLeft" (formula "40")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0")) + (rule "add_literals" (formula "40") (term "1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0")) + (rule "add_literals" (formula "40") (term "0")) + (rule "leq_literals" (formula "40")) + (rule "closeFalse" (formula "40")) + ) + (branch "begin + result_1.position < 0" + (builtin "One Step Simplification" (formula "132")) + (rule "false_right" (formula "132")) + (rule "polySimp_homoEq" (formula "65")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,0")) + (rule "mul_literals" (formula "65") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0")) + (rule "polySimp_addComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "67")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "49") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "87")) + (rule "polySimp_mulComm0" (formula "87") (term "1,0")) + (rule "polySimp_rightDist" (formula "87") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "87") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "87") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "87") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "87") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "87") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "83") (term "0,1,0,0")) + (rule "add_literals" (formula "83") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "83") (term "0,1,0,0")) + (rule "qeq_literals" (formula "83") (term "1,0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_addComm1" (formula "76") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,0,0")) + (rule "times_zero_1" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "97")) + (rule "polySimp_mulComm0" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "1,0")) + (rule "polySimp_rightDist" (formula "97") (term "0,1,0")) + (rule "mul_literals" (formula "97") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "97") (term "0")) + (rule "polySimp_addComm0" (formula "97") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "83") (term "0,0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0,0")) + (rule "add_literals" (formula "83") (term "0,0,0")) + (rule "qeq_literals" (formula "83") (term "0,0")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "67")) + (rule "polySimp_mulLiterals" (formula "67") (term "0")) + (rule "polySimp_elimOne" (formula "67") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "86")) + (rule "polySimp_mulLiterals" (formula "86") (term "0")) + (rule "polySimp_elimOne" (formula "86") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "96")) + (rule "polySimp_mulLiterals" (formula "96") (term "0")) + (rule "polySimp_elimOne" (formula "96") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "41")) + (rule "leq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "43")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "74") (ifseqformula "93")) + (rule "inEqSimp_homoInEq0" (formula "74") (term "0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "74") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "74") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "74") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,1,0,0")) + (rule "times_zero_1" (formula "74") (term "1,0,0")) + (rule "add_zero_right" (formula "74") (term "0,0")) + (rule "qeq_literals" (formula "74") (term "0")) + (builtin "One Step Simplification" (formula "74")) + (rule "true_left" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "39")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "73") (ifseqformula "1")) + (rule "times_zero_1" (formula "73") (term "0,0")) + (rule "add_zero_left" (formula "73") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "73")) + (rule "polySimp_mulLiterals" (formula "73") (term "0")) + (rule "polySimp_elimOne" (formula "73") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "73") (ifseqformula "34")) + (rule "qeq_literals" (formula "73") (term "0")) + (builtin "One Step Simplification" (formula "73")) + (rule "closeFalse" (formula "73")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "if occupied false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "111")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationGhostAssign" (formula "111") (term "1")) + (rule "variableDeclarationGhost" (formula "111") (term "1") (newnames "heapBeforeWrite")) + (rule "assignment" (formula "111") (term "1")) + (builtin "One Step Simplification" (formula "111")) + (builtin "Block Contract (Internal)" (formula "111") (newnames "anonOut_heap,result_4,exc_4,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "26")) (ifInst "" (formula "111")) (ifInst "" (formula "106")) (ifInst "" (formula "108"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "23"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "1,0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "25"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,0,1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "16"))) + (rule "expand_inInt" (formula "82") (term "1,1")) + (rule "expand_inInt" (formula "82") (term "0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,0,1")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "83")) + (rule "inEqSimp_commuteLeq" (formula "85")) + (rule "variableDeclarationAssign" (formula "114") (term "1")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "exc_4_1")) + (rule "assignment" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "65")) + (rule "ifElseUnfold" (formula "114") (term "1") (inst "#boolv=x")) + (builtin "One Step Simplification" (formula "114")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_7")) + (rule "compound_less_than_comparison_2" (formula "114") (term "1") (inst "#v0=x_8") (inst "#v1=x_9")) + (rule "variableDeclarationAssign" (formula "114") (term "1")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_8")) + (rule "assignment" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (rule "variableDeclarationAssign" (formula "114") (term "1")) + (rule "variableDeclaration" (formula "114") (term "1") (newnames "x_9")) + (rule "assignmentAdditionInt" (formula "114") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "114")) + (rule "expand_inInt" (formula "114")) + (rule "replace_int_MAX" (formula "114") (term "1,0")) + (rule "replace_int_MIN" (formula "114") (term "0,1")) + (rule "polySimp_homoEq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,0")) + (rule "polySimp_addComm1" (formula "114") (term "1,1")) + (rule "polySimp_addComm0" (formula "114") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "mul_literals" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "84")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "81") (term "0,0,0,0")) + (rule "add_literals" (formula "81") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "81") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "81") (term "0,0,0,0")) + (rule "qeq_literals" (formula "81") (term "0,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,0,0")) + (rule "times_zero_1" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "84")) + (rule "mul_literals" (formula "84") (term "1,0")) + (rule "polySimp_addComm1" (formula "84") (term "0")) + (rule "polySimp_addComm0" (formula "84") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "114") (term "0")) + (rule "polySimp_mulComm0" (formula "114") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "114") (term "0,1,0,0")) + (rule "mul_literals" (formula "114") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0")) + (rule "polySimp_addAssoc" (formula "114") (term "0,0,0")) + (rule "add_literals" (formula "114") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "114") (term "1")) + (rule "mul_literals" (formula "114") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "114") (term "0,1")) + (rule "polySimp_addComm1" (formula "114") (term "0,0,1")) + (rule "add_literals" (formula "114") (term "0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "81") (term "0,0,0")) + (rule "add_literals" (formula "81") (term "1,0,0,0")) + (rule "times_zero_1" (formula "81") (term "0,0,0")) + (rule "qeq_literals" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "polySimp_sepNegMonomial" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "applyEq" (formula "57") (term "0,1,0") (ifseqformula "64")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "0")) + (rule "polySimp_elimOne" (formula "82") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1")) + (rule "polySimp_rightDist" (formula "83") (term "1")) + (rule "mul_literals" (formula "83") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "113") (term "0")) + (rule "polySimp_mulLiterals" (formula "113") (term "0,0")) + (rule "polySimp_elimOne" (formula "113") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "113") (term "1")) + (rule "polySimp_mulComm0" (formula "113") (term "1,1")) + (rule "polySimp_rightDist" (formula "113") (term "1,1")) + (rule "mul_literals" (formula "113") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "42")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "35")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "110") (term "1") (ifseqformula "80")) + (rule "inEqSimp_homoInEq0" (formula "110") (term "0,1")) + (rule "polySimp_mulComm0" (formula "110") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "110") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "110") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "110") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "110") (term "1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "110") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,1")) + (rule "add_literals" (formula "110") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "110") (term "0,0,1")) + (rule "add_literals" (formula "110") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "110") (term "1,0,0,1")) + (rule "add_zero_right" (formula "110") (term "0,0,1")) + (rule "qeq_literals" (formula "110") (term "0,1")) + (builtin "One Step Simplification" (formula "110")) + (rule "inEqSimp_leqRight" (formula "110")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "81") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0")) + (rule "polySimp_mulComm0" (formula "81") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "81") (term "1,0,0")) + (rule "mul_literals" (formula "81") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "81") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "81") (term "0,0")) + (rule "polySimp_addComm1" (formula "81") (term "0,0,0")) + (rule "add_literals" (formula "81") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "81") (term "0,0")) + (rule "add_literals" (formula "81") (term "1,1,0,0")) + (rule "times_zero_1" (formula "81") (term "1,0,0")) + (rule "add_zero_right" (formula "81") (term "0,0")) + (rule "qeq_literals" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "73")) + (rule "times_zero_1" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "1")) + (rule "polySimp_elimOne" (formula "72") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "73")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "1")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "36") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "36") (term "0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "80")) + (rule "times_zero_1" (formula "72") (term "0,0")) + (rule "add_zero_left" (formula "72") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "39") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0")) + (rule "polySimp_addComm0" (formula "39") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "39")) + (rule "polySimp_mulLiterals" (formula "39") (term "0")) + (rule "polySimp_elimOne" (formula "39") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "39")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "114")) + (rule "translateJavaAddInt" (formula "114") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "114") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "114") (term "0,0,1,0")) + (rule "less_than_comparison_simple" (formula "114") (term "1")) + (builtin "One Step Simplification" (formula "114")) + (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "80") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "84") (term "1,1,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "84") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "84") (term "0,2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "1,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "84") (term "2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "84") (term "1,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "0,2,0,0,0,1,1,0")) + (rule "replace_known_left" (formula "84") (term "1,1,0,0,0,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "112")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "113")) (ifInst "" (formula "21")) (ifInst "" (formula "114")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "28")) (ifInst "" (formula "27")) (ifInst "" (formula "113")) (ifInst "" (formula "114"))) + (rule "polySimp_elimSub" (formula "84") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "84") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "84") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "84") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "84") (term "1,0")) + (rule "disjointWithSingleton2" (formula "84") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "84") (term "0,0,0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0")) + (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "1,0,0")) + (rule "replace_known_left" (formula "84") (term "1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "84")) + (rule "inEqSimp_commuteLeq" (formula "84") (term "0,0")) + (rule "replace_known_left" (formula "84") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "84")) + (rule "applyEq" (formula "84") (term "0,1") (ifseqformula "6")) + (rule "eqSymm" (formula "84") (term "1")) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "eqSymm" (formula "84") (term "1,0,0")) + (rule "replace_known_right" (formula "84") (term "1,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84")) + (rule "eqSymm" (formula "84") (term "1,0,0")) + (rule "replace_known_right" (formula "84") (term "1,0,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfUnion" (formula "84") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0,0")) + (rule "replace_known_right" (formula "84") (term "0,0,0,0,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "84")) + (rule "elementOfArrayRangeConcrete" (formula "84") (term "0,0")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "80"))) + (rule "true_left" (formula "84")) + (rule "ifElseSplit" (formula "114")) + (branch "if x_7 true" + (builtin "Block Contract (Internal)" (formula "115") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "85") (ifInst "" (formula "27")) (ifInst "" (formula "82"))) + (rule "true_left" (formula "85")) + (rule "eqSymm" (formula "115") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "115") (term "1")) + (rule "variableDeclaration" (formula "115") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "emptyStatement" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "emptyStatement" (formula "115") (term "1")) + (rule "tryEmpty" (formula "115") (term "1")) + (rule "blockEmptyLabel" (formula "115") (term "1")) + (rule "blockEmpty" (formula "115") (term "1")) + (rule "methodCallEmpty" (formula "115") (term "1")) + (rule "emptyModality" (formula "115") (term "1")) + (rule "andRight" (formula "115")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "115")) + (rule "closeTrue" (formula "115")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "115")) + (rule "closeTrue" (formula "115")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "115")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "115")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "82"))) + (rule "closeTrue" (formula "115")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "116")) + (builtin "One Step Simplification" (formula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "85") (term "1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "85")) + (rule "expand_inInt" (formula "85") (term "0,1,0")) + (rule "replace_int_MIN" (formula "85") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "85") (term "1,0,0,1,0")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "translateJavaAddInt" (formula "89") (term "0")) + (rule "translateJavaAddInt" (formula "89") (term "1")) + (rule "translateJavaSubInt" (formula "89") (term "0,1,1")) + (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "polySimp_elimSub" (formula "88") (term "0,1,1")) + (rule "polySimp_addComm1" (formula "88") (term "0")) + (rule "polySimp_addComm0" (formula "88") (term "0,1,1")) + (rule "polySimp_addComm0" (formula "88") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "elim_double_block_2" (formula "119") (term "1")) + (rule "ifUnfold" (formula "119") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "119") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "119") (term "1")) + (builtin "One Step Simplification" (formula "119")) + (rule "replace_known_left" (formula "119") (term "0,0,1,0") (ifseqformula "85")) + (builtin "One Step Simplification" (formula "119")) + (rule "ifSplit" (formula "119")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "120")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "119") (term "1")) + (builtin "Use Operation Contract" (formula "119") (newnames "heapBefore_copy_nonoverlapping,exc_6,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "121")) + (builtin "Block Contract (Internal)" (formula "121") (newnames "result_6,exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "90")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "122")) + (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "eqSymm" (formula "125") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "90") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0")) + (rule "add_zero_left" (formula "92") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0")) + (rule "add_zero_left" (formula "92") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0")) + (rule "add_zero_left" (formula "90") (term "0,2,1,0")) + (rule "sub_literals" (formula "90") (term "2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0")) + (rule "variableDeclarationAssign" (formula "125") (term "1")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "emptyStatement" (formula "125") (term "1")) + (rule "commute_and" (formula "92") (term "0,0")) + (rule "commute_and" (formula "91") (term "1,0,0")) + (rule "commute_and" (formula "91") (term "0,0,0")) + (rule "shift_paren_and" (formula "91") (term "0,0")) + (rule "commute_and_2" (formula "91") (term "0,0,0")) + (rule "tryEmpty" (formula "125") (term "1")) + (rule "blockEmptyLabel" (formula "125") (term "1")) + (rule "blockEmpty" (formula "125") (term "1")) + (rule "methodCallEmpty" (formula "125") (term "1")) + (rule "emptyModality" (formula "125") (term "1")) + (rule "andRight" (formula "125")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "90")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "121")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "90")) + (builtin "One Step Simplification" (formula "121")) + (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "90")) + (rule "wellFormedAnonEQ" (formula "122") (ifseqformula "90")) + (rule "wellFormedAnonEQ" (formula "122") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "122") (term "0,0")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "translateJavaSubInt" (formula "90") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0")) + (rule "add_zero_left" (formula "92") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0")) + (rule "add_zero_left" (formula "92") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0")) + (rule "add_zero_left" (formula "90") (term "0,2,1,0")) + (rule "sub_literals" (formula "90") (term "2,1,0")) + (rule "replace_known_left" (formula "124") (term "0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "124") (ifInst "" (formula "13")) (ifInst "" (formula "58")) (ifInst "" (formula "89"))) + (rule "closeTrue" (formula "124")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "90")) + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "91")) + (rule "expand_inInt" (formula "90") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "90") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "91") (term "0,1,0")) + (rule "replace_int_MIN" (formula "90") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "90") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "90") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "91") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,0,1,0")) + (rule "andLeft" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "1,1,1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "92") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "92")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "translateJavaSubInt" (formula "90") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,0,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "91") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,0,1,0")) + (rule "add_zero_left" (formula "92") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "3,1,1,0")) + (rule "add_zero_left" (formula "92") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "0,2,1,0")) + (rule "add_literals" (formula "90") (term "0,2,1,0")) + (rule "sub_literals" (formula "90") (term "2,1,0")) + (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "92") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "commute_and" (formula "92") (term "0,0")) + (rule "commute_and" (formula "91") (term "0,0,0")) + (rule "commute_and" (formula "91") (term "1,0,0")) + (rule "elim_double_block_2" (formula "129") (term "1")) + (rule "shift_paren_and" (formula "91") (term "0,0")) + (rule "commute_and_2" (formula "91") (term "0,0,0")) + (rule "ifUnfold" (formula "129") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "129") (term "1") (newnames "x_11")) + (rule "inequality_comparison_simple" (formula "129") (term "1")) + (builtin "One Step Simplification" (formula "129")) + (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "129")) + (rule "ifSplit" (formula "129")) + (branch "if x_11 true" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_11 false" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "129") (term "1")) + (builtin "Block Contract (Internal)" (formula "129") (newnames "result_7,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "99") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "130")) + (rule "eqSymm" (formula "130") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "130") (term "1")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_8_1")) + (rule "assignment" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (rule "tryEmpty" (formula "130") (term "1")) + (rule "blockEmptyLabel" (formula "130") (term "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (rule "methodCallEmpty" (formula "130") (term "1")) + (rule "emptyModality" (formula "130") (term "1")) + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "129")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "129")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "129")) + (rule "wellFormedAnonEQ" (formula "129") (ifseqformula "90")) + (rule "wellFormedAnonEQ" (formula "129") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "129") (term "0,0")) + (rule "replace_known_left" (formula "129") (term "1") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "129")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "One Step Simplification" (formula "130")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "1,1,1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "99") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "99")) + (rule "expand_inInt" (formula "99") (term "0,1,0")) + (rule "replace_int_MAX" (formula "99") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "99") (term "0,1,0,1,0")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "100")) + (rule "eqSymm" (formula "103")) + (rule "replace_known_left" (formula "102") (term "0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "inEqSimp_commuteLeq" (formula "101")) + (rule "applyEq" (formula "102") (term "0") (ifseqformula "62")) + (rule "eqSymm" (formula "102")) + (rule "elim_double_block_2" (formula "133") (term "1")) + (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "133") (term "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "133")) + (builtin "Use Dependency Contract" (formula "66") (term "0") (ifInst "" (formula "103") (term "0")) (ifInst "" (formula "59")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "131")) (ifInst "" (formula "82")) (ifInst "" (formula "44")) (ifInst "" (formula "11")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "103") (term "0,0,0,0")) + (rule "expand_inInt" (formula "103") (term "1,0,0,0")) + (rule "replace_int_MAX" (formula "103") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "103") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "103") (term "0,1,0,1,1,0")) + (rule "eqSymm" (formula "103") (term "1")) + (rule "translateJavaMulInt" (formula "103") (term "0,0,1,1,1,1,0")) + (rule "translateJavaAddInt" (formula "103") (term "0,1,1,1,1,0")) + (rule "replace_known_left" (formula "103") (term "0,0,0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "13")) (ifInst "" (formula "15"))) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "103") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "103") (term "1,0")) + (rule "disjointWithSingleton2" (formula "103") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0,0")) + (rule "replace_known_left" (formula "103") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "103")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0")) + (rule "replace_known_left" (formula "103") (term "0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "103")) + (rule "applyEq" (formula "103") (term "1,1") (ifseqformula "66")) + (rule "elementOfUnion" (formula "103") (term "0,0")) + (rule "elementOfSingleton" (formula "103") (term "0,0,0")) + (builtin "One Step Simplification" (formula "103")) + (rule "elementOfSingleton" (formula "103") (term "1,0,0")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "ifSplit" (formula "133")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "133") (term "1")) + (builtin "Block Contract (Internal)" (formula "133") (newnames "result_8,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "103") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "134") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "134") (term "1")) + (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (rule "tryEmpty" (formula "134") (term "1")) + (rule "blockEmptyLabel" (formula "134") (term "1")) + (rule "blockEmpty" (formula "134") (term "1")) + (rule "methodCallEmpty" (formula "134") (term "1")) + (rule "emptyModality" (formula "134") (term "1")) + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "133")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "133")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "133")) + (rule "wellFormedAnonEQ" (formula "133") (ifseqformula "90")) + (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "133") (term "0,0")) + (rule "replace_known_left" (formula "133") (term "1") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "133")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "103")) + (builtin "One Step Simplification" (formula "134")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "1,1,1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "103") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "103")) + (rule "expand_inInt" (formula "103") (term "0,1,0")) + (rule "replace_int_MIN" (formula "103") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "103") (term "1,0,0,1,0")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "104")) + (rule "andLeft" (formula "104")) + (rule "replace_known_left" (formula "106") (term "0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "106")) + (rule "true_left" (formula "106")) + (rule "inEqSimp_commuteLeq" (formula "105")) + (rule "elim_double_block_2" (formula "137") (term "1")) + (rule "ifUnfold" (formula "137") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "137") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "137") (term "1")) + (builtin "One Step Simplification" (formula "137")) + (rule "replace_known_left" (formula "137") (term "0,0,1,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "137")) + (rule "ifSplit" (formula "137")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "137") (term "1")) + (builtin "Block Contract (Internal)" (formula "137") (newnames "result_9,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "107") (ifInst "" (formula "27"))) + (builtin "One Step Simplification" (formula "138")) + (rule "eqSymm" (formula "138") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "138") (term "1")) + (rule "variableDeclaration" (formula "138") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "emptyStatement" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "emptyStatement" (formula "138") (term "1")) + (rule "tryEmpty" (formula "138") (term "1")) + (rule "blockEmptyLabel" (formula "138") (term "1")) + (rule "blockEmpty" (formula "138") (term "1")) + (rule "methodCallEmpty" (formula "138") (term "1")) + (rule "emptyModality" (formula "138") (term "1")) + (rule "andRight" (formula "138")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "138")) + (rule "closeTrue" (formula "138")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "138")) + (rule "closeTrue" (formula "138")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "137")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "137")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "137")) + (rule "wellFormedAnonEQ" (formula "137") (ifseqformula "90")) + (rule "wellFormedAnonEQ" (formula "137") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "137") (term "0,0")) + (rule "replace_known_left" (formula "137") (term "1") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "137")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "107")) + (builtin "One Step Simplification" (formula "138")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "107") (term "1,1,1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "107") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "107")) + (rule "expand_inInt" (formula "107") (term "0,1,0")) + (rule "replace_int_MIN" (formula "107") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "107") (term "1,0,0,1,0")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "108")) + (rule "andLeft" (formula "108")) + (rule "replace_known_left" (formula "110") (term "0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "110")) + (rule "true_left" (formula "110")) + (rule "inEqSimp_commuteLeq" (formula "109")) + (rule "elim_double_block_2" (formula "141") (term "1")) + (rule "elim_double_block_9" (formula "141") (term "1")) + (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "141")) + (rule "ifSplit" (formula "141")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (builtin "Block Contract (Internal)" (formula "141") (newnames "result_10,exc_11,heap_Before_BLOCK_9,savedHeap_Before_BLOCK_9,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "27"))) + (rule "eqSymm" (formula "142") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "142") (term "1")) + (rule "variableDeclaration" (formula "142") (term "1") (newnames "exc_11_1")) + (rule "assignment" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "emptyStatement" (formula "142") (term "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "emptyStatement" (formula "142") (term "1")) + (rule "tryEmpty" (formula "142") (term "1")) + (rule "blockEmptyLabel" (formula "142") (term "1")) + (rule "blockEmpty" (formula "142") (term "1")) + (rule "methodCallEmpty" (formula "142") (term "1")) + (rule "emptyModality" (formula "142") (term "1")) + (rule "andRight" (formula "142")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "142")) + (rule "closeTrue" (formula "142")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "142")) + (rule "closeTrue" (formula "142")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "27"))) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141")) + (rule "wellFormedAnonEQ" (formula "141") (ifseqformula "90")) + (rule "wellFormedAnonEQ" (formula "141") (term "0") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "141") (term "0,0")) + (rule "replace_known_left" (formula "141") (term "1") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "14")) (ifInst "" (formula "13")) (ifInst "" (formula "58"))) + (rule "closeTrue" (formula "141")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "142")) + (builtin "One Step Simplification" (formula "111")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (term "1,1,1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (term "0,1,1,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "111")) + (rule "expand_inInt" (formula "111") (term "0,1,0")) + (rule "replace_int_MIN" (formula "111") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "111") (term "1,0,0,1,0")) + (rule "andLeft" (formula "111")) + (rule "andLeft" (formula "111")) + (rule "andLeft" (formula "112")) + (rule "andLeft" (formula "112")) + (rule "replace_known_left" (formula "114") (term "0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "114")) + (rule "true_left" (formula "114")) + (rule "inEqSimp_commuteLeq" (formula "113")) + (rule "elim_double_block_2" (formula "145") (term "1")) + (rule "ifUnfold" (formula "145") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "145") (term "1") (newnames "x_15")) + (rule "inequality_comparison_simple" (formula "145") (term "1")) + (builtin "One Step Simplification" (formula "145")) + (rule "replace_known_left" (formula "145") (term "0,0,1,0") (ifseqformula "111")) + (builtin "One Step Simplification" (formula "145")) + (rule "ifSplit" (formula "145")) + (branch "if x_15 true" + (builtin "One Step Simplification" (formula "146")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_15 false" + (builtin "One Step Simplification" (formula "146")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "145") (term "1")) + (rule "emptyStatement" (formula "145") (term "1")) + (rule "tryEmpty" (formula "145") (term "1")) + (rule "blockEmptyLabel" (formula "145") (term "1")) + (rule "blockEmpty" (formula "145") (term "1")) + (rule "methodCallEmpty" (formula "145") (term "1")) + (rule "emptyModality" (formula "145") (term "1")) + (rule "andRight" (formula "145")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "145")) + (rule "closeTrue" (formula "145")) + ) + (branch "Case 2" + (rule "andRight" (formula "145")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "97"))) + (rule "closeTrue" (formula "145")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "145") (ifInst "" (formula "98"))) + (rule "closeTrue" (formula "145")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "121")) + (builtin "One Step Simplification" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "1,0") (ifseqformula "90")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "notLeft" (formula "91")) + (rule "close" (formula "93") (ifseqformula "92")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "115")) (ifInst "" (formula "113")) (ifInst "" (formula "82")) (ifInst "" (formula "115")) (ifInst "" (formula "113"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "1,0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "26"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "119") (term "0,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "119") (ifInst "" (formula "24"))) + (rule "expand_inInt" (formula "119") (term "1")) + (rule "expand_inInt" (formula "119") (term "0")) + (rule "replace_int_MAX" (formula "119") (term "1,0,1")) + (rule "replace_int_MIN" (formula "119") (term "0,1,1")) + (rule "replace_int_MAX" (formula "119") (term "1,0,0")) + (rule "replace_int_MIN" (formula "119") (term "0,1,0")) + (rule "leq_literals" (formula "119") (term "0,1")) + (builtin "One Step Simplification" (formula "119")) + (rule "leq_literals" (formula "119") (term "1,0")) + (builtin "One Step Simplification" (formula "119")) + (rule "leq_literals" (formula "119") (term "0")) + (builtin "One Step Simplification" (formula "119")) + (rule "leq_literals" (formula "119")) + (rule "closeTrue" (formula "119")) + ) + ) + ) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "115") (term "1")) + (builtin "Use Operation Contract" (formula "115") (newnames "heapBefore_copy_nonoverlapping,exc_5,heapAfter_copy_nonoverlapping,anon_heap_copy_nonoverlapping") (contract "de.wiesler.Functions[de.wiesler.Functions::copy_nonoverlapping([I,int,[I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "85")) + (builtin "One Step Simplification" (formula "117")) + (builtin "Block Contract (Internal)" (formula "117") (newnames "result_5,exc_6,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "86") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "118")) + (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "eqSymm" (formula "121") (term "0,0,1,0,1")) + (rule "translateJavaSubInt" (formula "85") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "86") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0")) + (rule "add_zero_left" (formula "87") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0")) + (rule "polySimp_elimSub" (formula "85") (term "2,1,0")) + (rule "mul_literals" (formula "85") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "85") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "85") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,3,0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0")) + (rule "variableDeclarationAssign" (formula "121") (term "1")) + (rule "variableDeclaration" (formula "121") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "emptyStatement" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "emptyStatement" (formula "121") (term "1")) + (rule "commute_and" (formula "87") (term "0,0")) + (rule "commute_and" (formula "86") (term "0,0,0")) + (rule "commute_and" (formula "86") (term "1,0,0")) + (rule "shift_paren_and" (formula "86") (term "0,0")) + (rule "commute_and_2" (formula "86") (term "0,0,0")) + (rule "tryEmpty" (formula "121") (term "1")) + (rule "blockEmptyLabel" (formula "121") (term "1")) + (rule "blockEmpty" (formula "121") (term "1")) + (rule "methodCallEmpty" (formula "121") (term "1")) + (rule "emptyModality" (formula "121") (term "1")) + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "121")) + (rule "closeTrue" (formula "121")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121")) + (rule "closeTrue" (formula "121")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "117")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "117") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "117")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "117")) + (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1")) + (rule "andLeft" (formula "85")) + (rule "wellFormedAnonEQ" (formula "118") (ifseqformula "85")) + (rule "wellFormedAnonEQ" (formula "118") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "118") (term "0,0")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "translateJavaSubInt" (formula "85") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0")) + (rule "add_zero_left" (formula "87") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "86") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0")) + (rule "replace_known_left" (formula "120") (term "0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "120") (ifInst "" (formula "12")) (ifInst "" (formula "57")) (ifInst "" (formula "84"))) + (rule "closeTrue" (formula "120")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "118")) + (rule "expand_inInt" (formula "85") (term "0,0,1,1,0,1")) + (rule "expand_inInt" (formula "85") (term "1,0,0,0,1,0,1")) + (rule "expand_inInt" (formula "86") (term "0,1,0")) + (rule "replace_int_MIN" (formula "85") (term "0,1,0,0,1,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,0,0,1,1,0,1")) + (rule "replace_int_MIN" (formula "85") (term "0,1,1,0,0,0,1,0,1")) + (rule "replace_int_MAX" (formula "85") (term "1,0,1,0,0,0,1,0,1")) + (rule "replace_int_MIN" (formula "86") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "86") (term "1,0,0,1,0")) + (rule "andLeft" (formula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "1,1,1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "87") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "87")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "89")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "90")) + (rule "andLeft" (formula "90")) + (rule "translateJavaSubInt" (formula "85") (term "2,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,1,1,0")) + (rule "add_literals" (formula "87") (term "3,1,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "87") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "86") (term "0,2,1,1,0")) + (rule "add_zero_left" (formula "86") (term "0,2,1,1,0")) + (rule "translateJavaAddInt" (formula "85") (term "0,2,1,0")) + (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "92")) + (rule "true_left" (formula "92")) + (rule "polySimp_elimSub" (formula "85") (term "2,1,0")) + (rule "mul_literals" (formula "85") (term "1,2,1,0")) + (rule "polySimp_addLiterals" (formula "85") (term "2,1,0")) + (rule "polySimp_addComm1" (formula "87") (term "3,0,1,0")) + (rule "polySimp_addComm1" (formula "85") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "87") (term "0,3,0,1,0")) + (rule "polySimp_addComm0" (formula "85") (term "0,2,1,0")) + (rule "inEqSimp_commuteLeq" (formula "87") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "86") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "91")) + (rule "commute_and" (formula "87") (term "0,0")) + (rule "commute_and" (formula "86") (term "0,0,0")) + (rule "commute_and" (formula "86") (term "1,0,0")) + (rule "elim_double_block_2" (formula "125") (term "1")) + (rule "shift_paren_and" (formula "86") (term "0,0")) + (rule "commute_and_2" (formula "86") (term "0,0,0")) + (rule "ifUnfold" (formula "125") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "125") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "125") (term "1")) + (builtin "One Step Simplification" (formula "125")) + (rule "replace_known_left" (formula "125") (term "0,0,1,0") (ifseqformula "89")) + (builtin "One Step Simplification" (formula "125")) + (rule "ifSplit" (formula "125")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "126")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "125") (term "1")) + (rule "emptyStatement" (formula "125") (term "1")) + (builtin "Block Contract (Internal)" (formula "125") (newnames "result_6,exc_7,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "94") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "126")) + (rule "eqSymm" (formula "126") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "126") (term "1")) + (rule "variableDeclaration" (formula "126") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "126") (term "1")) + (builtin "One Step Simplification" (formula "126")) + (rule "emptyStatement" (formula "126") (term "1")) + (builtin "One Step Simplification" (formula "126")) + (rule "emptyStatement" (formula "126") (term "1")) + (rule "tryEmpty" (formula "126") (term "1")) + (rule "blockEmptyLabel" (formula "126") (term "1")) + (rule "blockEmpty" (formula "126") (term "1")) + (rule "methodCallEmpty" (formula "126") (term "1")) + (rule "emptyModality" (formula "126") (term "1")) + (rule "andRight" (formula "126")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "126")) + (rule "closeTrue" (formula "126")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "126")) + (rule "closeTrue" (formula "126")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "125")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "125")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "125")) + (rule "wellFormedAnonEQ" (formula "125") (ifseqformula "85")) + (rule "wellFormedAnonEQ" (formula "125") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "125") (term "0,0")) + (rule "replace_known_left" (formula "125") (term "1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "125") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57"))) + (rule "closeTrue" (formula "125")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "126")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "1,1,1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "94") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "94")) + (rule "expand_inInt" (formula "94") (term "0,1,0")) + (rule "replace_int_MIN" (formula "94") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "94") (term "1,0,0,1,0")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "94")) + (rule "andLeft" (formula "95")) + (rule "andLeft" (formula "95")) + (rule "eqSymm" (formula "98")) + (rule "replace_known_left" (formula "97") (term "0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "97")) + (rule "true_left" (formula "97")) + (rule "inEqSimp_commuteLeq" (formula "96")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "97")) + (rule "applyEq" (formula "97") (term "1") (ifseqformula "61")) + (rule "elim_double_block_2" (formula "129") (term "1")) + (rule "ifUnfold" (formula "129") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "129") (term "1") (newnames "x_11")) + (rule "inequality_comparison_simple" (formula "129") (term "1")) + (builtin "One Step Simplification" (formula "129")) + (rule "replace_known_left" (formula "129") (term "0,0,1,0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "129")) + (rule "ifSplit" (formula "129")) + (branch "if x_11 true" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_11 false" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "129") (term "1")) + (rule "emptyStatement" (formula "129") (term "1")) + (builtin "Block Contract (Internal)" (formula "129") (newnames "result_7,exc_8,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "130")) + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "130") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "130") (term "1")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "exc_8_1")) + (rule "assignment" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "emptyStatement" (formula "130") (term "1")) + (rule "tryEmpty" (formula "130") (term "1")) + (rule "blockEmptyLabel" (formula "130") (term "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (rule "methodCallEmpty" (formula "130") (term "1")) + (rule "emptyModality" (formula "130") (term "1")) + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "129")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "129")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "129")) + (rule "wellFormedAnonEQ" (formula "129") (ifseqformula "85")) + (rule "wellFormedAnonEQ" (formula "129") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "129") (term "0,0")) + (rule "replace_known_left" (formula "129") (term "1,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "129") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84"))) + (rule "closeTrue" (formula "129")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "98")) + (builtin "One Step Simplification" (formula "130")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "1,1,1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "98") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "98")) + (rule "expand_inInt" (formula "98") (term "0,1,0")) + (rule "replace_int_MIN" (formula "98") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "98") (term "1,0,0,1,0")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "98")) + (rule "andLeft" (formula "99")) + (rule "andLeft" (formula "99")) + (rule "replace_known_left" (formula "101") (term "0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "101")) + (rule "true_left" (formula "101")) + (rule "inEqSimp_commuteLeq" (formula "100")) + (rule "elim_double_block_2" (formula "133") (term "1")) + (rule "ifUnfold" (formula "133") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "133") (term "1") (newnames "x_12")) + (rule "inequality_comparison_simple" (formula "133") (term "1")) + (builtin "One Step Simplification" (formula "133")) + (rule "replace_known_left" (formula "133") (term "0,0,1,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "133")) + (builtin "Use Dependency Contract" (formula "65") (term "0") (ifInst "" (formula "103") (term "0")) (ifInst "" (formula "58")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::toReadCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "131")) (ifInst "" (formula "81")) (ifInst "" (formula "43")) (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "102") (term "0,0,0,0")) + (rule "expand_inInt" (formula "102") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "102") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "102") (term "1,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "102") (term "0,1,1,1,1,0")) + (rule "translateJavaMulInt" (formula "102") (term "0,1,0,1,1,0")) + (rule "eqSymm" (formula "102") (term "1")) + (rule "translateJavaMulInt" (formula "102") (term "0,0,1,1,1,1,0")) + (rule "replace_known_left" (formula "102") (term "0,0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "12")) (ifInst "" (formula "14"))) + (rule "polySimp_mulComm0" (formula "102") (term "0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "102") (term "0,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "102") (term "0,1,1,1,1,0")) + (rule "disjointDefinition" (formula "102") (term "1,0")) + (rule "disjointWithSingleton2" (formula "102") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0")) + (rule "replace_known_left" (formula "102") (term "0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "102")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0")) + (rule "replace_known_left" (formula "102") (term "0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "102")) + (rule "applyEq" (formula "102") (term "1,1") (ifseqformula "65")) + (rule "elementOfUnion" (formula "102") (term "0,0")) + (rule "elementOfSingleton" (formula "102") (term "1,0,0")) + (builtin "One Step Simplification" (formula "102")) + (rule "true_left" (formula "102")) + (rule "ifSplit" (formula "133")) + (branch "if x_12 true" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_12 false" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "133") (term "1")) + (rule "emptyStatement" (formula "133") (term "1")) + (builtin "Block Contract (Internal)" (formula "133") (newnames "result_8,exc_9,heap_Before_BLOCK_7,savedHeap_Before_BLOCK_7,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "134")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "134") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "134") (term "1")) + (rule "variableDeclaration" (formula "134") (term "1") (newnames "exc_9_1")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "emptyStatement" (formula "134") (term "1")) + (rule "tryEmpty" (formula "134") (term "1")) + (rule "blockEmptyLabel" (formula "134") (term "1")) + (rule "blockEmpty" (formula "134") (term "1")) + (rule "methodCallEmpty" (formula "134") (term "1")) + (rule "emptyModality" (formula "134") (term "1")) + (rule "andRight" (formula "134")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "134")) + (rule "closeTrue" (formula "134")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "133")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "133")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "133")) + (rule "wellFormedAnonEQ" (formula "133") (ifseqformula "85")) + (rule "wellFormedAnonEQ" (formula "133") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "133") (term "0,0")) + (rule "replace_known_left" (formula "133") (term "1,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "133") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84"))) + (rule "closeTrue" (formula "133")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "102")) + (builtin "One Step Simplification" (formula "134")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "1,1,1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "102") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "102")) + (rule "expand_inInt" (formula "102") (term "0,1,0")) + (rule "replace_int_MIN" (formula "102") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "102") (term "1,0,0,1,0")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "102")) + (rule "andLeft" (formula "103")) + (rule "andLeft" (formula "103")) + (rule "translateJavaAddInt" (formula "106") (term "5,0")) + (rule "translateJavaAddInt" (formula "106") (term "3,0")) + (rule "replace_known_left" (formula "105") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "105")) + (rule "true_left" (formula "105")) + (rule "polySimp_addComm1" (formula "105") (term "5,0")) + (rule "polySimp_addComm0" (formula "105") (term "0,5,0")) + (rule "inEqSimp_commuteLeq" (formula "104")) + (rule "elim_double_block_2" (formula "137") (term "1")) + (rule "ifUnfold" (formula "137") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "137") (term "1") (newnames "x_13")) + (rule "inequality_comparison_simple" (formula "137") (term "1")) + (builtin "One Step Simplification" (formula "137")) + (rule "replace_known_left" (formula "137") (term "0,0,1,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "137")) + (rule "ifSplit" (formula "137")) + (branch "if x_13 true" + (builtin "One Step Simplification" (formula "138")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_13 false" + (builtin "One Step Simplification" (formula "138")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "137") (term "1")) + (rule "emptyStatement" (formula "137") (term "1")) + (rule "blockEmpty" (formula "137") (term "1")) + (builtin "Block Contract (Internal)" (formula "137") (newnames "result_9,exc_10,heap_Before_BLOCK_8,savedHeap_Before_BLOCK_8,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "138")) + (builtin "One Step Simplification" (formula "106") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "138") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "138") (term "1")) + (rule "variableDeclaration" (formula "138") (term "1") (newnames "exc_10_1")) + (rule "assignment" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "emptyStatement" (formula "138") (term "1")) + (builtin "One Step Simplification" (formula "138")) + (rule "emptyStatement" (formula "138") (term "1")) + (rule "tryEmpty" (formula "138") (term "1")) + (rule "blockEmptyLabel" (formula "138") (term "1")) + (rule "blockEmpty" (formula "138") (term "1")) + (rule "methodCallEmpty" (formula "138") (term "1")) + (rule "emptyModality" (formula "138") (term "1")) + (rule "andRight" (formula "138")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "138")) + (rule "closeTrue" (formula "138")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "138")) + (rule "closeTrue" (formula "138")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "137")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "137")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "137")) + (rule "wellFormedAnonEQ" (formula "137") (ifseqformula "85")) + (rule "wellFormedAnonEQ" (formula "137") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "137") (term "0,0")) + (rule "replace_known_left" (formula "137") (term "1,0") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "137") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "84"))) + (rule "closeTrue" (formula "137")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "106")) + (builtin "One Step Simplification" (formula "138")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "1,1,1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "106") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "106")) + (rule "expand_inInt" (formula "106") (term "0,1,0")) + (rule "replace_int_MIN" (formula "106") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "106") (term "1,0,0,1,0")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "106")) + (rule "andLeft" (formula "107")) + (rule "andLeft" (formula "107")) + (rule "replace_known_left" (formula "109") (term "0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "109")) + (rule "true_left" (formula "109")) + (rule "inEqSimp_commuteLeq" (formula "108")) + (rule "elim_double_block_2" (formula "141") (term "1")) + (rule "ifUnfold" (formula "141") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "141") (term "1") (newnames "x_14")) + (rule "inequality_comparison_simple" (formula "141") (term "1")) + (builtin "One Step Simplification" (formula "141")) + (rule "replace_known_left" (formula "141") (term "0,0,1,0") (ifseqformula "106")) + (builtin "One Step Simplification" (formula "141")) + (rule "ifSplit" (formula "141")) + (branch "if x_14 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_14 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "142")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "emptyStatement" (formula "141") (term "1")) + (rule "tryEmpty" (formula "141") (term "1")) + (rule "blockEmptyLabel" (formula "141") (term "1")) + (rule "blockEmpty" (formula "141") (term "1")) + (rule "methodCallEmpty" (formula "141") (term "1")) + (rule "emptyModality" (formula "141") (term "1")) + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141")) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (rule "andRight" (formula "141")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "92"))) + (rule "closeTrue" (formula "141")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "141") (ifInst "" (formula "93"))) + (rule "closeTrue" (formula "141")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "117")) + (builtin "One Step Simplification" (formula "85")) + (rule "andLeft" (formula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "1,0") (ifseqformula "85")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "86") (term "0,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "andLeft" (formula "86")) + (rule "notLeft" (formula "86")) + (rule "close" (formula "88") (ifseqformula "87")) + ) + (branch "Pre (copy_nonoverlapping)" + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "111")) (ifInst "" (formula "114")) (ifInst "" (formula "81")) (ifInst "" (formula "111")) (ifInst "" (formula "114"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "1,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "16"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "115") (term "0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "23"))) + (rule "expand_inInt" (formula "115") (term "1,0")) + (rule "expand_inInt" (formula "115") (term "0,0")) + (rule "expand_inInt" (formula "115") (term "1")) + (rule "replace_int_MIN" (formula "115") (term "0,1,1,0")) + (rule "replace_int_MAX" (formula "115") (term "1,0,1,0")) + (rule "replace_int_MAX" (formula "115") (term "1,0,0,0")) + (rule "replace_int_MIN" (formula "115") (term "0,1,0,0")) + (rule "replace_int_MAX" (formula "115") (term "1,0,1")) + (rule "replace_int_MIN" (formula "115") (term "0,1,1")) + (rule "leq_literals" (formula "115") (term "0,0,0")) + (builtin "One Step Simplification" (formula "115") (ifInst "" (formula "82")) (ifInst "" (formula "83"))) + (rule "leq_literals" (formula "115") (term "0")) + (builtin "One Step Simplification" (formula "115")) + (rule "leq_literals" (formula "115") (term "1")) + (builtin "One Step Simplification" (formula "115")) + (rule "leq_literals" (formula "115")) + (rule "closeTrue" (formula "115")) + ) + ) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "111")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111")) + (rule "wellFormedAnonEQ" (formula "111") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "111") (term "0")) + (rule "replace_known_left" (formula "111") (term "1") (ifseqformula "57")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "13")) (ifInst "" (formula "12"))) + (rule "closeTrue" (formula "111")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "andRight" (formula "111")) + (branch "Case 1" + (rule "orRight" (formula "111")) + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "110"))) + (rule "false_right" (formula "111")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "16"))) + (rule "closeTrue" (formula "111")) + ) + (branch "Case 2" + (rule "orRight" (formula "111")) + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "105"))) + (rule "false_right" (formula "111")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "25"))) + (rule "closeTrue" (formula "111")) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "111")) + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "107"))) + (rule "false_right" (formula "111")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "111") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "111") (ifInst "" (formula "23"))) + (rule "closeTrue" (formula "111")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111")) + (rule "expand_inInt" (formula "111")) + (rule "replace_int_MIN" (formula "111") (term "0,1")) + (rule "replace_int_MAX" (formula "111") (term "1,0")) + (rule "polySimp_homoEq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "mul_literals" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "47") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "65") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "74")) + (rule "polySimp_addComm1" (formula "74") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0")) + (rule "add_literals" (formula "74") (term "1,0,0")) + (rule "times_zero_1" (formula "74") (term "0,0")) + (rule "add_zero_left" (formula "74") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0")) + (rule "polySimp_rightDist" (formula "75") (term "1,0")) + (rule "polySimp_mulComm0" (formula "75") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "75") (term "0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "41")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "81") (term "0,1,0,0")) + (rule "add_literals" (formula "81") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "81") (term "0,1,0,0")) + (rule "qeq_literals" (formula "81") (term "1,0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "inEqSimp_homoInEq0" (formula "47") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "47") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "47") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "47") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "56")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0")) + (rule "mul_literals" (formula "56") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "111") (term "1")) + (rule "mul_literals" (formula "111") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "111") (term "0,1")) + (rule "polySimp_addComm0" (formula "111") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "111") (term "0")) + (rule "polySimp_mulComm0" (formula "111") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "111") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "111") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "111") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "81") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "81") (term "0,0,0")) + (rule "add_literals" (formula "81") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "81") (term "1,0,0,0")) + (rule "add_zero_right" (formula "81") (term "0,0,0")) + (rule "qeq_literals" (formula "81") (term "0,0")) + (builtin "One Step Simplification" (formula "81")) + (rule "true_left" (formula "81")) + (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "80")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_geqRight" (formula "80")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "0")) + (rule "polySimp_elimOne" (formula "64") (term "0")) + (rule "applyEq" (formula "57") (term "0,1,0") (ifseqformula "64")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm1" (formula "57") (term "0,0")) + (rule "add_literals" (formula "57") (term "0,0,0")) + (rule "add_zero_left" (formula "57") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "75")) + (rule "polySimp_mulLiterals" (formula "75") (term "0")) + (rule "polySimp_elimOne" (formula "75") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "110") (term "1")) + (rule "polySimp_mulComm0" (formula "110") (term "1,1")) + (rule "polySimp_rightDist" (formula "110") (term "1,1")) + (rule "mul_literals" (formula "110") (term "0,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "110") (term "0")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,0")) + (rule "polySimp_elimOne" (formula "110") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "36")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "38") (ifseqformula "39")) + (rule "leq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "41")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "38") (ifseqformula "36")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0")) + (rule "polySimp_addComm0" (formula "38") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38")) + (rule "polySimp_mulLiterals" (formula "38") (term "0")) + (rule "polySimp_elimOne" (formula "38") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "38")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "71") (ifseqformula "72")) + (rule "times_zero_1" (formula "71") (term "0,0")) + (rule "add_zero_left" (formula "71") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "1")) + (rule "polySimp_elimOne" (formula "71") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "39")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "34")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "37")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "34")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_and_subsumption3" (formula "45") (term "0,0,0")) + (rule "leq_literals" (formula "45") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_and_subsumption3" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "1,0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "5") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,0,0,0")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "64") (term "0")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "11")) (ifInst "" (formula "105")) (ifInst "" (formula "11")) (ifInst "" (formula "19"))) + (rule "wellFormedAnon" (formula "64") (term "1,0")) + (rule "translateJavaAddInt" (formula "64") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "64") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "64") (term "0,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "13"))) + (rule "polySimp_addComm0" (formula "64") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "64") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "64") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0")) + (rule "replace_known_left" (formula "64") (term "0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "1,0,1")) + (rule "applyEq" (formula "64") (term "0,1,0,1") (ifseqformula "49")) + (rule "inEqSimp_commuteGeq" (formula "64") (term "1,0,1")) + (rule "applyEq" (formula "64") (term "0,1,0,0,0,1") (ifseqformula "65")) + (rule "applyEq" (formula "64") (term "0,1,0,0,1") (ifseqformula "65")) + (rule "applyEq" (formula "64") (term "0,0,0,1,1") (ifseqformula "65")) + (rule "replace_known_left" (formula "64") (term "0,1,1") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "64")) + (rule "inEqSimp_sepNegMonomial0" (formula "64") (term "0")) + (rule "polySimp_mulLiterals" (formula "64") (term "0,0")) + (rule "polySimp_elimOne" (formula "64") (term "0,0")) + (rule "replace_known_left" (formula "64") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "66")) + (rule "mul_literals" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "66")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "1")) + (rule "polySimp_elimOne" (formula "65") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "66") (ifseqformula "79")) + (rule "polySimp_mulComm0" (formula "66") (term "0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "66")) + (rule "polySimp_mulLiterals" (formula "66") (term "0")) + (rule "polySimp_elimOne" (formula "66") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "69")) + (rule "mul_literals" (formula "78") (term "0,0")) + (rule "add_zero_left" (formula "78") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "65") (ifseqformula "69")) + (rule "polySimp_mulComm0" (formula "65") (term "0,0")) + (rule "polySimp_addComm0" (formula "65") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "67")) + (rule "mul_literals" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "64")) + (rule "polySimp_mulLiterals" (formula "64") (term "1")) + (rule "polySimp_elimOne" (formula "64") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "64") (ifseqformula "65")) + (rule "times_zero_1" (formula "64") (term "0,0")) + (rule "add_zero_left" (formula "64") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "notLeft" (formula "12")) + (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "88")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "3")) + (rule "Definition_axiom_for_disjointBucketsLemma_in_de_wiesler_BucketPointers" (formula "49") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "49")) + (rule "expand_inInt" (formula "49") (term "1,0,0")) + (rule "replace_int_MAX" (formula "49") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "49") (term "0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "1,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "49") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "49") (term "1,0,1,1,1,0")) + (rule "inEqSimp_gtToGeq" (formula "49") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "49") (term "1,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "49") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_remainingWriteCountOfBucket_in_BucketPointers" (formula "59") (term "0")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "11")) (ifInst "" (formula "116")) (ifInst "" (formula "11")) (ifInst "" (formula "71")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "59")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "23")) + (rule "notLeft" (formula "23")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "4")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "translateJavaMod" (formula "76") (term "0")) + (rule "jmod_axiom" (formula "76") (term "0")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "newSym_eq" (formula "76") (inst "newSymDef=mul(int::final(result_1, + de.wiesler.Increment::$position), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "76") (term "1,1")) + (rule "add_zero_right" (formula "76") (term "1")) + (rule "applyEq" (formula "77") (term "0,0") (ifseqformula "76")) + (rule "eqSymm" (formula "77")) + (rule "applyEq" (formula "66") (term "0") (ifseqformula "77")) + (rule "inEqSimp_commuteGeq" (formula "66")) + (rule "applyEq" (formula "86") (term "1,6,0") (ifseqformula "77")) + (rule "polySimp_addComm0" (formula "86") (term "6,0")) + (rule "applyEq" (formula "81") (term "0") (ifseqformula "77")) + (rule "inEqSimp_homoInEq0" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "applyEq" (formula "119") (term "0,0") (ifseqformula "77")) + (rule "inEqSimp_homoInEq0" (formula "119") (term "0")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "119") (term "0,0")) + (rule "applyEq" (formula "80") (term "0") (ifseqformula "77")) + (rule "applyEq" (formula "85") (term "1,7,0") (ifseqformula "77")) + (rule "polySimp_addComm1" (formula "85") (term "7,0")) + (rule "applyEq" (formula "67") (term "0") (ifseqformula "77")) + (rule "inEqSimp_commuteLeq" (formula "67")) + (rule "applyEq" (formula "119") (term "0,1") (ifseqformula "77")) + (rule "inEqSimp_homoInEq1" (formula "119") (term "1")) + (rule "polySimp_mulLiterals" (formula "119") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "119") (term "0,1")) + (rule "applyEq" (formula "85") (term "1,6,0") (ifseqformula "77")) + (rule "polySimp_addComm0" (formula "85") (term "6,0")) + (rule "applyEq" (formula "86") (term "1,7,0") (ifseqformula "77")) + (rule "polySimp_addComm1" (formula "86") (term "7,0")) + (rule "applyEq" (formula "76") (term "0,0") (ifseqformula "77")) + (rule "applyEq" (formula "70") (term "1") (ifseqformula "77")) + (rule "applyEq" (formula "57") (term "1,1") (ifseqformula "77")) + (rule "inEqSimp_sepPosMonomial1" (formula "81")) + (rule "polySimp_mulComm0" (formula "81") (term "1")) + (rule "polySimp_rightDist" (formula "81") (term "1")) + (rule "polySimp_mulLiterals" (formula "81") (term "1,1")) + (rule "polySimp_elimOne" (formula "81") (term "1,1")) + (rule "polySimp_mulComm0" (formula "81") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "119") (term "0")) + (rule "polySimp_mulLiterals" (formula "119") (term "0,0")) + (rule "polySimp_elimOne" (formula "119") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "119") (term "1")) + (rule "polySimp_mulLiterals" (formula "119") (term "0,1")) + (rule "polySimp_elimOne" (formula "119") (term "0,1")) + (rule "elimGcdGeq_antec" (formula "80") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "times_zero_1" (formula "80") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0,0")) + (rule "add_zero_right" (formula "80") (term "0,0,0,0")) + (rule "add_zero_right" (formula "80") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "80") (term "0,0")) + (rule "add_literals" (formula "80") (term "1,1,0,0")) + (rule "times_zero_1" (formula "80") (term "1,0,0")) + (rule "add_literals" (formula "80") (term "0,0")) + (rule "leq_literals" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_exactShadow3" (formula "81") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "81") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "81") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "81") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "81") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "81") (term "0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "81")) + (rule "polySimp_mulLiterals" (formula "81") (term "0")) + (rule "polySimp_elimOne" (formula "81") (term "0")) + (rule "inEqSimp_subsumption0" (formula "120") (term "0") (ifseqformula "81")) + (rule "inEqSimp_homoInEq0" (formula "120") (term "0,0")) + (rule "polySimp_mulComm0" (formula "120") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "120") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "120") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "120") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "120") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "120") (term "0,0,0,0")) + (rule "add_literals" (formula "120") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "120") (term "0,0,0")) + (rule "add_literals" (formula "120") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "120") (term "1,0,0,0")) + (rule "add_zero_right" (formula "120") (term "0,0,0")) + (rule "qeq_literals" (formula "120") (term "0,0")) + (builtin "One Step Simplification" (formula "120")) + (rule "inEqSimp_geqRight" (formula "120")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "82") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0")) + (rule "polySimp_addComm1" (formula "82") (term "0,0,0")) + (rule "add_literals" (formula "82") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "qeq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "82") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "82") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "82") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0")) + (rule "polySimp_addComm1" (formula "82") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "82") (term "0")) + (rule "add_literals" (formula "82") (term "1,1,0")) + (rule "times_zero_1" (formula "82") (term "1,0")) + (rule "polySimp_addLiterals" (formula "82") (term "0")) + (rule "polySimp_addComm0" (formula "82") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "82")) + (rule "polySimp_mulLiterals" (formula "82") (term "0")) + (rule "elimGcdLeq_antec" (formula "82") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,0")) + (rule "mul_literals" (formula "82") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "neg_literal" (formula "82") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "82") (term "0,0,0,0")) + (rule "add_zero_right" (formula "82") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0")) + (rule "add_literals" (formula "82") (term "0,0")) + (rule "qeq_literals" (formula "82") (term "0")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "67")) + (rule "times_zero_1" (formula "63") (term "0,0")) + (rule "add_zero_left" (formula "63") (term "0")) + (rule "inEqSimp_subsumption6" (formula "63") (ifseqformula "82")) + (rule "greater_literals" (formula "63") (term "0,0")) + (builtin "One Step Simplification" (formula "63")) + (rule "times_zero_1" (formula "63") (term "1,0")) + (rule "leq_literals" (formula "63") (term "0")) + (builtin "One Step Simplification" (formula "63")) + (rule "true_left" (formula "63")) + (rule "inEqSimp_exactShadow3" (formula "68") (ifseqformula "69")) + (rule "polySimp_mulAssoc" (formula "68") (term "0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "68")) + (rule "polySimp_mulLiterals" (formula "68") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "1")) + (rule "times_zero_1" (formula "31") (term "0,0")) + (rule "add_zero_left" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "31") (ifseqformula "83")) + (rule "times_zero_1" (formula "31") (term "1,1,0")) + (rule "greater_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "111")) + (rule "expand_inInt" (formula "111")) + (rule "replace_int_MIN" (formula "111") (term "0,1")) + (rule "replace_int_MAX" (formula "111") (term "1,0")) + (rule "replace_known_left" (formula "111") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "111")) + (rule "polySimp_homoEq" (formula "63")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,0")) + (rule "mul_literals" (formula "63") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "63") (term "0")) + (rule "polySimp_addComm0" (formula "63") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "111")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "66") (term "1")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "66") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "75")) + (rule "polySimp_addComm1" (formula "75") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "75") (term "0,0")) + (rule "add_literals" (formula "75") (term "1,0,0")) + (rule "times_zero_1" (formula "75") (term "0,0")) + (rule "add_zero_left" (formula "75") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "82") (term "0,1,0,0")) + (rule "add_literals" (formula "82") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "82") (term "0,1,0,0")) + (rule "qeq_literals" (formula "82") (term "1,0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0")) + (rule "polySimp_addComm0" (formula "76") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "82") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "82") (term "0,0,0")) + (rule "add_literals" (formula "82") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "82") (term "1,0,0,0")) + (rule "add_zero_right" (formula "82") (term "0,0,0")) + (rule "qeq_literals" (formula "82") (term "0,0")) + (builtin "One Step Simplification" (formula "82")) + (rule "true_left" (formula "82")) + (rule "apply_eq_boolean" (formula "68") (term "1") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "68")) + (rule "notLeft" (formula "68")) + (rule "replace_known_right" (formula "66") (term "0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "66")) + (rule "inEqSimp_geqRight" (formula "81")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "65")) + (rule "polySimp_mulLiterals" (formula "65") (term "0")) + (rule "polySimp_elimOne" (formula "65") (term "0")) + (rule "applyEq" (formula "58") (term "0,1,0") (ifseqformula "65")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "49") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "49") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "49") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "49") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "45")) + (rule "polySimp_mulLiterals" (formula "45") (term "0")) + (rule "polySimp_elimOne" (formula "45") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "76")) + (rule "polySimp_mulLiterals" (formula "76") (term "0")) + (rule "polySimp_elimOne" (formula "76") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "58")) + (rule "polySimp_mulLiterals" (formula "58") (term "0")) + (rule "polySimp_elimOne" (formula "58") (term "0")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "37")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "40")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "2")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_contradInEq0" (formula "20") (ifseqformula "2")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "112")) + (builtin "One Step Simplification" (formula "82")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "82") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "82")) + (rule "expand_inInt" (formula "82") (term "0,1,0")) + (rule "expand_inInt" (formula "82") (term "0,0,0,1,1")) + (rule "expand_inInt" (formula "82") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "82") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "82") (term "0,1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "82") (term "0,1,1,0,0,0,1")) + (rule "replace_int_MAX" (formula "82") (term "1,0,1,0,0,0,1")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "85")) + (rule "andLeft" (formula "83")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "88")) + (rule "andLeft" (formula "84")) + (rule "andLeft" (formula "82")) + (rule "andLeft" (formula "83")) + (rule "translateJavaAddInt" (formula "122") (term "2,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "89") (term "0,0,1,2,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "89") (term "1,1,2,0,1,0,0,1,0")) + (rule "sub_literals" (formula "89") (term "1,1,2,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "2,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "0,0,1,2,0,1,0")) + (rule "translateJavaSubInt" (formula "92") (term "1,1,2,0,1,0")) + (rule "sub_literals" (formula "92") (term "1,1,2,0,1,0")) + (rule "translateJavaSubInt" (formula "84") (term "1,1,2,0,1,0")) + (rule "sub_literals" (formula "84") (term "1,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "0,0,1,2,0,1,0")) + (rule "translateJavaSubInt" (formula "83") (term "1,1,2,0,1,0")) + (rule "sub_literals" (formula "83") (term "1,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "83") (term "0,0,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "122") (term "0,0,1,2,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "122") (term "1,1,2,0,1,0,1,0")) + (rule "sub_literals" (formula "122") (term "1,1,2,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "89") (term "2,0,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "90") (term "1,1,2,0,1,0,0,1,0")) + (rule "sub_literals" (formula "90") (term "1,1,2,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "90") (term "0,0,1,2,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,0,1,2,0,1,0")) + (rule "translateJavaSubInt" (formula "91") (term "1,1,2,0,1,0")) + (rule "sub_literals" (formula "91") (term "1,1,2,0,1,0")) + (rule "translateJavaAddInt" (formula "92") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "84") (term "2,0,1,0")) + (rule "translateJavaAddInt" (formula "83") (term "2,0,1,0")) + (rule "replace_known_left" (formula "88") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "88")) + (rule "true_left" (formula "88")) + (rule "polySimp_addComm0" (formula "89") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "121") (term "0,0,1,2,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "88") (term "0,0,1,2,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "89") (term "0,0,1,2,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "90") (term "0,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "0,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "84") (term "0,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "121") (term "0,0,0,1,2,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "88") (term "0,0,0,1,2,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "89") (term "0,0,0,1,2,0,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "90") (term "0,0,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "91") (term "0,0,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "84") (term "0,0,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,0,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "88") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "87")) + (rule "applyEq" (formula "88") (term "1,1,0,0,0") (ifseqformula "31")) + (rule "apply_eq_boolean" (formula "67") (term "1") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "67")) + (rule "notLeft" (formula "67")) + (rule "replace_known_right" (formula "65") (term "0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "65")) + (rule "commuteUnion" (formula "121") (term "1,0,1,0")) + (rule "commuteUnion" (formula "87") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "88") (term "1,0,0,1,0")) + (rule "commuteUnion" (formula "89") (term "1,0")) + (rule "commuteUnion" (formula "90") (term "1,0")) + (rule "commuteUnion" (formula "83") (term "1,0")) + (rule "commuteUnion" (formula "82") (term "1,0")) + (builtin "Use Dependency Contract" (formula "11") (ifInst "" (formula "121") (term "1,0,1,0,0,1")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "91") (term "1,0,0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "120")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "28")) (ifInst "" (formula "11")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "91")) + (rule "commute_and" (formula "88") (term "0,0")) + (builtin "Use Dependency Contract" (formula "10") (ifInst "" (formula "121") (term "0,0,1,0,0,1")) (contract "de.wiesler.BucketPointers[java.lang.Object::()].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "91") (term "1,1") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "119")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "27")) (ifInst "" (formula "10"))) + (rule "true_left" (formula "91")) + (rule "commute_and" (formula "87") (term "1,0,0")) + (rule "commute_and" (formula "87") (term "0,0,0")) + (rule "shift_paren_and" (formula "87") (term "0,0")) + (rule "commute_and_2" (formula "87") (term "0,0,0")) + (rule "ifUnfold" (formula "121") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "121") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "121") (term "1")) + (builtin "One Step Simplification" (formula "121")) + (rule "replace_known_left" (formula "121") (term "0,0,1,0") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "121")) + (builtin "Use Dependency Contract" (formula "6") (term "0") (ifInst "" (formula "80") (term "0,1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::elementsToReadOfBucketBlockClassified(de.wiesler.Classifier,[I,int,int,int)].JML accessible clause.0")) + (rule "wellFormedAnon" (formula "91") (term "1,1,0,0,0,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0,0")) + (rule "expand_inInt" (formula "91") (term "1,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "91") (term "2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "0,2,0,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "91") (term "1,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "91") (term "1,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "91") (term "0,2,1,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "91") (term "2,0,0,0,1,1,0")) + (rule "replace_known_left" (formula "91") (term "0,1,1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "119")) (ifInst "" (formula "22")) (ifInst "" (formula "13")) (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "120")) (ifInst "" (formula "21")) (ifInst "" (formula "121")) (ifInst "" (formula "16")) (ifInst "" (formula "17")) (ifInst "" (formula "19")) (ifInst "" (formula "14")) (ifInst "" (formula "43")) (ifInst "" (formula "27")) (ifInst "" (formula "120")) (ifInst "" (formula "121"))) + (rule "polySimp_elimSub" (formula "91") (term "2,0,0,0,1,1,0")) + (rule "mul_literals" (formula "91") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "0,2,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "91") (term "1,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "91") (term "2,0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "91") (term "2,1,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "91") (term "0,2,0,0,0,1,1,0")) + (rule "disjointDefinition" (formula "91") (term "1,0")) + (rule "disjointWithSingleton2" (formula "91") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "91") (term "1,0,0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "1,0,0")) + (rule "replace_known_left" (formula "91") (term "1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0,0")) + (rule "replace_known_left" (formula "91") (term "0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "91")) + (rule "inEqSimp_commuteLeq" (formula "91") (term "0,0")) + (rule "replace_known_left" (formula "91") (term "0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "91")) + (rule "applyEq" (formula "91") (term "0,1") (ifseqformula "6")) + (rule "eqSymm" (formula "91") (term "1")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (builtin "One Step Simplification" (formula "91")) + (rule "eqSymm" (formula "91") (term "1,0,0")) + (rule "replace_known_right" (formula "91") (term "1,0,0") (ifseqformula "114")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (builtin "One Step Simplification" (formula "91")) + (rule "eqSymm" (formula "91") (term "1,0,0")) + (rule "replace_known_right" (formula "91") (term "1,0,0") (ifseqformula "113")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfUnion" (formula "91") (term "0,0")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0,0")) + (rule "replace_known_right" (formula "91") (term "0,0,0,0,0") (ifseqformula "98")) + (builtin "One Step Simplification" (formula "91")) + (rule "elementOfArrayRangeConcrete" (formula "91") (term "0,0")) + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "80"))) + (rule "true_left" (formula "91")) + (rule "ifSplit" (formula "121")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "122")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "121") (term "1")) + (builtin "Block Contract (Internal)" (formula "121") (newnames "result_5,exc_5,heap_Before_BLOCK_4,savedHeap_Before_BLOCK_4,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "91") (ifInst "" (formula "26"))) + (builtin "One Step Simplification" (formula "122")) + (rule "eqSymm" (formula "122") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "122") (term "1")) + (rule "variableDeclaration" (formula "122") (term "1") (newnames "exc_5_1")) + (rule "assignment" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (builtin "One Step Simplification" (formula "122")) + (rule "emptyStatement" (formula "122") (term "1")) + (rule "tryEmpty" (formula "122") (term "1")) + (rule "blockEmptyLabel" (formula "122") (term "1")) + (rule "blockEmpty" (formula "122") (term "1")) + (rule "methodCallEmpty" (formula "122") (term "1")) + (rule "emptyModality" (formula "122") (term "1")) + (rule "andRight" (formula "122")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "122")) + (rule "closeTrue" (formula "122")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "121")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "121")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "121")) + (rule "wellFormedAnon" (formula "121")) + (rule "wellFormedAnonEQ" (formula "121") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "121") (term "0,0")) + (rule "replace_known_left" (formula "121") (term "1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "121") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57"))) + (rule "closeTrue" (formula "121")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "91")) + (builtin "One Step Simplification" (formula "122")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "91") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "91")) + (rule "expand_inInt" (formula "91") (term "0,1,0")) + (rule "replace_int_MIN" (formula "91") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "91") (term "1,0,0,1,0")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "91")) + (rule "andLeft" (formula "93")) + (rule "andLeft" (formula "92")) + (rule "andLeft" (formula "92")) + (rule "replace_known_left" (formula "94") (term "0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "94")) + (rule "true_left" (formula "94")) + (rule "inEqSimp_commuteLeq" (formula "93")) + (rule "applyEq" (formula "95") (term "1") (ifseqformula "61")) + (rule "elim_double_block_2" (formula "126") (term "1")) + (rule "ifUnfold" (formula "126") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "126") (term "1") (newnames "x_8")) + (rule "inequality_comparison_simple" (formula "126") (term "1")) + (builtin "One Step Simplification" (formula "126")) + (rule "replace_known_left" (formula "126") (term "0,0,1,0") (ifseqformula "91")) + (builtin "One Step Simplification" (formula "126")) + (rule "ifSplit" (formula "126")) + (branch "if x_8 true" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_8 false" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "126") (term "1")) + (builtin "Block Contract (Internal)" (formula "126") (newnames "result_6,exc_6,heap_Before_BLOCK_5,savedHeap_Before_BLOCK_5,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "96") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "127") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "127") (term "1")) + (rule "variableDeclaration" (formula "127") (term "1") (newnames "exc_6_1")) + (rule "assignment" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (builtin "One Step Simplification" (formula "127")) + (rule "emptyStatement" (formula "127") (term "1")) + (rule "tryEmpty" (formula "127") (term "1")) + (rule "blockEmptyLabel" (formula "127") (term "1")) + (rule "blockEmpty" (formula "127") (term "1")) + (rule "methodCallEmpty" (formula "127") (term "1")) + (rule "emptyModality" (formula "127") (term "1")) + (rule "andRight" (formula "127")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "126")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "126")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "126")) + (rule "wellFormedAnon" (formula "126")) + (rule "wellFormedAnonEQ" (formula "126") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "126") (term "0,0")) + (rule "replace_known_left" (formula "126") (term "1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "126") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57"))) + (rule "closeTrue" (formula "126")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "127")) + (builtin "One Step Simplification" (formula "96")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "96") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "96")) + (rule "expand_inInt" (formula "96") (term "1,0,0,1")) + (rule "expand_inInt" (formula "96") (term "0,1,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "96") (term "0,1,1,0,0,1")) + (rule "replace_int_MIN" (formula "96") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "96") (term "1,0,0,1,0")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "96")) + (rule "andLeft" (formula "97")) + (rule "andLeft" (formula "97")) + (rule "eqSymm" (formula "100") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "100") (term "0,1,1,0")) + (rule "replace_known_left" (formula "99") (term "0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "99")) + (rule "true_left" (formula "99")) + (rule "inEqSimp_commuteLeq" (formula "99") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "99") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "98")) + (rule "applyEq" (formula "99") (term "1,1,0,0,0") (ifseqformula "31")) + (rule "commute_and" (formula "99") (term "1,0,0")) + (rule "commute_and" (formula "99") (term "0,0,0")) + (rule "elim_double_block_2" (formula "130") (term "1")) + (rule "shift_paren_and" (formula "99") (term "0,0")) + (rule "commute_and_2" (formula "99") (term "0,0,0")) + (rule "ifUnfold" (formula "130") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "130") (term "1") (newnames "x_9")) + (rule "inequality_comparison_simple" (formula "130") (term "1")) + (builtin "One Step Simplification" (formula "130")) + (rule "replace_known_left" (formula "130") (term "0,0,1,0") (ifseqformula "96")) + (builtin "One Step Simplification" (formula "130")) + (rule "ifSplit" (formula "130")) + (branch "if x_9 true" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_9 false" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "130") (term "1")) + (builtin "Block Contract (Internal)" (formula "130") (newnames "result_7,exc_7,heap_Before_BLOCK_6,savedHeap_Before_BLOCK_6,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "131")) + (builtin "One Step Simplification" (formula "100") (ifInst "" (formula "26"))) + (rule "eqSymm" (formula "131") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "131") (term "1")) + (rule "variableDeclaration" (formula "131") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (builtin "One Step Simplification" (formula "131")) + (rule "emptyStatement" (formula "131") (term "1")) + (rule "tryEmpty" (formula "131") (term "1")) + (rule "blockEmptyLabel" (formula "131") (term "1")) + (rule "blockEmpty" (formula "131") (term "1")) + (rule "methodCallEmpty" (formula "131") (term "1")) + (rule "emptyModality" (formula "131") (term "1")) + (rule "andRight" (formula "131")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "131")) + (rule "closeTrue" (formula "131")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "130")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "26"))) + (rule "closeTrue" (formula "130")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "130")) + (rule "wellFormedAnon" (formula "130")) + (rule "wellFormedAnonEQ" (formula "130") (term "0") (ifseqformula "58")) + (rule "wellFormedAnon" (formula "130") (term "0,0")) + (rule "replace_known_left" (formula "130") (term "1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "130") (ifInst "" (formula "13")) (ifInst "" (formula "12")) (ifInst "" (formula "57"))) + (rule "closeTrue" (formula "130")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "100")) + (builtin "One Step Simplification" (formula "131")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "100") (term "0,1,1,1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "100")) + (rule "expand_inInt" (formula "100") (term "0,0,1")) + (rule "expand_inInt" (formula "100") (term "0,1,0")) + (rule "replace_int_MAX" (formula "100") (term "1,0,0,0,1")) + (rule "replace_int_MIN" (formula "100") (term "0,1,0,0,1")) + (rule "replace_int_MIN" (formula "100") (term "0,1,0,1,0")) + (rule "replace_int_MAX" (formula "100") (term "1,0,0,1,0")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "100")) + (rule "andLeft" (formula "101")) + (rule "andLeft" (formula "101")) + (rule "replace_known_left" (formula "103") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "103")) + (rule "true_left" (formula "103")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "102")) + (rule "commute_and" (formula "103") (term "0,0")) + (rule "elim_double_block_2" (formula "134") (term "1")) + (rule "ifUnfold" (formula "134") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "134") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "replace_known_left" (formula "134") (term "0,0,1,0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "134")) + (rule "ifSplit" (formula "134")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "135")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "134") (term "1")) + (rule "blockReturn" (formula "134") (term "1")) + (rule "lsReturnNonVoid" (formula "134") (term "1")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "methodCallReturn" (formula "134") (term "1")) + (rule "assignment" (formula "134") (term "1")) + (builtin "One Step Simplification" (formula "134")) + (rule "methodCallEmpty" (formula "134") (term "1")) + (rule "tryEmpty" (formula "134") (term "1")) + (rule "emptyModality" (formula "134") (term "1")) + (rule "andRight" (formula "134")) + (branch "Case 1" + (rule "impRight" (formula "134")) + (rule "andRight" (formula "135")) + (branch "Case 1" + (rule "andRight" (formula "135")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "84"))) + (rule "closeTrue" (formula "135")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "135") (ifInst "" (formula "83"))) + (rule "closeTrue" (formula "135")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "135")) + (rule "closeTrue" (formula "135")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "134")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (increment = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "71"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (increment = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "71"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (increment_write)" + (builtin "One Step Simplification" (formula "86")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "59") (term "1,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "61")) + (rule "notLeft" (formula "59")) + (rule "close" (formula "62") (ifseqformula "61")) + ) + (branch "Pre (increment_write)" + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "10")) (ifInst "" (formula "22"))) + (rule "wellFormedAnon" (formula "84") (term "0")) + (rule "expand_inInt" (formula "84") (term "1")) + (rule "replace_int_MAX" (formula "84") (term "1,0,1")) + (rule "replace_int_MIN" (formula "84") (term "0,1,1")) + (rule "replace_known_left" (formula "84") (term "1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "13")) (ifInst "" (formula "14"))) + (rule "inEqSimp_leqRight" (formula "84")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "44")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "57")) + (rule "polySimp_mulComm0" (formula "57") (term "1,0")) + (rule "polySimp_rightDist" (formula "57") (term "1,0")) + (rule "mul_literals" (formula "57") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44")) + (rule "polySimp_mulLiterals" (formula "44") (term "0")) + (rule "polySimp_elimOne" (formula "44") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "42")) + (rule "polySimp_mulLiterals" (formula "42") (term "0")) + (rule "polySimp_elimOne" (formula "42") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "1")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "closeFalse" (formula "15")) + ) + (branch "Null reference (_bucket_pointers = null)" + (builtin "One Step Simplification" (formula "84") (ifInst "" (formula "81"))) + (rule "closeTrue" (formula "84")) + ) + ) + ) + ) + (branch "if true false" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..2d2757e --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1053 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:14:15 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:14:15 CEST 2022 +contract=de.wiesler.Storage[de.wiesler.Storage\\:\\:Storage()].JML normal_behavior operation contract.0 +name=de.wiesler.Storage[de.wiesler.Storage\\:\\:Storage()].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "1014") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "assignment" (formula "3")) +(rule "variableDeclarationAssign" (formula "3") (term "1")) +(rule "variableDeclaration" (formula "3") (term "1") (newnames "self_155")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "3") (term "1") (inst "#v0=s")) +(rule "variableDeclaration" (formula "3") (term "1") (newnames "s")) +(rule "methodBodyExpand" (formula "3") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "3")) +(rule "variableDeclaration" (formula "3") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "3") (term "1") (inst "#v0=s_1")) +(rule "variableDeclaration" (formula "3") (term "1") (newnames "s_1")) +(rule "allocateInstance" (formula "3")) + (builtin "One Step Simplification" (formula "4")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallWithinClass" (formula "6") (term "1")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallSuper" (formula "6") (term "1")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallEmpty" (formula "6") (term "1")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "assignment_write_attribute_this" (formula "6")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallEmpty" (formula "6") (term "1")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "6") (term "1")) +(rule "methodCallReturn" (formula "6") (term "1")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallEmpty" (formula "6") (term "1")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallSuper" (formula "6") (term "1")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodCallEmpty" (formula "6") (term "1")) +(rule "blockEmpty" (formula "6") (term "1")) +(rule "eval_order_access4_this" (formula "6") (term "1") (inst "#v1=x_arr")) +(rule "variableDeclarationAssign" (formula "6") (term "1")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr")) + (builtin "Use Operation Contract" (formula "6") (newnames "heapBefore_createArray,result_131,exc_155,heapAfter_createArray,anon_heap_createArray") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) +(branch "Post (createArray)" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "5")) + (rule "expand_inInt" (formula "5") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "5") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "5") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "5")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "6") (term "1,0,1,0") (ifseqformula "5")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "notLeft" (formula "7")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "7")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "notLeft" (formula "8")) + (rule "replace_known_right" (formula "6") (term "0,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "11"))) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "dismissNonSelectedField" (formula "10") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "8") (term "1,1,0,0")) + (rule "assignment" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "assignment_write_attribute_this" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "eval_order_access4_this" (formula "14") (term "1") (inst "#v1=x_arr")) + (rule "variableDeclarationAssign" (formula "14") (term "1")) + (rule "variableDeclaration" (formula "14") (term "1") (newnames "x_arr_1")) + (rule "pullOutSelect" (formula "10") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "14"))) + (rule "applyEqReverse" (formula "11") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "8") (term "0,0,0")) + (rule "commute_and" (formula "8") (term "1,0,0")) + (rule "shift_paren_and" (formula "8") (term "0,0")) + (rule "commute_and_2" (formula "8") (term "0,0,0")) + (builtin "Use Operation Contract" (formula "14") (newnames "heapBefore_createArray_0,result_132,exc_156,heapAfter_createArray_0,anon_heap_createArray_0") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "16")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "11")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "12") (term "1,0,1,0") (ifseqformula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "13")) + (rule "notLeft" (formula "15")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "notLeft" (formula "16")) + (rule "notLeft" (formula "15")) + (rule "replace_known_right" (formula "13") (term "0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17"))) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "16") (ifseqformula "5")) + (rule "orRight" (formula "16")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "assignment" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "assignment_write_attribute_this" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "eval_order_access4_this" (formula "23") (term "1") (inst "#v1=x_arr")) + (rule "variableDeclarationAssign" (formula "23") (term "1")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "x_arr_2")) + (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "15") (term "0,0,0")) + (rule "commute_and" (formula "15") (term "1,0,0")) + (rule "shift_paren_and" (formula "15") (term "0,0")) + (rule "commute_and_2" (formula "15") (term "0,0,0")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "23") (term "1")) + (rule "variableDeclarationAssign" (formula "23") (term "1")) + (rule "variableDeclaration" (formula "23") (term "1") (newnames "var")) + (rule "assignmentMultiplicationInt" (formula "23") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "23")) + (rule "mul_literals" (formula "23") (term "0")) + (rule "expand_inInt" (formula "23")) + (rule "replace_int_MAX" (formula "23") (term "1,0")) + (rule "replace_int_MIN" (formula "23") (term "0,1")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "leq_literals" (formula "23")) + (rule "closeTrue" (formula "23")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaMulInt" (formula "23") (term "0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (builtin "Use Operation Contract" (formula "23") (newnames "heapBefore_createArray_1,result_133,exc_157,heapAfter_createArray_1,anon_heap_createArray_1") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "25")) + (builtin "One Step Simplification" (formula "17")) + (rule "expand_inInt" (formula "17") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "17") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "17") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "17")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0,1,0") (ifseqformula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "21")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "notLeft" (formula "21")) + (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "22"))) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (ifseqformula "11")) + (rule "orRight" (formula "22")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "22") (ifseqformula "5")) + (rule "orRight" (formula "22")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,1,0,0")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "blockEmpty" (formula "33") (term "1")) + (rule "assignment_write_attribute_this" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "eval_order_access4" (formula "33") (term "1") (inst "#v1=x_arr") (inst "#v0=s")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "s_2")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_arr_3")) + (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "applyEqReverse" (formula "23") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "21") (term "0,0,0")) + (rule "commute_and" (formula "21") (term "1,0,0")) + (rule "shift_paren_and" (formula "21") (term "0,0")) + (rule "commute_and_2" (formula "21") (term "0,0,0")) + (rule "arrayLengthNotNegative" (formula "7") (term "0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "arrayLengthIsAShort" (formula "7") (term "0")) + (rule "expand_inShort" (formula "7")) + (rule "replace_short_MIN" (formula "7") (term "0,1")) + (rule "replace_short_MAX" (formula "7") (term "1,0")) + (rule "andLeft" (formula "7")) + (rule "inEqSimp_commuteLeq" (formula "8")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "9")) + (rule "qeq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "8")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "methodCallWithAssignmentUnfoldArguments" (formula "33") (term "1")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "var_1")) + (rule "assignmentMultiplicationInt" (formula "33") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33")) + (rule "replace_int_MAX" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,0")) + (rule "mul_literals" (formula "33") (term "1,1")) + (rule "replace_int_MIN" (formula "33") (term "0,1")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "leq_literals" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "33")) + (rule "translateJavaMulInt" (formula "33") (term "0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "16")) + (rule "leq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "15")) + (rule "qeq_literals" (formula "14")) + (rule "true_left" (formula "14")) + (builtin "Use Operation Contract" (formula "33") (newnames "heapBefore_createArray_2,result_134,exc_158,heapAfter_createArray_2,anon_heap_createArray_2") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0,1,0") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "24")) + (rule "notLeft" (formula "25")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "26")) + (rule "replace_known_right" (formula "24") (term "0,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "29"))) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "17")) + (rule "orRight" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "11")) + (rule "orRight" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "28") (ifseqformula "5")) + (rule "orRight" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,1,0,0")) + (rule "assignment" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "blockEmpty" (formula "44") (term "1")) + (rule "assignment_write_attribute" (formula "44")) + (branch "Normal Execution (s_2 != null)" + (builtin "One Step Simplification" (formula "44")) + (rule "eval_order_access4" (formula "44") (term "1") (inst "#v1=x_arr") (inst "#v0=s")) + (rule "variableDeclarationAssign" (formula "44") (term "1")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "s_3")) + (rule "assignment" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "variableDeclarationAssign" (formula "44") (term "1")) + (rule "variableDeclaration" (formula "44") (term "1") (newnames "x_arr_4")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__3")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44"))) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "26") (term "0,0,0")) + (rule "commute_and" (formula "26") (term "1,0,0")) + (rule "shift_paren_and" (formula "26") (term "0,0")) + (rule "commute_and_2" (formula "26") (term "0,0,0")) + (rule "arrayLengthNotNegative" (formula "20") (term "0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "arrayLengthIsAShort" (formula "20") (term "0")) + (rule "expand_inShort" (formula "20")) + (rule "replace_short_MAX" (formula "20") (term "1,0")) + (rule "replace_short_MIN" (formula "20") (term "0,1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "22")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "21")) + (rule "qeq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (builtin "Use Operation Contract" (formula "44") (newnames "heapBefore_createArray_3,result_135,exc_159,heapAfter_createArray_3,anon_heap_createArray_3") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "46")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "29")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "1,0,1,0") (ifseqformula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "31")) + (rule "notLeft" (formula "33")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "notLeft" (formula "33")) + (rule "replace_known_right" (formula "31") (term "0,1") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "35"))) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "23")) + (rule "orRight" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "17")) + (rule "orRight" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "11")) + (rule "orRight" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "5")) + (rule "orRight" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "0,0,0,0")) + (rule "assignment" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "assignment_write_attribute" (formula "56")) + (branch "Normal Execution (s_3 != null)" + (builtin "One Step Simplification" (formula "56")) + (rule "eval_order_access4_this" (formula "56") (term "1") (inst "#v1=x_arr")) + (rule "variableDeclarationAssign" (formula "56") (term "1")) + (rule "variableDeclaration" (formula "56") (term "1") (newnames "x_arr_5")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=java_lang_Object_created__4")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "56")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40"))) + (rule "applyEqReverse" (formula "35") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "33") (term "1,0,0")) + (rule "commute_and" (formula "33") (term "0,0,0")) + (rule "shift_paren_and" (formula "33") (term "0,0")) + (rule "commute_and_2" (formula "33") (term "0,0,0")) + (builtin "Use Operation Contract" (formula "56") (newnames "heapBefore_createArray_4,result_136,exc_160,heapAfter_createArray_4,anon_heap_createArray_4") (contract "de.wiesler.Storage[de.wiesler.Storage::createArray(int)].JML normal_behavior operation contract.0")) + (branch "Post (createArray)" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "58")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,1,1,1,0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0,1,0") (ifseqformula "35")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "37")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "notLeft" (formula "38")) + (rule "replace_known_right" (formula "36") (term "0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "40"))) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "29")) + (rule "orRight" (formula "40")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "23")) + (rule "orRight" (formula "40")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "17")) + (rule "orRight" (formula "40")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "11")) + (rule "orRight" (formula "40")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (ifseqformula "5")) + (rule "orRight" (formula "40")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "dismissNonSelectedField" (formula "40") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0")) + (rule "assignment" (formula "69") (term "1")) + (builtin "One Step Simplification" (formula "69")) + (rule "assignment_write_attribute_this" (formula "69")) + (builtin "One Step Simplification" (formula "69")) + (rule "eval_order_access4_this" (formula "69") (term "1") (inst "#v1=x_arr")) + (rule "variableDeclarationAssign" (formula "69") (term "1")) + (rule "variableDeclaration" (formula "69") (term "1") (newnames "x_arr_6")) + (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=java_lang_Object_created__5")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "69"))) + (rule "applyEqReverse" (formula "41") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "38") (term "1,0,0")) + (rule "commute_and" (formula "38") (term "0,0,0")) + (rule "shift_paren_and" (formula "38") (term "0,0")) + (rule "commute_and_2" (formula "38") (term "0,0,0")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "26")) + (rule "qeq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "arrayLengthIsAShort" (formula "25") (term "0")) + (rule "expand_inShort" (formula "25")) + (rule "replace_short_MAX" (formula "25") (term "1,0")) + (rule "replace_short_MIN" (formula "25") (term "0,1")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "27")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "26")) + (rule "leq_literals" (formula "25")) + (rule "closeFalse" (formula "25")) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "36") (term "1,0") (ifseqformula "35")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "38")) + (rule "notLeft" (formula "36")) + (rule "close" (formula "39") (ifseqformula "38")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "56")) + (rule "expand_inInt" (formula "56") (term "1")) + (rule "replace_int_MIN" (formula "56") (term "0,1,1")) + (rule "replace_int_MAX" (formula "56") (term "1,0,1")) + (rule "leq_literals" (formula "56") (term "1,1")) + (builtin "One Step Simplification" (formula "56")) + (rule "leq_literals" (formula "56") (term "1")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "39"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "29")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "29")) + (rule "replace_known_left" (formula "56") (term "1,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "28"))) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "44"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "23")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "23")) + (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "24"))) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "48"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "17")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "17")) + (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "19"))) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "51"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "11")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "11")) + (rule "replace_known_left" (formula "56") (term "1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "13"))) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "53"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "56") (term "1") (ifseqformula "5")) + (rule "wellFormedAnonEQ" (formula "56") (term "0") (ifseqformula "5")) + (rule "replace_known_left" (formula "56") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "4"))) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreObject" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStoreLocSet" (formula "56")) + (builtin "One Step Simplification" (formula "56")) + (rule "wellFormedStorePrimitive" (formula "56")) + (rule "wellFormedCreate" (formula "56")) + (rule "close" (formula "56") (ifseqformula "2")) + ) + ) + (branch "Null Reference (s_3 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "46")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (term "1,0") (ifseqformula "29")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "andLeft" (formula "32")) + (rule "notLeft" (formula "30")) + (rule "close" (formula "33") (ifseqformula "32")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "44")) + (rule "expand_inInt" (formula "44") (term "1")) + (rule "replace_int_MAX" (formula "44") (term "1,0,1")) + (rule "replace_int_MIN" (formula "44") (term "0,1,1")) + (rule "leq_literals" (formula "44") (term "0,1")) + (builtin "One Step Simplification" (formula "44")) + (rule "leq_literals" (formula "44") (term "1")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "32"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "23")) + (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "23")) + (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "24"))) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "36"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "17")) + (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "17")) + (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "19"))) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "39"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "11")) + (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "11")) + (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "13"))) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "41"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "44") (term "1") (ifseqformula "5")) + (rule "wellFormedAnonEQ" (formula "44") (term "0") (ifseqformula "5")) + (rule "replace_known_left" (formula "44") (term "1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "6"))) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreObject" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStoreLocSet" (formula "44")) + (builtin "One Step Simplification" (formula "44")) + (rule "wellFormedStorePrimitive" (formula "44")) + (rule "wellFormedCreate" (formula "44")) + (rule "close" (formula "44") (ifseqformula "2")) + ) + ) + (branch "Null Reference (s_2 = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "44"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "24")) + (rule "close" (formula "27") (ifseqformula "26")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "33")) + (rule "expand_inInt" (formula "33") (term "1")) + (rule "replace_int_MAX" (formula "33") (term "1,0,1")) + (rule "replace_int_MIN" (formula "33") (term "0,1,1")) + (rule "leq_literals" (formula "33") (term "0,1")) + (builtin "One Step Simplification" (formula "33")) + (rule "leq_literals" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "25"))) + (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "17")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "17")) + (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "16"))) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "28"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "11")) + (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "11")) + (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "10"))) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "30"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "33") (term "1") (ifseqformula "5")) + (rule "wellFormedAnonEQ" (formula "33") (term "0") (ifseqformula "5")) + (rule "replace_known_left" (formula "33") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "4"))) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreObject" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStoreLocSet" (formula "33")) + (builtin "One Step Simplification" (formula "33")) + (rule "wellFormedStorePrimitive" (formula "33")) + (rule "wellFormedCreate" (formula "33")) + (rule "close" (formula "33") (ifseqformula "2")) + ) + ) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "17")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "17")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "18") (term "1,0") (ifseqformula "17")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "notLeft" (formula "18")) + (rule "close" (formula "21") (ifseqformula "20")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1")) + (rule "leq_literals" (formula "23") (term "0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "leq_literals" (formula "23") (term "1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "18"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1") (ifseqformula "11")) + (rule "wellFormedAnonEQ" (formula "23") (term "0") (ifseqformula "11")) + (rule "replace_known_left" (formula "23") (term "1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "13"))) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "20"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "23") (term "1") (ifseqformula "5")) + (rule "wellFormedAnonEQ" (formula "23") (term "0") (ifseqformula "5")) + (rule "replace_known_left" (formula "23") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "4"))) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreObject" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStoreLocSet" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "wellFormedStorePrimitive" (formula "23")) + (rule "wellFormedCreate" (formula "23")) + (rule "close" (formula "23") (ifseqformula "2")) + ) + ) + ) + (branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "16")) + (rule "andLeft" (formula "11")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "12") (term "1,0") (ifseqformula "11")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "12")) + (rule "close" (formula "15") (ifseqformula "14")) + ) + (branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1")) + (rule "leq_literals" (formula "14") (term "1,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "leq_literals" (formula "14") (term "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "11"))) + (rule "wellFormedAnonEQ" (formula "14") (term "0") (ifseqformula "5")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "14") (term "1") (ifseqformula "5")) + (rule "replace_known_left" (formula "14") (term "1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "4"))) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreObject" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStoreLocSet" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "wellFormedStorePrimitive" (formula "14")) + (rule "wellFormedCreate" (formula "14")) + (rule "close" (formula "14") (ifseqformula "2")) + ) +) +(branch "Exceptional Post (createArray)" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "5")) + (rule "andLeft" (formula "5")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "6") (term "1,0") (ifseqformula "5")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "6")) + (rule "andLeft" (formula "8")) + (rule "notLeft" (formula "6")) + (rule "close" (formula "9") (ifseqformula "8")) +) +(branch "Pre (createArray)" + (builtin "One Step Simplification" (formula "6")) + (rule "expand_inInt" (formula "6") (term "1")) + (rule "replace_int_MAX" (formula "6") (term "1,0,1")) + (rule "replace_int_MIN" (formula "6") (term "0,1,1")) + (rule "leq_literals" (formula "6") (term "0,1")) + (builtin "One Step Simplification" (formula "6")) + (rule "leq_literals" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreObject" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStoreLocSet" (formula "6")) + (builtin "One Step Simplification" (formula "6")) + (rule "wellFormedStorePrimitive" (formula "6")) + (rule "wellFormedCreate" (formula "6")) + (rule "close" (formula "6") (ifseqformula "2")) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..8bdee9d --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,367 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Thu Jun 02 20:14:26 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:onHeap , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Thu Jun 02 20:14:26 CEST 2022 +contract=de.wiesler.Storage[de.wiesler.Storage\\:\\:createArray(int)].JML normal_behavior operation contract.0 +name=de.wiesler.Storage[de.wiesler.Storage\\:\\:createArray(int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "184") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "expand_inInt" (formula "1") (term "1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "inEqSimp_commuteLeq" (formula "3")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "methodBodyExpand" (formula "6") (term "1") (newnames "heapBefore_createArray,savedHeapBefore_createArray")) + (builtin "One Step Simplification" (formula "6")) +(rule "returnUnfold" (formula "6") (term "1") (inst "#v0=x_arr")) +(rule "variableDeclarationAssign" (formula "6") (term "1")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr")) +(rule "arrayCreation" (formula "6") (term "1") (inst "#v0=x_arr_1")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "x_arr_1")) +(rule "variableDeclarationAssign" (formula "6") (term "1")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "dim0")) +(rule "assignment" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "ifUnfold" (formula "6") (term "1") (inst "#boolv=x")) +(rule "variableDeclaration" (formula "6") (term "1") (newnames "x")) +(rule "less_than_comparison_simple" (formula "6") (term "1")) + (builtin "One Step Simplification" (formula "6")) +(rule "ifSplit" (formula "6")) +(branch "if x true" + (builtin "One Step Simplification" (formula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "blockThrow" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) + (rule "throwUnfold" (formula "7") (term "1") (inst "#v0=n")) + (rule "variableDeclarationAssign" (formula "7") (term "1")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "n")) + (rule "instanceCreationAssignment" (formula "7") (term "1") (inst "#v0=n_1")) + (rule "variableDeclarationAssign" (formula "7") (term "1")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_1")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=n_2")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_2")) + (rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "7")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "__NEW__")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=n_3")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "n_3")) + (rule "allocateInstance" (formula "7")) + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3"))) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "assignment" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "10")) + (rule "assignment_write_attribute_this" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallWithinClass" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__1,savedHeapBefore__1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__2,savedHeapBefore__2")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "assignment_write_attribute_this" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (rule "assignment_write_attribute_this" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "methodCallReturnIgnoreResult" (formula "10") (term "1")) + (rule "methodCallReturn" (formula "10") (term "1")) + (rule "assignment" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "assignment" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__1,savedHeapBefore__1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__2,savedHeapBefore__2")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallSuper" (formula "10") (term "1")) + (rule "methodBodyExpand" (formula "10") (term "1") (newnames "heapBefore__3,savedHeapBefore__3")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "assignment_write_attribute_this" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (rule "assignment_write_attribute_this" (formula "10")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "methodCallEmpty" (formula "10") (term "1")) + (rule "blockEmpty" (formula "10") (term "1")) + (rule "assignment_write_attribute" (formula "10")) + (branch "Normal Execution (n_1 != null)" + (builtin "One Step Simplification" (formula "10")) + (rule "assignment" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "methodCallParamThrow" (formula "10") (term "1")) + (rule "tryCatchThrow" (formula "10") (term "1")) + (rule "ifElseUnfold" (formula "10") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "10") (term "1") (newnames "x_1")) + (rule "equality_comparison_simple" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "10") (term "0,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "10")) + (rule "ifElseSplit" (formula "10")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "elim_double_block" (formula "10") (term "1")) + (rule "ifElseSplit" (formula "10")) + (branch "if n instanceof java.lang.Throwable true" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10"))) + (rule "true_left" (formula "1")) + (rule "variableDeclaration" (formula "10") (term "1") (newnames "e")) + (rule "delete_unnecessary_cast" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "assignment" (formula "10") (term "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "emptyModality" (formula "10") (term "1")) + (rule "andRight" (formula "10")) + (branch + (builtin "One Step Simplification" (formula "10")) + (rule "notRight" (formula "10")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "3")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "3")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "9"))) + (rule "false_right" (formula "10")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "2")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + ) + (branch "if n instanceof java.lang.Throwable false" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Null Reference (n_1 = null)" + (rule "false_right" (formula "11")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "10"))) + (rule "closeFalse" (formula "1")) + ) +) +(branch "if x false" + (builtin "One Step Simplification" (formula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=x_arr_2")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "x_arr_2")) + (rule "variableDeclarationAssign" (formula "7") (term "1")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "length_1")) + (rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) + (rule "methodBodyExpand" (formula "7") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "7")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "newObject")) + (rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "7") (term "1") (inst "#v0=x_arr_3")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "x_arr_3")) + (rule "variableDeclarationAssign" (formula "7") (term "1")) + (rule "variableDeclaration" (formula "7") (term "1") (newnames "length_2")) + (rule "assignment" (formula "7") (term "1")) + (builtin "One Step Simplification" (formula "7")) + (rule "allocateInstanceWithLength" (formula "7")) + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "blockEmpty" (formula "11") (term "1")) + (rule "assignment" (formula "11") (term "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "arrayLengthIsAShort" (formula "1") (term "0")) + (rule "expand_inShort" (formula "1")) + (rule "replace_short_MAX" (formula "1") (term "1,0")) + (rule "replace_short_MIN" (formula "1") (term "0,1")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "3")) + (rule "arrayLengthNotNegative" (formula "3") (term "0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "4")) + (rule "methodCall" (formula "13")) + (branch "Normal Execution (newObject != null )" + (rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "13")) + (rule "assignment_write_attribute_this" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallWithinClass" (formula "13") (term "1")) + (rule "methodBodyExpand" (formula "13") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "13")) + (rule "arrayInitialisation" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "polySimp_elimSub" (formula "13") (term "2,1,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "2,1,0,1,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,1,0") (ifseqformula "3")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "blockEmpty" (formula "13") (term "1")) + (rule "assignment_write_attribute_this" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallReturnIgnoreResult" (formula "13") (term "1")) + (rule "blockEmpty" (formula "13") (term "1")) + (rule "methodCallReturn" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "blockEmpty" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "blockEmpty" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallReturn" (formula "13") (term "1")) + (rule "assignment" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "tryEmpty" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "emptyModality" (formula "13") (term "1")) + (rule "andRight" (formula "13")) + (branch + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "13")) + ) + (branch + (builtin "One Step Simplification" (formula "13")) + (rule "closeTrue" (formula "13")) + ) + ) + (branch "Null Reference (newObject = null)" + (rule "false_right" (formula "14")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "12"))) + (rule "closeFalse" (formula "1")) + ) +) +) +} diff --git a/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..cd0e23d --- /dev/null +++ b/src/main/key-overflow/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,10116 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Mon Apr 17 13:16:54 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsCheckingOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:onHeap +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\proofObligation "#Proof Obligation Settings +#Mon Apr 17 13:16:54 CEST 2023 +contract=de.wiesler.Tree[de.wiesler.Tree\\:\\:Tree([I,[I,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Tree[de.wiesler.Tree\\:\\:Tree([I,[I,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "1" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "63042") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) +(rule "expand_inInt" (formula "1") (term "1,1,0,0,0")) +(rule "replace_int_MIN" (formula "1") (term "0,1,1,1,0,0,0")) +(rule "replace_int_MAX" (formula "1") (term "1,0,1,1,0,0,0")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "4")) +(rule "notLeft" (formula "4")) +(rule "andLeft" (formula "5")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "7")) +(rule "andLeft" (formula "9")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "4")) +(rule "andLeft" (formula "12")) +(rule "translateJavaSubInt" (formula "11") (term "3,0")) +(rule "replace_known_right" (formula "3") (term "0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "3")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "11") (term "3,0")) +(rule "mul_literals" (formula "11") (term "1,3,0")) +(rule "polySimp_addComm0" (formula "11") (term "3,0")) +(rule "disjointDefinition" (formula "13")) + (builtin "One Step Simplification" (formula "13")) +(rule "notLeft" (formula "13")) +(rule "eqSymm" (formula "13")) +(rule "inEqSimp_commuteLeq" (formula "7")) +(rule "inEqSimp_commuteLeq" (formula "10")) +(rule "inEqSimp_commuteLeq" (formula "9")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) +(rule "variableDeclarationAssign" (formula "16") (term "1")) +(rule "variableDeclaration" (formula "16") (term "1") (newnames "self_207")) +(rule "arrayLengthNotNegative" (formula "10") (term "0")) +(rule "arrayLengthIsAShort" (formula "11") (term "0")) +(rule "expand_inShort" (formula "11")) +(rule "replace_short_MAX" (formula "11") (term "1,0")) +(rule "replace_short_MIN" (formula "11") (term "0,1")) +(rule "andLeft" (formula "11")) +(rule "inEqSimp_commuteLeq" (formula "12")) +(rule "arrayLengthIsAShort" (formula "15") (term "0")) +(rule "expand_inShort" (formula "15")) +(rule "replace_short_MIN" (formula "15") (term "0,1")) +(rule "replace_short_MAX" (formula "15") (term "1,0")) +(rule "andLeft" (formula "15")) +(rule "inEqSimp_commuteLeq" (formula "16")) +(rule "arrayLengthNotNegative" (formula "17") (term "0")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=t")) +(rule "variableDeclaration" (formula "22") (term "1") (newnames "t")) +(rule "methodBodyExpand" (formula "22") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "22")) +(rule "variableDeclaration" (formula "22") (term "1") (newnames "__NEW__")) +(rule "staticMethodCallStaticWithAssignmentViaTypereference" (formula "22") (term "1") (inst "#v0=t_1")) +(rule "variableDeclaration" (formula "22") (term "1") (newnames "t_1")) +(rule "allocateInstance" (formula "22")) + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "2"))) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "notLeft" (formula "1")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "25")) +(rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallWithinClass" (formula "25") (term "1")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallSuper" (formula "25") (term "1")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallEmpty" (formula "25") (term "1")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallEmpty" (formula "25") (term "1")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "methodCallReturnIgnoreResult" (formula "25") (term "1")) +(rule "methodCallReturn" (formula "25") (term "1")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallEmpty" (formula "25") (term "1")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "variableDeclarationAssign" (formula "25") (term "1")) +(rule "variableDeclaration" (formula "25") (term "1") (newnames "var")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "variableDeclarationAssign" (formula "25") (term "1")) +(rule "variableDeclaration" (formula "25") (term "1") (newnames "var_1")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "variableDeclarationAssign" (formula "25") (term "1")) +(rule "variableDeclaration" (formula "25") (term "1") (newnames "var_2")) +(rule "assignment" (formula "25") (term "1")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore_,savedHeapBefore_")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallSuper" (formula "25") (term "1")) +(rule "methodBodyExpand" (formula "25") (term "1") (newnames "heapBefore__0,savedHeapBefore__0")) + (builtin "One Step Simplification" (formula "25")) +(rule "methodCallEmpty" (formula "25") (term "1")) +(rule "blockEmpty" (formula "25") (term "1")) +(rule "eval_order_access4_this" (formula "25") (term "1") (inst "#v1=x")) +(rule "variableDeclarationAssign" (formula "25") (term "1")) +(rule "variableDeclaration" (formula "25") (term "1") (newnames "x")) +(rule "assignmentShiftLeftInt" (formula "25") (term "1")) +(branch "Overflow check" + (builtin "One Step Simplification" (formula "25")) + (rule "powPositive" (formula "25") (term "1,0") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))), + pow(Z(2(#)), Z(8(#))))<>") (userinteraction)) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, 8) TRUE" + (rule "greater_literals" (formula "2") (term "1,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "pow_literals" (formula "1") (term "1")) + (rule "expand_inInt" (formula "27")) + (rule "replace_int_MAX" (formula "27") (term "1,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1")) + (rule "translateJavaShiftLeftInt" (formula "21") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "17") (term "1,3,0")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "12") (term "0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1")) + (rule "mod_axiom" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mod_axiom" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mod_axiom" (formula "2") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,1")) + (rule "mod_axiom" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption0" (formula "23") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "inEqSimp_leqRight" (formula "17")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "javaShiftLeftIntDef" (formula "17") (term "1")) + (rule "mod_axiom" (formula "17") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1,3,0")) + (rule "mod_axiom" (formula "14") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "13") (term "1")) + (rule "mod_axiom" (formula "13") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "10") (term "0")) + (rule "mod_axiom" (formula "10") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "shiftLeftDef" (formula "17") (term "0,1")) + (rule "polySimp_elimNeg" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "17") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "17") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "17") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "17")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "shiftLeftDef" (formula "14") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,3,0")) + (rule "replace_known_left" (formula "14") (term "0,0,1,3,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "shiftLeftDef" (formula "13") (term "0,1")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "13")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_commuteLeq" (formula "13")) + (rule "shiftLeftDef" (formula "10") (term "0,0")) + (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0")) + (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "expand_moduloInteger" (formula "18") (term "1")) + (rule "replace_int_HALFRANGE" (formula "18") (term "0,0,1,1")) + (rule "replace_int_MIN" (formula "18") (term "0,1")) + (rule "replace_int_RANGE" (formula "18") (term "1,1,1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "expand_moduloInteger" (formula "14") (term "1,3,0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,1,3,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,3,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,1,3,0")) + (rule "polySimp_addAssoc" (formula "14") (term "3,0")) + (rule "add_literals" (formula "14") (term "0,3,0")) + (rule "expand_moduloInteger" (formula "13") (term "1")) + (rule "replace_int_MIN" (formula "13") (term "0,1")) + (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1")) + (rule "replace_int_RANGE" (formula "13") (term "1,1,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "expand_moduloInteger" (formula "10") (term "0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "expand_moduloInteger" (formula "17") (term "0")) + (rule "replace_int_MIN" (formula "17") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "17") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "17") (term "1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "2") (term "0,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,1,1,1")) + (rule "equal_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_addComm1" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "5") (term "1,0")) + (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "21") (term "0,1,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, 8) FALSE" + (rule "powMonoConcrete" (formula "21") (userinteraction)) + (rule "expand_inInt" (formula "27")) + (rule "greater_literals" (formula "21") (term "1")) + (builtin "One Step Simplification" (formula "21")) + (rule "greater_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "replace_int_MAX" (formula "27") (term "1,0")) + (rule "replace_int_MIN" (formula "27") (term "0,1")) + (rule "translateJavaShiftLeftInt" (formula "11") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "16") (term "1,3,0")) + (rule "translateJavaShiftLeftInt" (formula "20") (term "1")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1")) + (rule "mod_axiom" (formula "21") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "mod_axiom" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mod_axiom" (formula "1") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1")) + (rule "mod_axiom" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "mod_axiom" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1")) + (rule "mod_axiom" (formula "27") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "javaShiftLeftIntDef" (formula "9") (term "0")) + (rule "mod_axiom" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "javaShiftLeftIntDef" (formula "12") (term "1")) + (rule "mod_axiom" (formula "12") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1")) + (rule "javaShiftLeftIntDef" (formula "13") (term "1,3,0")) + (rule "mod_axiom" (formula "13") (term "1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,3,0")) + (rule "javaShiftLeftIntDef" (formula "16") (term "1")) + (rule "mod_axiom" (formula "16") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1")) + (rule "shiftLeftDef" (formula "9") (term "0,0")) + (rule "polySimp_elimNeg" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "9") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "9") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "12") (term "0,1")) + (rule "polySimp_elimNeg" (formula "12") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "12") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "12") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "12") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,0,0")) + (rule "shiftLeftDef" (formula "13") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "13") (term "1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "13") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "13") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "13") (term "1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,1,3,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,1,3,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13") (term "0,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0,0,1,3,0")) + (rule "shiftLeftDef" (formula "16") (term "0,1")) + (rule "polySimp_elimNeg" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "16") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "16") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "16") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "16") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16")) + (rule "times_zero_1" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "expand_moduloInteger" (formula "9") (term "0")) + (rule "replace_int_MIN" (formula "9") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "9") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "9") (term "1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "expand_moduloInteger" (formula "12") (term "0")) + (rule "replace_int_RANGE" (formula "12") (term "1,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "12") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "12")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "expand_moduloInteger" (formula "13") (term "1,3,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,3,0")) + (rule "replace_int_HALFRANGE" (formula "13") (term "0,0,1,1,3,0")) + (rule "replace_int_RANGE" (formula "13") (term "1,1,1,3,0")) + (rule "polySimp_addAssoc" (formula "13") (term "3,0")) + (rule "add_literals" (formula "13") (term "0,3,0")) + (rule "expand_moduloInteger" (formula "16") (term "0")) + (rule "replace_int_MIN" (formula "16") (term "0,0")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "16")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "add_zero_left" (formula "9") (term "0")) + (rule "commute_and" (formula "23")) + (rule "commute_and" (formula "17")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "13")) + (rule "expand_inInt" (formula "13") (term "1,0,0,1,0")) + (rule "expand_inInt" (formula "13") (term "1,0,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "13") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "13") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "13") (term "0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "13") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "div_axiom" (formula "1") (term "0,1,1,0,1") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "1") (term "0,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "equal_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,1,1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "19") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "applyEq" (formula "15") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "26") (term "0,1,1,0,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,1")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "12") (term "0,1,1,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "16") (term "0,0,0,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "4") (term "0,1,1,0,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "4") (term "1,0,1")) + (rule "applyEq" (formula "16") (term "0,1,1,2,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,2,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "15") (term "1,2,1,0,0")) + (rule "applyEq" (formula "26") (term "0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "20") (term "0,0,1") (ifseqformula "1")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1")) + (rule "replace_known_left" (formula "20") (term "1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_geqRight" (formula "20")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "13") (term "0,0,0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,0")) + (rule "applyEq" (formula "5") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0")) + (rule "replace_known_left" (formula "5") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "20") (term "0,1,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,0")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0,1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "13") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1")) + (rule "polySimp_elimOne" (formula "13") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,1,0,1,1,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0,1,0,1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "16") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "mod_axiom" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,1,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "mod_axiom" (formula "20") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "5")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "leq_literals" (formula "17") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "1")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "4")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "elimGcdGeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "2") (ifseqformula "11")) + (rule "times_zero_1" (formula "2") (term "1,1,0")) + (rule "greater_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) +) +(branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaShiftLeftInt" (formula "14") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "10") (term "0")) + (rule "translateJavaShiftLeftInt" (formula "19") (term "1")) + (rule "translateJavaShiftLeftInt" (formula "15") (term "1,3,0")) + (rule "translateJavaShiftLeftInt" (formula "25") (term "0,1,0")) + (rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "assignment_write_attribute_this" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "variableDeclarationFinalAssign" (formula "25") (term "1")) + (rule "variableDeclarationFinal" (formula "25") (term "1") (newnames "num_buckets")) + (rule "javaShiftLeftIntDef" (formula "14") (term "1")) + (rule "javaShiftLeftIntDef" (formula "10") (term "0")) + (rule "javaShiftLeftIntDef" (formula "19") (term "1")) + (rule "javaShiftLeftIntDef" (formula "15") (term "1,3,0")) + (rule "javaShiftLeftIntDef" (formula "25") (term "3,0,0,1,0")) + (rule "shiftLeftDef" (formula "14") (term "0,1")) + (rule "polySimp_elimNeg" (formula "14") (term "1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "14") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "14") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "14") (term "1,0,1")) + (rule "inEqSimp_commuteGeq" (formula "14")) + (rule "shiftLeftDef" (formula "10") (term "0,0")) + (rule "polySimp_elimNeg" (formula "10") (term "1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "10") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "10") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "10") (term "1,0,0")) + (rule "shiftLeftDef" (formula "19") (term "0,1")) + (rule "polySimp_elimNeg" (formula "19") (term "1,1,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "19") (term "2,0,1")) + (rule "polySimp_elimOneLeft0" (formula "19") (term "2,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "19") (term "1,0,1")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "shiftLeftDef" (formula "15") (term "0,1,3,0")) + (rule "polySimp_elimNeg" (formula "15") (term "1,1,0,1,3,0")) + (rule "shiftLeftPositiveShiftDef" (formula "15") (term "2,0,1,3,0")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "2,0,1,3,0")) + (rule "shiftRightPositiveShiftDef" (formula "15") (term "1,0,1,3,0")) + (rule "shiftLeftDef" (formula "25") (term "0,3,0,0,1,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,3,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,3,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,3,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,3,0,0,1,0")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "expand_moduloInteger" (formula "10") (term "0")) + (rule "replace_int_HALFRANGE" (formula "10") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "10") (term "0,0")) + (rule "replace_int_RANGE" (formula "10") (term "1,1,0")) + (rule "expand_moduloInteger" (formula "19") (term "0")) + (rule "replace_int_MIN" (formula "19") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "19") (term "0,0,1,0")) + (rule "replace_int_RANGE" (formula "19") (term "1,1,0")) + (rule "expand_moduloInteger" (formula "15") (term "1,3,0")) + (rule "replace_int_RANGE" (formula "15") (term "1,1,1,3,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,3,0")) + (rule "replace_int_HALFRANGE" (formula "15") (term "0,0,1,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "3,0")) + (rule "add_literals" (formula "15") (term "0,3,0")) + (rule "expand_moduloInteger" (formula "25") (term "3,0,0,1,0")) + (rule "replace_int_MIN" (formula "25") (term "0,3,0,0,1,0")) + (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,3,0,0,1,0")) + (rule "replace_int_RANGE" (formula "25") (term "1,1,3,0,0,1,0")) + (rule "assignmentShiftLeftInt" (formula "25") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "25")) + (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))), + pow(Z(2(#)), de.wiesler.Constants.LOG_MAX_BUCKETS))<>") (userinteraction)) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) TRUE" + (rule "powPositive" (formula "26") (term "1,0") (userinteraction)) + (builtin "One Step Simplification" (formula "2")) + (rule "greater_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "expand_inInt" (formula "27")) + (rule "pow_literals" (formula "2") (term "1")) + (rule "replace_int_MIN" (formula "27") (term "0,1")) + (rule "replace_int_MAX" (formula "27") (term "1,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "mod_axiom" (formula "12") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "17") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "12") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "17") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "mod_axiom" (formula "1") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1")) + (rule "mod_axiom" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "mod_axiom" (formula "17") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "16") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "16") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "12") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "11")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0") (ifseqformula "2")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_geqRight" (formula "24")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "1")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "2") (term "1") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "inEqSimp_leqRight" (formula "17")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "replace_known_left" (formula "14") (term "0,1,0,1,3,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "14")) + (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "17")) + (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "replace_known_left" (formula "10") (term "0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "13")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "12")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "commute_or" (formula "15") (term "1,0,0,1,0")) + (rule "shift_paren_or" (formula "15") (term "0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0,0")) + (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "2") (term "1,1,1,1,1")) + (rule "equal_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_addComm1" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "17") (term "0,1,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "21") (term "0,1,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "5") (term "1,0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "3")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) FALSE" + (rule "powMonoConcrete" (formula "20") (userinteraction)) + (builtin "One Step Simplification" (formula "20")) + (rule "expand_inInt" (formula "26")) + (rule "greater_literals" (formula "20") (term "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "replace_int_MAX" (formula "26") (term "1,0")) + (rule "replace_int_MIN" (formula "26") (term "0,1")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "0,0")) + (rule "polySimp_elimOneLeft0" (formula "26") (term "1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "mod_axiom" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "mod_axiom" (formula "26") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "11")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "15")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_imp2or" (formula "12") (term "0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "commute_and" (formula "22")) + (rule "commute_and" (formula "16")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "12") (term "0,0,0")) + (rule "commute_or_2" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "12") (term "0,0,0,0")) + (rule "qeq_literals" (formula "12") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "arrayLengthIsAShort" (formula "10") (term "0")) + (rule "expand_inShort" (formula "10")) + (rule "replace_short_MIN" (formula "10") (term "0,1")) + (rule "replace_short_MAX" (formula "10") (term "1,0")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "9")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "arrayLengthNotNegative" (formula "10") (term "0")) + (rule "commute_or" (formula "12") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "12") (term "0,0,1,0")) + (rule "arrayLengthIsAShort" (formula "14") (term "0")) + (rule "expand_inShort" (formula "14")) + (rule "replace_short_MIN" (formula "14") (term "0,1")) + (rule "replace_short_MAX" (formula "14") (term "1,0")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "arrayLengthNotNegative" (formula "14") (term "0")) + (rule "div_axiom" (formula "15") (term "0,1,1,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "mul_literals" (formula "15") (term "1,1,1,1")) + (rule "qeq_literals" (formula "15") (term "0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "polySimp_addComm1" (formula "17") (term "1")) + (rule "add_literals" (formula "17") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "applyEq" (formula "11") (term "0,1,1,1,1,1,0,0") (ifseqformula "15")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "11") (term "0,1,1,2,1,0,0") (ifseqformula "15")) + (rule "polySimp_addComm0" (formula "11") (term "1,2,1,0,0")) + (rule "applyEq" (formula "18") (term "0,1,1,2,1,0,0") (ifseqformula "15")) + (rule "polySimp_addComm0" (formula "18") (term "1,2,1,0,0")) + (rule "applyEq" (formula "19") (term "0,0,1") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1")) + (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_geqRight" (formula "19")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "25") (term "0,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "25") (term "1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "9") (term "0,1,1,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "9") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "12") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,1,0,0")) + (rule "applyEq" (formula "13") (term "0,0,0,1,0,1,1,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "25") (term "0,1,1,0,1") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "25") (term "1,0,1")) + (rule "applyEq" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "19") (term "0,0,0,1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,1,2,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "9") (term "1,2,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,2,1,0,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "13") (term "1,2,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,1,0,1,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "16")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,1,0,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,1,0,1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "9") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "mod_axiom" (formula "9") (term "0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1")) + (rule "polySimp_elimOne" (formula "9") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "12") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "mod_axiom" (formula "12") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,1,1,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,0,1,0,1,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,1,1,0,0")) + (rule "leq_literals" (formula "13") (term "0,0,1,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "18") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "mod_axiom" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0,1,0,1,1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,1,1,0,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,0,1,0,1,1,1,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,1,0,0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "18")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "elimGcdGeq_antec" (formula "7") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "8")) + (rule "times_zero_1" (formula "1") (term "1,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaShiftLeftInt" (formula "25") (term "0,1,0")) + (rule "variableDeclarationFinalAssign" (formula "25") (term "1")) + (rule "variableDeclarationFinal" (formula "25") (term "1") (newnames "num_splitters")) + (rule "javaShiftLeftIntDef" (formula "25") (term "0,1,0")) + (rule "shiftLeftDef" (formula "25") (term "0,0,1,0")) + (rule "polySimp_elimNeg" (formula "25") (term "1,1,0,0,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "25") (term "2,0,0,1,0")) + (rule "polySimp_elimOneLeft0" (formula "25") (term "2,0,0,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "25") (term "1,0,0,1,0")) + (rule "expand_moduloInteger" (formula "25") (term "0,1,0")) + (rule "replace_int_MIN" (formula "25") (term "0,0,1,0")) + (rule "replace_int_HALFRANGE" (formula "25") (term "0,0,1,0,1,0")) + (rule "replace_int_RANGE" (formula "25") (term "1,1,0,1,0")) + (rule "assignmentSubtractionInt" (formula "25") (term "1")) + (branch "Overflow check" + (builtin "One Step Simplification" (formula "25")) + (rule "expand_inInt" (formula "25")) + (rule "replace_int_MAX" (formula "25") (term "1,0")) + (rule "replace_int_MIN" (formula "25") (term "0,1")) + (rule "polySimp_elimSub" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1")) + (rule "mul_literals" (formula "25") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1")) + (rule "add_literals" (formula "25") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "add_literals" (formula "25") (term "0,0,1")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,0,1")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,0,1")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "1") (ifseqformula "10")) + (rule "leq_literals" (formula "25") (term "0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "25")) + (builtin "Block Contract (Internal)" (formula "25") (newnames "exc_0,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "7")) (ifInst "" (formula "22")) (ifInst "" (formula "1"))) + (rule "andLeft" (formula "20")) + (rule "eqSymm" (formula "27") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "exc_0_1")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "emptyStatement" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "emptyStatement" (formula "27") (term "1")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24"))) + (rule "castDel" (formula "21") (term "0")) + (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "tryEmpty" (formula "26") (term "1")) + (rule "blockEmptyLabel" (formula "26") (term "1")) + (rule "blockEmpty" (formula "26") (term "1")) + (rule "methodCallEmpty" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "emptyModality" (formula "26") (term "1")) + (rule "andRight" (formula "26")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "26")) + (rule "closeTrue" (formula "26")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "26")) + (rule "closeTrue" (formula "26")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "25")) + (branch "Case 1" + (rule "andRight" (formula "25")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "25")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,3,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0,1,3,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,3,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,3,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,3,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,3,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,3,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,3,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,3,0,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,3,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,3,0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,3,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,3,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,3,0,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,1,3,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,1,3,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "wellFormedStoreObject" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "20"))) + (rule "wellFormedStorePrimitive" (formula "21") (term "0")) + (rule "wellFormedStorePrimitive" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,1")) + (rule "dismissNonSelectedField" (formula "21") (term "0,1")) + (rule "dismissNonSelectedField" (formula "21") (term "0,1")) + (rule "dismissNonSelectedField" (formula "21") (term "0,1")) + (rule "wellFormedStoreObject" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "wellFormedStorePrimitive" (formula "21") (term "0")) + (rule "wellFormedCreate" (formula "21") (term "0")) + (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21"))) + (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "1")) + (rule "close" (formula "22") (ifseqformula "4")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "25")) + (branch "Case 1" + (rule "andRight" (formula "25")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "21"))) + (rule "closeTrue" (formula "25")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25")) + (rule "dismissNonSelectedField" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "9")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "22") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeTrue" (formula "22")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "25")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "26")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "19"))) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "replace_known_left" (formula "21") (term "0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "elim_double_block_2" (formula "27") (term "1")) + (rule "ifUnfold" (formula "27") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_1")) + (rule "inequality_comparison_simple" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "27")) + (rule "arrayLengthNotNegative" (formula "17") (term "0")) + (rule "arrayLengthNotNegative" (formula "13") (term "0")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (rule "expand_inShort" (formula "11")) + (rule "replace_short_MIN" (formula "11") (term "0,1")) + (rule "replace_short_MAX" (formula "11") (term "1,0")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "arrayLengthIsAShort" (formula "17") (term "0")) + (rule "expand_inShort" (formula "17")) + (rule "replace_short_MIN" (formula "17") (term "0,1")) + (rule "replace_short_MAX" (formula "17") (term "1,0")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "ifSplit" (formula "27")) + (branch "if x_1 true" + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_1 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "27") (term "1")) + (rule "assignment_write_attribute_this" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "assignment_write_attribute_this" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (builtin "Use Operation Contract" (formula "27") (newnames "heapBefore_build,exc_1,heapAfter_build,anon_heap_build") (contract "de.wiesler.Tree[de.wiesler.Tree::build([I)].JML normal_behavior operation contract.0")) + (branch "Post (build)" + (builtin "One Step Simplification" (formula "29")) + (builtin "Block Contract (Internal)" (formula "29") (newnames "exc_2,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "30")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "7")) (ifInst "" (formula "26")) (ifInst "" (formula "1"))) + (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "eqSymm" (formula "33") (term "0,0,1,0,1")) + (rule "translateJavaShiftLeftInt" (formula "33") (term "0,1,0,0,1")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "exc_2_1")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "emptyStatement" (formula "33") (term "1")) + (rule "emptyStatement" (formula "33") (term "1")) + (rule "javaShiftLeftIntDef" (formula "33") (term "0,1,0,0,1")) + (rule "shiftLeftDef" (formula "33") (term "0,0,1,0,0,1")) + (rule "polySimp_elimNeg" (formula "33") (term "1,1,0,0,1,0,0,1")) + (rule "shiftLeftPositiveShiftDef" (formula "33") (term "2,0,0,1,0,0,1")) + (rule "polySimp_elimOneLeft0" (formula "33") (term "2,0,0,1,0,0,1")) + (rule "shiftRightPositiveShiftDef" (formula "33") (term "1,0,0,1,0,0,1")) + (rule "pullOutSelect" (formula "23") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfStore" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "castDel" (formula "23") (term "0")) + (rule "applyEqReverse" (formula "24") (term "0,1,0") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "pullOutSelect" (formula "25") (term "1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "25") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30"))) + (rule "sortsDisjointModuloNull" (formula "25") (term "0,0,0")) + (rule "replace_known_right" (formula "25") (term "1,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30"))) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0")) + (rule "pullOutSelect" (formula "26") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_1")) + (rule "simplifySelectOfAnonEQ" (formula "26") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "31"))) + (rule "replaceKnownSelect_taclet0012111_0" (formula "26") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_1" (formula "26") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "26") (term "0,0,0")) + (rule "replace_known_right" (formula "26") (term "0,0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "33"))) + (rule "ifthenelse_negated" (formula "26") (term "0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0")) + (rule "pullOutSelect" (formula "27") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32"))) + (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "34"))) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "27") (term "0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "pullOutSelect" (formula "30") (term "0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "27") (term "0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "25") (term "0,0,0") (ifseqformula "30")) + (rule "simplifySelectOfCreate" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "33"))) + (rule "castDel" (formula "30") (term "0")) + (rule "applyEqReverse" (formula "31") (term "0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "applyEqReverse" (formula "27") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "27")) + (rule "simplifySelectOfStore" (formula "27")) + (builtin "One Step Simplification" (formula "27")) + (rule "castDel" (formula "27") (term "0")) + (rule "applyEqReverse" (formula "26") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "25")) + (rule "simplifySelectOfStore" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "castDel" (formula "25") (term "0")) + (rule "applyEqReverse" (formula "28") (term "1,1,0,2,0,1,0") (ifseqformula "27")) + (rule "applyEqReverse" (formula "28") (term "1,1,1,0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "expand_moduloInteger" (formula "33") (term "0,1,0,0,1")) + (rule "replace_int_HALFRANGE" (formula "33") (term "0,0,1,0,1,0,0,1")) + (rule "replace_int_RANGE" (formula "33") (term "1,1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "33") (term "0,0,1,0,0,1")) + (rule "commute_and" (formula "26") (term "1,0,0")) + (rule "commute_and" (formula "26") (term "0,0,0")) + (rule "shift_paren_and" (formula "26") (term "0,0")) + (rule "commute_and_2" (formula "26") (term "0,0,0")) + (rule "tryEmpty" (formula "33") (term "1")) + (rule "blockEmptyLabel" (formula "33") (term "1")) + (rule "blockEmpty" (formula "33") (term "1")) + (rule "methodCallEmpty" (formula "33") (term "1")) + (rule "emptyModality" (formula "33") (term "1")) + (rule "andRight" (formula "33")) + (branch "Case 1" + (rule "andRight" (formula "33")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "33")) + (rule "ifthenelse_split" (formula "33") (term "1,0,1,0") (userinteraction)) + (branch "t_1.log_buckets@heapAfter_build % 32 < 0 TRUE" + (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,0")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "34") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "34") (term "1,1")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "34") (term "0,0,1,1,1,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "34") (term "0,0,1,1,1,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "replace_known_left" (formula "15") (term "0,1,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_left" (formula "24") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "replace_known_left" (formula "11") (term "0,1,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "11")) + (rule "replace_known_left" (formula "22") (term "0,1,0,1,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "replace_known_left" (formula "16") (term "0,1,0,1,3,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "replace_known_left" (formula "20") (term "0,1,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "20")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "mod_axiom" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "11") (term "0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "16") (term "0,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "33") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "mod_axiom" (formula "26") (term "0,1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,0,1,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,0,1,1")) + (rule "mod_axiom" (formula "20") (term "0,1,1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,0,1,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,0,1,1")) + (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "20")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "10")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_imp2or" (formula "12") (term "0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "22") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "22") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "22") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,2,0,1,0")) + (rule "commute_or" (formula "22") (term "0,0,0")) + (rule "commute_or_2" (formula "12") (term "0,0")) + (rule "div_axiom" (formula "20") (term "0,1,1,1,1,0,1,3,0,0,0,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "20") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "20") (term "0,1,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "equal_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "polySimp_addComm1" (formula "22") (term "1")) + (rule "add_literals" (formula "22") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "applyEq" (formula "12") (term "0,1,1,1,1,0,1,1,1,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "12") (term "0,1,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "11") (term "0,1,1,1,1,0,1,1") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "25") (term "0,1,1,1,1,0,1,1,1,0,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "15") (term "0,1,1,1,1,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,1,0,1,1") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,0,1,1")) + (rule "applyEq" (formula "32") (term "0,1,1,1,1,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,0,0")) + (rule "applyEq" (formula "18") (term "0,1,1,1,1,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,1,0,0")) + (rule "applyEq" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "20")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq0" (formula "21") (ifseqformula "1")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_zero_right" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + (branch "t_1.log_buckets@heapAfter_build % 32 < 0 FALSE" + (rule "powPositive" (formula "34") (term "1,0,1,0") (userinteraction)) + (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,1,1,0,1,0") (userinteraction)) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,1,1,0,1,0") (userinteraction)) + (rule "cut" (inst "cutFormula=leq(pow(Z(2(#)), mod(log_buckets, Z(2(3(#))))), + pow(Z(2(#)), de.wiesler.Constants.LOG_MAX_BUCKETS))<>") (userinteraction)) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) TRUE" + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "36") (term "1,1")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "36") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,0")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "2") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "2") (term "0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "2") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "2") (term "0,1,0,1")) + (rule "greater_literals" (formula "2") (term "1,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "pow_literals" (formula "1") (term "1")) + (rule "replace_known_right" (formula "21") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "21")) + (rule "replace_known_right" (formula "12") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "12")) + (rule "replace_known_right" (formula "25") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "25")) + (rule "replace_known_right" (formula "23") (term "0,1,0,1,1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "23")) + (rule "replace_known_right" (formula "27") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1,0,0,0,0,0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "replace_known_right" (formula "17") (term "0,1,0,1,3,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "17")) + (rule "replace_known_right" (formula "16") (term "0,1,0,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_homoEq" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "inEqSimp_ltRight" (formula "34")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "mod_axiom" (formula "13") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,0")) + (rule "mod_axiom" (formula "26") (term "1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "18") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "mod_axiom" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "mod_axiom" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "22") (term "1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1")) + (rule "mod_axiom" (formula "17") (term "1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1")) + (rule "mod_axiom" (formula "24") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "21")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "11")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "expand_inInt" (formula "15") (term "1,0,0")) + (rule "expand_inInt" (formula "15") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "24") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "24") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,2,0,1,0")) + (rule "commute_or" (formula "24") (term "0,0,0")) + (rule "commute_or_2" (formula "15") (term "0,0")) + (rule "div_axiom" (formula "2") (term "0,1,1,0") (inst "quotient=quotient_0")) + (rule "qeq_literals" (formula "2") (term "0,1,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,1,1,1")) + (rule "equal_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "2")) + (rule "polySimp_addComm1" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "18") (term "0,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "17") (term "0,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,1,1")) + (rule "applyEq" (formula "34") (term "0,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,0")) + (rule "applyEq" (formula "21") (term "0,1,1,1,0,1,1") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,1,1")) + (rule "applyEq" (formula "6") (term "0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "6") (term "1,0")) + (rule "applyEq" (formula "27") (term "0,1,1,1,0,1,1,1,0,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "5") (term "0,1,1,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "5") (term "1,0")) + (rule "applyEq" (formula "16") (term "0,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "applyEq" (formula "23") (term "0,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "applyEq" (formula "25") (term "0,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,3,0,0,0,0,0")) + (rule "applyEq" (formula "18") (term "0,1,1,1,0,1,1,1,0,0") (ifseqformula "2")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "mod_axiom" (formula "17") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0,0,1,0")) + (rule "mod_axiom" (formula "16") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "16") (term "1")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1")) + (rule "add_literals" (formula "16") (term "0,0,1")) + (rule "add_zero_left" (formula "16") (term "0,1")) + (rule "mod_axiom" (formula "33") (term "0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0")) + (rule "mod_axiom" (formula "20") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "20") (term "1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "add_literals" (formula "20") (term "0,0,1")) + (rule "add_zero_left" (formula "20") (term "0,1")) + (rule "mod_axiom" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,1,1,0,0,0")) + (rule "mod_axiom" (formula "15") (term "0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "0,1,0")) + (rule "mul_literals" (formula "15") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "mod_axiom" (formula "22") (term "0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "mod_axiom" (formula "24") (term "1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,3,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "12")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "elimGcdLeq_antec" (formula "2") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "neg_literal" (formula "2") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "12") (term "0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "12") (ifseqformula "2")) + (rule "applyEqRigid" (formula "2") (term "0") (ifseqformula "12")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "11")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "applyEq" (formula "3") (term "0,1,1") (ifseqformula "11")) + (rule "mul_literals" (formula "3") (term "1,1")) + (rule "add_zero_right" (formula "3") (term "1")) + (rule "applyEq" (formula "2") (term "0,1") (ifseqformula "11")) + (rule "times_zero_2" (formula "2") (term "1")) + (rule "applyEq" (formula "5") (term "0,0,1,0") (ifseqformula "11")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "add_zero_left" (formula "5") (term "1,0")) + (rule "applyEqRigid" (formula "18") (term "0,0,1,1,0,0,1,1,1,0,0,0,1,0") (ifseqformula "11")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "16") (term "0,0,1,1,1") (ifseqformula "11")) + (rule "mul_literals" (formula "16") (term "0,1,1,1")) + (rule "add_zero_left" (formula "16") (term "1,1,1")) + (rule "applyEq" (formula "27") (term "0,0,1,1,0,0,1,1,1,0,0,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "27") (term "0,1,1,0,0,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0,0")) + (rule "applyEq" (formula "18") (term "0,0,1,1,0,0,1,1,1,0,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "18") (term "0,1,1,0,0,1,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "16") (term "0,0,1,1,0,0,0") (ifseqformula "11")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "16") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "1") (term "1") (ifseqformula "11")) + (rule "applyEqRigid" (formula "23") (term "0,0,1,1,0,0,0") (ifseqformula "11")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "applyEqRigid" (formula "25") (term "0,0,1,1,0,0,1,3,0,0,0,0,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "25") (term "0,1,1,0,0,1,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,1,3,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "3,0,0,0,0,0")) + (rule "applyEqRigid" (formula "34") (term "0,0,1,1,0,0,0") (ifseqformula "11")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "applyEqRigid" (formula "4") (term "0,0,1,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "4") (term "0,1,0")) + (rule "add_zero_left" (formula "4") (term "1,0")) + (rule "applyEq" (formula "21") (term "0,0,1,1,0,0,1,1") (ifseqformula "11")) + (rule "times_zero_2" (formula "21") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1")) + (rule "applyEq" (formula "17") (term "0,0,1,1,0,0,1,1") (ifseqformula "11")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,1")) + (rule "add_zero_left" (formula "17") (term "1,1,0,0,1,1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "applyEq" (formula "25") (term "0,0,1,1,3,0,0,0,0,0") (ifseqformula "11")) + (rule "mul_literals" (formula "25") (term "0,1,1,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,3,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "3,0,0,0,0,0")) + (rule "applyEqRigid" (formula "21") (term "0,0,1,1,1") (ifseqformula "11")) + (rule "times_zero_2" (formula "21") (term "0,1,1,1")) + (rule "add_zero_left" (formula "21") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "21") (term "1")) + (rule "applyEq" (formula "34") (term "0,0,1,1,0") (ifseqformula "11")) + (rule "mul_literals" (formula "34") (term "0,1,1,0")) + (rule "add_zero_left" (formula "34") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,0,0")) + (rule "times_zero_1" (formula "34") (term "0,0")) + (rule "add_zero_left" (formula "34") (term "0")) + (rule "applyEq" (formula "23") (term "0,0,1,1,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "23") (term "0,1,1,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "applyEqRigid" (formula "18") (term "0,0,1,1,1,1,0,0") (ifseqformula "11")) + (rule "mul_literals" (formula "18") (term "0,1,1,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "27") (term "0,0,1,1,1,1,0,0,0") (ifseqformula "11")) + (rule "times_zero_2" (formula "27") (term "0,1,1,1,1,0,0,0")) + (rule "add_zero_left" (formula "27") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0,0")) + (rule "applyEqRigid" (formula "17") (term "0,0,1,1,1") (ifseqformula "11")) + (rule "times_zero_2" (formula "17") (term "0,1,1,1")) + (rule "add_zero_left" (formula "17") (term "1,1,1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "applyEqRigid" (formula "18") (term "0,0,1,1,1,1,0,0,0,1,0") (ifseqformula "11")) + (rule "mul_literals" (formula "18") (term "0,1,1,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_invertEq" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "mul_literals" (formula "34") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "13")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "11")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "elimGcdEq" (formula "32") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=div(add(Z(8(4(6(3(8(4(7(4(1(2(#))))))))))), + pow(Z(2(#)), log_buckets)), + Z(6(9(2(7(6(9(4(9(2(4(#))))))))))))") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))")) + (builtin "One Step Simplification" (formula "32")) + (rule "mul_literals" (formula "32") (term "0,1,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "1,0,0")) + (rule "add_zero_left" (formula "32") (term "0,1,0")) + (rule "times_zero_1" (formula "32") (term "0,0,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "mul_literals" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,0")) + (rule "qeq_literals" (formula "32") (term "1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "commute_or" (formula "16") (term "1,0,0,1,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "commute_or" (formula "16") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "16") (term "0,0,0")) + (rule "commute_or_2" (formula "16") (term "0,0,1,0")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "commute_or" (formula "16") (term "0,0,0,1,0")) + (rule "div_axiom" (formula "14") (term "0,0") (inst "quotient=quotient_1")) + (rule "equal_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mul_literals" (formula "14") (term "1,1,1,1")) + (rule "qeq_literals" (formula "14") (term "0,1")) + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1")) + (rule "add_literals" (formula "16") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "16") (term "1")) + (rule "add_literals" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "applyEq" (formula "18") (term "0,1,1") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "18") (term "1")) + (rule "applyEq" (formula "19") (term "0,1,1,1,0,0") (ifseqformula "14")) + (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,0,0,0,1,0") (ifseqformula "14")) + (rule "polySimp_addComm1" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "26") (term "0,1,3,0,0,0,0,0") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "26") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "22") (term "0,1,1") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "22") (term "1")) + (rule "applyEq" (formula "24") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "14")) + (rule "applyEq" (formula "28") (term "0,1,1,1,0,0") (ifseqformula "14")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_1") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_strengthen0" (formula "22") (ifseqformula "34")) + (rule "add_zero_right" (formula "22") (term "1")) + (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "22")) + (rule "mul_literals" (formula "34") (term "1,0,0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "15")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq3" (formula "3") (ifseqformula "23")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: pow(2, log_buckets % 32) <= pow(2, de.wiesler.Constants.LOG_MAX_BUCKETS) FALSE" + (rule "powMonoConcrete" (formula "29") (userinteraction)) + (builtin "One Step Simplification" (formula "29")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "36") (term "1,1")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "35") (term "0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "36") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "35") (term "0,0")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,1,0,1")) + (rule "replaceKnownSelect_taclet0012111_4" (formula "1") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012111_9" (formula "1") (term "0,0,0,0")) + (rule "greater_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "greater_literals" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_right" (formula "20") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "20")) + (rule "replace_known_right" (formula "15") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_right" (formula "16") (term "0,1,0,1,3,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "16")) + (rule "replace_known_right" (formula "11") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "11")) + (rule "replace_known_right" (formula "24") (term "0,1,0,1,3,0,0,0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "24")) + (rule "replace_known_right" (formula "22") (term "0,1,0,1,1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "22")) + (rule "replace_known_right" (formula "26") (term "0,1,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1,0,0,0,0,0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "polySimp_homoEq" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "inEqSimp_ltRight" (formula "34")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_geqRight" (formula "29")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "mul_literals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "mod_axiom" (formula "18") (term "1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "13") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,1,0")) + (rule "mod_axiom" (formula "26") (term "1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0")) + (rule "mod_axiom" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "mod_axiom" (formula "35") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "mod_axiom" (formula "22") (term "1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,1,1")) + (rule "mod_axiom" (formula "17") (term "1,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,1,1")) + (rule "mod_axiom" (formula "24") (term "1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "19")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "expand_inInt" (formula "14") (term "1,0,0")) + (rule "expand_inInt" (formula "14") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "23") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "23") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,2,0,1,0")) + (rule "commute_or" (formula "23") (term "0,0,0")) + (rule "commute_or_2" (formula "14") (term "0,0")) + (rule "div_axiom" (formula "21") (term "0,1,1,1,0,1,3,0,0,0,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,1,1,1")) + (rule "qeq_literals" (formula "21") (term "0,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm1" (formula "23") (term "1")) + (rule "add_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,0,1,1,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,1,1,1,0,0")) + (rule "applyEq" (formula "33") (term "0,1,1,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "33") (term "1,1,0,0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,0,1,1") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,1,1")) + (rule "applyEq" (formula "17") (term "0,1,1,1,0,1,1") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,1,1")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "applyEq" (formula "26") (term "0,1,1,1,0,1,1,1,0,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,1,1,0,0,0")) + (rule "applyEq" (formula "14") (term "0,1,1,1,0,1,1,1,0,0,0,1,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,1,1,1,0,0,0,1,0")) + (rule "applyEq" (formula "12") (term "0,1,1,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0")) + (rule "applyEq" (formula "2") (term "0,1,1,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "2") (term "1,0")) + (rule "applyEq" (formula "19") (term "0,1,1,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "applyEq" (formula "24") (term "0,1,1,1,0,1,3,0,0,0,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "mod_axiom" (formula "33") (term "0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0")) + (rule "mod_axiom" (formula "13") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "13") (term "1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,1")) + (rule "add_literals" (formula "13") (term "0,0,1")) + (rule "add_zero_left" (formula "13") (term "0,1")) + (rule "mod_axiom" (formula "17") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "17") (term "1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1")) + (rule "add_literals" (formula "17") (term "0,0,1")) + (rule "add_zero_left" (formula "17") (term "0,1")) + (rule "mod_axiom" (formula "26") (term "1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,1,1,0,0,0")) + (rule "mod_axiom" (formula "14") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,1,1,0,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,1,0,0,0,1,0")) + (rule "mod_axiom" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "mod_axiom" (formula "19") (term "0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0")) + (rule "mul_literals" (formula "19") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "mod_axiom" (formula "24") (term "1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,3,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,3,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "22")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "elimGcdGeq_antec" (formula "8") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "1") (ifseqformula "9")) + (rule "mul_literals" (formula "1") (term "1,1,0")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "29")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1")) + (rule "andLeft" (formula "23")) + (rule "wellFormedAnonEQ" (formula "30") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,0,1,0")) + (rule "replace_known_left" (formula "31") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,1,3,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,0,1,3,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,1,3,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "1,2,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,2,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,1,3,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,1,3,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "11")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "19")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "20") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23"))) + (rule "eqSymm" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "20")) + (rule "ifthenelse_negated" (formula "20") (term "0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "pullOutSelect" (formula "21") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "21") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "24"))) + (rule "eqSymm" (formula "21") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "21") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "21") (term "0,0,0")) + (rule "replace_known_right" (formula "21") (term "1,0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "21")) + (rule "ifthenelse_negated" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "wellFormedStoreObject" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "wellFormedStoreObject" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedCreate" (formula "28") (term "0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "pullOutSelect" (formula "22") (term "1,1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "22") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "25"))) + (rule "eqSymm" (formula "22") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "22") (term "2,0")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "22") (term "0,0,0")) + (rule "replace_known_right" (formula "22") (term "1,0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "22")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "22") (term "2,0")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "22") (term "2,0")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,0")) + (rule "pullOutSelect" (formula "18") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_1")) + (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "18")) + (rule "simplifySelectOfStore" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "castDel" (formula "18") (term "0")) + (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "18")) + (rule "applyEqReverse" (formula "19") (term "0,1,0") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "pullOutSelect" (formula "20") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "23") (term "0,0,0") (ifseqformula "20")) + (rule "simplifySelectOfCreate" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "26"))) + (rule "castDel" (formula "20") (term "0")) + (rule "applyEqReverse" (formula "21") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "22")) + (rule "simplifySelectOfStore" (formula "22")) + (builtin "One Step Simplification" (formula "22")) + (rule "castDel" (formula "22") (term "0")) + (rule "applyEqReverse" (formula "23") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "23")) + (rule "simplifySelectOfStore" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "castDel" (formula "23") (term "0")) + (rule "applyEqReverse" (formula "24") (term "1,1,1,0") (ifseqformula "21")) + (rule "applyEqReverse" (formula "24") (term "1,1,0,2,0,1,0") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,3,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "11") (term "3,0")) + (rule "add_literals" (formula "11") (term "0,3,0")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0")) + (rule "applyEq" (formula "18") (term "1,3,0,0,0,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "18") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "3,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1")) + (rule "polySimp_elimOne" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "1")) + (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24"))) + (rule "applyEqReverse" (formula "28") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "24"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1")) + (rule "close" (formula "28") (ifseqformula "4")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "25"))) + (rule "closeTrue" (formula "29")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "30") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "orRight" (formula "31")) + (rule "andLeft" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "dismissNonSelectedField" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "17")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "pullOutSelect" (formula "20") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23"))) + (rule "eqSymm" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "20")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "20") (term "0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1,1,1,0") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "1,1,0,2,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "20") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "23"))) + (rule "eqSymm" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "2,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "1,0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "20")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "20") (term "0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1,1,0,2,0,1,0") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23"))) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeTrue" (formula "27")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "29")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "26") (term "1") (ifseqformula "23")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "25")) + (rule "translateJavaShiftLeftInt" (formula "27") (term "0")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "polySimp_elimSub" (formula "25") (term "0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "javaShiftLeftIntDef" (formula "27") (term "0")) + (rule "shiftLeftDef" (formula "27") (term "0,0")) + (rule "polySimp_elimNeg" (formula "27") (term "1,1,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "27") (term "2,0,0")) + (rule "polySimp_elimOneLeft0" (formula "27") (term "2,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "27") (term "1,0,0")) + (rule "pullOutSelect" (formula "23") (term "0,1,0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "simplifySelectOfStore" (formula "23")) + (builtin "One Step Simplification" (formula "23")) + (rule "castDel" (formula "23") (term "0")) + (rule "applyEqReverse" (formula "24") (term "0,1,0") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "pullOutSelect" (formula "27") (term "1,1") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "applyEq" (formula "28") (term "0,1,2,0,0") (ifseqformula "27")) + (rule "applyEq" (formula "28") (term "0,0,0,0,0") (ifseqformula "27")) + (rule "applyEq" (formula "28") (term "0,0,1,1,1,0,0") (ifseqformula "27")) + (rule "applyEq" (formula "25") (term "1,1,0,2,0,1,0") (ifseqformula "27")) + (rule "simplifySelectOfAnonEQ" (formula "27") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "30"))) + (rule "dismissNonSelectedField" (formula "27") (term "2,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,0,0")) + (rule "sortsDisjointModuloNull" (formula "27") (term "0,0,0")) + (rule "replace_known_right" (formula "27") (term "0,0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32"))) + (rule "ifthenelse_negated" (formula "27") (term "0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,0")) + (rule "pullOutSelect" (formula "25") (term "1,1,0,0,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0")) + (rule "simplifySelectOfAnonEQ" (formula "25") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "31"))) + (rule "sortsDisjointModuloNull" (formula "25") (term "0,0,0")) + (rule "replace_known_right" (formula "25") (term "0,0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "33"))) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "25") (term "2,0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "25") (term "0")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0")) + (rule "pullOutSelect" (formula "26") (term "1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_1")) + (rule "simplifySelectOfAnonEQ" (formula "26") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "32"))) + (rule "replaceKnownSelect_taclet2012111_0" (formula "26") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_1" (formula "26") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "26") (term "0,0,0")) + (rule "replace_known_right" (formula "26") (term "0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "34"))) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "26") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "26") (term "0")) + (rule "pullOutSelect" (formula "29") (term "1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_1")) + (rule "simplifySelectOfStore" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "castDel" (formula "29") (term "0")) + (rule "applyEqReverse" (formula "30") (term "1,0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "pullOutSelect" (formula "29") (term "0,0,0") (inst "selectSK=java_lang_Object_created__0")) + (rule "applyEq" (formula "25") (term "0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "29")) + (rule "simplifySelectOfCreate" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "33"))) + (rule "castDel" (formula "29") (term "0")) + (rule "applyEqReverse" (formula "30") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "25")) + (rule "simplifySelectOfStore" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "castDel" (formula "25") (term "0")) + (rule "applyEqReverse" (formula "26") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "31") (term "0,1,2,0,0") (ifseqformula "30")) + (rule "applyEqReverse" (formula "31") (term "0,0,0,0,0") (ifseqformula "30")) + (rule "applyEqReverse" (formula "27") (term "1,1,0,2,0,1,0") (ifseqformula "30")) + (rule "applyEqReverse" (formula "31") (term "1,1") (ifseqformula "30")) + (rule "applyEqReverse" (formula "31") (term "0,0,1,1,1,0,0") (ifseqformula "30")) + (rule "applyEqReverse" (formula "27") (term "1,1,1,0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "expand_moduloInteger" (formula "28") (term "0")) + (rule "replace_int_RANGE" (formula "28") (term "1,1,0")) + (rule "replace_int_HALFRANGE" (formula "28") (term "0,0,1,0")) + (rule "replace_int_MIN" (formula "28") (term "0,0")) + (rule "commute_and" (formula "26") (term "1,0,0")) + (rule "commute_and" (formula "26") (term "0,0,0")) + (rule "elim_double_block_2" (formula "34") (term "1")) + (rule "shift_paren_and" (formula "26") (term "0,0")) + (rule "commute_and_2" (formula "26") (term "0,0,0")) + (rule "ifUnfold" (formula "34") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_2")) + (rule "inequality_comparison_simple" (formula "34") (term "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "34")) + (rule "ifSplit" (formula "34")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "34") (term "1")) + (rule "emptyStatement" (formula "34") (term "1")) + (builtin "Block Contract (Internal)" (formula "34") (newnames "exc_3,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "7")) (ifInst "" (formula "31")) (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1") (ifseqformula "23")) + (rule "expand_inInt" (formula "35") (term "1,0,0,1,0,0,1")) + (rule "replace_int_MAX" (formula "35") (term "1,0,1,0,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "35") (term "0,1,1,0,0,1,0,0,1")) + (rule "andLeft" (formula "29")) + (rule "eqSymm" (formula "36") (term "0,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "30") (term "0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "0,0")) + (rule "dismissNonSelectedField" (formula "30") (term "0,0")) + (rule "replaceKnownSelect_taclet2012111_7" (formula "30") (term "0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,1,0,0,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "35") (term "1")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "exc_3_1")) + (rule "assignment" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "emptyStatement" (formula "35") (term "1")) + (rule "emptyStatement" (formula "35") (term "1")) + (rule "tryEmpty" (formula "35") (term "1")) + (rule "blockEmptyLabel" (formula "35") (term "1")) + (rule "blockEmpty" (formula "35") (term "1")) + (rule "methodCallEmpty" (formula "35") (term "1")) + (rule "emptyModality" (formula "35") (term "1")) + (rule "andRight" (formula "35")) + (branch "Case 1" + (rule "andRight" (formula "35")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "35")) + (rule "closeTrue" (formula "35")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "35")) + (rule "allRight" (formula "35") (inst "sk=i_0") (userinteraction)) + (rule "Contract_axiom_for_piInRangeLower_in_Tree" (formula "35") (term "0,0,1") (userinteraction)) + (rule "Contract_axiom_for_piInRangeUpper_in_Tree" (formula "36") (term "0,1,1") (userinteraction)) + (rule "impLeft" (formula "1") (userinteraction)) + (branch "Case 1" + (rule "impLeft" (formula "1") (userinteraction)) + (branch "Case 1" + (rule "wellFormedAnonEQ" (formula "31") (term "1") (ifseqformula "23")) + (rule "wellFormedAnonEQ" (formula "30") (term "1") (ifseqformula "23")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "37") (term "1,1,0,0")) + (rule "impRight" (formula "37")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "3")) + (rule "replace_known_left" (formula "34") (term "1,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "35") (term "1,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_homoEq" (formula "29")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,3,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,3,0,0,0,0,1")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0,1,3,0,0,0,0,1")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "add_zero_right" (formula "35") (term "0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0")) + (rule "replace_known_left" (formula "34") (term "1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0")) + (rule "replace_known_left" (formula "35") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0")) + (rule "replace_known_left" (formula "34") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,1,0")) + (rule "replace_known_left" (formula "35") (term "0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "32") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "32") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "29") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "29") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "32") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "29") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "34") (term "1,2,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "18") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "18") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "35") (term "1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "applyEq" (formula "23") (term "0,1,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "34") (term "1,3,0,0,0,0,1") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "34") (term "3,0,0,0,0,1")) + (rule "add_literals" (formula "34") (term "0,3,0,0,0,0,1")) + (rule "add_zero_left" (formula "34") (term "3,0,0,0,0,1")) + (rule "applyEq" (formula "27") (term "1,3,0,0,0,0,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "27") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "19") (term "1,3,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "19") (term "3,0")) + (rule "add_literals" (formula "19") (term "0,3,0")) + (rule "applyEq" (formula "35") (term "1,3,0,0,0,0,1") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "35") (term "3,0,0,0,0,1")) + (rule "add_literals" (formula "35") (term "0,3,0,0,0,0,1")) + (rule "add_zero_left" (formula "35") (term "3,0,0,0,0,1")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "applyEq" (formula "14") (term "1,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "add_zero_left" (formula "14") (term "0")) + (rule "applyEq" (formula "29") (term "0,1,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0")) + (rule "applyEq" (formula "18") (term "0,1,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "applyEqReverse" (formula "30") (term "1,1,0,0,0,0,0") (ifseqformula "29")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1")) + (rule "polySimp_elimOne" (formula "23") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "1")) + (rule "polySimp_elimOne" (formula "18") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "replace_known_left" (formula "33") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "33")) + (rule "replace_known_left" (formula "34") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "33"))) + (rule "false_right" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "15")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "23")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "13")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "10")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "wellFormedStoreObject" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "31"))) + (rule "wellFormedStorePrimitive" (formula "27") (term "0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1")) + (rule "wellFormedStoreObject" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "32"))) + (rule "wellFormedStorePrimitive" (formula "27") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "27") (term "0,0")) + (rule "wellFormedCreate" (formula "27") (term "0,0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0")) + (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "applyEqReverse" (formula "28") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34"))) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "1")) + (rule "close" (formula "29") (ifseqformula "7")) + ) + (branch "Case 2" + (rule "Contract_axiom_for_piLemmaUpperBound_in_Tree" (formula "31") (term "0,1,1,0") (userinteraction)) + (rule "wellFormedAnonEQ" (formula "32") (term "1") (ifseqformula "25")) + (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "25")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "38") (term "1,1,0,0")) + (rule "impRight" (formula "38")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "42") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "42")) + (rule "replace_known_left" (formula "5") (term "1,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "1"))) + (rule "replace_known_left" (formula "36") (term "1,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "36")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_homoEq" (formula "34")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,3,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "0,1,0,1,3,0,0,0,0,1")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0")) + (rule "replace_known_left" (formula "36") (term "0,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0")) + (rule "replace_known_left" (formula "36") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "mod_axiom" (formula "29") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "16") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "16") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "29") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "5") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "5") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "31") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "34") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "29") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "16") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "5") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "36") (term "1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "36") (term "1,2,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,2,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "36") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "20") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "20") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "applyEq" (formula "36") (term "1,3,0,0,0,0,1") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "36") (term "3,0,0,0,0,1")) + (rule "add_literals" (formula "36") (term "0,3,0,0,0,0,1")) + (rule "add_zero_left" (formula "36") (term "3,0,0,0,0,1")) + (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0")) + (rule "applyEq" (formula "20") (term "0,1,0") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "31")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "21") (term "1,3,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "21") (term "3,0")) + (rule "add_literals" (formula "21") (term "0,3,0")) + (rule "applyEq" (formula "29") (term "1,3,0,0,0,0,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "29") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "5") (term "1,3,0,0,0,0,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "5") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "add_zero_left" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "1")) + (rule "polySimp_elimOne" (formula "34") (term "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "34")) + (rule "applyEqReverse" (formula "27") (term "1,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "20") (term "0,0,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "25") (term "0,0,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "31") (term "1,1") (ifseqformula "34")) + (rule "applyEqReverse" (formula "5") (term "3,0,0,0,0,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "36") (term "3,0,0,0,0,1") (ifseqformula "34")) + (rule "applyEqReverse" (formula "29") (term "3,0,0,0,0,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "21") (term "1,3,0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "16") (term "0") (ifseqformula "34")) + (rule "applyEqReverse" (formula "32") (term "1,1,0,0,0,0,0") (ifseqformula "34")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "1")) + (rule "polySimp_elimOne" (formula "20") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "1")) + (rule "polySimp_elimOne" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "14")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "16")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "14")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "22")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "wellFormedStoreObject" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33"))) + (rule "wellFormedStorePrimitive" (formula "4") (term "0,0")) + (rule "dismissNonSelectedField" (formula "4") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "4") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "4") (term "0,1,0")) + (rule "dismissNonSelectedField" (formula "4") (term "0,1,0")) + (rule "wellFormedStoreObject" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "33"))) + (rule "wellFormedStorePrimitive" (formula "29") (term "0,1")) + (rule "dismissNonSelectedField" (formula "29") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "29") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "29") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "29") (term "0,1,1")) + (rule "wellFormedStoreObject" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34"))) + (rule "wellFormedStorePrimitive" (formula "4") (term "0,0,0")) + (rule "wellFormedStorePrimitive" (formula "4") (term "0,0,0")) + (rule "wellFormedCreate" (formula "4") (term "0,0,0")) + (rule "replace_known_left" (formula "4") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "4")) + (rule "dismissNonSelectedField" (formula "4") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "4") (term "0,0,0")) + (rule "wellFormedStoreObject" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34"))) + (rule "wellFormedStorePrimitive" (formula "29") (term "0,0,1")) + (rule "wellFormedStorePrimitive" (formula "29") (term "0,0,1")) + (rule "wellFormedCreate" (formula "29") (term "0,0,1")) + (rule "replace_known_left" (formula "29") (term "0,0,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,1")) + (rule "pullOutSelect" (formula "4") (term "0,1,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "applyEq" (formula "30") (term "0,1,1") (ifseqformula "4")) + (rule "simplifySelectOfCreate" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32"))) + (rule "castDel" (formula "4") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "4") (term "0,0")) + (rule "replace_known_right" (formula "4") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34"))) + (rule "applyEqReverse" (formula "5") (term "0,1,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "30") (term "0,1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "replace_known_left" (formula "4") (term "1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "29") (term "1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "pullOutSelect" (formula "4") (term "0,0") (inst "selectSK=java_lang_Object_created__2")) + (rule "applyEq" (formula "31") (term "0,1") (ifseqformula "4")) + (rule "simplifySelectOfCreate" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33"))) + (rule "castDel" (formula "4") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "4") (term "0,0")) + (rule "replace_known_right" (formula "4") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "36"))) + (rule "applyEqReverse" (formula "5") (term "0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "31") (term "0,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "replace_known_left" (formula "30") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "Case 2" + (rule "wellFormedAnonEQ" (formula "2") (term "1,0") (ifseqformula "25")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "37") (term "1,1,0,0")) + (rule "impRight" (formula "37")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "41") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "41")) + (rule "replace_known_left" (formula "6") (term "1,1,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "41"))) + (rule "notLeft" (formula "6")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1,0,1,3,0")) + (rule "mul_literals" (formula "20") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,0,1,3,0,0,0,0,1")) + (rule "mul_literals" (formula "35") (term "1,0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "add_zero_right" (formula "35") (term "0,0,0,1,0,1,3,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0")) + (rule "replace_known_left" (formula "35") (term "1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0")) + (rule "replace_known_left" (formula "35") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "mul_literals" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "20") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "28") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "20") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "20") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "30") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "30") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "33") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "33") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "30") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "33") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "35") (term "1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "35") (term "1,2,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,2,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,1,1,1,1,0,1,3,0,0,0,0,1")) + (rule "mod_axiom" (formula "26") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "26") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "26") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "24") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "24") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0")) + (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "add_zero_left" (formula "15") (term "0")) + (rule "applyEq" (formula "24") (term "0,1,0") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0")) + (rule "applyEq" (formula "28") (term "1,3,0,0,0,0,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "28") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "20") (term "1,3,0") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "20") (term "3,0")) + (rule "add_literals" (formula "20") (term "0,3,0")) + (rule "applyEq" (formula "35") (term "1,3,0,0,0,0,1") (ifseqformula "30")) + (rule "polySimp_addAssoc" (formula "35") (term "3,0,0,0,0,1")) + (rule "add_literals" (formula "35") (term "0,3,0,0,0,0,1")) + (rule "add_zero_left" (formula "35") (term "3,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_sepPosMonomial" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "1")) + (rule "polySimp_elimOne" (formula "33") (term "1")) + (rule "applyEqReverse" (formula "30") (term "1,1") (ifseqformula "33")) + (rule "applyEqReverse" (formula "28") (term "3,0,0,0,0,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "33")) + (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "31") (term "1,1,0,0,0,0,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "24") (term "0,0,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "20") (term "1,3,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "35") (term "3,0,0,0,0,1") (ifseqformula "33")) + (rule "applyEqReverse" (formula "26") (term "1,0") (ifseqformula "33")) + (rule "applyEqReverse" (formula "15") (term "0") (ifseqformula "33")) + (rule "hideAuxiliaryEq" (formula "33")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1")) + (rule "polySimp_elimOne" (formula "19") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "1")) + (rule "polySimp_elimOne" (formula "24") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "14")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "1")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "24")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "20")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "11")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "12")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "wellFormedStoreObject" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "32"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "wellFormedStoreObject" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedCreate" (formula "28") (term "0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "pullOutSelect" (formula "28") (term "0,1") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "applyEqReverse" (formula "29") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35"))) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "1")) + (rule "close" (formula "30") (ifseqformula "8")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "35")) + (rule "closeTrue" (formula "35")) + ) + ) + (branch "Precondition" + (rule "andRight" (formula "34")) + (branch "Case 1" + (rule "andRight" (formula "34")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "7"))) + (rule "closeTrue" (formula "34")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "34")) + (rule "wellFormedAnonEQ" (formula "34") (ifseqformula "23")) + (rule "replace_known_left" (formula "34") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,3,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,1,3,0,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,3,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,1,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "34") (term "1,2,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,2,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "34") (term "1,0,0,1,0,1,3,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,3,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,3,0,0,0,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "15") (term "3,0")) + (rule "add_literals" (formula "15") (term "0,3,0")) + (rule "applyEq" (formula "34") (term "1,3,0,0,0,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "34") (term "3,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,3,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "3,0,0,0,0")) + (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0")) + (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1")) + (rule "polySimp_elimOne" (formula "28") (term "1")) + (rule "applyEqReverse" (formula "34") (term "3,0,0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "23") (term "3,0,0,0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "14") (term "0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "10") (term "0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "26") (term "1,1,0,0,0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "28")) + (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "15") (term "1,3,0") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1")) + (rule "polySimp_elimOne" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "10")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "15")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "wellFormedStoreObject" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "26"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "dismissNonSelectedField" (formula "28") (term "0,1")) + (rule "wellFormedStoreObject" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "27"))) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedStorePrimitive" (formula "28") (term "0,0")) + (rule "wellFormedCreate" (formula "28") (term "0,0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "28")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "dismissNonSelectedField" (formula "28") (term "0,0")) + (rule "pullOutSelect" (formula "28") (term "0,1") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27"))) + (rule "applyEqReverse" (formula "29") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=java_lang_Object_created__2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "1")) + (rule "close" (formula "30") (ifseqformula "4")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "34")) + (branch "Case 1" + (rule "andRight" (formula "34")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "30"))) + (rule "closeTrue" (formula "34")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "34")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (ifseqformula "23")) + (rule "orRight" (formula "34")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "dismissNonSelectedField" (formula "34") (term "0")) + (rule "replaceKnownSelect_taclet2012111_7" (formula "34") (term "0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "closeTrue" (formula "34")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "34")) + ) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "35")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "29") (term "1,1") (ifseqformula "23")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "expand_inInt" (formula "29") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "29") (term "1,0,1,0,0,1,0")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "replace_known_left" (formula "31") (term "0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0")) + (rule "commute_and" (formula "30") (term "1,0,0")) + (rule "commute_and" (formula "30") (term "0,0,0")) + (rule "shift_paren_and" (formula "30") (term "0,0")) + (rule "commute_and_2" (formula "30") (term "0,0,0")) + (rule "elim_double_block_2" (formula "36") (term "1")) + (rule "ifUnfold" (formula "36") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "replace_known_left" (formula "36") (term "0,0,1,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "36")) + (rule "ifSplit" (formula "36")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "emptyStatement" (formula "36") (term "1")) + (rule "methodCallEmpty" (formula "36") (term "1")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "assignment_write_attribute" (formula "36")) + (branch "Normal Execution (self_207 != null)" + (builtin "One Step Simplification" (formula "36")) + (rule "tryEmpty" (formula "36") (term "1")) + (rule "emptyModality" (formula "36") (term "1")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "36")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,1,0,1,1")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,3,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,3,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "mul_literals" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "23") (term "1,2,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,2,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,1,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "25") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,1,3,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,3,0,0,0,0,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "applyEq" (formula "10") (term "1,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "applyEq" (formula "19") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0")) + (rule "applyEq" (formula "28") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0")) + (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "14") (term "0,1,0") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0")) + (rule "applyEq" (formula "15") (term "1,3,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "15") (term "3,0")) + (rule "add_literals" (formula "15") (term "0,3,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "1")) + (rule "polySimp_elimOne" (formula "28") (term "1")) + (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "28")) + (rule "applyEqReverse" (formula "10") (term "0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "15") (term "1,3,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "19") (term "0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "30") (term "1,1,0,0,0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "14") (term "0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "26") (term "1,1,0,0,0,0,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "21") (term "1,0") (ifseqformula "28")) + (rule "applyEqReverse" (formula "23") (term "3,0,0,0,0,0") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "1")) + (rule "polySimp_elimOne" (formula "19") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "1")) + (rule "polySimp_elimOne" (formula "14") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "21")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_and_subsumption3" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_and_subsumption3" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "31") (inst "i=i") (inst "i_0=i_0")) + (builtin "One Step Simplification" (formula "31")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1")) + (rule "expand_inInt" (formula "31") (term "1,0,0,1,0")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1")) + (rule "replace_int_MAX" (formula "31") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "31") (term "0,1,1,0,0,1,0")) + (rule "eqSymm" (formula "31") (term "1,0,1")) + (rule "translateJavaSubInt" (formula "31") (term "3,0,1,0,0")) + (rule "translateJavaShiftLeftInt" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "translateJavaSubInt" (formula "31") (term "0,2,0,1,0,1")) + (rule "polySimp_elimSub" (formula "31") (term "3,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "1,3,0,1,0,0")) + (rule "polySimp_elimSub" (formula "31") (term "0,2,0,1,0,1")) + (rule "mul_literals" (formula "31") (term "1,0,2,0,1,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "3,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,1,0,1,0")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,0,1,1,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,0,1,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,1,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,1,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "0,0,1,0,0,0,0,0,0,0")) + (rule "replace_known_right" (formula "31") (term "0,1,0,0,0,0,0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "31")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,1")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,0,0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,0,0,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "eqSymm" (formula "31") (term "1,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,1,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "0,1,1,1,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "0,1,1,1,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "0,1,1,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "0,1,1,0,0,0,0,0,0")) + (rule "replace_known_left" (formula "31") (term "1,1,0,0,0,0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "31")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "0,1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "0,1,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,0,1,0,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,0,1,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,0,0,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,0,1,0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,0,1,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,0,0,0,0,0,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,1,0,1")) + (rule "replaceKnownSelect_taclet2012111_4" (formula "31") (term "1,1,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_11" (formula "31") (term "1,1,1,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,1,0,1,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,1,1,0,1,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,1,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "1,3,0,1,0,0")) + (rule "replaceKnownSelect_taclet2012111_3" (formula "31") (term "1,3,0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet001212012111_12" (formula "31") (term "1,3,0,1,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "0,1,1,0,0,0")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "1,1,0,2,0,1,0,1")) + (rule "replaceKnownSelect_taclet2012111_2" (formula "31") (term "1,1,0,2,0,1,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_10" (formula "31") (term "1,1,0,2,0,1,0,1")) + (rule "dismissNonSelectedField" (formula "31") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,0,0")) + (rule "replace_known_left" (formula "31") (term "1,1,0,0,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0,0")) + (rule "replace_known_left" (formula "31") (term "1,0,0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,0,0,0,0,0")) + (rule "replace_known_left" (formula "31") (term "1,0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "1,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "javaShiftLeftIntDef" (formula "31") (term "0,1,0,0,0,0")) + (rule "mod_axiom" (formula "31") (term "1,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,0,0,0")) + (rule "shiftLeftDef" (formula "31") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimNeg" (formula "31") (term "1,1,0,0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,1,0,0,1,0,0,0,0")) + (rule "shiftLeftPositiveShiftDef" (formula "31") (term "2,0,0,1,0,0,0,0")) + (rule "polySimp_elimOneLeft0" (formula "31") (term "2,0,0,1,0,0,0,0")) + (rule "shiftRightPositiveShiftDef" (formula "31") (term "1,0,0,1,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,1,0,0,0,0")) + (rule "pullOutSelect" (formula "31") (term "0,0,1,0,0,0") (inst "selectSK=de_wiesler_Tree_sorted_splitters_0")) + (rule "applyEq" (formula "32") (term "1,0,1,0,1") (ifseqformula "1")) + (rule "applyEq" (formula "32") (term "0,0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "32") (term "1,0,1,0,0") (ifseqformula "1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28"))) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "replaceKnownSelect_taclet2012111_7" (formula "1") (term "0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet2012111_9" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "32") (term "1,0,1,0,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "32") (term "1,0,1,0,1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "32") (term "0,0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "32") (term "0,0,1,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "31") (term "1,0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "30"))) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "expand_moduloInteger" (formula "31") (term "0,0,0,0")) + (rule "replace_int_HALFRANGE" (formula "31") (term "0,0,1,0,0,0,0")) + (rule "replace_int_RANGE" (formula "31") (term "1,1,0,0,0,0")) + (rule "replace_int_MIN" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_homoEq" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0")) + (rule "applyEq" (formula "31") (term "0,1,0,0,0,0") (ifseqformula "21")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "12")) + (rule "expand_inInt" (formula "12") (term "1,0,0")) + (rule "expand_inInt" (formula "12") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "12") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_imp2or" (formula "31") (term "0,1")) + (rule "nnf_imp2or" (formula "31") (term "0,1,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,1,0,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,1")) + (rule "nnf_notAnd" (formula "31") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "nnf_imp2or" (formula "12") (term "0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0,1")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0,1")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0,1")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,1")) + (rule "nnf_notAnd" (formula "12") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "31") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "31") (term "0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "12") (term "1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,1,0,0,1,0")) + (rule "div_axiom" (formula "21") (term "0,1,1,2,1,0,0") (inst "quotient=quotient_0")) + (rule "equal_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,1,1,1")) + (rule "qeq_literals" (formula "21") (term "0,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm1" (formula "23") (term "1")) + (rule "add_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "applyEq" (formula "24") (term "0,0,0,1,0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0")) + (rule "applyEq" (formula "24") (term "0,1,1,1,1,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "24") (term "0,1,1,2,1,0,0") (ifseqformula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,1,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "mod_axiom" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0")) + (rule "polySimp_homoEq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1")) + (rule "newSym_eq" (formula "24") (inst "l=l_0") (inst "newSymDef=add(mul(pow(Z(2(#)), log_buckets), Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + log_buckets)), + Z(0(#))))")) + (rule "times_zero_1" (formula "24") (term "0,1,1")) + (rule "times_zero_1" (formula "24") (term "1,1,1")) + (rule "add_zero_right" (formula "24") (term "1,1")) + (rule "add_zero_right" (formula "24") (term "1")) + (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "24")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polyDiv_pullOut" (formula "24") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_homoEq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0")) + (rule "add_zero_left" (formula "24") (term "0")) + (rule "polySimp_invertEq" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "24")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "elimGcdGeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "0,1") (ifseqformula "6")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "6")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEqRigid" (formula "24") (term "0,1,1") (ifseqformula "6")) + (rule "mul_literals" (formula "24") (term "1,1")) + (rule "add_literals" (formula "24") (term "1")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "6")) + (rule "applyEq" (formula "26") (term "0,0,1,0") (ifseqformula "6")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "add_zero_left" (formula "26") (term "1,0")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "7")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "8")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "elimGcdEq" (formula "24") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(6(9(2(7(6(9(4(9(2(4(#)))))))))))")) + (builtin "One Step Simplification" (formula "24")) + (rule "add_zero_left" (formula "24") (term "0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,1,0")) + (rule "times_zero_1" (formula "24") (term "0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "times_zero_1" (formula "24") (term "0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,1,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Definition_axiom_for_piInRangeUpper_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "25") (term "1,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm1" (formula "25") (term "1,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,2,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "34") (term "0,0,0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "34")) + (rule "expand_inInt" (formula "34") (term "1,0,0,0,0")) + (rule "expand_inInt" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,0,0")) + (rule "replace_int_MAX" (formula "34") (term "1,0,1,0,0,1,0,0,0")) + (rule "replace_int_MIN" (formula "34") (term "0,1,1,0,0,1,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "0,1,0,1,0,0,0")) + (rule "dismissNonSelectedField" (formula "34") (term "1,1,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0,0,0")) + (rule "commute_or" (formula "25") (term "0,0,0")) + (rule "commute_or_2" (formula "13") (term "0,0")) + (rule "nnf_imp2or" (formula "34") (term "0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0,0")) + (rule "nnf_imp2or" (formula "34") (term "0,1,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,1,0,0,0")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,0,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,0,1,0,0,0")) + (rule "nnf_notAnd" (formula "34") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,1,1,0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,0,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,1,0,0,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,0,0,1,0,0,0")) + (rule "Definition_axiom_for_piInRangeLower_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,1,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,1,0,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "34") (term "1,0,2,0,1,0,1")) + (rule "translateJavaSubInt" (formula "34") (term "0,1,1,1,0,2,0,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,1,0,2,0,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,1,0,2,0,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,1,0,2,0,1,0,1")) + (rule "mul_literals" (formula "34") (term "1,0,1,1,1,0,2,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,2,0,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,0,2,0,1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,2,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,0,2,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,1,0,2,0,1,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,0,2,0,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,2,0,1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,2,0,1,0,1")) + (rule "polySimp_mulComm1" (formula "34") (term "1,1,0,2,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,1,0,2,0,1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,2,0,1,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,2,0,1,0,1")) + (rule "polySimp_mulComm1" (formula "34") (term "1,0,1,0,2,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,0,1,0,2,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,2,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,2,0,1,0,1")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,1,1,0")) + (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,0,1,1,1,0")) + (rule "Definition_axiom_for_pi_in_de_wiesler_Tree" (formula "28") (term "0,0,1,0")) + (rule "translateJavaSubInt" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm1" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,1,0")) + (rule "commute_or" (formula "13") (term "1,0,0,0")) + (rule "div_axiom" (formula "23") (term "0") (inst "quotient=quotient_1")) + (rule "qeq_literals" (formula "23") (term "0,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "mul_literals" (formula "23") (term "1,1,1,1")) + (rule "equal_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "add_literals" (formula "25") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "1")) + (rule "add_literals" (formula "25") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0,1,0,0") (ifseqformula "26")) + (rule "mul_literals" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "26")) + (rule "times_zero_2" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "23") (term "1") (ifseqformula "26")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "18")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "11")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "commute_or" (formula "29") (term "0,0,0")) + (rule "commute_or" (formula "13") (term "0,0,0,1,0")) + (rule "andRight" (formula "35")) + (branch "Case 1" + (rule "commute_or_2" (formula "29") (term "0,0")) + (rule "shift_paren_or" (formula "13") (term "0,0,0")) + (rule "cnf_rightDist" (formula "29") (term "0")) + (rule "distr_forallAnd" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "commute_or" (formula "30") (term "0")) + (rule "commute_or_2" (formula "13") (term "0,0,1,0")) + (rule "commute_or" (formula "13") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "13") (term "0,0,0,0")) + (rule "qeq_literals" (formula "13") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "allRight" (formula "36") (inst "sk=i_0")) + (rule "orRight" (formula "36")) + (rule "cutUpperBound" (formula "36") (ifseqformula "13")) + (branch "Case 1" + (rule "crossInst" (formula "14") (inst "sk=i_1") (ifseqformula "37")) + (rule "orRight" (formula "38")) + (rule "andLeft" (formula "14")) + (rule "orRight" (formula "40")) + (rule "orRight" (formula "39")) + (rule "allRight" (formula "43") (inst "sk=j_0")) + (rule "orRight" (formula "43")) + (rule "orRight" (formula "43")) + (rule "orRight" (formula "44")) + (rule "orRight" (formula "43")) + (rule "polySimp_homoEq" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "41")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "42")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "42")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "47")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_leqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "applyEq" (formula "24") (term "0,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "1,1,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0,2,1,1,0,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0,1,0,0,1,0") (ifseqformula "23")) + (rule "polySimp_sepPosMonomial" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "applyEq" (formula "32") (term "3,0,0,0,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "2") (term "0,1,0") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "42") (term "1,1,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "28") (term "1") (ifseqformula "10")) + (rule "applyEq" (formula "24") (term "1,0,1,0") (ifseqformula "10")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "24") (term "0,1,0")) + (rule "add_literals" (formula "24") (term "1,0,1,0")) + (rule "times_zero_1" (formula "24") (term "0,1,0")) + (rule "leq_literals" (formula "24") (term "1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "applyEq" (formula "40") (term "1,1,0,0") (ifseqformula "10")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0") (ifseqformula "10")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0")) + (rule "applyEq" (formula "6") (term "0,1,0") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_literals" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "Case 2" + (rule "crossInst" (formula "14") (inst "sk=i_1") (ifseqformula "37")) + (rule "orRight" (formula "38")) + (rule "notLeft" (formula "1")) + (rule "andLeft" (formula "13")) + (rule "orRight" (formula "40")) + (rule "orRight" (formula "39")) + (rule "allRight" (formula "43") (inst "sk=j_0")) + (rule "orRight" (formula "43")) + (rule "orRight" (formula "43")) + (rule "orRight" (formula "44")) + (rule "orRight" (formula "43")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "inEqSimp_leqRight" (formula "42")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "42")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "41")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "42")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_geqRight" (formula "46")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "47")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_leqRight" (formula "47")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "applyEqRigid" (formula "23") (term "0,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "0,2,1,1,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0,1,0,0,1,0") (ifseqformula "22")) + (rule "polySimp_sepPosMonomial" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1")) + (rule "polySimp_rightDist" (formula "42") (term "1")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1")) + (rule "mul_literals" (formula "42") (term "0,1")) + (rule "polySimp_elimOne" (formula "42") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0")) + (rule "inEqSimp_contradEq7" (formula "42") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0")) + (rule "add_literals" (formula "42") (term "0,0")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "false_right" (formula "42")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "7")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "22") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "7")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "5") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "46"))) + (rule "eqSymm" (formula "5") (term "0,0,0")) + (rule "replace_known_right" (formula "5") (term "0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "5")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "ifthenelse_negated" (formula "5") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "7")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "pullOutSelect" (formula "5") (term "1,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfCreate" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44"))) + (rule "applyEqReverse" (formula "6") (term "1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44"))) + (rule "castDel" (formula "5") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "5") (term "0,0")) + (rule "replace_known_right" (formula "5") (term "1,0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "44"))) + (rule "applyEqReverse" (formula "6") (term "0,0,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "5") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "46"))) + (rule "eqSymm" (formula "5") (term "0,0,0")) + (rule "replace_known_right" (formula "5") (term "0,0,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "5")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "5") (term "2,0")) + (rule "dismissNonSelectedField" (formula "5") (term "0,0,0,0")) + (rule "replaceKnownSelect_taclet100001212012111_19" (formula "5") (term "0,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet100001212012111_20" (formula "5") (term "0,0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "5")) + (rule "simplifySelectOfCreate" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "43"))) + (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "7")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "commute_or" (formula "23") (term "0,0,0,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "commute_or" (formula "22") (term "0,0,0,0")) + (rule "all_pull_out3" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "23") (term "0,0")) + (rule "shift_paren_or" (formula "23") (term "0,0,0")) + (rule "shift_paren_or" (formula "23") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "23") (term "0,0,0,0,0")) + (rule "allLeft" (formula "22") (inst "t=j_0")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,1")) + (rule "leq_literals" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "22") (term "0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "4")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "3")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "36") (inst "sk=i_0_0")) + (rule "orRight" (formula "36")) + (rule "orRight" (formula "36")) + (rule "orRight" (formula "36")) + (rule "orRight" (formula "38")) + (rule "inEqSimp_geqRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "39")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "39")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "3")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "commute_or" (formula "16") (term "0,0,0,0,1,0")) + (rule "all_pull_out3" (formula "16") (term "0")) + (rule "shift_paren_or" (formula "16") (term "0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0,0,0")) + (rule "andRight" (formula "39")) + (branch "Case 1" + (rule "inEqSimp_leqRight" (formula "39")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "allLeft" (formula "33") (inst "t=i_0_0")) + (rule "inEqSimp_commuteGeq" (formula "33") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "33") (term "1,0,0") (ifseqformula "3")) + (rule "qeq_literals" (formula "33") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "33") (term "0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradInEq2" (formula "1") (ifseqformula "33")) + (rule "greater_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "greater_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "inEqSimp_geqRight" (formula "39")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "allLeft" (formula "34") (inst "t=i_0_0")) + (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0")) + (rule "inEqSimp_contradInEq2" (formula "34") (term "1") (ifseqformula "1")) + (rule "greater_literals" (formula "34") (term "0,0,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "greater_literals" (formula "34") (term "0,0,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1")) + (rule "add_zero_right" (formula "34") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1")) + (rule "add_zero_right" (formula "34") (term "0,0,1")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1")) + (rule "add_literals" (formula "34") (term "0,0,1")) + (rule "leq_literals" (formula "34") (term "0,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_contradInEq1" (formula "34") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1")) + (rule "add_literals" (formula "34") (term "0,0,1")) + (rule "leq_literals" (formula "34") (term "0,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_contradInEq0" (formula "34") (term "1") (ifseqformula "3")) + (rule "qeq_literals" (formula "34") (term "0,1")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "33")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "35") (inst "sk=i_0")) + (rule "orRight" (formula "35")) + (rule "orRight" (formula "35")) + (rule "orRight" (formula "36")) + (rule "orRight" (formula "35")) + (rule "inEqSimp_leqRight" (formula "38")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38"))) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "dismissNonSelectedField" (formula "1") (term "2,0")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "pullOutSelect" (formula "39") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "40") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "1,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36"))) + (rule "applyEqReverse" (formula "2") (term "1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "2")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "1") (term "0,0,0") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "applyEqReverse" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "38")) + (rule "commute_or_2" (formula "32") (term "0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "commute_or_2" (formula "16") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "32") (term "0")) + (rule "distr_forallAnd" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "commute_or" (formula "33") (term "0")) + (rule "commute_or" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "commute_or" (formula "16") (term "0,0,0,0,1,0")) + (rule "all_pull_out3" (formula "16") (term "0")) + (rule "shift_paren_or" (formula "16") (term "0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0,0,0")) + (rule "allLeft" (formula "29") (inst "t=i_0")) + (rule "replaceKnownSelect_taclet1001212012111_17" (formula "29") (term "1,1")) + (rule "replaceKnownSelect_taclet1001212012111_16" (formula "29") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1001212012111_18" (formula "29") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1001212012111_23" (formula "29") (term "0,1")) + (rule "replace_known_right" (formula "29") (term "1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteGeq" (formula "29") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "29") (term "1,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "29") (term "0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,1")) + (rule "leq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "29")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "28")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "36")) + (rule "closeTrue" (formula "36")) + ) + ) + (branch "Null Reference (self_207 = null)" + (rule "false_right" (formula "37")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + ) + ) + (branch "Exceptional Post (build)" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "23")) + (rule "expand_inInt" (formula "23") (term "1,0,0,0,1,1")) + (rule "replace_int_MIN" (formula "23") (term "0,1,1,0,0,0,1,1")) + (rule "replace_int_MAX" (formula "23") (term "1,0,1,0,0,0,1,1")) + (rule "andLeft" (formula "23")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "24") (term "1,0") (ifseqformula "23")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "26")) + (rule "notLeft" (formula "24")) + (rule "close" (formula "27") (ifseqformula "26")) + ) + (branch "Pre (build)" + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "26")) (ifInst "" (formula "26")) (ifInst "" (formula "26"))) + (rule "translateJavaShiftLeftInt" (formula "27") (term "1,0,1,1,1,1,1,0")) + (rule "translateJavaShiftLeftInt" (formula "27") (term "0,3,0,1,1,1,1,1,1,0")) + (rule "translateJavaSubInt" (formula "27") (term "3,0,1,1,1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "3,0,1,1,1,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "3,0,1,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,1")) + (rule "disjointDefinition" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "0,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,1,3,0,1,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "19") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,1")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,1,0,1,3,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,1,0,1,3,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0,1,0,1,3,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,0,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "1,0,1,1,1,1,1,0")) + (rule "dismissNonSelectedField" (formula "27") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,1,0,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,1,0,0,1,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,1,0,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,1,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,1,1,0,1,3,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,1,1,1,0,1,3,0")) + (rule "mod_axiom" (formula "15") (term "1,2,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,2,1,0,1,3,0")) + (rule "mod_axiom" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "10") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,1")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "10") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "15") (term "1,0,0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0,1,3,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "mod_axiom" (formula "19") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,2,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,1,1,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,1,1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,1,1,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,1,0,1,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,1,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,2,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,2,1,0,1,3,0,0,0,0,0,1,1,0,1,1,1,1,0")) + (rule "mod_axiom" (formula "27") (term "1,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,3,0,0,1,0,1,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "0,1,0,1,3,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,0,1,0,1,3,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,1,1,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,3,0,1,1,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,1,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,1,1,0,1,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,0,0,0,1,0,1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,1,3,0,0,0,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27") (term "0,1,1,1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "8")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "17")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "pullOutSelect" (formula "22") (term "0,1,1") (inst "selectSK=java_lang_Object_created__0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "1,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "19"))) + (rule "applyEqReverse" (formula "23") (term "0,1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "22") (term "1,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "22")) + (rule "javaShiftLeftIntDef" (formula "22") (term "1,3,0,1,1,1,1,1,1,0")) + (rule "wellFormedStoreObject" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "20"))) + (rule "wellFormedStorePrimitive" (formula "22") (term "0,1")) + (rule "dismissNonSelectedField" (formula "22") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "22") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "22") (term "0,1,1")) + (rule "dismissNonSelectedField" (formula "22") (term "0,1,1")) + (rule "shiftLeftDef" (formula "22") (term "0,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,1,3,0,1,1,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,1,3,0,1,1,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,1,3,0,1,1,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,1,3,0,1,1,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,1,3,0,1,1,1,1,1,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,1,3,0,1,1,1,1,1,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0,1,3,0,1,1,1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,1,3,0,1,1,1,1,1,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,1,3,0,1,1,1,1,1,1,0")) + (rule "javaShiftLeftIntDef" (formula "22") (term "0,0,1,1,1,1,1,0")) + (rule "wellFormedStoreObject" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "21"))) + (rule "wellFormedStorePrimitive" (formula "22") (term "0,0,1")) + (rule "wellFormedStorePrimitive" (formula "22") (term "0,0,1")) + (rule "wellFormedCreate" (formula "22") (term "0,0,1")) + (rule "replace_known_left" (formula "22") (term "0,0,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "22")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,1")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,1")) + (rule "replaceKnownSelect_taclet212111_0" (formula "22") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet212111_1" (formula "22") (term "0,0,1")) + (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "22")) + (rule "shiftLeftDef" (formula "22") (term "0,0,0,1,1,1,1,1,0")) + (rule "polySimp_elimNeg" (formula "22") (term "1,1,0,0,0,1,1,1,1,1,0")) + (rule "shiftLeftPositiveShiftDef" (formula "22") (term "2,0,0,0,1,1,1,1,1,0")) + (rule "polySimp_elimOneLeft0" (formula "22") (term "2,0,0,0,1,1,1,1,1,0")) + (rule "shiftRightPositiveShiftDef" (formula "22") (term "1,0,0,0,1,1,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,0,0,0,1,1,1,1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0,1,1,1,1,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,1,1,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,1,1,1,1,1,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,1,1,1,1,1,0")) + (rule "pullOutSelect" (formula "22") (term "0,0,1,0,1,1,1,1,0") (inst "selectSK=de_wiesler_Tree_tree_0")) + (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,0,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "23") (term "0,0,1,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,0,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_right" (formula "22") (term "0,0,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "20"))) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0,1,1,0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "14")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "16")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "10")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "16")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "pullOutSelect" (formula "22") (term "0,1,0,1,0") (inst "selectSK=de_wiesler_Tree_log_buckets_0")) + (rule "applyEq" (formula "23") (term "0,1,2,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,1,1,1,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,0,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,1,1,1,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,1,2,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "applyEqReverse" (formula "23") (term "0,1,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,1,2,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,1,1,1,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,0,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,1,1,1,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,1,2,0,1,3,0,1,1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "23") (term "0,0,0,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "22") (term "0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "7"))) + (rule "mod_axiom" (formula "22") (term "1,2,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,0,1,3,0,1,1,1,0")) + (rule "mod_axiom" (formula "22") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0,1,1,0")) + (rule "mod_axiom" (formula "22") (term "0,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,0,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,3,0,1,1,1,0")) + (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,1,3,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,1,3,0,1,1,1,0")) + (rule "mod_axiom" (formula "22") (term "0,1,1,1,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,1,1,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,1,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,1,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,1,0,0,0,1,1,0")) + (rule "mod_axiom" (formula "22") (term "1,2,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0,1,1,0")) + (rule "eqSymm" (formula "22") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,3,0,1,1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,3,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,3,0,1,1,1,0")) + (rule "pullOutSelect" (formula "22") (term "0,1,0,1,0") (inst "selectSK=de_wiesler_Tree_num_buckets_0")) + (rule "applyEq" (formula "23") (term "0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0,0,1,1,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "0")) + (rule "eqSymm" (formula "23") (term "0,1,1,0")) + (rule "polySimp_homoEq" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "applyEq" (formula "23") (term "1,3,0,0,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "3,0,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "23") (term "0,3,0,0,0,0,0,1,1,1,0")) + (rule "add_zero_left" (formula "23") (term "3,0,0,0,0,0,1,1,1,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,3,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "3,0")) + (rule "add_literals" (formula "11") (term "0,3,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1")) + (rule "polySimp_elimOne" (formula "13") (term "1")) + (rule "replace_known_left" (formula "23") (term "1,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1")) + (rule "polySimp_elimOne" (formula "10") (term "1")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0,1") (inst "selectSK=java_lang_Object_created__1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "20"))) + (rule "castDel" (formula "1") (term "1,0")) + (rule "sortsDisjointModuloNull" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "22"))) + (rule "applyEqReverse" (formula "24") (term "0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_left" (formula "23") (term "1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "expand_moduloInteger" (formula "24") (term "0,0")) + (rule "replace_int_RANGE" (formula "24") (term "1,1,0,0")) + (rule "replace_int_HALFRANGE" (formula "24") (term "0,0,1,0,0")) + (rule "replace_int_MIN" (formula "24") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0")) + (rule "applyEq" (formula "24") (term "0,1,0,0") (ifseqformula "1")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_moduloInteger" (formula "24") (term "1,3,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,3,0")) + (rule "replace_int_HALFRANGE" (formula "24") (term "0,0,1,1,3,0")) + (rule "replace_int_RANGE" (formula "24") (term "1,1,1,3,0")) + (rule "polySimp_addAssoc" (formula "24") (term "3,0")) + (rule "add_literals" (formula "24") (term "0,3,0")) + (rule "applyEq" (formula "24") (term "1,3,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "3,0")) + (rule "add_literals" (formula "24") (term "0,3,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "11")) + (rule "expand_inInt" (formula "11") (term "1,0,0")) + (rule "expand_inInt" (formula "11") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0")) + (rule "replace_int_MIN" (formula "11") (term "0,1,1,0,0,1,0")) + (rule "replace_int_MAX" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "nnf_imp2or" (formula "11") (term "0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "expand_inInt" (formula "24") (term "1,0,0")) + (rule "expand_inInt" (formula "24") (term "1,0,0,1,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0")) + (rule "replace_int_MAX" (formula "24") (term "1,0,1,0,0,1,0")) + (rule "replace_int_MIN" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "allRight" (formula "24") (inst "sk=i_0")) + (rule "impRight" (formula "24")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "28") (inst "sk=j_0")) + (rule "impRight" (formula "28")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "dismissNonSelectedField" (formula "32") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "1")) + (rule "dismissNonSelectedField" (formula "32") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "1")) + (rule "dismissNonSelectedField" (formula "32") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "1")) + (rule "dismissNonSelectedField" (formula "32") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "1")) + (rule "dismissNonSelectedField" (formula "32") (term "0")) + (rule "dismissNonSelectedField" (formula "32") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "6")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfCreate" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "27")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "7")) + (rule "times_zero_1" (formula "6") (term "0,0")) + (rule "add_zero_left" (formula "6") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "commute_or_2" (formula "19") (term "0,0")) + (rule "ifthenelse_split" (formula "9") (term "1,0,0")) + (branch "log_buckets / 32 * 32 >= 1 + log_buckets TRUE" + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "commute_or" (formula "20") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0,1,0")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0")) + (rule "div_axiom" (formula "9") (term "0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "9") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "9") (term "0,1,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "equal_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "polySimp_addComm1" (formula "11") (term "1")) + (rule "add_literals" (formula "11") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,1,0,0") (ifseqformula "9")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,1,0,0")) + (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "12")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "log_buckets / 32 * 32 >= 1 + log_buckets FALSE" + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_or_subsumption0" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "commute_or" (formula "20") (term "0,0,0,1,0")) + (rule "commute_or_2" (formula "20") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,0,0,1,0")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0,0,0")) + (rule "div_axiom" (formula "10") (term "0,1,1,1,0,0") (inst "quotient=quotient_0")) + (rule "mul_literals" (formula "10") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "equal_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "polySimp_addComm1" (formula "12") (term "1")) + (rule "add_literals" (formula "12") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "applyEq" (formula "13") (term "0,1,1,1,0,0") (ifseqformula "10")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "mod_axiom" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "newSym_eq" (formula "12") (inst "l=l_0") (inst "newSymDef=add(mul(de_wiesler_Tree_num_buckets_0<>, + Z(0(#))), + mul(pow(Z(2(#)), + add(mul(quotient_0, Z(neglit(2(3(#))))), + log_buckets)), + Z(0(#))))")) + (rule "times_zero_1" (formula "12") (term "1,1,1")) + (rule "times_zero_1" (formula "12") (term "0,1,1")) + (rule "add_zero_left" (formula "12") (term "1,1")) + (rule "add_zero_right" (formula "12") (term "1")) + (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "12")) + (rule "polySimp_homoEq" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1")) + (rule "applyEq" (formula "12") (term "1,0,0") (ifseqformula "13")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polyDiv_pullOut" (formula "12") (term "0") (inst "polyDivCoeff=l_0")) + (rule "equal_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,0,0")) + (rule "times_zero_1" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "polySimp_invertEq" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "11")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "elimGcdGeq_antec" (formula "19") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "mul_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "leq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "21")) + (rule "polySimp_mulAssoc" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "elimGcdLeq_antec" (formula "10") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=quotient_0") (inst "elimGcd=Z(2(3(#)))")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0")) + (rule "neg_literal" (formula "10") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_antiSymm" (formula "20") (ifseqformula "10")) + (rule "applyEqRigid" (formula "12") (term "0,1,1") (ifseqformula "20")) + (rule "mul_literals" (formula "12") (term "1,1")) + (rule "add_zero_right" (formula "12") (term "1")) + (rule "applyEq" (formula "11") (term "0,1") (ifseqformula "20")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "qeq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "20")) + (rule "leq_literals" (formula "10")) + (rule "true_left" (formula "10")) + (rule "applyEqRigid" (formula "13") (term "0,0,1,0") (ifseqformula "19")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "add_zero_left" (formula "13") (term "1,0")) + (rule "applyEq" (formula "9") (term "1") (ifseqformula "19")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "10") (ifseqformula "20")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "allLeft" (formula "22") (inst "t=i_0")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0,0,0,0,0,0") (ifseqformula "8")) + (rule "qeq_literals" (formula "22") (term "0,1,0,0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq0" (formula "22") (term "1,0,0,0,0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,1,0,0,0,0,0,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0,0,0,0,0") (ifseqformula "6")) + (rule "qeq_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "div_axiom" (formula "10") (term "0") (inst "quotient=quotient_1")) + (rule "mul_literals" (formula "10") (term "1,1,1,1,1")) + (rule "qeq_literals" (formula "10") (term "0,1,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "equal_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "polySimp_addAssoc" (formula "12") (term "0,1")) + (rule "add_literals" (formula "12") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "12") (term "1")) + (rule "add_literals" (formula "12") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "13")) + (rule "eqSymm" (formula "10")) + (rule "applyEq" (formula "11") (term "0,1,0,0") (ifseqformula "10")) + (rule "mul_literals" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "applyEq" (formula "12") (term "0,1,0,0") (ifseqformula "10")) + (rule "mul_literals" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "33")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "11") (ifseqformula "27")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "allLeft" (formula "23") (inst "t=j_0")) + (rule "inEqSimp_contradInEq0" (formula "23") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,1")) + (rule "leq_literals" (formula "23") (term "0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,1")) + (rule "leq_literals" (formula "23") (term "0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "23") (term "0") (ifseqformula "4")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "3")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "add_zero_right" (formula "23") (term "0")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + ) + ) + ) + ) + ) +) +) +} diff --git a/src/main/key-overflow/project-constr.key b/src/main/key-overflow/project-constr.key new file mode 100644 index 0000000..ef4d21e --- /dev/null +++ b/src/main/key-overflow/project-constr.key @@ -0,0 +1,50 @@ +\settings { +"#Proof-Settings-Config-File +#Thu May 05 18:49:23 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-constr-overflow"; + +\chooseContract diff --git a/src/main/key-overflow/project.key b/src/main/key-overflow/project.key new file mode 100644 index 0000000..e0438d0 --- /dev/null +++ b/src/main/key-overflow/project.key @@ -0,0 +1,50 @@ +\settings { +"#Proof-Settings-Config-File +#Thu May 05 18:49:23 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-overflow"; + +\chooseContract diff --git a/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof index bb8c8b1..eba1388 100644 --- a/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/BucketPointers/de.wiesler.BucketPointers(de.wiesler.BucketPointers__BucketPointers((I,int,int,(I)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../../main/java"; +\javaSource "../../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Mon Apr 11 22:25:00 CEST 2022 diff --git a/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof index 4c62a07..f913b13 100644 --- a/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Buffers/de.wiesler.Buffers(de.wiesler.Buffers__Buffers((I,(I,int)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../../main/java"; +\javaSource "../../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Thu May 05 18:54:06 CEST 2022 diff --git a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof index efeb03b..b899e1c 100644 --- a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__Classifier((I,(I,int,boolean)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../../main/java"; +\javaSource "../../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Mon Apr 11 20:11:07 CEST 2022 diff --git a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof index 012af03..cf99bb8 100644 --- a/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Classifier/de.wiesler.Classifier(de.wiesler.Classifier__from_sorted_samples((I,(I,int,int)).JML normal_behavior operation contract.0.proof @@ -63,7 +63,7 @@ name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I, (keyLog "3" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) (keyLog "4" (keyUser "weigl" ) (keyVersion "e1a85b31e7")) -(autoModeTime "123863") +(autoModeTime "63662") (branch "dummy ID" (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) @@ -144,12 +144,10756 @@ name=de.wiesler.Classifier[de.wiesler.Classifier\\:\\:from_sorted_samples([I,[I, (rule "variableDeclarationAssign" (formula "17") (term "1")) (rule "variableDeclaration" (formula "17") (term "1") (newnames "x_1")) (rule "assignmentSubtractionInt" (formula "17") (term "1")) -(branch "Overflow check" - (builtin "One Step Simplification" (formula "17")) - (rule "closeTrue" (formula "17")) + (builtin "One Step Simplification" (formula "17")) +(rule "translateJavaSubInt" (formula "17") (term "0,1,0")) +(rule "polySimp_elimSub" (formula "17") (term "0,1,0")) +(rule "mul_literals" (formula "17") (term "1,0,1,0")) +(rule "polySimp_addComm0" (formula "17") (term "0,1,0")) +(rule "assignmentSubtractionInt" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) +(rule "translateJavaSubInt" (formula "17") (term "0,1,0")) +(rule "polySimp_elimSub" (formula "17") (term "0,1,0")) +(rule "greater_equal_than_comparison_simple" (formula "17") (term "1")) + (builtin "One Step Simplification" (formula "17")) +(rule "variableDeclarationAssign" (formula "17") (term "1")) +(rule "variableDeclaration" (formula "17") (term "1") (newnames "log_buckets")) +(rule "compound_addition_1" (formula "17") (term "1") (inst "#v=x")) +(rule "variableDeclarationAssign" (formula "17") (term "1")) +(rule "variableDeclaration" (formula "17") (term "1") (newnames "x_2")) + (builtin "Use Operation Contract" (formula "17") (newnames "heapBefore_log2,result_21,exc_25") (contract "de.wiesler.Constants[de.wiesler.Constants::log2(int)].JML normal_behavior operation contract.0")) +(branch "Post (log2)" + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "assignmentAdditionInt" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (builtin "Block Contract (Internal)" (formula "19") (newnames "result_22,exc_26,heap_Before_BLOCK,savedHeap_Before_BLOCK,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "4")) (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "16")) + (rule "translateJavaAddInt" (formula "19") (term "0,0,0")) + (rule "eqSymm" (formula "19") (term "0,0,1,0,1")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "19") (term "1")) + (rule "variableDeclaration" (formula "19") (term "1") (newnames "exc_26_1")) + (rule "assignment" (formula "19") (term "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "emptyStatement" (formula "19") (term "1")) + (rule "emptyStatement" (formula "19") (term "1")) + (rule "tryEmpty" (formula "19") (term "1")) + (rule "blockEmptyLabel" (formula "19") (term "1")) + (rule "blockEmpty" (formula "19") (term "1")) + (rule "methodCallEmpty" (formula "19") (term "1")) + (rule "emptyModality" (formula "19") (term "1")) + (rule "andRight" (formula "19")) + (branch "Case 1" + (rule "andRight" (formula "19")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "19")) + (rule "cut" (inst "cutFormula=geq(result_21<>, + de.wiesler.Constants.LOG_MAX_BUCKETS)<>") (userinteraction)) + (branch "CUT: result_21 >= 7 TRUE" + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "15") (userinteraction)) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "impLeft" (formula "18") (userinteraction)) + (branch "Case 1" + (rule "notRight" (formula "19")) + (rule "inEqSimp_leqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "14") (term "0,1,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "1,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "14") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "14") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "14") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "14") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "add_literals" (formula "14") (term "0,0,1,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "mod_axiom" (formula "13") (term "0,1,0")) + (rule "div_literals" (formula "13") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "2")) + (rule "translateJavaShiftLeftIntConstant" (formula "18") (term "0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "16")) + (rule "true_left" (formula "16")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "1")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "javaShiftLeftIntDef" (formula "14") (term "0")) + (rule "mod_axiom" (formula "14") (term "1,0,0")) + (rule "div_literals" (formula "14") (term "0,0,1,1,0,0")) + (rule "times_zero_2" (formula "14") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "add_literals" (formula "14") (term "1,0,0")) + (rule "shiftleft_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "expand_moduloInteger" (formula "14") (term "0")) + (rule "replace_int_RANGE" (formula "14") (term "1,1,0")) + (rule "replace_int_MIN" (formula "14") (term "0,0")) + (rule "replace_int_HALFRANGE" (formula "14") (term "0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "mod_axiom" (formula "14") (term "0,1,0")) + (rule "div_literals" (formula "14") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,1,0")) + (rule "times_zero_2" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "14")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "6")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "closeFalse" (formula "13")) + ) + (branch "Case 2" + (rule "shiftLeftLowerBoundGe" (formula "17") (term "0") (ifseqformula "1") (userinteraction)) + (rule "translateJavaAddInt" (formula "19") (term "1,1")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "16"))) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_addComm0" (formula "19") (term "1,1")) + (rule "translateJavaShiftLeftIntConstant" (formula "17") (term "1")) + (rule "inEqSimp_leqRight" (formula "24")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "13") (term "1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0")) + (rule "mod_axiom" (formula "13") (term "0,1,0")) + (rule "div_literals" (formula "13") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "1")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "javaShiftLeftIntDef" (formula "15") (term "0")) + (rule "mod_axiom" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "div_literals" (formula "15") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,0,0")) + (rule "add_literals" (formula "15") (term "1,0,0")) + (rule "shiftleft_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "expand_moduloInteger" (formula "16") (term "1")) + (rule "replace_int_HALFRANGE" (formula "16") (term "0,0,1,1")) + (rule "replace_int_RANGE" (formula "16") (term "1,1,1")) + (rule "replace_int_MIN" (formula "16") (term "0,1")) + (rule "add_literals" (formula "16") (term "0,1,1")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "mod_axiom" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0")) + (rule "div_literals" (formula "16") (term "0,1,1,0")) + (rule "times_zero_2" (formula "16") (term "1,1,0")) + (rule "add_zero_right" (formula "16") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "16")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_antiSymm" (formula "15") (ifseqformula "6")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "mul_literals" (formula "9") (term "1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "applyEq" (formula "7") (term "1,1,0,0,0,0") (ifseqformula "15")) + (rule "add_literals" (formula "7") (term "1,0,0,0,0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "15")) + (rule "leq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "14")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "17") (term "1,1") (ifseqformula "14")) + (rule "add_literals" (formula "17") (term "1")) + (rule "applyEq" (formula "13") (term "1") (ifseqformula "14")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "8")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "7")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + (branch "CUT: result_21 >= 7 FALSE" + (rule "inEqSimp_geqRight" (formula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "20")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,0,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "13") (term "1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0")) + (rule "mod_axiom" (formula "13") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0,1,0")) + (rule "add_literals" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "19")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "20")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "20") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,1,0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "replace_known_left" (formula "19") (term "0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "polySimp_addComm0" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "0")) + (rule "elim_double_block_2" (formula "22") (term "1")) + (rule "ifUnfold" (formula "22") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "x_3")) + (rule "inequality_comparison_simple" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "replace_known_left" (formula "22") (term "0,0,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "22")) + (rule "arrayLengthNotNegative" (formula "12") (term "0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "13")) + (rule "qeq_literals" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthIsAShort" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "arrayLengthNotNegative" (formula "13") (term "0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "14")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "arrayLengthIsAShort" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "ifSplit" (formula "22")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "23")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "actual_num_buckets")) + (rule "assignmentShiftLeftInt" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (builtin "Block Contract (Internal)" (formula "22") (newnames "result_23,exc_27,heap_Before_BLOCK_0,savedHeap_Before_BLOCK_0,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "4")) (ifInst "" (formula "1"))) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "19")) + (rule "eqSymm" (formula "22") (term "0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "22") (term "1")) + (rule "variableDeclaration" (formula "22") (term "1") (newnames "exc_27_1")) + (rule "assignment" (formula "22") (term "1")) + (builtin "One Step Simplification" (formula "22")) + (rule "emptyStatement" (formula "22") (term "1")) + (rule "emptyStatement" (formula "22") (term "1")) + (rule "tryEmpty" (formula "22") (term "1")) + (rule "blockEmptyLabel" (formula "22") (term "1")) + (rule "blockEmpty" (formula "22") (term "1")) + (rule "methodCallEmpty" (formula "22") (term "1")) + (rule "emptyModality" (formula "22") (term "1")) + (rule "andRight" (formula "22")) + (branch "Case 1" + (rule "andRight" (formula "22")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "22")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "22")) + (rule "shiftLeftUpperBoundLe" (formula "22") (term "1") (ifseqformula "17") (userinteraction)) + (rule "leq_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "translateJavaShiftLeftIntConstant" (formula "1") (term "1,1")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9") (term "1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "times_zero_2" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "13") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "13") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "14")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "mod_axiom" (formula "13") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "13") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "13") (term "1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0")) + (rule "mod_axiom" (formula "13") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,1,0")) + (rule "div_literals" (formula "13") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "13") (term "1,0,1,0")) + (rule "add_zero_right" (formula "13") (term "0,1,0")) + (rule "mul_literals" (formula "13") (term "1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "10")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "javaShiftLeftIntConstantDef" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,1")) + (rule "div_literals" (formula "2") (term "0,1,1,0,0,1")) + (rule "times_zero_2" (formula "2") (term "1,1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "1,0,0,1")) + (rule "shiftleft_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_commuteGeq" (formula "2") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "10")) + (rule "mul_literals" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "mul_literals" (formula "9") (term "1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "expand_moduloInteger" (formula "2") (term "1,1")) + (rule "replace_int_RANGE" (formula "2") (term "1,1,1,1")) + (rule "replace_int_HALFRANGE" (formula "2") (term "0,0,1,1,1")) + (rule "replace_int_MIN" (formula "2") (term "0,1,1")) + (rule "add_literals" (formula "2") (term "0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1")) + (rule "polySimp_addComm1" (formula "2") (term "0,1")) + (rule "mod_axiom" (formula "2") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,1")) + (rule "div_literals" (formula "2") (term "0,1,1,0,1")) + (rule "times_zero_2" (formula "2") (term "1,1,0,1")) + (rule "add_zero_right" (formula "2") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "2") (term "1") (ifseqformula "1")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "inEqSimp_geqRight" (formula "19")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "1")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaAddInt" (formula "15") (term "1,1,1,1")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "18") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "18") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "15")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltRight" (formula "22")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "12") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "12") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "mod_axiom" (formula "12") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "12") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "12") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "12") (term "1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0")) + (rule "mod_axiom" (formula "12") (term "0,1,0")) + (rule "div_literals" (formula "12") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "times_zero_2" (formula "12") (term "1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "8")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "nnf_imp2or" (formula "7") (term "0")) + (rule "nnf_notAnd" (formula "7") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "7") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "7") (term "1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,1")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "17") (term "0,0") (ifseqformula "20")) + (rule "mul_literals" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "20")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "16")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "22")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "20")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "12")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "elim_double_block_2" (formula "26") (term "1")) + (rule "ifUnfold" (formula "26") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_4")) + (rule "inequality_comparison_simple" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "26")) + (rule "ifSplit" (formula "26")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "26") (term "1")) + (rule "for_to_while" (formula "26") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "i")) + (rule "assignment" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "elim_double_block_3" (formula "26") (term "1")) + (rule "loopScopeInvDia" (formula "26") (term "1") (newnames "i_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (branch "Invariant Initially Valid" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (rule "andRight" (formula "26")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "26")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "mod_axiom" (formula "11") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "11") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "11") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "11") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "div_literals" (formula "11") (term "0,0,1,1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "times_zero_2" (formula "11") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "11") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "11") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "11") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "11") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "add_literals" (formula "11") (term "0,0,1,0")) + (rule "mod_axiom" (formula "11") (term "0,1,0")) + (rule "div_literals" (formula "11") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,1,0")) + (rule "times_zero_2" (formula "11") (term "1,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,1,0")) + (rule "mul_literals" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "7")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "20")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "25") (term "0")) + (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "2"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaAddInt" (formula "12") (term "1,1,1,1")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "0,1")) + (rule "replace_known_left" (formula "15") (term "1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption0" (formula "13") (ifseqformula "17")) + (rule "leq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "allRight" (formula "26") (inst "sk=i_1_0")) + (rule "impRight" (formula "26")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "commute_or" (formula "10") (term "0,0")) + (rule "cut_direct" (formula "22") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "cut_direct" (formula "27") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "allLeft" (formula "10") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0")) + (rule "leq_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "1")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_literals" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "27")) + (rule "allLeft" (formula "10") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "10")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "22")) + (rule "cut_direct" (formula "27") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "allLeft" (formula "10") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "10")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "27")) + (rule "allLeft" (formula "10") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "10") (term "0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "10") (term "0,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "10") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,1")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,1")) + (rule "add_literals" (formula "10") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,1")) + (rule "add_literals" (formula "10") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1")) + (rule "add_zero_right" (formula "10") (term "0,0,1")) + (rule "leq_literals" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "5")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + ) + ) + (branch "Invariant Preserved and Used" + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0,1,1,0,1,0,0,0")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0,1,0,1,0,1")) + (rule "translateJavaSubInt" (formula "27") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "27") (term "0,1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "27") (term "0,2,1,1,0,1,0,0,0")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0")) + (rule "translateJavaSubInt" (formula "27") (term "2,2,0,0,0,0,1,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "27") (term "2,1,0,0,1,0,1,0,0,0")) + (rule "translateJavaSubInt" (formula "27") (term "0,1,1,0,1")) + (rule "impRight" (formula "27")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "2")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "34") (term "1,0,0,1,0,1,1,0,1")) + (rule "eqSymm" (formula "34") (term "1,0,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "2,1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,2,1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "mul_literals" (formula "34") (term "1,2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1")) + (rule "mul_literals" (formula "34") (term "1,0,2,1,1,0,1,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "0,1,1,0")) + (rule "polySimp_elimSub" (formula "7") (term "2,1,0,0")) + (rule "mul_literals" (formula "7") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "4") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "0,2,1,1,0")) + (rule "mul_literals" (formula "4") (term "1,0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "2,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,0,1,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0")) + (rule "polySimp_addComm0" (formula "7") (term "2,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "2,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,1,0,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,1,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,1,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,0,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "6")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "variableDeclaration" (formula "34") (term "1") (newnames "x_5")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "20")) + (rule "inEqSimp_commuteGeq" (formula "6")) + (rule "elementOfArrayRange" (formula "34") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1")) + (rule "pullOutSelect" (formula "4") (term "1,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_and" (formula "5") (term "0,0")) + (rule "commute_and" (formula "3") (term "0,0")) + (rule "ifElseUnfold" (formula "35") (term "1") (inst "#boolv=x_6")) + (rule "variableDeclaration" (formula "35") (term "1") (newnames "x_6")) + (rule "less_than_comparison_simple" (formula "35") (term "1")) + (builtin "One Step Simplification" (formula "35")) + (rule "ifElseSplit" (formula "35")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v1=x_7") (inst "#v2=x_6") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_8")) + (rule "assignment" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_7")) + (rule "eval_order_array_access5" (formula "36") (term "1") (inst "#v1=x_9") (inst "#ar1=x_arr_1")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr_1")) + (rule "assignment" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_9")) + (rule "assignmentSubtractionInt" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "translateJavaSubInt" (formula "36") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "36") (term "0,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0")) + (rule "assignment_array2" (formula "36")) + (branch "Normal Execution (x_arr_1 != null)" + (builtin "One Step Simplification" (formula "36")) + (rule "replaceKnownSelect_taclet112120_0" (formula "36") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "36")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "36")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "preincrement" (formula "36") (term "1")) + (rule "compound_int_cast_expression" (formula "36") (term "1") (inst "#v=x_6")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_10")) + (rule "remove_parentheses_right" (formula "36") (term "1")) + (rule "assignmentAdditionInt" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "translateJavaAddInt" (formula "36") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "36") (term "1")) + (rule "assignment" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "blockEmpty" (formula "36") (term "1")) + (rule "lsContinue" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "allRight" (formula "36") (inst "sk=j_0")) + (rule "impRight" (formula "36")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "38")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "inEqSimp_commuteGeq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "8") (term "1,1,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "38") (term "3,0,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "38") (term "3,0,1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "mod_axiom" (formula "22") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "22") (term "0,1,1,2,1,0,0,1,0")) + (rule "times_zero_2" (formula "22") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "22") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "22") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "22") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "22") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "add_literals" (formula "22") (term "0,0,1,0")) + (rule "mod_axiom" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "div_literals" (formula "22") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "22") (term "1,0,1,0")) + (rule "add_zero_right" (formula "22") (term "0,1,0")) + (rule "mul_literals" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "19")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet112120_0" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "4")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "17")) + (rule "leq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "17")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "1")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "pullOutSelect" (formula "36") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "37")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "32")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "4")) + (rule "leq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "3"))) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "nnf_imp2or" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "8") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "9") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "9") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "8") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "10") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaAddInt" (formula "10") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "10") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "10") (term "1,1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "10") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,1,1")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "30")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "0,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0")) + (rule "commute_or" (formula "8") (term "0,0")) + (rule "commute_or" (formula "16") (term "0,0")) + (rule "cut_direct" (formula "35") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "cut_direct" (formula "30") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "j_0 = i_0 TRUE" + (rule "close" (formula "41") (ifseqformula "4")) + ) + (branch "j_0 = i_0 FALSE" + (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "40")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36")) + (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "9") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet00010000000112120_6" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "1")) + (rule "polySimp_addComm1" (formula "9") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "4")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_zero_right" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0")) + (rule "mul_literals" (formula "34") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "4")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "30")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "j_0 = i_0 TRUE" + (rule "close" (formula "42") (ifseqformula "4")) + ) + (branch "j_0 = i_0 FALSE" + (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "41")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36")) + (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "9") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01010000000112120_6" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "1")) + (rule "polySimp_addComm1" (formula "9") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "35")) + (rule "cut_direct" (formula "30") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "j_0 = i_0 TRUE" + (rule "close" (formula "42") (ifseqformula "4")) + ) + (branch "j_0 = i_0 FALSE" + (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "41")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36")) + (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "9") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet00110000000112120_6" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "1")) + (rule "polySimp_addComm1" (formula "9") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "9")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "30")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "allLeft" (formula "9") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000112120_1" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "j_0 = i_0 TRUE" + (rule "close" (formula "43") (ifseqformula "4")) + ) + (branch "j_0 = i_0 FALSE" + (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "42")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "36")) + (rule "inEqSimp_contradEq3" (formula "36") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "false_right" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "19")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "9") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet10000000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01110000000112120_6" (formula "9") (term "0,1")) + (rule "replace_known_right" (formula "9") (term "1") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "1")) + (rule "polySimp_addComm1" (formula "9") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,1")) + (rule "mul_literals" (formula "9") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "3")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_zero_right" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 1 + j_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "34") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0")) + (rule "mul_literals" (formula "34") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_subsumption0" (formula "3") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "42") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "4")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i_1") (userinteraction)) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i_1") (userinteraction)) + (builtin "One Step Simplification" (formula "9")) + (builtin "One Step Simplification" (formula "36")) + (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0")) + (rule "translateJavaSubInt" (formula "36") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "36") (term "0,2,1,1,0")) + (rule "allRight" (formula "36") (inst "sk=i_1_0")) + (rule "impRight" (formula "36")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "inEqSimp_leqRight" (formula "38")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "1") (term "3,0,0,1,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "9") (term "1,1,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "1") (term "3,0,1,0,0") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "mod_axiom" (formula "23") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "23") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "23") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "23") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "mod_axiom" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "23") (term "0,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "23") (term "1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0")) + (rule "mod_axiom" (formula "23") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0")) + (rule "div_literals" (formula "23") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "23") (term "1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "20")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36")) (ifInst "" (formula "14"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "4")) + (rule "leq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "33") (ifseqformula "32")) + (rule "polySimp_rightDist" (formula "33") (term "0,0")) + (rule "mul_literals" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "33")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "7")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "19")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "9")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "20")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "38")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "10") (term "0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,1,1")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,1")) + (rule "replace_known_left" (formula "29") (term "1") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "31")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "10") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "10") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0")) + (rule "mul_literals" (formula "12") (term "1,0,0,0")) + (rule "cut_direct" (formula "36") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "cut_direct" (formula "31") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "commute_or" (formula "10") (term "0,0")) + (rule "commute_or" (formula "18") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "allLeft" (formula "11") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet000100000112120_6" (formula "11") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "11")) + (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "false_right" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "allLeft" (formula "12") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet000100000112120_6" (formula "12") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0000100000112120_7" (formula "12") (term "0,1")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10")) + (rule "inEqSimp_contradInEq0" (formula "12") (term "1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "12")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "1")) + (rule "polySimp_elimOne" (formula "36") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1")) + (rule "add_zero_right" (formula "37") (term "0,0,1")) + (rule "qeq_literals" (formula "37") (term "0,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "13") (term "1,1,0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "28") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "19") (term "1,1,0,0")) + (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "36") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "36") (term "1")) + (rule "add_literals" (formula "36") (term "0,1")) + (rule "applyEq" (formula "13") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "4") (term "0,2,1,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,2,1,1,0")) + (rule "add_zero_left" (formula "11") (term "0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "7") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,1,0")) + (rule "leq_literals" (formula "7") (term "1,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "7")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "37")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "8")) + (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "allLeft" (formula "9") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet10100100000112120_9" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10100100000112120_10" (formula "9") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "9")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "37")) (ifInst "" (formula "14"))) + (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteGeq" (formula "10")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "0,0,0,0")) + (rule "qeq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0")) + (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "3")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_literals" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEqRigid" (formula "35") (term "1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1,0")) + (rule "add_literals" (formula "35") (term "0,1,0")) + (rule "add_zero_left" (formula "35") (term "1,0")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "2")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1")) + (rule "add_literals" (formula "35") (term "0,1,1")) + (rule "add_zero_left" (formula "35") (term "1,1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "mul_literals" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "allLeft" (formula "15") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,1")) + (rule "leq_literals" (formula "15") (term "0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "16")) + (rule "mul_literals" (formula "20") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "20")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1")) + (rule "polySimp_elimOne" (formula "5") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "3")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "31")) + (rule "commute_or" (formula "10") (term "0,0")) + (rule "commute_or" (formula "18") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "allLeft" (formula "11") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010100000112120_6" (formula "11") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "11")) + (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "false_right" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "allLeft" (formula "12") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010100000112120_7" (formula "12") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010100000112120_6" (formula "12") (term "1,1")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0,0") (ifseqformula "22")) + (rule "qeq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "12")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "13") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "13") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "13") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "36")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "1")) + (rule "polySimp_elimOne" (formula "35") (term "1")) + (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1")) + (rule "add_zero_right" (formula "37") (term "0,0,1")) + (rule "qeq_literals" (formula "37") (term "0,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "applyEq" (formula "14") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1")) + (rule "add_literals" (formula "35") (term "0,1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,1,0")) + (rule "applyEq" (formula "10") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "11") (term "1,1,0,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0")) + (rule "applyEq" (formula "12") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,2,1,1,0")) + (rule "add_zero_left" (formula "11") (term "0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "7") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,1,0")) + (rule "leq_literals" (formula "7") (term "1,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "7")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "38")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "8")) + (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "allLeft" (formula "9") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet10110100000112120_9" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10110100000112120_10" (formula "9") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "9")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "38")) (ifInst "" (formula "14"))) + (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteGeq" (formula "10")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "9") (term "0,0,0,0")) + (rule "qeq_literals" (formula "9") (term "0,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0")) + (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEqReverse" (formula "10") (term "1") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "inEqSimp_commuteLeq" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEq" (formula "35") (term "1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1,0")) + (rule "add_literals" (formula "35") (term "0,1,0")) + (rule "add_zero_left" (formula "35") (term "1,0")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1")) + (rule "add_literals" (formula "35") (term "0,1,1")) + (rule "add_zero_left" (formula "35") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "35") (term "1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "allLeft" (formula "9") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110100000112120_6" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1110100000112120_7" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) + ) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "36")) + (rule "cut_direct" (formula "31") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "commute_or" (formula "10") (term "0,0")) + (rule "commute_or" (formula "18") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "allLeft" (formula "11") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet001100000112120_6" (formula "11") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "11")) + (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "false_right" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "allLeft" (formula "12") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "12") (term "0,1")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "12") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0001100000112120_7" (formula "12") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet001100000112120_6" (formula "12") (term "1,1")) + (rule "applyEq" (formula "12") (term "1,1") (ifseqformula "10")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0,0") (ifseqformula "22")) + (rule "qeq_literals" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq0" (formula "12") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,1")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0,1")) + (rule "add_literals" (formula "12") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1")) + (rule "add_zero_right" (formula "12") (term "0,0,1")) + (rule "leq_literals" (formula "12") (term "0,1")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "5")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_literals" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "11") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "11") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "11") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "13") (term "1,2,1,0,1,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "13") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "13") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "13") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "add_zero_left" (formula "9") (term "0,0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "1")) + (rule "polySimp_elimOne" (formula "36") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1")) + (rule "add_zero_right" (formula "37") (term "0,0,1")) + (rule "qeq_literals" (formula "37") (term "0,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,1,0")) + (rule "applyEq" (formula "12") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1")) + (rule "add_literals" (formula "35") (term "0,1")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "11") (term "1,1,0,0")) + (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,2,1,1,0")) + (rule "add_zero_left" (formula "11") (term "0,2,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "7") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,1,0")) + (rule "leq_literals" (formula "7") (term "1,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "7")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "38")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "8")) + (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "allLeft" (formula "8") (inst "t=add(Z(1(#)), i_1_0)")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,1,0")) + (rule "add_literals" (formula "8") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0,1,0")) + (rule "add_zero_right" (formula "8") (term "0,1,0")) + (rule "qeq_literals" (formula "8") (term "1,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0")) + (rule "inEqSimp_contradInEq0" (formula "8") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "8")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "38")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "9")) + (rule "applyEqReverse" (formula "8") (term "1") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0")) + (rule "replace_known_left" (formula "8") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEqRigid" (formula "3") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "36") (term "1,1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "36") (term "1,1")) + (rule "add_literals" (formula "36") (term "0,1,1")) + (rule "add_zero_left" (formula "36") (term "1,1")) + (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "35") (term "1,1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1")) + (rule "add_literals" (formula "35") (term "0,1,1")) + (rule "replace_known_left" (formula "35") (term "1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_leqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEqRigid" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "1") (term "0,1,0,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "18")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "allLeft" (formula "9") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet101100000112120_6" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1101100000112120_7" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0")) + (rule "leq_literals" (formula "9") (term "0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "2")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "31")) + (rule "commute_or" (formula "10") (term "0,0")) + (rule "commute_or" (formula "18") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "1")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "22")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "mul_literals" (formula "22") (term "1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "22")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "34")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "3")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "allLeft" (formula "11") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "11") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet011100000112120_6" (formula "11") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0")) + (rule "leq_literals" (formula "11") (term "0,1,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,0")) + (rule "leq_literals" (formula "11") (term "0,0")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "11")) + (rule "allLeft" (formula "10") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "10") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "10") (term "0,1")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "6") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "38")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "38") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0")) + (rule "qeq_literals" (formula "38") (term "0")) + (builtin "One Step Simplification" (formula "38")) + (rule "false_right" (formula "38")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "mul_literals" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "21")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "allLeft" (formula "11") (inst "t=add(Z(1(#)), i_1_0)")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "11") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0011100000112120_7" (formula "11") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0")) + (rule "inEqSimp_contradEq3" (formula "11") (term "1") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1")) + (rule "add_zero_right" (formula "11") (term "0,0,1")) + (rule "qeq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "11") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0,1")) + (rule "add_literals" (formula "11") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1")) + (rule "add_zero_right" (formula "11") (term "0,0,1")) + (rule "leq_literals" (formula "11") (term "0,1")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "5")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_zero_right" (formula "11") (term "0")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + (branch "javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_geqRight" (formula "38")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "1,2,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "14") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "14") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "14") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "14") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "14") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "12") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "12") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "12") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "1")) + (rule "polySimp_elimOne" (formula "36") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch " num_splitters <= i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 1 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 TRUE" + (rule "andLeft" (formula "1")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "37") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1")) + (rule "add_zero_right" (formula "37") (term "0,0,1")) + (rule "qeq_literals" (formula "37") (term "0,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_leqRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "applyEq" (formula "13") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "13") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "11") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "1,1,0,0")) + (rule "add_literals" (formula "11") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "11") (term "1,1,0,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "12") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "applyEq" (formula "10") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,1,0")) + (rule "applyEq" (formula "35") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1")) + (rule "add_literals" (formula "35") (term "0,1")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "applyEq" (formula "11") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,1,0")) + (rule "add_literals" (formula "11") (term "0,0,2,1,1,0")) + (rule "add_zero_left" (formula "11") (term "0,2,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "34")) + (rule "polySimp_mulLiterals" (formula "34") (term "0")) + (rule "polySimp_elimOne" (formula "34") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "20")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "31")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "mul_literals" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "mul_literals" (formula "19") (term "1")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "5") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "33") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4")) + (rule "mul_literals" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "mul_literals" (formula "18") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "18")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "allLeft" (formula "7") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,1,0")) + (rule "add_zero_right" (formula "7") (term "0,1,0")) + (rule "leq_literals" (formula "7") (term "1,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "pullOutSelect" (formula "7") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "7")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "39")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "8")) + (rule "applyEqReverse" (formula "7") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "elementOfArrayRangeConcrete" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "allLeft" (formula "8") (inst "t=add(Z(1(#)), i_1_0)")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,1,0")) + (rule "add_literals" (formula "8") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0,1,0")) + (rule "add_zero_right" (formula "8") (term "0,1,0")) + (rule "qeq_literals" (formula "8") (term "1,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0")) + (rule "inEqSimp_contradInEq0" (formula "8") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "8")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "39")) (ifInst "" (formula "14"))) + (rule "eqSymm" (formula "9")) + (rule "applyEqReverse" (formula "8") (term "1") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0")) + (rule "replace_known_left" (formula "8") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch " num_splitters <= 1 + i_1_0 & javaShiftLeftInt(1, 1 + result_21) >= 2 + i_1_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "allLeft" (formula "8") (inst "t=add(Z(neglit(1(#))), num_splitters)")) + (rule "replaceKnownSelect_taclet112120_0" (formula "8") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000112120_1" (formula "8") (term "0,1")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + i_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEq" (formula "35") (term "1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "35") (term "1,0")) + (rule "add_literals" (formula "35") (term "0,1,0")) + (rule "add_zero_left" (formula "35") (term "1,0")) + (rule "replace_known_left" (formula "35") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "36") (term "1,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "35") (term "1,1,1") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1")) + (rule "add_literals" (formula "35") (term "0,1,1")) + (rule "add_zero_left" (formula "35") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,0,1,0,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "1") (term "0,1,0,0") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "i_1_0 = -1 + i_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "34") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "qeq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "mul_literals" (formula "2") (term "1")) + (rule "allLeft" (formula "9") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000112120_3" (formula "9") (term "1,1")) + (rule "replaceKnownSelect_taclet100000112120_5" (formula "9") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111100000112120_6" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111100000112120_7" (formula "9") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "9") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,1")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,1")) + (rule "add_literals" (formula "9") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,1")) + (rule "add_literals" (formula "9") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "9") (term "1,0,0,1")) + (rule "add_zero_right" (formula "9") (term "0,0,1")) + (rule "leq_literals" (formula "9") (term "0,1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "SMTRule") + ) + (branch "Index Out of Bounds (x_arr != null, but x_8 Out of Bounds!)" + (builtin "SMTRule") + ) + ) + (branch "Null Reference (x_arr_1 = null)" + (builtin "SMTRule") + ) + (branch "Index Out of Bounds (x_arr_1 != null, but x_9 Out of Bounds!)" + (builtin "SMTRule") + ) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "36")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "elim_double_block_2" (formula "36") (term "1")) + (rule "blockBreak" (formula "36") (term "1")) + (rule "lsBreak" (formula "36") (term "1")) + (rule "assignment" (formula "36") (term "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "variableDeclarationAssign" (formula "36") (term "1")) + (rule "variableDeclaration" (formula "36") (term "1") (newnames "classifier")) + (builtin "Use Operation Contract" (formula "36") (newnames "heapBefore_Classifier,self_25,exc_28,heapAfter_Classifier,anon_heap_Classifier") (contract "de.wiesler.Classifier[de.wiesler.Classifier::Classifier([I,[I,int,boolean)].JML normal_behavior operation contract.0")) + (branch "Post (Classifier)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "33")) + (rule "translateJavaMulInt" (formula "33") (term "1,1,1,0,1,0,1,1")) + (rule "andLeft" (formula "33")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,1,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "35")) + (rule "notLeft" (formula "34")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "34")) + (rule "orRight" (formula "43")) + (rule "eqSymm" (formula "40")) + (rule "eqSymm" (formula "39")) + (rule "replace_known_right" (formula "34") (term "1,0") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "43"))) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "assignment" (formula "50") (term "1")) + (builtin "One Step Simplification" (formula "50")) + (builtin "Block Contract (Internal)" (formula "50") (newnames "result_24,exc_29,heap_Before_BLOCK_1,savedHeap_Before_BLOCK_1,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "13"))) + (builtin "One Step Simplification" (formula "51")) + (rule "eqSymm" (formula "51") (term "0,0,1,0,1")) + (rule "variableDeclarationAssign" (formula "51") (term "1")) + (rule "variableDeclaration" (formula "51") (term "1") (newnames "exc_29_1")) + (rule "assignment" (formula "51") (term "1")) + (builtin "One Step Simplification" (formula "51")) + (rule "emptyStatement" (formula "51") (term "1")) + (rule "emptyStatement" (formula "51") (term "1")) + (rule "tryEmpty" (formula "51") (term "1")) + (rule "blockEmptyLabel" (formula "51") (term "1")) + (rule "blockEmpty" (formula "51") (term "1")) + (rule "methodCallEmpty" (formula "51") (term "1")) + (rule "emptyModality" (formula "51") (term "1")) + (rule "andRight" (formula "51")) + (branch "Case 1" + (rule "andRight" (formula "51")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_ltRight" (formula "47")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "20") (term "1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0")) + (rule "mod_axiom" (formula "20") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,0,1,0")) + (rule "add_zero_right" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "39") (term "0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_addComm1" (formula "29") (term "0")) + (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "7") (term "1,2,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "31") (term "1,2,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "37") (term "2,0") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "15")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "14")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "26")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_imp2or" (formula "2") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "2") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "2") (term "1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,1,0,0")) + (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "46") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "38")) (ifInst "" (formula "40")) (ifInst "" (formula "31")) (ifInst "" (formula "43")) (ifInst "" (formula "47")) (ifInst "" (formula "38"))) + (rule "notLeft" (formula "1")) + (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "notRight" (formula "47")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "1") (term "1,2,1") (ifseqformula "34")) + (rule "applyEq" (formula "1") (term "1,2,0") (ifseqformula "34")) + (rule "pullOutSelect" (formula "1") (term "2,1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "1,0,0") (ifseqformula "16")) + (rule "leq_literals" (formula "1") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "17")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "2")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "17")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "translateJavaMulInt" (formula "39") (term "1,1,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "41")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,1")) + (rule "mul_literals" (formula "44") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "35")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35")) + (rule "eqSymm" (formula "44")) + (rule "pullOutSelect" (formula "44") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "44") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "56")) (ifInst "" (formula "9"))) + (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "56")) (ifInst "" (formula "9"))) + (rule "eqSymm" (formula "44") (term "0,0")) + (rule "eqSymm" (formula "45") (term "0,0")) + (rule "replace_known_right" (formula "44") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "44")) + (rule "simplifySelectOfAnon" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "56")) (ifInst "" (formula "9"))) + (rule "replace_known_right" (formula "45") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "45")) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "56")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "elementOfArrayRangeConcrete" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "Contract_axiom_for_classOfFirstSplitters_in_Tree" (formula "50") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "47")) (ifInst "" (formula "49")) (ifInst "" (formula "50")) (ifInst "" (formula "51")) (ifInst "" (formula "47"))) + (rule "notLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "49") (term "0")) + (rule "polySimp_mulComm0" (formula "49") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "applyEq" (formula "49") (term "1,0,1,0,0") (ifseqformula "42")) + (rule "replaceKnownSelect_taclet10001112120_5" (formula "49") (term "0,1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "49") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "applyEq" (formula "49") (term "1,1,0,0") (ifseqformula "42")) + (rule "replaceKnownSelect_taclet10001112120_2" (formula "49") (term "1,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "49") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "49") (term "0")) + (rule "polySimp_mulLiterals" (formula "49") (term "0,0")) + (rule "polySimp_elimOne" (formula "49") (term "0,0")) + (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Tree" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "notRight" (formula "51")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "1") (term "1,2,1") (ifseqformula "43")) + (rule "replaceKnownSelect_taclet10001112120_2" (formula "1") (term "2,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "1") (term "2,1")) + (rule "applyEq" (formula "1") (term "1,2,0") (ifseqformula "43")) + (rule "replaceKnownSelect_taclet10001112120_5" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "1") (term "2,0")) + (rule "commute_or" (formula "14") (term "0,0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "2") (term "1")) + (rule "eqSymm" (formula "2")) + (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "2") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "2")) + (rule "eqSymm" (formula "3")) + (rule "eqSymm" (formula "2") (term "0,1")) + (rule "boxToDiamond" (formula "2") (term "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "notLeft" (formula "2")) + (rule "commute_or_2" (formula "51") (term "1")) + (rule "commute_and" (formula "45") (term "0,0")) + (rule "commute_and" (formula "46") (term "0,0")) + (rule "methodBodyExpand" (formula "50") (term "1") (newnames "heapBefore_classify,savedHeapBefore_classify")) + (builtin "One Step Simplification" (formula "50")) + (rule "variableDeclarationAssign" (formula "50") (term "1")) + (rule "variableDeclaration" (formula "50") (term "1") (newnames "index_1")) + (rule "methodCallWithAssignmentUnfoldTarget" (formula "50") (term "1") (inst "#v0=t")) + (rule "variableDeclaration" (formula "50") (term "1") (newnames "t")) + (rule "assignment_read_attribute_this_final" (formula "50")) + (builtin "One Step Simplification" (formula "50")) + (builtin "Use Operation Contract" (formula "50") (newnames "heapBefore_classify_0,result_25,exc_30") (contract "de.wiesler.Tree[de.wiesler.Tree::classify(int)].JML normal_behavior operation contract.0")) + (branch "Post (classify)" + (builtin "One Step Simplification" (formula "51")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47"))) + (rule "translateJavaMulInt" (formula "50") (term "1,1,0,0,1")) + (rule "translateJavaSubInt" (formula "50") (term "3,0,1,0,1")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "eqSymm" (formula "50")) + (rule "polySimp_elimSub" (formula "53") (term "3,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "52")) + (rule "polySimp_mulAssoc" (formula "52") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "52") (term "0")) + (rule "assignment" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "variableDeclaration" (formula "55") (term "1") (newnames "bucket")) + (rule "applyEq" (formula "1") (term "1") (ifseqformula "50")) + (rule "inEqSimp_sepNegMonomial0" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "0")) + (rule "inEqSimp_exactShadow1" (formula "52") (ifseqformula "51")) + (rule "greater_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0")) + (rule "polySimp_rightDist" (formula "52") (term "0,0")) + (rule "mul_literals" (formula "52") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "52") (term "0")) + (rule "add_literals" (formula "52") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "mul_literals" (formula "52") (term "1")) + (rule "allLeft" (formula "7") (inst "t=Z(0(#))")) + (rule "replaceKnownSelect_taclet10001112120_3" (formula "7") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "7") (term "1,1")) + (rule "add_literals" (formula "7") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "7") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "7") (term "0,1")) + (rule "leq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "0")) + (rule "mul_literals" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0")) + (rule "mul_literals" (formula "7") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "7") (term "0") (ifseqformula "17")) + (rule "qeq_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "allLeft" (formula "4") (inst "t=Z(1(#))")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "4") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "4") (term "0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "allLeft" (formula "8") (inst "t=Z(1(#))")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "8") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "8") (term "1,1")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "add_literals" (formula "8") (term "0,2,0,1")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0")) + (rule "mul_literals" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0")) + (rule "mul_literals" (formula "8") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "8") (term "0") (ifseqformula "18")) + (rule "qeq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "pullOutSelect" (formula "8") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "8")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "67")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_commuteGeq" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,1,0,0")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "9")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "allLeft" (formula "4") (inst "t=Z(0(#))")) + (rule "replaceKnownSelect_taclet10001112120_3" (formula "4") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "4") (term "0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "allLeft" (formula "18") (inst "t=Z(0(#))")) + (rule "add_zero_right" (formula "18") (term "0,2,0,1")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0")) + (rule "times_zero_2" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0")) + (rule "mul_literals" (formula "18") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "22")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "62")) + (rule "orRight" (formula "62")) + (rule "orRight" (formula "62")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "ifElseUnfold" (formula "60") (term "1") (inst "#boolv=x_2")) + (rule "variableDeclaration" (formula "60") (term "1") (newnames "x_7")) + (rule "assignment_read_attribute_this_final" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "40") (term "0") (ifseqformula "35") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "1,0,1") (ifseqformula "41")) + (rule "applyEq" (formula "40") (term "0,0") (ifseqformula "41")) + (rule "replace_known_right" (formula "40") (term "0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "40")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "39") (term "0,0") (ifseqformula "35") (ifseqformula "37")) + (rule "replace_known_right" (formula "39") (term "0") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "64"))) + (rule "closeFalse" (formula "39")) + ) + (branch "Exceptional Post (classify)" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47"))) + (builtin "One Step Simplification" (formula "51")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (term "1,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "50")) + (rule "translateJavaMulInt" (formula "50") (term "1,1,0,0,1")) + (rule "translateJavaSubInt" (formula "50") (term "3,0,1,0,1")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "50")) + (rule "andLeft" (formula "52")) + (rule "notLeft" (formula "50")) + (rule "close" (formula "54") (ifseqformula "53")) + ) + (branch "Pre (classify)" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "47")) (ifInst "" (formula "49"))) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "50") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "50")) + (rule "orRight" (formula "50")) + (rule "orRight" (formula "50")) + (rule "replace_known_right" (formula "53") (term "1,1") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "50")) (ifInst "" (formula "52"))) + (rule "false_right" (formula "53")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "44") (term "0")) + (rule "wellFormedAnonEQ" (formula "44") (term "1,0") (ifseqformula "32")) + (rule "wellFormedAnon" (formula "44") (term "0,1,0")) + (rule "replace_known_left" (formula "44") (term "0,1") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "60")) (ifInst "" (formula "9")) (ifInst "" (formula "8")) (ifInst "" (formula "31"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "45") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "45") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "45") (term "0")) + (rule "nnf_notAnd" (formula "45") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0")) + (rule "times_zero_1" (formula "45") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "45") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0")) + (rule "mul_literals" (formula "45") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "45") (term "0,1,0")) + (rule "nnf_notAnd" (formula "45") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "45") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "45") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_classOf_in_Classifier" (formula "2") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "2") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "51")) (ifInst "" (formula "34")) (ifInst "" (formula "58"))) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,1")) + (rule "applyEq" (formula "2") (term "0,0,0,1") (ifseqformula "3")) + (rule "applyEq" (formula "2") (term "1,0,1,0,1") (ifseqformula "3")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,1")) + (rule "applyEq" (formula "2") (term "3,0,0,1,1") (ifseqformula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "3") (term "0")) + (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "3") (term "0") (inst "classify_sk=classify_sk_1") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "3")) + (rule "eqSymm" (formula "3") (term "0,1")) + (rule "applyEqRigid" (formula "3") (term "1,0,1") (ifseqformula "4")) + (rule "boxToDiamond" (formula "3") (term "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "notLeft" (formula "3")) + (rule "commute_and_2" (formula "2") (term "1")) + (rule "commute_or" (formula "46") (term "0,0,1,0")) + (rule "commute_and" (formula "2") (term "0,1")) + (rule "methodBodyExpand" (formula "52") (term "1") (newnames "heapBefore_classify_1,savedHeapBefore_classify_0")) + (builtin "One Step Simplification" (formula "52")) + (rule "variableDeclarationAssign" (formula "52") (term "1")) + (rule "variableDeclaration" (formula "52") (term "1") (newnames "index_2")) + (rule "allLeft" (formula "8") (inst "t=Z(0(#))")) + (rule "replaceKnownSelect_taclet10001112120_3" (formula "8") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "8") (term "1,1")) + (rule "leq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "add_literals" (formula "8") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "8") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "8") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0")) + (rule "times_zero_2" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0")) + (rule "mul_literals" (formula "8") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "8") (term "0") (ifseqformula "18")) + (rule "qeq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "allLeft" (formula "5") (inst "t=Z(1(#))")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "5") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "5") (term "0,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "allLeft" (formula "9") (inst "t=Z(1(#))")) + (rule "replaceKnownSelect_taclet10001112120_6" (formula "9") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_7" (formula "9") (term "1,1")) + (rule "add_literals" (formula "9") (term "0,2,0,1")) + (rule "leq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0")) + (rule "mul_literals" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0")) + (rule "mul_literals" (formula "9") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0") (ifseqformula "19")) + (rule "qeq_literals" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "pullOutSelect" (formula "9") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "9")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "65")) (ifInst "" (formula "14"))) + (rule "elementOfArrayRangeConcrete" (formula "9") (term "0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_commuteGeq" (formula "10")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "allLeft" (formula "5") (inst "t=Z(0(#))")) + (rule "replaceKnownSelect_taclet10001112120_3" (formula "5") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10001112120_4" (formula "5") (term "0,1")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "allLeft" (formula "19") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "add_zero_right" (formula "19") (term "0,2,0,1")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0")) + (rule "times_zero_2" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0")) + (rule "mul_literals" (formula "19") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "23")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "18") (term "0,0")) + (rule "mul_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "all_pull_out3" (formula "50") (term "0")) + (rule "shift_paren_or" (formula "50") (term "0,0")) + (rule "shift_paren_or" (formula "50") (term "0,0,0")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "41") (term "0") (ifseqformula "36") (ifseqformula "38")) + (rule "applyEq" (formula "41") (term "1,0,1") (ifseqformula "42")) + (rule "applyEq" (formula "41") (term "0,0") (ifseqformula "42")) + (rule "replace_known_right" (formula "41") (term "0") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "41")) + (rule "onlyCreatedObjectsAreReferencedFinal" (formula "40") (term "0,0") (ifseqformula "36") (ifseqformula "38")) + (rule "replace_known_right" (formula "40") (term "1") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "62"))) + (rule "closeFalse" (formula "40")) + ) + (branch "Null reference (t = null)" + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "52"))) + (rule "closeTrue" (formula "50")) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "50")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "50")) + (rule "wellFormedAnonEQ" (formula "50") (ifseqformula "33")) + (rule "wellFormedAnon" (formula "50") (term "0")) + (rule "replace_known_left" (formula "50") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "50") (ifInst "" (formula "9")) (ifInst "" (formula "32"))) + (rule "closeTrue" (formula "50")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "51")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,1,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "43")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "43") (term "1,0,1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "43")) + (rule "andLeft" (formula "45")) + (rule "replace_known_left" (formula "46") (term "0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "46")) + (rule "true_left" (formula "46")) + (rule "commute_or_2" (formula "45") (term "1")) + (rule "shift_paren_or" (formula "45")) + (rule "shift_paren_or" (formula "45") (term "0")) + (rule "elim_double_block_2" (formula "53") (term "1")) + (rule "ifUnfold" (formula "53") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "53") (term "1") (newnames "x_7")) + (rule "inequality_comparison_simple" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "replace_known_left" (formula "53") (term "0,0,1,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "53")) + (rule "ifSplit" (formula "53")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "53") (term "1")) + (rule "methodCallReturn" (formula "53") (term "1")) + (rule "assignment" (formula "53") (term "1")) + (builtin "One Step Simplification" (formula "53")) + (rule "methodCallEmpty" (formula "53") (term "1")) + (rule "tryEmpty" (formula "53") (term "1")) + (rule "emptyModality" (formula "53") (term "1")) + (rule "andRight" (formula "53")) + (branch "Case 1" + (rule "impRight" (formula "53")) + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "42"))) + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "ifthenelse_split" (formula "41") (term "0") (userinteraction)) + (branch "-1 + num_buckets + num_splitters * -1 >= 5 TRUE" + (rule "true_left" (formula "1")) + (rule "eqSymm" (formula "41")) + (rule "replace_known_left" (formula "39") (term "0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "39")) + (rule "eqSymm" (formula "39")) + (rule "inEqSimp_ltRight" (formula "50")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "41")) + (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "20") (term "1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0")) + (rule "mod_axiom" (formula "20") (term "0,1,0")) + (rule "div_literals" (formula "20") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,0,1,0")) + (rule "add_zero_right" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "jmod_axiom" (formula "53") (term "0")) + (rule "polySimp_mulLiterals" (formula "53") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "53")) + (rule "polySimp_mulLiterals" (formula "53") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1")) + (rule "polySimp_rightDist" (formula "40") (term "1")) + (rule "mul_literals" (formula "40") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1")) + (rule "polySimp_elimOne" (formula "40") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "elimGcdEq" (formula "51") (inst "elimGcdRightDiv=javaShiftLeftInt(Z(1(#)), add(Z(1(#)), result_21))") (inst "elimGcdLeftDiv=jdiv(mul(javaShiftLeftInt(Z(1(#)), + add(Z(1(#)), result_21)), + Z(2(#))), + Z(2(#)))") (inst "elimGcd=Z(2(#))")) + (builtin "One Step Simplification" (formula "51")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "51") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0,1")) + (rule "add_literals" (formula "51") (term "1,0,0,1")) + (rule "times_zero_1" (formula "51") (term "0,0,1")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,1,0")) + (rule "polySimp_pullOutFactor0" (formula "51") (term "0,1,0")) + (rule "add_literals" (formula "51") (term "1,0,1,0")) + (rule "times_zero_1" (formula "51") (term "0,1,0")) + (rule "qeq_literals" (formula "51") (term "1,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,0,0")) + (rule "times_zero_1" (formula "51") (term "0,0")) + (rule "leq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "32") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "50") (term "0,0,0") (ifseqformula "2")) + (rule "eqSymm" (formula "50")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "49") (term "0") (ifseqformula "2")) + (rule "eqSymm" (formula "49")) + (rule "applyEq" (formula "37") (term "0,1") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "35")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "25")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "15")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_imp2or" (formula "2") (term "0")) + (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "40") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "40") (term "1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "37")) (ifInst "" (formula "29")) (ifInst "" (formula "45")) (ifInst "" (formula "41")) (ifInst "" (formula "37"))) + (rule "true_left" (formula "40")) + (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "41")) + (rule "applyEq" (formula "41") (term "1,2,0") (ifseqformula "32")) + (rule "eqSymm" (formula "41")) + (rule "applyEq" (formula "41") (term "1,2,0") (ifseqformula "32")) + (rule "eqSymm" (formula "41")) + (rule "pullOutSelect" (formula "41") (term "2,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9"))) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "1,0,0") (ifseqformula "15")) + (rule "leq_literals" (formula "1") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "16")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "42") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "41") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9"))) + (rule "eqSymm" (formula "42")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "48")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "16")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "42") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "34"))) + (rule "translateJavaSubInt" (formula "37") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "37") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "37") (term "1,1,0,0,0,0")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "37")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "notLeft" (formula "37")) + (rule "eqSymm" (formula "42")) + (rule "polySimp_elimSub" (formula "42") (term "0,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,2,0")) + (rule "eqSymm" (formula "42")) + (rule "polySimp_elimSub" (formula "42") (term "0,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,2,0")) + (rule "eqSymm" (formula "42")) + (rule "polySimp_mulComm0" (formula "39") (term "1")) + (rule "eqSymm" (formula "39")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "32")) + (rule "eqSymm" (formula "42")) + (rule "applyEq" (formula "47") (term "0") (ifseqformula "32")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "40") (term "1") (ifseqformula "32")) + (rule "applyEq" (formula "38") (term "0") (ifseqformula "36")) + (rule "applyEq" (formula "41") (term "1,0") (ifseqformula "32")) + (rule "applyEq" (formula "42") (term "1,0") (ifseqformula "32")) + (rule "eqSymm" (formula "42")) + (rule "applyEq" (formula "39") (term "1") (ifseqformula "36")) + (rule "inEqSimp_subsumption6" (formula "37") (ifseqformula "14")) + (rule "greater_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "1,0")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption4" (formula "37") (ifseqformula "4")) + (rule "greater_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "0,0")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "elimGcdEq" (formula "37") (inst "elimGcdRightDiv=i_0") (inst "elimGcdLeftDiv=int::final(de.wiesler.Tree::final(self_25, + de.wiesler.Classifier::$tree), + de.wiesler.Tree::$num_buckets)") (inst "elimGcd=Z(2(#))")) + (builtin "One Step Simplification" (formula "37")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "37") (term "0,1,0,1,0")) + (rule "add_literals" (formula "37") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0,0")) + (rule "add_literals" (formula "37") (term "1,0,0,0")) + (rule "times_zero_1" (formula "37") (term "0,0,0")) + (rule "leq_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0,1")) + (rule "add_literals" (formula "37") (term "1,0,0,1")) + (rule "times_zero_1" (formula "37") (term "0,0,1")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,0,0")) + (rule "times_zero_1" (formula "37") (term "0,0")) + (rule "qeq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "applyEq" (formula "39") (term "3,0") (ifseqformula "37")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "37")) + (rule "eqSymm" (formula "40")) + (rule "applyEq" (formula "40") (term "1,0,2,0") (ifseqformula "37")) + (rule "eqSymm" (formula "40")) + (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "40") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "53")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "41")) + (rule "simplifySelectOfAnonEQ" (formula "41") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "53")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "40") (term "0,0")) + (rule "eqSymm" (formula "41") (term "0,0")) + (rule "replace_known_right" (formula "40") (term "0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "40")) + (rule "simplifySelectOfAnon" (formula "40")) + (builtin "One Step Simplification" (formula "40") (ifInst "" (formula "53")) (ifInst "" (formula "8"))) + (rule "replace_known_right" (formula "41") (term "0,0") (ifseqformula "51")) + (builtin "One Step Simplification" (formula "41")) + (rule "simplifySelectOfAnon" (formula "41")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "53")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "40") (term "0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "elementOfArrayRangeConcrete" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "25"))) + (rule "inEqSimp_homoInEq0" (formula "40") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,1,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "40") (term "0,1,0,0")) + (rule "qeq_literals" (formula "40") (term "1,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "1,0,0,0")) + (rule "times_zero_1" (formula "41") (term "0,0,0")) + (rule "qeq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "41")) + (rule "hideAuxiliaryEq" (formula "41")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "1,1,1,1")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "19")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,1")) + (rule "applyEq" (formula "22") (term "0,1,0,1") (ifseqformula "1")) + (rule "polySimp_addComm1" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1")) + (rule "mul_literals" (formula "22") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1")) + (rule "replace_known_left" (formula "22") (term "1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "24")) + (rule "leq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "2") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "2") (term "1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "5") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "5")) + (rule "translateJavaAddInt" (formula "5") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "5") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "5") (term "1,1,0,0")) + (rule "mul_literals" (formula "5") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "5") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "47") (term "0")) + (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "47") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0")) + (rule "jdiv_axiom" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "15")) + (rule "mul_literals" (formula "1") (term "1,1,0,0,0")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "56") (term "0") (inst "polyDivCoeff=i_0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "56") (term "0,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "polySimp_homoEq" (formula "56")) + (rule "polySimp_pullOutFactor0" (formula "56") (term "0,0,0,1,0")) + (rule "add_literals" (formula "56") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "56") (term "0,0,0,1,0")) + (rule "div_literals" (formula "56") (term "0,0,1,0")) + (rule "add_zero_left" (formula "56") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,0")) + (rule "times_zero_1" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "closeTrue" (formula "56")) + ) + (branch "-1 + num_buckets + num_splitters * -1 >= 5 FALSE" + (rule "shiftLeftSplitTwo" (formula "41") (term "0") (userinteraction)) + (rule "true_left" (formula "1")) + (rule "eqSymm" (formula "41")) + (rule "replace_known_right" (formula "39") (term "0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "39")) + (rule "eqSymm" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "polySimp_elimSub" (formula "39") (term "1,0,0,1")) + (rule "mul_literals" (formula "39") (term "1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "39") (term "1,0,0,1")) + (rule "add_literals" (formula "39") (term "0,1,0,0,1")) + (rule "add_zero_left" (formula "39") (term "1,0,0,1")) + (rule "eqSymm" (formula "39") (term "1")) + (rule "inEqSimp_geqRight" (formula "47")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "51")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0")) + (rule "mul_literals" (formula "41") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,1,0")) + (rule "add_literals" (formula "41") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "41")) + (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "jmod_axiom" (formula "54") (term "0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "54")) + (rule "polySimp_mulLiterals" (formula "54") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "40") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption0" (formula "40") (term "1,0") (ifseqformula "27")) + (rule "leq_literals" (formula "40") (term "0,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "40") (term "0,1") (ifseqformula "4")) + (rule "eqSymm" (formula "40") (term "1")) + (rule "applyEq" (formula "54") (term "0,0,0") (ifseqformula "4")) + (rule "eqSymm" (formula "54")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "6") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "applyEq" (formula "33") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "51") (term "0") (ifseqformula "3")) + (rule "eqSymm" (formula "51")) + (rule "applyEq" (formula "38") (term "1") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "13")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "1") (ifseqformula "19")) + (rule "leq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "28")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "17")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "1")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "17")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_imp2or" (formula "5") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "Contract_axiom_for_classOfFirstSplitters_in_Classifier" (formula "42") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "42") (term "1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "39")) (ifInst "" (formula "32")) (ifInst "" (formula "48")) (ifInst "" (formula "43")) (ifInst "" (formula "39"))) + (rule "true_left" (formula "42")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "44"))) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "41")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35")) + (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "41")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35")) + (rule "applyEq" (formula "39") (term "0") (ifseqformula "38")) + (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "41")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "35")) + (rule "applyEq" (formula "41") (term "1") (ifseqformula "38")) + (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "38")) + (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "41")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "44") (term "1,0,2,0") (ifseqformula "38")) + (rule "inEqSimp_subsumption1" (formula "39") (ifseqformula "16")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption0" (formula "39") (ifseqformula "6")) + (rule "leq_literals" (formula "39") (term "0")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "pullOutSelect" (formula "42") (term "1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "43") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "56")) (ifInst "" (formula "10"))) + (rule "simplifySelectOfAnonEQ" (formula "42") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "56")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "43") (term "0,0")) + (rule "eqSymm" (formula "42") (term "0,0")) + (rule "replace_known_right" (formula "42") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "42")) + (rule "simplifySelectOfAnon" (formula "42")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "56")) (ifInst "" (formula "10"))) + (rule "replace_known_right" (formula "43") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "43")) + (rule "simplifySelectOfAnon" (formula "43")) + (builtin "One Step Simplification" (formula "43") (ifInst "" (formula "56")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "28"))) + (rule "elementOfArrayRangeConcrete" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "42") (term "0,0,0")) + (rule "add_literals" (formula "42") (term "1,0,0,0")) + (rule "times_zero_1" (formula "42") (term "0,0,0")) + (rule "qeq_literals" (formula "42") (term "0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "applyEqReverse" (formula "43") (term "1") (ifseqformula "42")) + (rule "hideAuxiliaryEq" (formula "42")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,1,0,0")) + (rule "add_literals" (formula "42") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "42") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,0")) + (rule "qeq_literals" (formula "42") (term "1,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "46") (term "0")) + (builtin "One Step Simplification" (formula "46")) + (rule "notLeft" (formula "46")) + (rule "eqSymm" (formula "47")) + (rule "applyEq" (formula "47") (term "1,2,1") (ifseqformula "35")) + (rule "applyEq" (formula "47") (term "1,2,0") (ifseqformula "35")) + (rule "pullOutSelect" (formula "47") (term "2,1") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "18")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "48") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "47") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "48")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "56")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "18")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "48") (term "2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "47")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "1,1,1,1")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "replace_known_left" (formula "40") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "applyEq" (formula "25") (term "0,1,0,1") (ifseqformula "3")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1")) + (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "27")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "newSym_eq" (formula "38") (inst "l=l_0") (inst "newSymDef=mul(i_0, Z(0(#)))")) + (rule "times_zero_1" (formula "38") (term "1,1")) + (rule "add_zero_right" (formula "38") (term "1")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "38")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "applyEq" (formula "39") (term "0,0") (ifseqformula "38")) + (rule "eqSymm" (formula "39")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "39")) + (rule "applyEqRigid" (formula "7") (term "3,0") (ifseqformula "39")) + (rule "applyEq" (formula "5") (term "1,1,0,0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "7") (term "1,2,1,0,0") (ifseqformula "39")) + (rule "applyEqRigid" (formula "58") (term "0,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "32") (term "1,2,1,0,0") (ifseqformula "39")) + (rule "applyEqRigid" (formula "44") (term "1,0,2,2,0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "3,0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1,0,2,1,0") (ifseqformula "39")) + (rule "applyEqRigid" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "39")) + (rule "applyEqRigid" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "39")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1,1,0,0") (ifseqformula "39")) + (rule "applyEq" (formula "29") (term "1,1") (ifseqformula "39")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "39")) + (rule "applyEqRigid" (formula "3") (term "1") (ifseqformula "39")) + (rule "applyEqRigid" (formula "41") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "40") (term "1") (ifseqformula "39")) + (rule "applyEq" (formula "44") (term "1,0,2,1") (ifseqformula "39")) + (rule "elimGcdEq" (formula "58") (inst "elimGcdRightDiv=l_0") (inst "elimGcdLeftDiv=jdiv(mul(l_0, Z(2(#))), Z(2(#)))") (inst "elimGcd=Z(2(#))")) + (builtin "One Step Simplification" (formula "58")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,0")) + (rule "add_literals" (formula "58") (term "1,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,1")) + (rule "mul_literals" (formula "58") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "1,0,0,0")) + (rule "times_zero_1" (formula "58") (term "0,0,0")) + (rule "leq_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0,1")) + (rule "add_literals" (formula "58") (term "1,0,0,1")) + (rule "times_zero_1" (formula "58") (term "0,0,1")) + (builtin "One Step Simplification" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,0,0")) + (rule "times_zero_1" (formula "58") (term "0,0")) + (rule "qeq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "elimGcdLeq_antec" (formula "6") (inst "elimGcdRightDiv=Z(2(3(#)))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,1,0")) + (rule "neg_literal" (formula "6") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "6") (term "0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "elimGcdGeq_antec" (formula "16") (inst "elimGcdRightDiv=Z(2(#))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "29")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption6" (formula "17") (ifseqformula "16")) + (rule "mul_literals" (formula "17") (term "1,1,0")) + (rule "greater_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "29")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "15")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "1")) + (rule "mul_literals" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_subsumption6" (formula "14") (ifseqformula "16")) + (rule "greater_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "mul_literals" (formula "23") (term "1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "15")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "nnf_notAnd" (formula "5") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "5") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "50") (term "0")) + (rule "Query_axiom_for_classify_int__in_de_wiesler_Classifier" (formula "50") (term "0") (inst "classify_sk=classify_sk_0") (inst "#p0=x_1") (inst "#self=c") (inst "#res=x") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "51")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_or" (formula "13") (term "0,0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "jdiv_axiom" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption6" (formula "1") (term "0,0") (ifseqformula "16")) + (rule "greater_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "applyEqRigid" (formula "61") (term "0") (ifseqformula "1")) + (rule "polyDiv_pullOut" (formula "61") (term "0") (inst "polyDivCoeff=l_0")) + (rule "polySimp_mulLiterals" (formula "61") (term "1,0,0,2,0")) + (rule "equal_literals" (formula "61") (term "0,0")) + (builtin "One Step Simplification" (formula "61")) + (rule "polySimp_homoEq" (formula "61")) + (rule "polySimp_pullOutFactor0" (formula "61") (term "0,0,0,1,0")) + (rule "add_literals" (formula "61") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "61") (term "0,0,0,1,0")) + (rule "div_literals" (formula "61") (term "0,0,1,0")) + (rule "add_zero_left" (formula "61") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "61") (term "0")) + (rule "add_literals" (formula "61") (term "1,0")) + (rule "times_zero_1" (formula "61") (term "0")) + (builtin "One Step Simplification" (formula "61")) + (rule "closeTrue" (formula "61")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "1")) + (rule "notRight" (formula "53")) + (rule "inEqSimp_ltRight" (formula "50")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,2,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,2,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "add_literals" (formula "21") (term "0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "pullOutSelect" (formula "2") (term "2,1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13"))) + (rule "eqSymm" (formula "2") (term "0,0")) + (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "2") (term "0,0,0") (ifseqformula "18")) + (rule "qeq_literals" (formula "2") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "2") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13"))) + (rule "eqSymm" (formula "3")) + (rule "eqSymm" (formula "2") (term "0,0")) + (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "50")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "52")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "2") (term "0,0,0") (ifseqformula "18")) + (rule "qeq_literals" (formula "2") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "2")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "41") (term "0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "41") (term "2,0") (ifseqformula "4")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "applyEq" (formula "10") (term "1,2,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "7") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "34") (term "1,2,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "27")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "39")) + (builtin "One Step Simplification" (formula "39")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "39") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "1,1,1,0,0,0,0")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "39")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "39")) + (rule "notLeft" (formula "39")) + (rule "eqSymm" (formula "44")) + (rule "eqSymm" (formula "41")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_elimSub" (formula "44") (term "0,2,0")) + (rule "mul_literals" (formula "44") (term "1,0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "polySimp_addComm0" (formula "44") (term "0,2,0")) + (rule "eqSymm" (formula "44")) + (rule "inEqSimp_commuteLeq" (formula "39")) + (rule "applyEq" (formula "43") (term "1,0") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35")) + (rule "eqSymm" (formula "44")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "35")) + (rule "applyEq" (formula "50") (term "0") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "1,0") (ifseqformula "35")) + (rule "eqSymm" (formula "44")) + (rule "pullOutSelect" (formula "44") (term "1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "45") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "57")) (ifInst "" (formula "9"))) + (rule "simplifySelectOfAnonEQ" (formula "44") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "57")) (ifInst "" (formula "9"))) + (rule "eqSymm" (formula "45") (term "0,0")) + (rule "eqSymm" (formula "44") (term "0,0")) + (rule "replace_known_right" (formula "45") (term "0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "45")) + (rule "simplifySelectOfAnon" (formula "45")) + (builtin "One Step Simplification" (formula "45") (ifInst "" (formula "57")) (ifInst "" (formula "9"))) + (rule "replace_known_right" (formula "44") (term "0,0") (ifseqformula "55")) + (builtin "One Step Simplification" (formula "44")) + (rule "simplifySelectOfAnon" (formula "44")) + (builtin "One Step Simplification" (formula "44") (ifInst "" (formula "57")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "45") (term "0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "elementOfArrayRangeConcrete" (formula "44") (term "0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "45") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "45") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "44") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_classOfFirstSplitters_in_de_wiesler_Classifier" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "notLeft" (formula "49")) + (rule "eqSymm" (formula "50")) + (rule "applyEq" (formula "50") (term "1,2,1") (ifseqformula "35")) + (rule "replaceKnownSelect_taclet0111110001201112120_2" (formula "50") (term "2,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0111110001201112120_4" (formula "50") (term "2,1")) + (rule "applyEq" (formula "50") (term "1,2,0") (ifseqformula "35")) + (rule "replaceKnownSelect_taclet0111110001201112120_5" (formula "50") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0111110001201112120_7" (formula "50") (term "2,0")) + (rule "close" (formula "50") (ifseqformula "1")) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "54")) + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "impRight" (formula "53")) + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "54")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + ) + ) + (branch "Exceptional Post (Classifier)" + (builtin "One Step Simplification" (formula "38")) + (builtin "One Step Simplification" (formula "33")) + (rule "translateJavaMulInt" (formula "33") (term "1,1,1,0,1,0,1,1")) + (rule "andLeft" (formula "33")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "34")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "34") (term "1,1,0,1,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "36")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "38")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "36")) + (rule "notLeft" (formula "34")) + (rule "close" (formula "43") (ifseqformula "42")) + ) + (branch "Pre (Classifier)" + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "33")) (ifInst "" (formula "26")) (ifInst "" (formula "35")) (ifInst "" (formula "34")) (ifInst "" (formula "35")) (ifInst "" (formula "11")) (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "7") (term "1,1,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "mod_axiom" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0,1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption0" (formula "27") (ifseqformula "2")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "27") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "26")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "21")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0") (userinteraction)) + (rule "doubleImpLeft" (formula "8") (userinteraction)) + (branch "Case 1" + (rule "wellFormedAnon" (formula "32") (term "1")) + (rule "replace_known_right" (formula "32") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "10")) (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "32")) + ) + (branch "Case 2" + (rule "close" (formula "32") (ifseqformula "8")) + ) + (branch "Case 3" + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "mod_axiom" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "mod_axiom" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "21") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "21") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "21") (term "1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0")) + (rule "mod_axiom" (formula "21") (term "0,1,0")) + (rule "div_literals" (formula "21") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0")) + (rule "times_zero_2" (formula "21") (term "1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,1,0")) + (rule "mul_literals" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21")) + (rule "mul_literals" (formula "21") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "18")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "34") (term "1,2,1,0,0") (ifseqformula "2")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "33") (term "3,0") (ifseqformula "2")) + (rule "close" (formula "33") (ifseqformula "7")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "translateJavaSubInt" (formula "36") (term "0,2,0")) + (rule "translateJavaSubInt" (formula "36") (term "0,2,1")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_elimSub" (formula "36") (term "0,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,0")) + (rule "eqSymm" (formula "36")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,1,0,1,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "1,1,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "mod_axiom" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_zero_right" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "20") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "mod_axiom" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,1,1,0,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "20") (term "1,1,0,0,1,0")) + (rule "pow_literals" (formula "20") (term "1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,1,0")) + (rule "mod_axiom" (formula "20") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0,1,0")) + (rule "div_literals" (formula "20") (term "0,1,0,1,0")) + (rule "times_zero_2" (formula "20") (term "1,0,1,0")) + (rule "add_zero_right" (formula "20") (term "0,1,0")) + (rule "mul_literals" (formula "20") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20")) + (rule "mul_literals" (formula "20") (term "1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "17")) + (rule "leq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "pullOutSelect" (formula "34") (term "1") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "0,1,0,0")) + (rule "qeq_literals" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "35")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,1,0,0")) + (rule "qeq_literals" (formula "1") (term "1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "2")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "1") (term "1,0,2,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "34") (term "1,0,2,0") (ifseqformula "3")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "8") (term "1,2,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "5") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "1,0,2,2,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "1,2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "2") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "mul_literals" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "mul_literals" (formula "15") (term "1")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "15")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "27")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "16")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "4") (term "0")) + (rule "nnf_imp2or" (formula "3") (term "0")) + (rule "Definition_axiom_for_isLog2Of_in_de_wiesler_Constants" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "1,1,1,1")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "applyEq" (formula "24") (term "0,1,0,1") (ifseqformula "2")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "26")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "4") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "3") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "3") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "6") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "6")) + (rule "translateJavaAddInt" (formula "6") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "6") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "6") (term "0")) + (rule "nnf_notAnd" (formula "6") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "6") (term "0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "commute_or" (formula "13") (term "0,0")) + (rule "cut_direct" (formula "26") (term "0")) + (branch "CUT: result_22 = null TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "cut_direct" (formula "29") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "commute_or" (formula "3") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "num_splitters <= -2 + i_0 TRUE" + (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "33")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "33")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1"))) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "4")) + (rule "eqSymm" (formula "33")) + (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "6")) + (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "5")) + ) + (branch "num_splitters <= -2 + i_0 FALSE" + (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,0")) + (rule "times_zero_1" (formula "29") (term "0")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "5") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,1,0,0")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,1,1,0,0")) + (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1")) + (rule "polySimp_elimOne" (formula "16") (term "1")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0")) + (rule "polySimp_homoEq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_or" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "29")) + (rule "commute_or" (formula "3") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "num_splitters <= -2 + i_0 TRUE" + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "34")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1"))) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "4")) + (rule "eqSymm" (formula "34")) + (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "6")) + (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35"))) + (rule "closeFalse" (formula "5")) + ) + (branch "num_splitters <= -2 + i_0 FALSE" + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,1,1,0,0")) + (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,1,0,0")) + (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_pullOutFactor1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,0")) + (rule "times_zero_1" (formula "28") (term "0")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1")) + (rule "polySimp_elimOne" (formula "16") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0")) + (rule "polySimp_homoEq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_or" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "4")) + ) + ) + ) + (branch "CUT: result_22 = null FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "cut_direct" (formula "29") (term "0")) + (branch "CUT: result_23 = null TRUE" + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "commute_or" (formula "3") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "num_splitters <= -2 + i_0 TRUE" + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "34")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "34")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1"))) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "4")) + (rule "eqSymm" (formula "34")) + (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "6")) + (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "35"))) + (rule "closeFalse" (formula "5")) + ) + (branch "num_splitters <= -2 + i_0 FALSE" + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28")) + (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "29")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,0")) + (rule "times_zero_1" (formula "29") (term "0")) + (rule "qeq_literals" (formula "29")) + (rule "true_left" (formula "29")) + (rule "applyEq" (formula "5") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "1,1,0,0")) + (rule "add_literals" (formula "5") (term "0,1,1,0,0")) + (rule "applyEq" (formula "7") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "14") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,1,1,0,0")) + (rule "applyEq" (formula "5") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "applyEq" (formula "7") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "1")) + (rule "polySimp_elimOne" (formula "16") (term "1")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0")) + (rule "polySimp_homoEq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_or" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "CUT: result_23 = null FALSE" + (builtin "One Step Simplification" (formula "29")) + (rule "commute_or" (formula "3") (term "0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "num_splitters <= -2 + i_0 TRUE" + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "28") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "qeq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "1")) + (rule "mul_literals" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "16")) + (rule "leq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "allLeft" (formula "4") (inst "t=add(Z(neglit(2(#))), i_0)")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "35")) (ifInst "" (formula "11"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "1"))) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "4")) + (rule "eqSymm" (formula "35")) + (rule "allLeft" (formula "5") (inst "t=add(Z(neglit(1(#))), i_0)")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "36")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "6")) + (rule "applyEqReverse" (formula "5") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "36"))) + (rule "closeFalse" (formula "5")) + ) + (branch "num_splitters <= -2 + i_0 FALSE" + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "28")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,1,0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "applyEq" (formula "3") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,1,1,0,0")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_pullOutFactor1" (formula "28") (term "0")) + (rule "add_literals" (formula "28") (term "1,0")) + (rule "times_zero_1" (formula "28") (term "0")) + (rule "qeq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "4") (term "1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "1")) + (rule "polySimp_elimOne" (formula "17") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_subsumption0" (formula "12") (ifseqformula "5")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "commute_or" (formula "4") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "4") (term "0,0")) + (rule "polySimp_homoEq" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "commute_or" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "pullOutSelect" (formula "4") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "4")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "5")) + (rule "applyEqReverse" (formula "4") (term "1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "elementOfArrayRangeConcrete" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "4")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "wellFormedAnon" (formula "36")) + (rule "replace_known_left" (formula "36") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "9"))) + (rule "closeTrue" (formula "36")) + ) + ) + ) + ) + ) + ) + ) + ) ) -(branch "Usage" - (opengoal " ") +(branch "Exceptional Post (log2)" + (builtin "One Step Simplification" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "notLeft" (formula "14")) + (rule "close" (formula "16") (ifseqformula "15")) +) +(branch "Pre (log2)" + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "1"))) + (rule "inEqSimp_gtRight" (formula "17")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,1,0,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "mod_axiom" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "div_literals" (formula "12") (term "0,1,1,2,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,1,2,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "pow_literals" (formula "12") (term "2,1,0,0,1,0")) + (rule "mod_axiom" (formula "12") (term "1,0,0,1,0,0,1,0")) + (rule "div_literals" (formula "12") (term "0,0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "12") (term "0,1,1,0,0,1,0,0,1,0")) + (rule "times_zero_2" (formula "12") (term "1,1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "1,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "12") (term "0,0,1,0,0,1,0")) + (rule "leq_literals" (formula "12") (term "0,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "add_literals" (formula "12") (term "0,0,1,0")) + (rule "mod_axiom" (formula "12") (term "0,1,0")) + (rule "div_literals" (formula "12") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,1,0")) + (rule "times_zero_2" (formula "12") (term "1,0,1,0")) + (rule "add_zero_right" (formula "12") (term "0,1,0")) + (rule "mul_literals" (formula "12") (term "1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "9")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) ) ) } + diff --git a/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof index db08845..f3ecf0c 100644 --- a/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Cleanup/de.wiesler.Cleanup(de.wiesler.Cleanup__cleanup((I,int,int,de.wiesler.Buffers,(I,de.wiesler.BucketPointers,de.wiesler.Classifier,(I)).JML normal_behavior operation contract.0.proof @@ -2,7 +2,7 @@ \settings { "#Proof-Settings-Config-File -#Mon Apr 17 01:15:15 CEST 2023 +#Fri Oct 27 16:46:21 CEST 2023 [NewSMT]NoTypeHierarchy=false [Labels]UseOriginLabels=true [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON @@ -12,7 +12,7 @@ [StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF [StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS [StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF -[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L [StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET [StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE [SMTSettings]UseBuiltUniqueness=false @@ -50,7 +50,7 @@ \javaSource "../../../main/java"; \proofObligation "#Proof Obligation Settings -#Mon Apr 17 01:15:15 CEST 2023 +#Fri Oct 27 16:46:21 CEST 2023 contract=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0 name=de.wiesler.Cleanup[de.wiesler.Cleanup\\:\\:cleanup([I,int,int,de.wiesler.Buffers,[I,de.wiesler.BucketPointers,de.wiesler.Classifier,[I)].JML normal_behavior operation contract.0 class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO @@ -98,8 +98,9 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (keyLog "38" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) (keyLog "39" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) (keyLog "40" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "41" (keyUser "wolfram" ) (keyVersion "e1a85b31e7")) -(autoModeTime "2536213") +(autoModeTime "2536697") (branch "dummy ID" (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) @@ -340,7 +341,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "inEqSimp_commuteLeq" (formula "57") (term "1,0,0,1,0,0,0,0,1,0,1")) (rule "commute_and" (formula "22") (term "0,0,1,0")) (rule "commute_and" (formula "22") (term "0,0")) -(rule "methodBodyExpand" (formula "57") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup")) +(rule "methodBodyExpand" (formula "57") (term "1") (newnames "heapBefore_cleanup,savedHeapBefore_cleanup,_beginBefore_cleanup,_bucket_pointersBefore_cleanup,_bucket_startsBefore_cleanup,_buffersBefore_cleanup,_classifierBefore_cleanup,_endBefore_cleanup,_overflowBefore_cleanup,_valuesBefore_cleanup,is_last_levelBefore_cleanup,startBefore_cleanup,stopBefore_cleanup,bucketBefore_cleanup,relative_startBefore_cleanup,relative_stopBefore_cleanup,writeBefore_cleanup,head_stopBefore_cleanup,tail_startBefore_cleanup,tail_stopBefore_cleanup")) (builtin "One Step Simplification" (formula "57")) (rule "variableDeclarationGhostAssign" (formula "57") (term "1")) (rule "variableDeclarationGhost" (formula "57") (term "1") (newnames "heapOld")) @@ -72226,7 +72227,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "blockEmpty" (formula "89") (term "1")) (builtin "Block Contract (Internal)" (formula "89") (newnames "anonOut_heap_0,exc_5,heap_Before_BLOCK_2,savedHeap_Before_BLOCK_2,o,f")) (branch "Validity" - (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "23"))) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "23")) (ifInst "" (formula "89")) (ifInst "" (formula "17"))) (builtin "One Step Simplification" (formula "90")) (rule "translateJavaSubInt" (formula "90") (term "2,2,0,0,0,0,1,0,1")) (rule "translateJavaAddInt" (formula "90") (term "0,0,1,1,0,0,1")) @@ -72243,754 +72244,7985 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (builtin "One Step Simplification" (formula "90")) (rule "elementOfArrayRange" (formula "90") (term "0,0,0,0,1,0,1") (inst "iv=iv")) (rule "inEqSimp_commuteLeq" (formula "90") (term "1,0,0,1,0,0,0,0,1,0,1")) - (rule "translateJavaMulInt" (formula "38") (term "3,0,0,1,0,0,1,0")) - (rule "translateJavaAddInt" (formula "38") (term "4,0,0,1,0,0,1,0")) - (rule "translateJavaMulInt" (formula "38") (term "0,4,0,0,1,0,0,1,0")) - (rule "emptyStatement" (formula "90") (term "1")) - (rule "emptyStatement" (formula "90") (term "1")) - (rule "emptyStatement" (formula "90") (term "1")) - (rule "tryEmpty" (formula "90") (term "1")) - (rule "blockEmptyLabel" (formula "90") (term "1")) - (rule "blockEmpty" (formula "90") (term "1")) - (rule "methodCallEmpty" (formula "90") (term "1")) - (rule "emptyModality" (formula "90") (term "1")) - (rule "andRight" (formula "90")) - (branch "Case 1" - (rule "andRight" (formula "90")) - (branch - (builtin "One Step Simplification" (formula "90")) - (rule "closeTrue" (formula "90")) + (rule "ifUnfold" (formula "90") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_7")) + (rule "compound_assignment_5_mixed" (formula "90") (term "1") (inst "#v0=x_8")) + (rule "variableDeclarationAssign" (formula "90") (term "1")) + (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_8")) + (rule "compound_less_equal_than_comparison_1" (formula "90") (term "1") (inst "#v0=x_9")) + (rule "variableDeclarationAssign" (formula "90") (term "1")) + (rule "variableDeclaration" (formula "90") (term "1") (newnames "x_9")) + (rule "assignmentSubtractionInt" (formula "90") (term "1")) + (builtin "One Step Simplification" (formula "90")) + (rule "translateJavaSubInt" (formula "90") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "90") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "90") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "90") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "90") (term "0,0,0,1,0")) + (rule "add_literals" (formula "90") (term "1,0,0,0,1,0")) + (rule "times_zero_1" (formula "90") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "90") (term "0,0,1,0")) + (rule "less_equal_than_comparison_simple" (formula "90") (term "1")) + (builtin "One Step Simplification" (formula "90")) + (rule "compound_assignment_5_simple" (formula "90") (term "1")) + (builtin "One Step Simplification" (formula "90")) + (rule "ifSplit" (formula "90")) + (branch "if x_7 true" + (builtin "One Step Simplification" (formula "91")) + (builtin "One Step Simplification" (formula "1")) + (rule "commute_or" (formula "1")) + (builtin "Use Dependency Contract" (formula "44") (term "1,1") (ifInst "" (formula "39") (term "0,1,1,0,1,0")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "88")) (ifInst "" (formula "21")) (ifInst "" (formula "17")) (ifInst "" (formula "35"))) + (rule "wellFormedAnon" (formula "57") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "57") (term "0,1,1,1,0")) + (rule "translateJavaMulInt" (formula "57") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "57") (term "1,0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "57") (ifInst "" (formula "17"))) + (rule "polySimp_mulComm0" (formula "57") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "57") (term "0,1,1,1,0")) + (rule "disjointDefinition" (formula "57") (term "1,0")) + (rule "disjointWithSingleton1" (formula "57") (term "1,0")) + (rule "elementOfArrayRangeConcrete" (formula "57") (term "0,1,0")) + (rule "replace_known_right" (formula "57") (term "0,0,0,1,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0")) + (rule "replace_known_left" (formula "57") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "57")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "41")) + (rule "replace_known_left" (formula "57") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "57")) + (builtin "Use Dependency Contract" (formula "44") (term "1,1") (ifInst "" (formula "57") (term "1")) (contract "de.wiesler.BucketPointers[de.wiesler.BucketPointers::writtenCountOfBucket(int)].JML accessible clause.0")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "89")) (ifInst "" (formula "21")) (ifInst "" (formula "17")) (ifInst "" (formula "35")) (ifInst "" (formula "57"))) + (rule "true_left" (formula "58")) + (rule "variableDeclarationGhostAssign" (formula "92") (term "1")) + (rule "variableDeclarationGhost" (formula "92") (term "1") (newnames "bucketValuesBeforeSort")) + (rule "assignment" (formula "92") (term "1")) + (builtin "One Step Simplification" (formula "92")) + (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "57")) + (builtin "Use Operation Contract" (formula "92") (newnames "heapBefore_fallback_sort,exc_6,heapAfter_fallback_sort,anon_heap_fallback_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::fallback_sort([I,int,int)].JML normal_behavior operation contract.0")) + (branch "Post (fallback_sort)" + (builtin "One Step Simplification" (formula "59")) + (builtin "One Step Simplification" (formula "94")) + (rule "translateJavaSubInt" (formula "59") (term "2,1,0,0")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "62")) + (rule "eqSymm" (formula "62") (term "0")) + (rule "polySimp_elimSub" (formula "59") (term "2,1,0")) + (rule "mul_literals" (formula "59") (term "1,2,1,0")) + (rule "polySimp_addComm1" (formula "59") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,2,1,0")) + (rule "narrowSelectArrayType" (formula "61") (term "2,1") (ifseqformula "56") (ifseqformula "97")) + (rule "variableDeclarationGhostAssign" (formula "98") (term "1")) + (rule "variableDeclarationGhost" (formula "98") (term "1") (newnames "bucketValuesAfterSort")) + (rule "assignment" (formula "98") (term "1")) + (builtin "One Step Simplification" (formula "98")) + (rule "emptyStatement" (formula "98") (term "1")) + (builtin "Block Contract (Internal)" (formula "98") (newnames "exc_7,heap_Before_BLOCK_3,savedHeap_Before_BLOCK_3,o,f")) + (branch "Validity" + (builtin "One Step Simplification" (formula "64") (ifInst "" (formula "24"))) + (builtin "One Step Simplification" (formula "99")) + (rule "translateJavaCastInt" (formula "99") (term "2,0,1,0,1,0,0,1")) + (rule "eqSymm" (formula "99") (term "0,0,1,0,1")) + (rule "castedGetAny" (formula "99") (term "2,0,1,0,1,0,0,1")) + (rule "narrowSelectArrayType" (formula "99") (term "2,0,1,0,0") (ifseqformula "64") (ifseqformula "98")) + (rule "narrowSelectArrayType" (formula "61") (term "2,0") (ifseqformula "64") (ifseqformula "98")) + (rule "inEqSimp_commuteLeq" (formula "99") (term "0,0,0,1,0,0,1")) + (rule "variableDeclarationAssign" (formula "99") (term "1")) + (rule "variableDeclaration" (formula "99") (term "1") (newnames "exc_7_1")) + (rule "assignment" (formula "99") (term "1")) + (builtin "One Step Simplification" (formula "99")) + (rule "emptyStatement" (formula "99") (term "1")) + (rule "emptyStatement" (formula "99") (term "1")) + (rule "tryEmpty" (formula "99") (term "1")) + (rule "blockEmptyLabel" (formula "99") (term "1")) + (rule "blockEmpty" (formula "99") (term "1")) + (rule "methodCallEmpty" (formula "99") (term "1")) + (rule "emptyModality" (formula "99") (term "1")) + (rule "andRight" (formula "99")) + (branch "Case 1" + (rule "andRight" (formula "99")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "99")) + (rule "seqPermForall" (inst "phi=( de.wiesler.Classifier::classOf(heapAfter_fallback_sort, + classifier, + (int)x) + = bucket_0)<>") (inst "iv=iv") (inst "x=x") (ifseqformula "61") (userinteraction)) + (rule "equiv_left" (formula "1") (userinteraction)) + (branch "Case 1" + (rule "allRight" (formula "101") (inst "sk=i_0") (userinteraction)) + (rule "allLeftHide" (formula "1") (inst "t=i_0") (userinteraction)) + (rule "translateJavaAddInt" (formula "41") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "41") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "41") (term "0,4,0,0,1,0,0,1,0")) + (rule "impRight" (formula "101")) + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "3") (term "1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_homoEq" (formula "58") (term "0")) + (rule "polySimp_homoEq" (formula "43") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_homoEq" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "0,1,0,0")) + (rule "castedGetAny" (formula "4") (term "2,0,1,0")) + (rule "lenOfSeqDef" (formula "4") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "4") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "1,1,1,0,0")) + (rule "getOfSeqDef" (formula "103") (term "2,0")) + (rule "castDel" (formula "103") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "103") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "103") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "103") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "castedGetAny" (formula "3") (term "2,0,1")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm0" (formula "58") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1,1,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "103") (term "0,0,2,1,2,0")) + (rule "getOfSeqDef" (formula "4") (term "2,0,1,0")) + (rule "castDel" (formula "4") (term "1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "4") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,2,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "103") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "103") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "103") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "103") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "getOfSeqDef" (formula "3") (term "2,0,1")) + (rule "castDel" (formula "3") (term "1,2,0,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,2,0,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,1,1,0,2,0,1")) + (rule "polySimp_addComm1" (formula "3") (term "1,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "4") (term "0,1,1,0,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0")) + (rule "replace_known_left" (formula "3") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "103") (term "0,0,2,0")) + (rule "replace_known_left" (formula "103") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "103")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "3") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "3") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "3") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1,1,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "4") (term "0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "103") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "103") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "103") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "103") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "103") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "103") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,2,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "103") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "103") (term "0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,2,0")) + (rule "replace_known_left" (formula "3") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "103"))) + (rule "closeFalse" (formula "3")) + ) + (branch "Case 2" + (rule "allRight" (formula "66") (inst "sk=iv_0") (userinteraction)) + (rule "impRight" (formula "66") (userinteraction)) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "54") (term "0") (inst "i=i") (userinteraction)) + (builtin "One Step Simplification" (formula "54") (userinteraction)) + (rule "allLeftHide" (formula "54") (inst "t=add(add(iv_0, begin), + int::select(heap, bucket_starts, arr(bucket_0)))") (userinteraction)) + (rule "impLeft" (formula "54") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "40") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "0,4,0,0,1,0,0,1,0")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "103") (inst "sk=i_0")) + (rule "impRight" (formula "103")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "69") (inst "sk=iv_1")) + (rule "impRight" (formula "69")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_homoEq" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "59") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "70") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0")) + (rule "castedGetAny" (formula "72") (term "2,0")) + (rule "lenOfSeqDef" (formula "6") (term "1")) + (rule "polySimp_elimSub" (formula "6") (term "1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "1,1")) + (rule "getOfSeqDef" (formula "107") (term "2,0")) + (rule "castDel" (formula "107") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "107") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "107") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "107") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "4") (term "1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1")) + (rule "castedGetAny" (formula "71") (term "2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1")) + (rule "add_literals" (formula "6") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "6") (term "0,0,1,1")) + (rule "add_zero_left" (formula "6") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "107") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "107") (term "0,0,2,1,2,0")) + (rule "getOfSeqDef" (formula "72") (term "2,0")) + (rule "castDel" (formula "72") (term "1,2,0")) + (rule "replace_known_left" (formula "72") (term "0,0,2,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "72")) + (rule "polySimp_elimSub" (formula "72") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "72") (term "1,0,2,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "107") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "107") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "107") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "107") (term "0,1,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "70") (term "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1")) + (rule "add_zero_left" (formula "4") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "getOfSeqDef" (formula "71") (term "2,0")) + (rule "castDel" (formula "71") (term "1,2,0")) + (rule "replace_known_left" (formula "71") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "71")) + (rule "polySimp_elimSub" (formula "71") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "71") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,2,1,2,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "72") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "72") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "72") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "72") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "70") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "107") (term "0,0,2,0")) + (rule "replace_known_left" (formula "107") (term "0,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "107")) + (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1,2,0")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "71") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "71") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "71") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "71") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "71") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "70") (term "0")) + (rule "polySimp_mulComm0" (formula "70") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "70") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "70") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "72") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "72") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "107") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "107") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "107") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "107") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "70") (term "0,0,0")) + (rule "add_literals" (formula "70") (term "1,0,0,0")) + (rule "times_zero_1" (formula "70") (term "0,0,0")) + (rule "add_zero_left" (formula "70") (term "0,0")) + (rule "replace_known_left" (formula "70") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "70")) + (rule "polySimp_addAssoc" (formula "72") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "72") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "71") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "71") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "107") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "107") (term "0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "70") (term "0,0,0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0")) + (rule "replace_known_right" (formula "72") (term "0,2,0") (ifseqformula "70")) + (builtin "One Step Simplification" (formula "72")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_leqRight" (formula "70")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "polySimp_elimOne" (formula "51") (term "0,1")) + (rule "applyEq" (formula "63") (term "1") (ifseqformula "51")) + (rule "polySimp_sepNegMonomial" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "46") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "60") (term "0")) + (rule "polySimp_mulLiterals" (formula "60") (term "0,0")) + (rule "polySimp_elimOne" (formula "60") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "107") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "107") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "107") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "71") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "71") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "pullOutSelect" (formula "106") (term "1,2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "65")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "106")) (ifInst "" (formula "25"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "71") (term "1,2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "66")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "107")) (ifInst "" (formula "26"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "times_zero_1" (formula "57") (term "1,0")) + (rule "add_zero_right" (formula "57") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "109")) (ifInst "" (formula "27"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "28"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "111")) (ifInst "" (formula "29"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "112")) (ifInst "" (formula "30"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "times_zero_1" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "1")) + (rule "polySimp_elimOne" (formula "60") (term "1")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "24") (term "1,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaMulInt" (formula "24") (term "0,3,1,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "24") (term "2,1,0,0,1,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,1,0,0,1,1,0")) + (rule "eqSymm" (formula "24") (term "0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "25") (term "1,1,1,0,0,0,0")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "26")) + (rule "notLeft" (formula "25")) + (rule "eqSymm" (formula "30")) + (rule "eqSymm" (formula "27")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_right" (formula "16") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,1")) + (rule "mul_literals" (formula "30") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,0")) + (rule "mul_literals" (formula "30") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "50")) + (rule "pullOutSelect" (formula "30") (term "1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "31")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "85")) (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnon" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "85")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "31") (term "0,0")) + (rule "replace_known_right" (formula "31") (term "0,0,0,0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "elementOfArrayRangeConcrete" (formula "30") (term "0,0")) + (rule "replace_known_right" (formula "30") (term "0,0,0,0") (ifseqformula "92")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "58") (term "1,1,1,0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "71") (term "0")) + (rule "translateJavaCastInt" (formula "71") (term "0,0")) + (rule "castedGetAny" (formula "71") (term "0,0")) + (rule "Definition_axiom_for_toReadCountOfBucket_in_de_wiesler_BucketPointers" (formula "58") (term "0,1,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "translateJavaSubInt" (formula "58") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "58") (term "0,1,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,1,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "58") (term "1,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "0,1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,0,0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,0,0,1,1,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "58") (term "0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0,0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0,1,1,0,0,1,0")) + (rule "add_zero_left" (formula "58") (term "0,0,0,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,0,1,1,0,0,1,0")) + (rule "inEqSimp_or_subsumption6" (formula "58") (term "1,1,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "58") (term "0,1,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,1,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "58") (term "0,0,1,1,1,0,0,1,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0,1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "58") (term "0,0,1,1,1,0,0,1,0")) + (rule "qeq_literals" (formula "58") (term "0,1,1,1,0,0,1,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "82") (term "0")) + (rule "wellFormedAnonEQ" (formula "82") (term "1,0") (ifseqformula "78")) + (rule "wellFormedAnon" (formula "82") (term "0,1,0")) + (rule "wellFormedAnon" (formula "82") (term "0,0,1,0")) + (rule "replace_known_right" (formula "82") (term "0,0,0") (ifseqformula "122")) + (builtin "One Step Simplification" (formula "82") (ifInst "" (formula "36")) (ifInst "" (formula "35")) (ifInst "" (formula "74")) (ifInst "" (formula "77")) (ifInst "" (formula "83"))) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "33")) (ifInst "" (formula "120")) (ifInst "" (formula "33")) (ifInst "" (formula "40"))) + (rule "wellFormedAnon" (formula "62") (term "1,0")) + (rule "translateJavaAddInt" (formula "62") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "62") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "62") (term "0,1,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "35"))) + (rule "polySimp_addComm0" (formula "62") (term "1,0,1,0,1")) + (rule "polySimp_addComm0" (formula "62") (term "1,1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0")) + (rule "replace_known_left" (formula "62") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "62")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,1")) + (rule "applyEq" (formula "62") (term "0,1,0,0,0,1") (ifseqformula "63")) + (rule "inEqSimp_commuteGeq" (formula "62") (term "1,0,0,0,1")) + (rule "applyEq" (formula "62") (term "0,1,0,0,1") (ifseqformula "63")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,1")) + (rule "applyEq" (formula "62") (term "1,0,1,0,1") (ifseqformula "60")) + (rule "applyEq" (formula "62") (term "0,0,1,1") (ifseqformula "63")) + (rule "applyEq" (formula "62") (term "0,1,0,0") (ifseqformula "60")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0")) + (rule "replace_known_left" (formula "62") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "62") (ifseqformula "63")) + (rule "mul_literals" (formula "62") (term "0,0")) + (rule "add_zero_left" (formula "62") (term "0")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "68") (term "0")) + (rule "translateJavaAddInt" (formula "68") (term "0,2,0")) + (rule "translateJavaMulInt" (formula "68") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "68") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,0")) + (rule "pullOutSelect" (formula "68") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "68")) + (builtin "One Step Simplification" (formula "68")) + (rule "eqSymm" (formula "69")) + (rule "applyEqReverse" (formula "68") (term "1") (ifseqformula "69")) + (rule "hideAuxiliaryEq" (formula "69")) + (rule "elementOfArrayRangeConcrete" (formula "68") (term "0,0,0")) + (rule "replace_known_right" (formula "68") (term "0,0,0,0,0") (ifseqformula "97")) + (builtin "One Step Simplification" (formula "68")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "71") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "71")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,0,0,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,0,1,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "71") (term "0,2,1,1,0,0")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "71")) + (rule "andLeft" (formula "71")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "74") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "74") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "73") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "72")) + (rule "inEqSimp_commuteLeq" (formula "71")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "50")) + (rule "inEqSimp_commuteGeq" (formula "71")) + (rule "applyEq" (formula "71") (term "1,1,1,1,1,0") (ifseqformula "50")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "71") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "71") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "71") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,0,1,1,0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "49") (term "0")) + (builtin "One Step Simplification" (formula "49")) + (rule "translateJavaAddInt" (formula "49") (term "0,1,0,0")) + (rule "translateJavaAddInt" (formula "49") (term "3,0,1,0")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "andLeft" (formula "49")) + (rule "polySimp_addComm0" (formula "51") (term "3,0")) + (rule "polySimp_addComm0" (formula "50") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "79") (term "1")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaSubInt" (formula "79") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "79") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "79") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "79") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "79") (term "1,1,1")) + (rule "mul_literals" (formula "79") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "79") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "79") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "79") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "79") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "79") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "79") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "79") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "79") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0,0")) + (rule "add_zero_right" (formula "79") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "79") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "79") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "79") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "79") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "79") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "79") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "79") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "79") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "79") (term "0,1,0")) + (rule "replace_known_left" (formula "79") (term "1,0") (ifseqformula "48")) + (builtin "One Step Simplification" (formula "79")) + (rule "inEqSimp_sepPosMonomial1" (formula "79") (term "0")) + (rule "polySimp_mulLiterals" (formula "79") (term "1,0")) + (rule "polySimp_elimOne" (formula "79") (term "1,0")) + (rule "replace_known_left" (formula "79") (term "0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "79")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "80")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "23") (term "0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "4,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "94") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "94")) + (rule "translateJavaSubInt" (formula "94") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "94") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "94") (term "1,1,0,0")) + (rule "mul_literals" (formula "94") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "94") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "94") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "94") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "94") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "94") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "94") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "94") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "94") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "94") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "94") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "94") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "94") (term "1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "94") (term "1,0,1,1,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "92") (term "1,0") (inst "i=i")) + (rule "eqSymm" (formula "92") (term "0")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "87") (term "0")) + (builtin "One Step Simplification" (formula "87") (ifInst "" (formula "33")) (ifInst "" (formula "131")) (ifInst "" (formula "33"))) + (rule "true_left" (formula "87")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "55") (inst "b=b")) + (builtin "One Step Simplification" (formula "55")) + (rule "translateJavaMulInt" (formula "55") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "55") (term "1,1,0,0,0")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "56")) + (rule "notLeft" (formula "55")) + (rule "eqSymm" (formula "102")) + (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "100")) + (builtin "One Step Simplification" (formula "19")) + (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "54")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "54")) + (rule "applyEq" (formula "58") (term "0,1,0,0,1,0,0") (ifseqformula "54")) + (rule "inEqSimp_sepPosMonomial0" (formula "58") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "58") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "57") (ifseqformula "26")) + (rule "leq_literals" (formula "57") (term "0")) + (builtin "One Step Simplification" (formula "57")) + (rule "true_left" (formula "57")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "89") (term "0")) + (rule "translateJavaSubInt" (formula "89") (term "0")) + (rule "polySimp_elimSub" (formula "89") (term "0")) + (rule "polySimp_homoEq" (formula "89")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0")) + (rule "polySimp_addComm0" (formula "89") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "89") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "89") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "89") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "89") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "89") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "89") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "89") (term "0,0")) + (rule "add_literals" (formula "89") (term "1,1,0,0")) + (rule "times_zero_1" (formula "89") (term "1,0,0")) + (rule "add_zero_right" (formula "89") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "89")) + (rule "polySimp_mulLiterals" (formula "89") (term "0")) + (rule "polySimp_elimOne" (formula "89") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "34") (inst "b=b")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "98")) (ifInst "" (formula "99")) (ifInst "" (formula "56"))) + (rule "translateJavaMulInt" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "35")) + (rule "andLeft" (formula "34")) + (rule "notLeft" (formula "34")) + (rule "eqSymm" (formula "100")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0") (ifseqformula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "86") (term "1")) + (builtin "One Step Simplification" (formula "86")) + (rule "translateJavaUnaryMinusInt" (formula "86") (term "1,1")) + (rule "translateJavaAddInt" (formula "86") (term "0,0,1")) + (rule "translateJavaSubInt" (formula "86") (term "0,1")) + (rule "neg_literal" (formula "86") (term "1,1")) + (rule "polySimp_elimSub" (formula "86") (term "0,1")) + (rule "mul_literals" (formula "86") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "86") (term "0,1")) + (rule "polySimp_addComm1" (formula "86") (term "0,1")) + (rule "polySimp_addComm0" (formula "86") (term "0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "61")) + (builtin "One Step Simplification" (formula "61") (ifInst "" (formula "102")) (ifInst "" (formula "103")) (ifInst "" (formula "29"))) + (rule "translateJavaSubInt" (formula "61") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,2,0,1,0")) + (rule "translateJavaMulInt" (formula "61") (term "1,1,1,0,0,0")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "61")) + (rule "eqSymm" (formula "65")) + (rule "eqSymm" (formula "63")) + (rule "polySimp_elimSub" (formula "65") (term "0,2,1")) + (rule "mul_literals" (formula "65") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "65") (term "0,2,0")) + (rule "mul_literals" (formula "65") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "65") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "61")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "28")) + (rule "eqSymm" (formula "63")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "55")) + (rule "applyEq" (formula "61") (term "0") (ifseqformula "55")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "60") (inst "b=b")) + (builtin "One Step Simplification" (formula "60")) + (rule "translateJavaMulInt" (formula "60") (term "1,0,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "60") (term "1,1,0,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "60") (term "1,1,0,0")) + (rule "translateJavaMulInt" (formula "60") (term "0,1,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "60") (term "0,0,1,0")) + (rule "translateJavaCastInt" (formula "60") (term "0,1,0,1,0,0,0")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "61")) + (rule "notLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "replace_known_right" (formula "84") (term "0,0,0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "84")) + (rule "replace_known_right" (formula "17") (term "0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "17")) + (rule "replace_known_left" (formula "84") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "84")) + (rule "polySimp_mulComm0" (formula "60") (term "1")) + (rule "polySimp_mulComm0" (formula "61") (term "0")) + (rule "polySimp_addComm0" (formula "66") (term "1")) + (rule "castedGetAny" (formula "67") (term "0")) + (rule "castedGetAny" (formula "64") (term "0")) + (rule "castedGetAny" (formula "63") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "59") (term "0,0") (ifseqformula "75")) + (rule "applyEq" (formula "62") (term "1,0") (ifseqformula "75")) + (rule "applyEq" (formula "63") (term "1,0") (ifseqformula "75")) + (rule "applyEq" (formula "60") (term "0,0") (ifseqformula "75")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "65") (term "1,1") (ifseqformula "75")) + (rule "applyEq" (formula "68") (term "0,1,0,0,1,0,0") (ifseqformula "75")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "68") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "34") (ifseqformula "26")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_subsumption6" (formula "58") (ifseqformula "26")) + (rule "greater_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "mul_literals" (formula "58") (term "1,0")) + (rule "leq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "polySimp_mulComm0" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "0")) + (rule "polySimp_elimOne" (formula "60") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "33") (inst "b=b")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "108")) (ifInst "" (formula "63")) (ifInst "" (formula "66"))) + (rule "translateJavaMulInt" (formula "33") (term "0,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "33") (term "1,1,0,1,0,0,0")) + (rule "translateJavaCastInt" (formula "33") (term "0,1,0")) + (rule "translateJavaAddInt" (formula "33") (term "1,1,0,0")) + (rule "translateJavaCastInt" (formula "33") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "33") (term "1,0,0,0,0,0")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "33")) + (rule "andLeft" (formula "35")) + (rule "polySimp_mulComm0" (formula "34") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_addComm0" (formula "38") (term "1")) + (rule "castedGetAny" (formula "39") (term "0")) + (rule "castedGetAny" (formula "37") (term "0")) + (rule "castedGetAny" (formula "36") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "39") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "35")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "69")) + (rule "polySimp_homoEq" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "0,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0")) + (rule "apply_eq_monomials" (formula "34") (term "0") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "34") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0")) + (rule "add_zero_right" (formula "34") (term "0")) + (rule "polySimp_mulComm0" (formula "34") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "apply_eq_monomials" (formula "33") (term "0") (ifseqformula "78")) + (rule "polySimp_rightDist" (formula "33") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0")) + (rule "add_zero_right" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "0")) + (rule "applyEq" (formula "37") (term "0,1,0,0,1,0,0") (ifseqformula "78")) + (rule "applyEq" (formula "36") (term "1,0") (ifseqformula "78")) + (rule "polySimp_pullOutFactor2" (formula "36") (term "0")) + (rule "add_literals" (formula "36") (term "1,0")) + (rule "times_zero_1" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "33") (ifseqformula "26")) + (rule "greater_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "mul_literals" (formula "33") (term "1,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "76")) + (rule "applyEq" (formula "33") (term "1,0") (ifseqformula "75")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "114") (term "0")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "83") (term "0")) + (rule "replace_known_left" (formula "83") (term "1,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "40")) (ifInst "" (formula "146"))) + (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0")) + (rule "replace_known_left" (formula "83") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "83")) + (rule "applyEq" (formula "83") (term "0,1,0,0,0") (ifseqformula "74")) + (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,0,0")) + (rule "replace_known_left" (formula "83") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "83") (term "0")) + (rule "translateJavaSubInt" (formula "83") (term "0")) + (rule "polySimp_elimSub" (formula "83") (term "0")) + (rule "polySimp_homoEq" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0")) + (rule "polySimp_addComm0" (formula "83") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "83") (term "0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "24") (term "2,0,0,1,0")) + (rule "replace_known_left" (formula "24") (term "1,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "37")) (ifInst "" (formula "148"))) + (rule "true_left" (formula "24")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "24") (term "1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "96") (term "1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "96") (term "0")) + (rule "polySimp_addComm1" (formula "96") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "96") (term "0")) + (rule "polySimp_mulComm0" (formula "96") (term "1,0")) + (rule "polySimp_rightDist" (formula "96") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "96") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "96") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "96") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "96") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "96") (term "0,1,0")) + (rule "Contract_axiom_for_classOf_in_Classifier" (formula "149") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "108")) (ifInst "" (formula "144")) (ifInst "" (formula "42"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1")) + (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "54")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "150") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "arrayLengthNotNegative" (formula "47") (term "0")) + (rule "arrayLengthIsAShort" (formula "71") (term "0")) + (builtin "One Step Simplification" (formula "71")) + (rule "true_left" (formula "71")) + (rule "arrayLengthIsAShort" (formula "47") (term "0")) + (builtin "One Step Simplification" (formula "47")) + (rule "true_left" (formula "47")) + (rule "arrayLengthNotNegative" (formula "71") (term "0")) + (rule "applyEq" (formula "71") (term "0") (ifseqformula "72")) + (rule "qeq_literals" (formula "71")) + (rule "true_left" (formula "71")) + (rule "nnf_notAnd" (formula "72") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "72") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "72") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "72") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "72") (term "0,0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "72") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "72") (term "0,0,0")) + (rule "mul_literals" (formula "72") (term "1,0,0,0")) + (rule "Contract_axiom_for_classOf_in_Classifier" (formula "114") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "145")) (ifInst "" (formula "43"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1")) + (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "115") (term "0")) + (rule "nnf_imp2or" (formula "74") (term "0")) + (rule "nnf_imp2or" (formula "87") (term "0")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "73") (term "1,1,0")) + (rule "translateJavaCastInt" (formula "73") (term "0,1,1,0")) + (rule "eqSymm" (formula "73") (term "1,0")) + (rule "castedGetAny" (formula "73") (term "0,0,1,0")) + (rule "eqSymm" (formula "73") (term "1,0")) + (rule "ifthenelse_split" (formula "13") (term "0")) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE" + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "11")) + (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "8") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "replace_known_left" (formula "151") (term "0,2,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "151")) + (rule "replace_known_left" (formula "7") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "2") (term "1,2,3,0,0,1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "2") (term "1,2,0,0,0,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "2") (term "1,2,0,1,0,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "2") (term "1,2,0,0,1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "151") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "replace_known_left" (formula "2") (term "0,2,0,0,1,1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "12")) (ifInst "" (formula "12")) (ifInst "" (formula "12"))) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "replace_known_left" (formula "114") (term "0,2,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "114")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "114") (term "2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "1,2,3,0,0,1,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "1,2,0,1,0,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "1,2,0,0,1,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "1,2,0,0,0,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "replace_known_left" (formula "1") (term "0,2,0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7")) (ifInst "" (formula "7")) (ifInst "" (formula "7"))) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "12")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE" + (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "15")) + (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_geqRight" (formula "110")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "mul_literals" (formula "14") (term "1,0")) + (rule "add_zero_right" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0")) + (rule "add_zero_right" (formula "16") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "mul_literals" (formula "16") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "16")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "closeFalse" (formula "15")) + ) + ) + (branch "Case 2" + (rule "eqTermCut" (formula "54") (term "2,0") (inst "s=(int)(any::seqGet(seqDef{int j;}(add(begin, + int::select(heap, + bucket_starts, + arr(bucket_0))), + add(begin, + int::select(heap, + bucket_starts, + arr(add(Z(1(#)), + bucket_0)))), + int::select(anon(anon(heap, + arrayRange(values, + begin, + add(Z(neglit(1(#))), + end)), + anon_heap_LOOP_0<>), + arrayRange(values, + add(begin, + int::select(heap, + bucket_starts, + arr(bucket_0))), + add(add(Z(neglit(1(#))), + begin), + int::select(heap, + bucket_starts, + arr(add(Z(1(#)), + bucket_0))))), + anonOut_heap<>), + values<>, + arr(j))), + iv_0))") (userinteraction)) + (branch "Assume values[iv_0 + begin + bucket_starts[bucket_0]]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))] = (int)(seqDef{int j;}(begin + bucket_starts[bucket_0], begin + bucket_starts[1 + bucket_0], values[j]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))])[iv_0])" + (rule "applyEqReverse" (formula "68") (term "2,0") (ifseqformula "54") (userinteraction)) + (builtin "Use Dependency Contract" (formula "68") (term "0") (ifInst "" (formula "55") (term "0")) (ifInst "" (formula "61")) (contract "de.wiesler.Classifier[de.wiesler.Classifier::classOf(int)].JML accessible clause.0") (userinteraction)) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "98")) (ifInst "" (formula "58")) (ifInst "" (formula "66")) (ifInst "" (formula "23")) (userinteraction)) + (rule "impLeft" (formula "67") (userinteraction)) + (branch "Case 1" + (rule "andRight" (formula "67")) + (branch "Case 1" + (builtin "Use Dependency Contract" (formula "67") (ifInst "" (formula "14")) (contract "de.wiesler.Classifier[java.lang.Object::()].JML accessible clause.0") (userinteraction)) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "99")) (ifInst "" (formula "58")) (ifInst "" (formula "14")) (ifInst "" (formula "68")) (ifInst "" (formula "14")) (ifInst "" (formula "23"))) + (rule "wellFormedAnon" (formula "67") (term "0,0")) + (rule "andLeft" (formula "1")) + (rule "notLeft" (formula "68")) + (rule "allRight" (formula "70") (inst "sk=iv_1")) + (rule "impRight" (formula "70")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "108") (inst "sk=i_0")) + (rule "impRight" (formula "108")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "59")) + (rule "replace_known_left" (formula "72") (term "1,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "23"))) + (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_homoEq" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "61") (term "0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "75") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0")) + (rule "lenOfSeqDef" (formula "6") (term "1")) + (rule "polySimp_elimSub" (formula "6") (term "1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "1,1")) + (rule "castedGetAny" (formula "74") (term "2,0")) + (rule "lenOfSeqDef" (formula "4") (term "1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1")) + (rule "getOfSeqDef" (formula "110") (term "2,0")) + (rule "castDel" (formula "110") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "110") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "110") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "110") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "castedGetAny" (formula "59") (term "0")) + (rule "disjointDefinition" (formula "72")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1")) + (rule "add_literals" (formula "6") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "6") (term "0,0,1,1")) + (rule "add_zero_left" (formula "6") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1")) + (rule "add_zero_left" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "110") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "110") (term "0,0,2,1,2,0")) + (rule "getOfSeqDef" (formula "74") (term "2,0")) + (rule "castDel" (formula "74") (term "1,2,0")) + (rule "replace_known_left" (formula "74") (term "0,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "74")) + (rule "polySimp_elimSub" (formula "74") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "74") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "74") (term "1,0,2,0")) + (rule "polySimp_addAssoc" (formula "110") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "110") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "110") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "110") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "110") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "59") (term "0")) + (rule "castDel" (formula "59") (term "1,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "74") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "74") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "74") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "74") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "74") (term "0,1,0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_commuteLeq" (formula "110") (term "0,0,2,0")) + (rule "replace_known_left" (formula "110") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "110")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0")) + (rule "add_literals" (formula "59") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "59") (term "0,0,1,0")) + (rule "add_zero_left" (formula "59") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "74") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "74") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "74") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "110") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "110") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "110") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "110") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "110") (term "0,1,0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "110") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "110") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1")) + (rule "polySimp_rightDist" (formula "50") (term "1")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,1")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1")) + (rule "polySimp_elimOne" (formula "50") (term "0,1")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "50")) + (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "74") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "74") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "110") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "110") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "110") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_literals" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "distributeIntersection" (formula "71") (term "0")) + (rule "pullOutSelect" (formula "74") (term "2,0") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "60") (term "2,0") (ifseqformula "1")) + (rule "applyEq" (formula "59") (term "1,1") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "74") (term "1,2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "25"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "111") (term "1,2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "111")) (ifInst "" (formula "26"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "unionEqualsEmpty" (formula "74")) + (rule "disjointArrayRangeAllFields2" (formula "74") (term "1")) + (rule "eqSymm" (formula "74") (term "0,0,1")) + (rule "replace_known_right" (formula "74") (term "0,0,1") (ifseqformula "84")) + (builtin "One Step Simplification" (formula "74")) + (rule "disjointArrayRangeAllFields2" (formula "74")) + (rule "notRight" (formula "74")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "close" (formula "84") (ifseqformula "1")) + ) + (branch "Case 2" + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "69") (inst "sk=iv_1")) + (rule "impRight" (formula "69")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "107") (inst "sk=i_0")) + (rule "impRight" (formula "107")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_homoEq" (formula "61") (term "0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_homoEq" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "disjointDefinition" (formula "72")) + (rule "lenOfSeqDef" (formula "6") (term "1")) + (rule "polySimp_elimSub" (formula "6") (term "1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "1,1")) + (rule "castedGetAny" (formula "73") (term "2,0")) + (rule "lenOfSeqDef" (formula "4") (term "1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1")) + (rule "getOfSeqDef" (formula "109") (term "2,0")) + (rule "castDel" (formula "109") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "109") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "castedGetAny" (formula "59") (term "0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1")) + (rule "add_literals" (formula "6") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "6") (term "0,0,1,1")) + (rule "add_zero_left" (formula "6") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1")) + (rule "add_zero_left" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,0,2,1,2,0")) + (rule "getOfSeqDef" (formula "73") (term "2,0")) + (rule "castDel" (formula "73") (term "1,2,0")) + (rule "replace_known_left" (formula "73") (term "0,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "73")) + (rule "polySimp_elimSub" (formula "73") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "1,0,2,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "109") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "109") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "109") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "59") (term "0")) + (rule "castDel" (formula "59") (term "1,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "73") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "0,0,2,0")) + (rule "replace_known_left" (formula "109") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "59") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0")) + (rule "add_literals" (formula "59") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "59") (term "0,0,1,0")) + (rule "add_zero_left" (formula "59") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1")) + (rule "polySimp_rightDist" (formula "50") (term "1")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,1")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1")) + (rule "polySimp_elimOne" (formula "50") (term "0,1")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "50")) + (rule "polySimp_sepNegMonomial" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "distributeIntersection" (formula "71") (term "0")) + (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "74") (term "2,0") (ifseqformula "59")) + (rule "applyEq" (formula "58") (term "1,1") (ifseqformula "59")) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "23"))) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "73") (term "1,2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "110") (term "1,2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "25"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "unionEqualsEmpty" (formula "74")) + (rule "disjointArrayRangeAllFields2" (formula "74") (term "1")) + (rule "eqSymm" (formula "74") (term "0,0,1")) + (rule "replace_known_right" (formula "74") (term "0,0,1") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "74")) + (rule "disjointArrayRangeAllFields2" (formula "74")) + (rule "notRight" (formula "74")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "1")) + (rule "close" (formula "83") (ifseqformula "1")) + ) + ) + (branch "Case 2" + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "69") (inst "sk=iv_1")) + (rule "impRight" (formula "69")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "107") (inst "sk=i_0")) + (rule "impRight" (formula "107")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "72")) + (rule "eqSymm" (formula "59")) + (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "61") (term "0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "74") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,2,2,1")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "0,1,0,0")) + (rule "lenOfSeqDef" (formula "6") (term "1")) + (rule "polySimp_elimSub" (formula "6") (term "1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "1,1")) + (rule "castedGetAny" (formula "73") (term "2,0")) + (rule "lenOfSeqDef" (formula "4") (term "1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1")) + (rule "getOfSeqDef" (formula "109") (term "2,0")) + (rule "castDel" (formula "109") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "109") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "getOfSeqDef" (formula "59") (term "0,0")) + (rule "castDel" (formula "59") (term "1,0,0")) + (rule "castDel" (formula "59") (term "2,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "59")) + (rule "polySimp_elimSub" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "polySimp_addAssoc" (formula "61") (term "0,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1")) + (rule "add_literals" (formula "6") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "6") (term "0,0,1,1")) + (rule "add_zero_left" (formula "6") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1")) + (rule "add_zero_left" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "109") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "109") (term "0,0,2,1,2,0")) + (rule "getOfSeqDef" (formula "73") (term "2,0")) + (rule "castDel" (formula "73") (term "1,2,0")) + (rule "replace_known_left" (formula "73") (term "0,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "73")) + (rule "polySimp_elimSub" (formula "73") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "109") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "109") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "109") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "109") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1")) + (rule "polySimp_addAssoc" (formula "59") (term "0,2,1,0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,2,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "73") (term "0,1,0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "109") (term "0,0,2,0")) + (rule "replace_known_left" (formula "109") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "109")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "50")) + (rule "polySimp_mulComm0" (formula "50") (term "1")) + (rule "polySimp_rightDist" (formula "50") (term "1")) + (rule "polySimp_mulAssoc" (formula "50") (term "0,1")) + (rule "polySimp_mulComm0" (formula "50") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "50") (term "0,1")) + (rule "polySimp_elimOne" (formula "50") (term "0,1")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "50")) + (rule "polySimp_sepNegMonomial" (formula "45") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,0,0")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "45") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "35")) + (rule "polySimp_mulLiterals" (formula "35") (term "0")) + (rule "polySimp_elimOne" (formula "35") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "15") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "58") (term "1,0,0") (ifseqformula "59")) + (rule "applyEq" (formula "74") (term "2,0") (ifseqformula "59")) + (rule "applyEq" (formula "72") (term "2,0") (ifseqformula "59")) + (rule "applyEq" (formula "72") (term "2,1") (ifseqformula "59")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "59")) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "23"))) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,0,0")) + (rule "applyEq" (formula "72") (term "0") (ifseqformula "60")) + (rule "eqSymm" (formula "72")) + (rule "close" (formula "74") (ifseqformula "72")) + ) + ) + (branch "Assume values[iv_0 + begin + bucket_starts[bucket_0]]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))] != (int)(seqDef{int j;}(begin + bucket_starts[bucket_0], begin + bucket_starts[1 + bucket_0], values[j]@heap[anon(arrayRange(values, begin, -1 + end))] [anon(arrayRange(values, begin + bucket_starts[bucket_0], -1 + begin + bucket_starts[ 1 + bucket_0]))])[iv_0])" + (rule "translateJavaAddInt" (formula "40") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "0,4,0,0,1,0,0,1,0")) + (rule "notLeft" (formula "54")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "104") (inst "sk=i_0")) + (rule "impRight" (formula "104")) + (rule "andLeft" (formula "1")) + (rule "allRight" (formula "70") (inst "sk=iv_1")) + (rule "impRight" (formula "70")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "71")) + (rule "polySimp_homoEq" (formula "45") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "60") (term "0")) + (rule "polySimp_homoEq" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "50")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "60") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "59") (term "0,0,2,2,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1")) + (rule "polySimp_addComm1" (formula "50") (term "0")) + (rule "polySimp_addComm0" (formula "50") (term "0,0")) + (rule "polySimp_rightDist" (formula "45") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "45") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "60") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "60") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0,0")) + (rule "getOfSeqDef" (formula "73") (term "0,2,0")) + (rule "castDel" (formula "73") (term "2,0,2,0")) + (rule "castDel" (formula "73") (term "1,0,2,0")) + (rule "replace_known_left" (formula "73") (term "0,0,0,2,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "73")) + (rule "polySimp_elimSub" (formula "73") (term "1,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "1,1,0,0,2,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,1,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,1,1,0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "1,0,0,2,0")) + (rule "lenOfSeqDef" (formula "6") (term "1")) + (rule "polySimp_elimSub" (formula "6") (term "1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "6") (term "1,1")) + (rule "getOfSeqDef" (formula "108") (term "2,0")) + (rule "castDel" (formula "108") (term "1,2,0")) + (rule "polySimp_elimSub" (formula "108") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "108") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "108") (term "1,1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "108") (term "0,1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "108") (term "1,1,0,2,0")) + (rule "lenOfSeqDef" (formula "4") (term "1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1,1")) + (rule "castedGetAny" (formula "72") (term "2,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1")) + (rule "castedGetAny" (formula "71") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,1,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1")) + (rule "polySimp_addAssoc" (formula "45") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "45") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "45") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "60") (term "0,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,2,1,0,2,0")) + (rule "polySimp_addComm0" (formula "73") (term "0,0,2,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,0,2,0")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,0,2,0")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,0,2,0")) + (rule "add_zero_left" (formula "73") (term "0,1,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0,0,1,1")) + (rule "add_literals" (formula "6") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "6") (term "0,0,1,1")) + (rule "add_zero_left" (formula "6") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "108") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "108") (term "0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "108") (term "0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "108") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "108") (term "1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "108") (term "0,0,1,1,0,2,0")) + (rule "add_zero_left" (formula "108") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,1,1")) + (rule "add_literals" (formula "4") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "4") (term "0,0,1,1")) + (rule "add_zero_left" (formula "4") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,1")) + (rule "add_literals" (formula "2") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "2") (term "0,0,1,1")) + (rule "add_zero_left" (formula "2") (term "0,1,1")) + (rule "getOfSeqDef" (formula "72") (term "2,0")) + (rule "castDel" (formula "72") (term "1,2,0")) + (rule "replace_known_left" (formula "72") (term "0,0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "72")) + (rule "polySimp_elimSub" (formula "72") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "72") (term "1,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "getOfSeqDef" (formula "71") (term "0")) + (rule "castDel" (formula "71") (term "1,0")) + (rule "polySimp_elimSub" (formula "71") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "72") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "72") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "71") (term "0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "71") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "1")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "72") (term "0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0,2,1,2,0")) + (rule "inEqSimp_commuteLeq" (formula "108") (term "0,0,2,0")) + (rule "replace_known_left" (formula "108") (term "0,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "108")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,0,2,0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,2,1,0")) + (rule "polySimp_addComm0" (formula "71") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "71")) + (rule "orRight" (formula "71")) + (rule "polySimp_rightDist" (formula "74") (term "1,0,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "74") (term "0,1,0,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "74") (term "0,0,1,0,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "74") (term "0,1,0,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "74") (term "0,1,0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,1,0,2,0")) + (rule "polySimp_pullOutFactor1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "73") (term "1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "73") (term "0,0,1,0,2,0")) + (rule "add_zero_left" (formula "73") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1")) + (rule "polySimp_addAssoc" (formula "71") (term "0,1,1")) + (rule "polySimp_pullOutFactor1" (formula "71") (term "0,0,1,1")) + (rule "add_literals" (formula "71") (term "1,0,0,1,1")) + (rule "times_zero_1" (formula "71") (term "0,0,1,1")) + (rule "add_zero_left" (formula "71") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "74") (term "0,0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "74") (term "0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "6") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "109") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "109") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "109") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,1,0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "73") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "73") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "73") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "109") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "109") (term "0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "73") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "73") (term "0,0,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "71") (term "1")) + (rule "polySimp_rightDist" (formula "71") (term "1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "71") (term "0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "71") (term "0,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "71") (term "0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "71") (term "0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "71") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "71") (term "0,1")) + (rule "polySimp_addComm1" (formula "71") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "71") (term "0")) + (rule "replace_known_left" (formula "71") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "71")) + (rule "replace_known_right" (formula "74") (term "0,0,2,0") (ifseqformula "71")) + (builtin "One Step Simplification" (formula "74")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_leqRight" (formula "71")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "polySimp_mulAssoc" (formula "51") (term "0,1")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "0,1")) + (rule "polySimp_elimOne" (formula "51") (term "0,1")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "51")) + (rule "polySimp_sepNegMonomial" (formula "46") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "46") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "61") (term "0")) + (rule "polySimp_mulLiterals" (formula "61") (term "0,0")) + (rule "polySimp_elimOne" (formula "61") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "46") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "46") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "46") (term "1,0,0,0")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "46") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36")) + (rule "polySimp_mulLiterals" (formula "36") (term "0")) + (rule "polySimp_elimOne" (formula "36") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "109") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "109") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "109") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "73") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "73") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "73") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "pullOutSelect" (formula "59") (term "2,0") (inst "selectSK=arr_3")) + (rule "applyEq" (formula "72") (term "1") (ifseqformula "59")) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0")) + (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1,0,0")) + (rule "inEqSimp_contradInEq0" (formula "59") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "59") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "59") (term "0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0")) + (rule "leq_literals" (formula "59") (term "0,0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "simplifySelectOfAnon" (formula "59")) + (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "108")) (ifInst "" (formula "24"))) + (rule "elementOfArrayRangeConcrete" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "59") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "59") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "59") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "73") (term "1,2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "109")) (ifInst "" (formula "25"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "110") (term "1,2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "68")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "110")) (ifInst "" (formula "26"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addAssoc" (formula "57") (term "0")) + (rule "polySimp_addComm0" (formula "57") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "57") (term "0")) + (rule "add_literals" (formula "57") (term "1,1,0")) + (rule "times_zero_1" (formula "57") (term "1,0")) + (rule "add_zero_right" (formula "57") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "57") (ifseqformula "58")) + (rule "polySimp_mulComm0" (formula "57") (term "0,0")) + (rule "polySimp_addComm0" (formula "57") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "57")) + (rule "polySimp_mulLiterals" (formula "57") (term "0")) + (rule "polySimp_elimOne" (formula "57") (term "0")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "112")) (ifInst "" (formula "27"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "113")) (ifInst "" (formula "28"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "114")) (ifInst "" (formula "29"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "115")) (ifInst "" (formula "30"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "60") (ifseqformula "61")) + (rule "times_zero_1" (formula "60") (term "0,0")) + (rule "add_zero_left" (formula "60") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "60")) + (rule "polySimp_mulLiterals" (formula "60") (term "1")) + (rule "polySimp_elimOne" (formula "60") (term "1")) + (rule "nnf_imp2or" (formula "50") (term "0")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "translateJavaAddInt" (formula "42") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "0,1,0,0")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "42")) + (rule "polySimp_addComm0" (formula "44") (term "3,0")) + (rule "polySimp_addComm0" (formula "43") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "inEqSimp_commuteLeq" (formula "43")) + (rule "Definition_axiom_for_bufferSizeForBucketLen_in_de_wiesler_Buffers" (formula "54") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "54")) + (rule "translateJavaMod" (formula "54") (term "0,1,0,0,1,1,0")) + (rule "translateJavaMod" (formula "54") (term "2,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "54") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "54") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,0,1,0,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0,0,0,1,1,0")) + (rule "jmod_axiom" (formula "54") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,0,1,0,0,1,1,0")) + (rule "jmod_axiom" (formula "54") (term "2,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,2,0,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "54") (term "1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,1,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "54") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "54") (term "0,0,0,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "27") (inst "b=b")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaMulInt" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "notLeft" (formula "29")) + (rule "notLeft" (formula "28")) + (rule "notLeft" (formula "27")) + (rule "eqSymm" (formula "88")) + (rule "replace_known_right" (formula "18") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "18")) + (rule "replace_known_right" (formula "19") (term "0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "31") (term "0,1,0,0,1,0,0") (ifseqformula "52")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "46")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "25") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "3,0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "4,0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "4,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "3,0,0,1,0,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,4,0,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "4,0,0,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "4,0,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,4,0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,0,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "83") (term "0,0") (inst "i=i")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "27") (inst "b=b")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaCastInt" (formula "27") (term "0,0,1,0")) + (rule "translateJavaCastInt" (formula "27") (term "1,1,0,0,1,0,0,0")) + (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "translateJavaMulInt" (formula "27") (term "0,1,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "27")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "replace_known_right" (formula "17") (term "0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "28") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "1")) + (rule "castedGetAny" (formula "34") (term "0")) + (rule "castedGetAny" (formula "31") (term "0")) + (rule "castedGetAny" (formula "30") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "30")) + (rule "applyEq" (formula "27") (term "0,0") (ifseqformula "69")) + (rule "applyEq" (formula "30") (term "1,0") (ifseqformula "69")) + (rule "applyEq" (formula "31") (term "1,0") (ifseqformula "69")) + (rule "applyEq" (formula "28") (term "0,0") (ifseqformula "69")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "33") (term "1,1") (ifseqformula "69")) + (rule "applyEq" (formula "36") (term "0,1,0,0,1,0,0") (ifseqformula "69")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "27") (ifseqformula "55")) + (rule "mul_literals" (formula "27") (term "1,1,0")) + (rule "greater_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "29") (ifseqformula "30")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29")) + (rule "polySimp_mulLiterals" (formula "29") (term "0")) + (rule "polySimp_elimOne" (formula "29") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "64")) + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaMulInt" (formula "64") (term "1,1,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "64") (term "0,2,0,1,0")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "66")) + (rule "notLeft" (formula "64")) + (rule "notLeft" (formula "64")) + (rule "eqSymm" (formula "69")) + (rule "eqSymm" (formula "66")) + (rule "replace_known_right" (formula "16") (term "0") (ifseqformula "102")) + (builtin "One Step Simplification" (formula "16")) + (rule "replace_known_right" (formula "15") (term "0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "15")) + (rule "polySimp_elimSub" (formula "69") (term "0,2,1")) + (rule "mul_literals" (formula "69") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "69") (term "0,2,0")) + (rule "mul_literals" (formula "69") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "69") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "applyEq" (formula "65") (term "0") (ifseqformula "60")) + (rule "applyEq" (formula "64") (term "0") (ifseqformula "60")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "60")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "75") (term "0")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "138")) (ifInst "" (formula "46"))) + (rule "wellFormedAnon" (formula "75") (term "1,0")) + (rule "translateJavaAddInt" (formula "75") (term "1,1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "75") (term "1,0,1,0,1")) + (rule "replace_known_left" (formula "75") (term "0,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "75") (ifInst "" (formula "41"))) + (rule "polySimp_addComm0" (formula "75") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "75") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "75") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "75") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "75") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0")) + (rule "replace_known_left" (formula "75") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "75")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,0,0,1")) + (rule "applyEq" (formula "75") (term "0,0,0,1,1") (ifseqformula "76")) + (rule "applyEq" (formula "75") (term "0,1,0,0,0") (ifseqformula "73")) + (rule "applyEq" (formula "75") (term "0,1,0,0,1") (ifseqformula "76")) + (rule "inEqSimp_commuteLeq" (formula "75") (term "1,0,0,1")) + (rule "applyEq" (formula "75") (term "1,0,1,0,1") (ifseqformula "73")) + (rule "applyEq" (formula "75") (term "0,1,0,0,0,1") (ifseqformula "76")) + (rule "inEqSimp_commuteGeq" (formula "75") (term "1,0,0,0,1")) + (rule "applyEq" (formula "75") (term "0,1,0,1") (ifseqformula "85")) + (rule "inEqSimp_commuteGeq" (formula "75") (term "1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "75") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "75") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "75") (term "0,0,0")) + (rule "replace_known_left" (formula "75") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "75")) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "76") (term "0")) + (rule "translateJavaMulInt" (formula "76") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "76") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "76") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "76") (term "0,2,0")) + (rule "pullOutSelect" (formula "76") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "76")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "103")) (ifInst "" (formula "17"))) + (rule "eqSymm" (formula "77")) + (rule "applyEqReverse" (formula "76") (term "1") (ifseqformula "77")) + (rule "hideAuxiliaryEq" (formula "77")) + (rule "elementOfArrayRangeConcrete" (formula "76") (term "0,0")) + (rule "replace_known_right" (formula "76") (term "0,0,0,0") (ifseqformula "110")) + (builtin "One Step Simplification" (formula "76")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "98") (term "0")) + (rule "wellFormedAnonEQ" (formula "98") (term "1,0") (ifseqformula "94")) + (rule "wellFormedAnon" (formula "98") (term "0,1,0")) + (rule "wellFormedAnon" (formula "98") (term "0,0,1,0")) + (rule "replace_known_left" (formula "98") (term "0,1") (ifseqformula "99")) + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "142")) (ifInst "" (formula "42")) (ifInst "" (formula "41")) (ifInst "" (formula "90")) (ifInst "" (formula "93"))) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "85") (term "0")) + (rule "translateJavaCastInt" (formula "85") (term "0,0")) + (rule "castedGetAny" (formula "85") (term "0,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "85") (term "1")) + (builtin "One Step Simplification" (formula "85")) + (rule "translateJavaUnaryMinusInt" (formula "85") (term "1,1")) + (rule "translateJavaAddInt" (formula "85") (term "0,0,1")) + (rule "translateJavaSubInt" (formula "85") (term "0,1")) + (rule "neg_literal" (formula "85") (term "1,1")) + (rule "polySimp_elimSub" (formula "85") (term "0,1")) + (rule "mul_literals" (formula "85") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "85") (term "0,1")) + (rule "polySimp_addComm1" (formula "85") (term "0,1")) + (rule "polySimp_addComm0" (formula "85") (term "0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "62") (inst "b=b")) + (builtin "One Step Simplification" (formula "62") (ifInst "" (formula "104")) (ifInst "" (formula "105")) (ifInst "" (formula "38"))) + (rule "translateJavaMulInt" (formula "62") (term "1,1,0,0")) + (rule "mul_literals" (formula "62") (term "1,1,0,0")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "62")) + (rule "eqSymm" (formula "103")) + (rule "inEqSimp_ltToLeq" (formula "64") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "64") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "62")) + (rule "applyEq" (formula "62") (term "0") (ifseqformula "61")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "61")) + (rule "applyEq" (formula "63") (term "0,1,0,0,1,0,0") (ifseqformula "61")) + (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "63") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "62") (ifseqformula "55")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "63") (inst "b=b")) + (builtin "One Step Simplification" (formula "63") (ifInst "" (formula "103")) (ifInst "" (formula "32")) (ifInst "" (formula "35"))) + (rule "translateJavaCastInt" (formula "63") (term "0,1,0")) + (rule "translateJavaMulInt" (formula "63") (term "1,0,0,0,0,0")) + (rule "translateJavaAddInt" (formula "63") (term "1,1,0,0")) + (rule "translateJavaCastInt" (formula "63") (term "1,1,0,1,0,0,0")) + (rule "translateJavaCastInt" (formula "63") (term "0,1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "63") (term "0,1,0,0,0,0")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "63")) + (rule "andLeft" (formula "65")) + (rule "polySimp_mulComm0" (formula "63") (term "1")) + (rule "polySimp_mulComm0" (formula "64") (term "0")) + (rule "polySimp_addComm0" (formula "68") (term "1")) + (rule "castedGetAny" (formula "69") (term "0")) + (rule "castedGetAny" (formula "67") (term "0")) + (rule "castedGetAny" (formula "66") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "69") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "69") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "78")) + (rule "applyEq" (formula "64") (term "0,0") (ifseqformula "77")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "applyEq" (formula "63") (term "0,0") (ifseqformula "76")) + (rule "applyEq" (formula "64") (term "1,0") (ifseqformula "76")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "64")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0")) + (rule "applyEq" (formula "64") (term "1,1") (ifseqformula "75")) + (rule "applyEq" (formula "65") (term "0,1,0,0,1,0,0") (ifseqformula "75")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "75")) + (rule "polySimp_pullOutFactor1" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,0")) + (rule "times_zero_1" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_sepPosMonomial0" (formula "64") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "64") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "64") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "64") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "64") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "64") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "62") (ifseqformula "54")) + (rule "greater_literals" (formula "62") (term "0,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "mul_literals" (formula "62") (term "1,0")) + (rule "leq_literals" (formula "62") (term "0")) + (builtin "One Step Simplification" (formula "62")) + (rule "true_left" (formula "62")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "97") (term "1,0") (inst "i=i")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "102")) (ifInst "" (formula "101")) (ifInst "" (formula "65"))) + (rule "translateJavaSubInt" (formula "26") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "26") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "26") (term "1,1,1,0,0,0")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "eqSymm" (formula "30")) + (rule "eqSymm" (formula "28")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,0")) + (rule "mul_literals" (formula "30") (term "1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_elimSub" (formula "30") (term "0,2,0")) + (rule "mul_literals" (formula "30") (term "1,0,2,0")) + (rule "eqSymm" (formula "30")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "applyEq" (formula "69") (term "0") (ifseqformula "28")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "64")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "63")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "62")) + (rule "pullOutSelect" (formula "28") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "104")) (ifInst "" (formula "15"))) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "104")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0,0") (ifseqformula "117")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0,0") (ifseqformula "116")) + (builtin "One Step Simplification" (formula "28")) + (rule "eqSymm" (formula "28")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "23") (term "0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "4,0,0,1,0")) + (rule "Contract_axiom_for_bucketStartsOrdering_in_Functions" (formula "80") (term "0")) + (rule "replace_known_left" (formula "80") (term "1,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "142")) (ifInst "" (formula "81"))) + (rule "true_left" (formula "80")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "93") (term "0")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "141")) (ifInst "" (formula "47"))) + (rule "wellFormedAnon" (formula "93") (term "1,0")) + (rule "replace_known_left" (formula "93") (term "1,1,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "93") (ifInst "" (formula "43"))) + (rule "inEqSimp_ltToLeq" (formula "93") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "93") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "93") (term "0,0,0")) + (rule "replace_known_left" (formula "93") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "93")) + (rule "applyEq" (formula "93") (term "0,1,0,0,0") (ifseqformula "74")) + (rule "inEqSimp_sepNegMonomial0" (formula "93") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,0,0")) + (rule "replace_known_left" (formula "93") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "93")) + (rule "true_left" (formula "93")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "80") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "80")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,1,1,0,0")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,0,0,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "80") (term "0,2,0,1,0")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "andLeft" (formula "80")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "83") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "82") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "83") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "80")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "82") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "81")) + (rule "inEqSimp_commuteLeq" (formula "80")) + (rule "applyEq" (formula "81") (term "1,1,1,1,1,0") (ifseqformula "60")) + (rule "applyEq" (formula "80") (term "0") (ifseqformula "60")) + (rule "inEqSimp_commuteGeq" (formula "80")) + (rule "inEqSimp_sepPosMonomial1" (formula "80") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "80") (term "0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "80") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "80") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "80") (term "1,1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "80") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "80") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "80") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "80") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "100") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "100")) + (rule "translateJavaAddInt" (formula "100") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "100") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "100") (term "1,1,0,0")) + (rule "mul_literals" (formula "100") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "100") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "100") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "100") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "100") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "100") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "100") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "100") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "100") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "100") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "100") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "100") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "100") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "100") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "100") (term "1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "100") (term "1,0,1,1,0,0")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "93") (term "0")) + (rule "translateJavaSubInt" (formula "93") (term "0")) + (rule "polySimp_elimSub" (formula "93") (term "0")) + (rule "polySimp_homoEq" (formula "93")) + (rule "polySimp_mulComm0" (formula "93") (term "1,0")) + (rule "polySimp_addComm0" (formula "93") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "93") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "93") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "93") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "93") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "93") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "93") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "93") (term "0,0")) + (rule "add_literals" (formula "93") (term "1,1,0,0")) + (rule "times_zero_1" (formula "93") (term "1,0,0")) + (rule "add_zero_right" (formula "93") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "93")) + (rule "polySimp_mulLiterals" (formula "93") (term "0")) + (rule "polySimp_elimOne" (formula "93") (term "0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "109") (term "0")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "78") (term "0")) + (rule "replace_known_left" (formula "78") (term "1,0,0") (ifseqformula "47")) + (builtin "One Step Simplification" (formula "78") (ifInst "" (formula "43")) (ifInst "" (formula "141"))) + (rule "inEqSimp_ltToLeq" (formula "78") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "78") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "78") (term "0,0,0")) + (rule "replace_known_left" (formula "78") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "78")) + (rule "applyEq" (formula "78") (term "0,1,0,0,0") (ifseqformula "74")) + (rule "inEqSimp_sepNegMonomial0" (formula "78") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,0,0")) + (rule "replace_known_left" (formula "78") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "78")) + (rule "true_left" (formula "78")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "78") (term "0")) + (rule "translateJavaSubInt" (formula "78") (term "0")) + (rule "polySimp_elimSub" (formula "78") (term "0")) + (rule "polySimp_homoEq" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1,0")) + (rule "polySimp_addComm0" (formula "78") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "78") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "78") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "78") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "78") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "polySimp_elimOne" (formula "78") (term "0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "90") (term "0,0,1,0")) + (rule "replace_known_left" (formula "90") (term "1,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "43")) (ifInst "" (formula "143"))) + (rule "true_left" (formula "90")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "90") (term "1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "90") (term "0")) + (rule "polySimp_addComm1" (formula "90") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "90") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "90") (term "0,1,0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "24") (term "2,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaMulInt" (formula "24") (term "0,3,2,0,0,1,0")) + (rule "translateJavaMulInt" (formula "24") (term "2,2,0,0,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "3,2,0,0,1,0")) + (rule "Contract_axiom_for_classOf_in_Classifier" (formula "89") (term "0")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "93")) (ifInst "" (formula "139")) (ifInst "" (formula "48"))) + (rule "inEqSimp_ltToLeq" (formula "89") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "89") (term "1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "89") (term "0,0,1")) + (rule "applyEq" (formula "89") (term "0,0,0,1") (ifseqformula "90")) + (rule "replace_known_left" (formula "89") (term "0,0,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "89")) + (rule "applyEq" (formula "89") (term "1,0,0,1") (ifseqformula "90")) + (rule "polySimp_addComm1" (formula "89") (term "0,0,1")) + (rule "applyEq" (formula "89") (term "3,0,0,1,1") (ifseqformula "90")) + (rule "applyEq" (formula "89") (term "0,1,0,0,1") (ifseqformula "61")) + (rule "inEqSimp_sepNegMonomial0" (formula "89") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "89") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "89") (term "0,0,1")) + (rule "replace_known_left" (formula "89") (term "0,1") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "89")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "90") (term "0")) + (rule "arrayLengthNotNegative" (formula "53") (term "0")) + (rule "arrayLengthNotNegative" (formula "70") (term "0")) + (rule "applyEq" (formula "70") (term "0") (ifseqformula "71")) + (rule "qeq_literals" (formula "70")) + (rule "true_left" (formula "70")) + (rule "arrayLengthIsAShort" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "arrayLengthIsAShort" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "true_left" (formula "70")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "109") (term "0")) + (rule "nnf_notAnd" (formula "71") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "71") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "71") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "71") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "71") (term "1,1,0,0")) + (rule "mul_literals" (formula "71") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "71") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "71") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "71") (term "0,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "71") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "71") (term "0,0,0")) + (rule "mul_literals" (formula "71") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "72") (term "0")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "145") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "37") (term "0")) + (rule "ifthenelse_split" (formula "13") (term "0")) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE" + (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "replace_known_left" (formula "6") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "110") (term "1,2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "replace_known_left" (formula "108") (term "0,2,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "108")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "143") (term "1,2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "142") (term "0,2,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "142")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "3")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_literals" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE" + (rule "replace_known_right" (formula "9") (term "0,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "11") (term "0,0") (ifseqformula "103")) + (builtin "One Step Simplification" (formula "11")) + (rule "inEqSimp_geqRight" (formula "103")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "times_zero_2" (formula "14") (term "1,0")) + (rule "add_zero_right" (formula "14") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "times_zero_2" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "times_zero_2" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "mul_literals" (formula "14") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_subsumption0" (formula "15") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,1")) + (rule "qeq_literals" (formula "15") (term "0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "10")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + ) + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + (branch "Precondition" + (rule "andRight" (formula "98")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "98")) + (rule "wellFormedAnonEQ" (formula "98") (ifseqformula "59")) + (rule "wellFormedAnon" (formula "98") (term "0")) + (rule "wellFormedAnon" (formula "98") (term "0,0")) + (rule "replace_known_left" (formula "98") (term "1") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "98") (ifInst "" (formula "17")) (ifInst "" (formula "16")) (ifInst "" (formula "55"))) + (rule "closeTrue" (formula "98")) + ) + ) + (branch "Usage" + (builtin "One Step Simplification" (formula "99")) + (builtin "One Step Simplification" (formula "64")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "64") (term "1,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "64")) + (rule "translateJavaCastInt" (formula "64") (term "2,0,1,0,1,0")) + (rule "andLeft" (formula "64")) + (rule "andLeft" (formula "64")) + (rule "replace_known_left" (formula "66") (term "0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "66")) + (rule "true_left" (formula "66")) + (rule "getOfSeqDef" (formula "65") (term "0,2,0,1,0")) + (rule "castDel" (formula "65") (term "2,0,2,0,1,0")) + (rule "castDel" (formula "65") (term "1,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "65") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,1,0,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "65") (term "0,2,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,1,0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,1,0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "65") (term "1,1,0,0,2,0,1,0")) + (rule "lenOfSeqDef" (formula "65") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "65") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "65") (term "1,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "0,1,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,1,1,0,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "65") (term "0,0,1,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "65") (term "1,0,0,1,1,0,0,2,0,1,0")) + (rule "times_zero_1" (formula "65") (term "0,0,1,1,0,0,2,0,1,0")) + (rule "add_zero_left" (formula "65") (term "0,1,1,0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "65") (term "0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "65") (term "0,0,1,1,1,0,0")) + (rule "add_literals" (formula "65") (term "1,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "65") (term "0,0,1,1,1,0,0")) + (rule "add_zero_left" (formula "65") (term "0,1,1,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,2,0,1,0")) + (rule "commute_and" (formula "65") (term "0,0")) + (rule "elim_double_block_2" (formula "100") (term "1")) + (rule "commute_and" (formula "65") (term "0,0,2,0,1,0")) + (rule "ifUnfold" (formula "100") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "100") (term "1") (newnames "x_10")) + (rule "inequality_comparison_simple" (formula "100") (term "1")) + (builtin "One Step Simplification" (formula "100")) + (rule "replace_known_left" (formula "100") (term "0,0,1,0") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "100")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "arrayLengthIsAShort" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthNotNegative" (formula "37") (term "0")) + (rule "applyEq" (formula "37") (term "0") (ifseqformula "38")) + (rule "qeq_literals" (formula "37")) + (rule "true_left" (formula "37")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "ifSplit" (formula "100")) + (branch "if x_10 true" + (builtin "One Step Simplification" (formula "101")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_10 false" + (builtin "One Step Simplification" (formula "101")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "blockEmpty" (formula "100") (term "1")) + (rule "emptyStatement" (formula "100") (term "1")) + (rule "tryEmpty" (formula "100") (term "1")) + (rule "blockEmptyLabel" (formula "100") (term "1")) + (rule "blockEmpty" (formula "100") (term "1")) + (rule "methodCallEmpty" (formula "100") (term "1")) + (rule "emptyModality" (formula "100") (term "1")) + (rule "andRight" (formula "100")) + (branch "Case 1" + (rule "andRight" (formula "100")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "100")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "100")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "100") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "100") (userinteraction)) + (rule "andRight" (formula "100") (userinteraction)) + (branch "Case 1" + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "100") (term "0") (inst "i=i") (userinteraction)) + (builtin "One Step Simplification" (formula "100") (userinteraction)) + (rule "allRight" (formula "100") (inst "sk=i_0") (userinteraction)) + (rule "allLeftHide" (formula "65") (inst "t=sub(i_0, + javaAddInt(begin, + int::select(heap, + bucket_starts, + arr(bucket_0))))") (userinteraction)) + (rule "translateJavaAddInt" (formula "100") (term "1,1,0")) + (rule "translateJavaAddInt" (formula "100") (term "0,0,0")) + (rule "translateJavaAddInt" (formula "65") (term "1,0,0,0")) + (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "65") (term "1,0,0,0,0,2,0,1")) + (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0,0,2,0,1")) + (rule "translateJavaAddInt" (formula "65") (term "1,1,0,2,1,0,2,0,1")) + (rule "impRight" (formula "100")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "13") (term "0")) + (rule "polySimp_homoEq" (formula "41") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "46")) + (rule "polySimp_homoEq" (formula "56") (term "0")) + (rule "polySimp_elimSub" (formula "67") (term "0,0,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "67") (term "0,0,0,0,2,0,1")) + (rule "polySimp_elimSub" (formula "67") (term "0,1,0,0,2,0,1")) + (rule "polySimp_elimSub" (formula "67") (term "1,0,2,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,1,0,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "1,1,0,2,1,0,2,0,1")) + (rule "polySimp_addComm1" (formula "46") (term "0")) + (rule "polySimp_addComm0" (formula "46") (term "0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "41") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,0,2,0,1")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,1,0,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,1,0,0,2,0,1")) + (rule "polySimp_rightDist" (formula "67") (term "1,1,0,2,1,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,1,0,2,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,1,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "41") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "56") (term "0,0")) + (rule "polySimp_addComm0" (formula "56") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,2,0,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,1,0,0,2,0,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,0,1,0,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "1,0,2,1,0,2,0,1")) + (rule "polySimp_addComm0" (formula "67") (term "0,1,0,2,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,2,1,0,2,0,1")) + (rule "polySimp_addComm1" (formula "67") (term "0,0,2,1,0,2,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,2,1,0,2,0,1")) + (rule "add_literals" (formula "67") (term "1,1,0,2,1,0,2,0,1")) + (rule "times_zero_1" (formula "67") (term "1,0,2,1,0,2,0,1")) + (rule "add_zero_right" (formula "67") (term "0,2,1,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "67") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "67") (term "1,1,0,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,2,1,0,2,0,1")) + (rule "polySimp_pullOutFactor1" (formula "67") (term "0,0,2,1,0,2,0,1")) + (rule "add_literals" (formula "67") (term "1,0,0,2,1,0,2,0,1")) + (rule "times_zero_1" (formula "67") (term "0,0,2,1,0,2,0,1")) + (rule "add_zero_left" (formula "67") (term "0,2,1,0,2,0,1")) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0,0,0,2,0,1")) + (rule "polySimp_rightDist" (formula "67") (term "1,0,0,0,0,0,2,0,1")) + (rule "polySimp_mulAssoc" (formula "67") (term "0,1,0,0,0,0,0,2,0,1")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,1,0,0,0,0,0,2,0,1")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,1,0,0,0,0,0,2,0,1")) + (rule "polySimp_elimOne" (formula "67") (term "0,1,0,0,0,0,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "polySimp_addComm1" (formula "67") (term "0,0,0,0,2,0,1")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "polySimp_addComm1" (formula "67") (term "0,0,0,0,0,0,2,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "add_literals" (formula "67") (term "1,1,0,0,0,0,0,2,0,1")) + (rule "times_zero_1" (formula "67") (term "1,0,0,0,0,0,2,0,1")) + (rule "add_zero_right" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "inEqSimp_homoInEq0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0,0,2,0,1")) + (rule "replace_known_left" (formula "67") (term "0,0,0,2,0,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "67")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "replace_known_left" (formula "67") (term "0,0,2,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "1"))) + (rule "inEqSimp_ltToLeq" (formula "67") (term "0")) + (rule "polySimp_mulComm0" (formula "67") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "67") (term "0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "67") (term "0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "46")) + (rule "polySimp_mulComm0" (formula "46") (term "1")) + (rule "polySimp_rightDist" (formula "46") (term "1")) + (rule "polySimp_mulAssoc" (formula "46") (term "0,1")) + (rule "polySimp_mulComm0" (formula "46") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "46") (term "0,1")) + (rule "polySimp_elimOne" (formula "46") (term "0,1")) + (rule "applyEq" (formula "59") (term "1") (ifseqformula "46")) + (rule "polySimp_sepNegMonomial" (formula "13") (term "0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "41") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "56") (term "0")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0")) + (rule "polySimp_elimOne" (formula "56") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "67") (term "0")) + (rule "polySimp_mulLiterals" (formula "67") (term "0,0")) + (rule "polySimp_elimOne" (formula "67") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "pullOutSelect" (formula "101") (term "2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "101")) (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "102") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "66") (term "0,2,0,1") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnonEQ" (formula "66") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "66") (ifInst "" (formula "101")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "66") (term "0,0")) + (builtin "One Step Simplification" (formula "66")) + (rule "narrowSelectArrayType" (formula "66") (term "2,0") (ifseqformula "57") (ifseqformula "101")) + (rule "narrowSelectArrayType" (formula "66") (term "1,0") (ifseqformula "59") (ifseqformula "101")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "66") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "66") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "66") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "66") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "66") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "66") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "66") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "66") (term "0,0,1,1,0,0")) + (rule "replace_known_left" (formula "66") (term "1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "66")) + (rule "inEqSimp_sepNegMonomial1" (formula "66") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "66") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "66") (term "0,0,0")) + (rule "replace_known_left" (formula "66") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "66")) + (rule "applyEqReverse" (formula "67") (term "0,2,0,1") (ifseqformula "66")) + (rule "castDel" (formula "67") (term "2,0,1")) + (rule "hideAuxiliaryEq" (formula "66")) + (rule "replace_known_right" (formula "66") (term "1") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "66")) + (rule "notLeft" (formula "66")) + (rule "inEqSimp_geqRight" (formula "66")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "52")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addComm0" (formula "51") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "51")) + (rule "polySimp_mulLiterals" (formula "51") (term "0")) + (rule "polySimp_elimOne" (formula "51") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "50") (ifseqformula "2")) + (rule "times_zero_1" (formula "50") (term "0,0")) + (rule "add_zero_left" (formula "50") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "50")) + (rule "polySimp_mulLiterals" (formula "50") (term "1")) + (rule "polySimp_elimOne" (formula "50") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "54")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "52") (ifseqformula "53")) + (rule "mul_literals" (formula "52") (term "0,0")) + (rule "add_zero_left" (formula "52") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52")) + (rule "polySimp_mulLiterals" (formula "52") (term "1")) + (rule "polySimp_elimOne" (formula "52") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "51") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "51") (term "0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0")) + (rule "polySimp_addComm0" (formula "51") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51")) + (rule "polySimp_mulComm0" (formula "51") (term "1")) + (rule "polySimp_rightDist" (formula "51") (term "1")) + (rule "mul_literals" (formula "51") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1")) + (rule "polySimp_elimOne" (formula "51") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "29") (ifseqformula "51")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "true_left" (formula "29")) + (rule "nnf_imp2or" (formula "40") (term "0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "41") (term "0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "48") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "48")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,0,0,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,0")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,1,1,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "48") (term "0,2,0,1,1,1,1,0,1")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "51") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "50") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,2,1")) + (rule "inEqSimp_gtToGeq" (formula "51") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "51") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "50") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "49")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "applyEq" (formula "49") (term "1,1,1,1,1,0") (ifseqformula "33")) + (rule "applyEq" (formula "48") (term "0") (ifseqformula "33")) + (rule "inEqSimp_commuteGeq" (formula "48")) + (rule "inEqSimp_sepPosMonomial1" (formula "48") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "68") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "68")) + (rule "translateJavaAddInt" (formula "68") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "68") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "68") (term "1,1,0,0")) + (rule "mul_literals" (formula "68") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "68") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "68") (term "0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "68") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "68") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "68") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "68") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "68") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "68") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "68") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "68") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "68") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "68") (term "0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "68") (term "1,0,1,1,0,0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "37")) (ifInst "" (formula "101"))) + (rule "translateJavaAddInt" (formula "56") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "56") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "56") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "56") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "56") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "56") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "56") (term "0,0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "56") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "1,0,1,1,1")) + (rule "applyEq" (formula "56") (term "1,1,0,0,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "1,0,1,0,0,1") (ifseqformula "43")) + (rule "applyEq" (formula "56") (term "0,1,0,0,0,1,1,1") (ifseqformula "43")) + (rule "polySimp_pullOutFactor1b" (formula "56") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "56") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "56") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "56") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "56") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "56")) + (rule "applyEq" (formula "56") (term "0,0,0,0,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "1,0,1,0,1") (ifseqformula "43")) + (rule "applyEq" (formula "56") (term "0,1,0,0,1") (ifseqformula "57")) + (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0,0,1")) + (rule "add_literals" (formula "56") (term "1,0,1,0,0,1")) + (rule "times_zero_1" (formula "56") (term "0,1,0,0,1")) + (rule "leq_literals" (formula "56") (term "1,0,0,1")) + (builtin "One Step Simplification" (formula "56")) + (rule "applyEq" (formula "56") (term "0,1,0,1,1,1") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0,1,1,1")) + (rule "add_literals" (formula "56") (term "1,0,1,0,1,1,1")) + (rule "times_zero_1" (formula "56") (term "0,1,0,1,1,1")) + (rule "leq_literals" (formula "56") (term "1,0,1,1,1")) + (builtin "One Step Simplification" (formula "56")) + (rule "applyEq" (formula "56") (term "0,0,0,1,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "0,1,0,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "1,1,1,1,1") (ifseqformula "57")) + (rule "applyEq" (formula "56") (term "0,1,0") (ifseqformula "43")) + (rule "inEqSimp_homoInEq1" (formula "56") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "56") (term "0,1,0")) + (rule "add_literals" (formula "56") (term "1,0,1,0")) + (rule "times_zero_1" (formula "56") (term "0,1,0")) + (rule "leq_literals" (formula "56") (term "1,0")) + (builtin "One Step Simplification" (formula "56")) + (rule "inEqSimp_sepNegMonomial0" (formula "56") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "56") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "56") (term "0,0,1,1,1")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "translateJavaAddInt" (formula "32") (term "3,0,1,0")) + (rule "translateJavaAddInt" (formula "32") (term "0,1,0,0")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "polySimp_addComm0" (formula "34") (term "3,0")) + (rule "polySimp_addComm0" (formula "33") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "59") (term "0,1,1,1") (ifseqformula "32")) + (rule "leq_literals" (formula "59") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "59")) + (rule "inEqSimp_subsumption1" (formula "59") (term "0") (ifseqformula "32")) + (rule "leq_literals" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "59")) + (rule "andLeft" (formula "61")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "111")) (ifInst "" (formula "69")) (ifInst "" (formula "106")) (ifInst "" (formula "25"))) + (rule "true_left" (formula "65")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69") (ifInst "" (formula "17")) (ifInst "" (formula "108")) (ifInst "" (formula "17"))) + (rule "true_left" (formula "69")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "69") (term "0")) + (rule "translateJavaSubInt" (formula "69") (term "0")) + (rule "polySimp_elimSub" (formula "69") (term "0")) + (rule "polySimp_homoEq" (formula "69")) + (rule "polySimp_mulComm0" (formula "69") (term "1,0")) + (rule "polySimp_addComm0" (formula "69") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "69") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "69") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "69") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "69") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "69") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "69") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "69") (term "0,0")) + (rule "add_literals" (formula "69") (term "1,1,0,0")) + (rule "times_zero_1" (formula "69") (term "1,0,0")) + (rule "add_zero_right" (formula "69") (term "0,0")) + (rule "applyEq" (formula "69") (term "0,1,0") (ifseqformula "48")) + (rule "polySimp_pullOutFactor1" (formula "69") (term "0")) + (rule "add_literals" (formula "69") (term "1,0")) + (rule "times_zero_1" (formula "69") (term "0")) + (builtin "One Step Simplification" (formula "69")) + (rule "true_left" (formula "69")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "63") (term "0")) + (rule "translateJavaCastInt" (formula "63") (term "0,0")) + (rule "castedGetAny" (formula "63") (term "0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "41")) + (builtin "One Step Simplification" (formula "41")) + (rule "translateJavaSubInt" (formula "41") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "41") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "41") (term "1,1,1,0,0,0,0")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "41")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "41")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "41")) + (rule "eqSymm" (formula "46")) + (rule "eqSymm" (formula "43")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "82")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "83")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_elimSub" (formula "46") (term "0,2,1")) + (rule "mul_literals" (formula "46") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "46") (term "0,2,0")) + (rule "mul_literals" (formula "46") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "46") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "41")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "42") (term "1") (ifseqformula "37")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "79") (term "0,0") (inst "i=i")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "40") (inst "b=b")) + (builtin "One Step Simplification" (formula "40")) + (rule "translateJavaAddInt" (formula "50") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "50") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "40") (term "1,1,0,0,0")) + (rule "translateJavaMulInt" (formula "50") (term "0,4,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,1,0,0,0")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "42")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "andLeft" (formula "40")) + (rule "notLeft" (formula "42")) + (rule "notLeft" (formula "40")) + (rule "notLeft" (formula "40")) + (rule "eqSymm" (formula "88")) + (rule "replace_known_right" (formula "10") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "9") (term "0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "42") (term "0") (ifseqformula "39")) + (rule "applyEq" (formula "43") (term "0,1,0,0,1,0,0") (ifseqformula "39")) + (rule "inEqSimp_sepPosMonomial0" (formula "43") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "42") (ifseqformula "33")) + (rule "leq_literals" (formula "42") (term "0")) + (builtin "One Step Simplification" (formula "42")) + (rule "true_left" (formula "42")) + (rule "nnf_imp2or" (formula "59") (term "0")) + (rule "nnf_imp2or" (formula "82") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "51") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "52") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "52") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0")) + (rule "mul_literals" (formula "52") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "52") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "52") (term "0,0,0,0,0")) + (rule "add_literals" (formula "52") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "52") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "42") (term "0")) + (rule "nnf_notAnd" (formula "59") (term "0,0")) + (builtin "One Step Simplification" (formula "59")) + (rule "nnf_notAnd" (formula "82") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "82") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "82") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "82") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "82") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "82") (term "0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "82") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "82") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "82") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "82") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "82") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "82") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "82") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "82") (term "1,0,1,0,0,0")) + (rule "nnf_notAnd" (formula "42") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "59") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,0,1,0")) + (rule "nnf_notAnd" (formula "59") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "59") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,0,0,0")) + (rule "mul_literals" (formula "59") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "59") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "59") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "59") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "59") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "59") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "59") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "59") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "59") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "59") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "59") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "59") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "59") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "59") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "59") (term "1,0,1,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "18") (inst "b=b")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "18") (term "1,1,0,0")) + (rule "translateJavaCastInt" (formula "18") (term "0,1,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "18") (term "0,1,1,0,0,0,0")) + (rule "translateJavaMulInt" (formula "18") (term "1,0,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "18") (term "0,0,1,0")) + (rule "translateJavaCastInt" (formula "18") (term "1,1,0,0,1,0,0,0")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "19")) + (rule "notLeft" (formula "18")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "93")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_mulComm0" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "24") (term "1")) + (rule "castedGetAny" (formula "25") (term "0")) + (rule "castedGetAny" (formula "22") (term "0")) + (rule "castedGetAny" (formula "21") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "applyEq" (formula "22") (term "1,0") (ifseqformula "63")) + (rule "applyEq" (formula "19") (term "0,0") (ifseqformula "63")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "18") (term "0,0") (ifseqformula "63")) + (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "63")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0") (ifseqformula "63")) + (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "63")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "18") (ifseqformula "42")) + (rule "mul_literals" (formula "18") (term "1,1,0")) + (rule "greater_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "translateJavaSubInt" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "61") (term "0,0,1,1,0,1,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "1")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaAddInt" (formula "79") (term "0,0,1")) + (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,1")) + (rule "translateJavaSubInt" (formula "79") (term "0,1")) + (rule "neg_literal" (formula "79") (term "1,1")) + (rule "polySimp_elimSub" (formula "79") (term "0,1")) + (rule "mul_literals" (formula "79") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "79") (term "0,1")) + (rule "polySimp_addComm1" (formula "79") (term "0,1")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,1")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "22"))) + (rule "translateJavaSubInt" (formula "80") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "80") (term "0,1,1,1")) + (rule "polySimp_addComm0" (formula "80") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "80") (term "1,1,1")) + (rule "mul_literals" (formula "80") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "80") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "80") (term "0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "0")) + (rule "applyEq" (formula "80") (term "1,0,1,1,1") (ifseqformula "81")) + (rule "polySimp_addComm1" (formula "80") (term "0,1,1,1")) + (rule "applyEq" (formula "80") (term "0,0,1,1") (ifseqformula "81")) + (rule "inEqSimp_commuteGeq" (formula "80") (term "0,1,1")) + (rule "applyEq" (formula "80") (term "0,0,0,1") (ifseqformula "81")) + (rule "replace_known_left" (formula "80") (term "0,1") (ifseqformula "78")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_sepNegMonomial0" (formula "80") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "80") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "80") (term "0,1,1")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "0")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaSubInt" (formula "81") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,0")) + (rule "translateJavaAddInt" (formula "81") (term "0,0,0")) + (rule "neg_literal" (formula "81") (term "1,0")) + (rule "polySimp_elimSub" (formula "81") (term "0,0")) + (rule "mul_literals" (formula "81") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "81") (term "0,0")) + (rule "polySimp_addComm0" (formula "81") (term "0,0")) + (rule "Definition_axiom_for_bufferLen_in_de_wiesler_Buffers" (formula "61") (term "1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "61") (term "1,1,0,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77") (ifInst "" (formula "79"))) + (rule "translateJavaSubInt" (formula "77") (term "0,1,1")) + (rule "polySimp_elimSub" (formula "77") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,1")) + (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,1")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,1")) + (rule "polySimp_addComm0" (formula "77") (term "0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "77") (term "1,1")) + (rule "mul_literals" (formula "77") (term "1,0,0,1,1")) + (rule "add_literals" (formula "77") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "77") (term "0,0,1,1")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0")) + (rule "mul_literals" (formula "77") (term "1,0,0,0")) + (rule "add_zero_right" (formula "77") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "77") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "77") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "77") (term "1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "1,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "1,1,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1,1,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "77") (term "0,1,1,1")) + (rule "mul_literals" (formula "77") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "77") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,1,0")) + (rule "replace_known_left" (formula "77") (term "1,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "77")) + (rule "inEqSimp_subsumption1" (formula "77") (term "0") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "77") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "77") (term "0,0,0")) + (rule "add_literals" (formula "77") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "77") (term "1,0,0,0")) + (rule "add_literals" (formula "77") (term "0,0,0")) + (rule "qeq_literals" (formula "77") (term "0,0")) + (builtin "One Step Simplification" (formula "77")) + (rule "andLeft" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "76") (ifseqformula "78")) + (rule "mul_literals" (formula "76") (term "0,0")) + (rule "add_zero_left" (formula "76") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "76")) + (rule "polySimp_mulComm0" (formula "76") (term "1")) + (rule "polySimp_rightDist" (formula "76") (term "1")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,1")) + (rule "mul_literals" (formula "76") (term "0,1")) + (rule "polySimp_elimOne" (formula "76") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "76") (ifseqformula "70")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "76") (term "1,0,0")) + (rule "mul_literals" (formula "76") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "76") (term "0,0")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "qeq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "true_left" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "79")) + (rule "polySimp_rightDist" (formula "77") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "77") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "77") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "79") (term "0")) + (builtin "One Step Simplification" (formula "79")) + (rule "translateJavaSubInt" (formula "79") (term "0,0")) + (rule "translateJavaUnaryMinusInt" (formula "79") (term "1,0")) + (rule "translateJavaAddInt" (formula "79") (term "0,0,0")) + (rule "neg_literal" (formula "79") (term "1,0")) + (rule "polySimp_elimSub" (formula "79") (term "0,0")) + (rule "mul_literals" (formula "79") (term "1,0,0")) + (rule "polySimp_addLiterals" (formula "79") (term "0,0")) + (rule "polySimp_addComm1" (formula "79") (term "0,0")) + (rule "polySimp_addComm0" (formula "79") (term "0,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80")) + (rule "translateJavaMod" (formula "80") (term "0")) + (rule "jmod_axiom" (formula "80") (term "0")) + (rule "polySimp_mulLiterals" (formula "80") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "80")) + (rule "polySimp_mulLiterals" (formula "80") (term "0")) + (rule "newSym_eq" (formula "80") (inst "newSymDef=mul(de.wiesler.Buffers::blockAligned(add(mul(begin, + Z(neglit(1(#)))), + end)), + Z(0(#)))") (inst "l=l_0")) + (rule "times_zero_1" (formula "80") (term "1,1")) + (rule "add_zero_right" (formula "80") (term "1")) + (rule "applyEq" (formula "81") (term "0,0") (ifseqformula "80")) + (rule "eqSymm" (formula "81")) + (rule "applyEq" (formula "77") (term "0") (ifseqformula "81")) + (rule "inEqSimp_homoInEq1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,0")) + (rule "polySimp_addComm1" (formula "77") (term "0")) + (rule "polySimp_addComm0" (formula "77") (term "0,0")) + (rule "applyEq" (formula "76") (term "0") (ifseqformula "81")) + (rule "applyEq" (formula "83") (term "1,1,1,1") (ifseqformula "81")) + (rule "applyEq" (formula "78") (term "0") (ifseqformula "81")) + (rule "inEqSimp_homoInEq0" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0")) + (rule "applyEq" (formula "80") (term "0,0") (ifseqformula "81")) + (rule "applyEq" (formula "83") (term "1,0,1") (ifseqformula "81")) + (rule "applyEq" (formula "84") (term "1") (ifseqformula "81")) + (rule "inEqSimp_sepPosMonomial0" (formula "77")) + (rule "polySimp_mulComm0" (formula "77") (term "1")) + (rule "polySimp_rightDist" (formula "77") (term "1")) + (rule "polySimp_mulLiterals" (formula "77") (term "1,1")) + (rule "polySimp_elimOne" (formula "77") (term "1,1")) + (rule "polySimp_mulComm0" (formula "77") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "77") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "78")) + (rule "polySimp_mulComm0" (formula "78") (term "1")) + (rule "polySimp_rightDist" (formula "78") (term "1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,1")) + (rule "polySimp_elimOne" (formula "78") (term "1,1")) + (rule "polySimp_rightDist" (formula "78") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,1")) + (rule "mul_literals" (formula "78") (term "0,0,1")) + (rule "elimGcdGeq_antec" (formula "76") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "polySimp_mulLiterals" (formula "76") (term "1,0,1,0")) + (rule "add_zero_right" (formula "76") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "76") (term "0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "mul_literals" (formula "76") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "76") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "76") (term "0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0")) + (rule "add_zero_right" (formula "76") (term "0,0")) + (rule "leq_literals" (formula "76") (term "0")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_exactShadow3" (formula "70") (ifseqformula "77")) + (rule "polySimp_rightDist" (formula "70") (term "0,0")) + (rule "mul_literals" (formula "70") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "70") (term "0")) + (rule "polySimp_addComm1" (formula "70") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "70") (term "0")) + (rule "add_literals" (formula "70") (term "1,1,0")) + (rule "times_zero_1" (formula "70") (term "1,0")) + (rule "add_zero_right" (formula "70") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "70")) + (rule "mul_literals" (formula "70") (term "1")) + (rule "elimGcdGeq_antec" (formula "70") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(1(#))")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "70") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "70") (term "0,0")) + (builtin "One Step Simplification" (formula "70")) + (rule "mul_literals" (formula "70") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "70") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "70") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "70") (term "0,0")) + (rule "add_literals" (formula "70") (term "1,1,0,0")) + (rule "times_zero_1" (formula "70") (term "1,0,0")) + (rule "add_zero_right" (formula "70") (term "0,0")) + (rule "leq_literals" (formula "70") (term "0")) + (builtin "One Step Simplification" (formula "70")) + (rule "inEqSimp_subsumption1" (formula "77") (ifseqformula "70")) + (rule "leq_literals" (formula "77") (term "0")) + (builtin "One Step Simplification" (formula "77")) + (rule "true_left" (formula "77")) + (rule "inEqSimp_exactShadow3" (formula "78") (ifseqformula "41")) + (rule "polySimp_rightDist" (formula "78") (term "0,0")) + (rule "polySimp_rightDist" (formula "78") (term "0,0,0")) + (rule "mul_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "78") (term "0")) + (rule "polySimp_addComm1" (formula "78") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "1,1,0")) + (rule "times_zero_1" (formula "78") (term "1,0")) + (rule "add_zero_right" (formula "78") (term "0")) + (rule "polySimp_addComm1" (formula "78") (term "0")) + (rule "add_literals" (formula "78") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "78")) + (rule "polySimp_mulLiterals" (formula "78") (term "0")) + (rule "elimGcdLeq_antec" (formula "78") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_0") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "78") (term "0,0")) + (builtin "One Step Simplification" (formula "78")) + (rule "neg_literal" (formula "78") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "78") (term "1,0,0")) + (rule "mul_literals" (formula "78") (term "1,0,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "78") (term "0,0,0,0")) + (rule "add_literals" (formula "78") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "78") (term "0,0")) + (rule "add_literals" (formula "78") (term "1,1,0,0")) + (rule "times_zero_1" (formula "78") (term "1,0,0")) + (rule "add_zero_right" (formula "78") (term "0,0")) + (rule "qeq_literals" (formula "78") (term "0")) + (builtin "One Step Simplification" (formula "78")) + (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "65") (term "0")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "134")) (ifInst "" (formula "34"))) + (rule "wellFormedAnon" (formula "65") (term "1,0")) + (rule "translateJavaAddInt" (formula "65") (term "1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "65") (term "1,1,1,0,0,1")) + (rule "replace_known_left" (formula "65") (term "0,1,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "65") (ifInst "" (formula "29"))) + (rule "polySimp_addComm0" (formula "65") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "65") (term "1,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "65") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "65") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "65") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0")) + (rule "replace_known_left" (formula "65") (term "0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1")) + (rule "applyEq" (formula "65") (term "0,1,0,0,1") (ifseqformula "66")) + (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,0,1")) + (rule "applyEq" (formula "65") (term "1,0,1,0,1") (ifseqformula "63")) + (rule "applyEq" (formula "65") (term "0,1,0,0,0") (ifseqformula "63")) + (rule "applyEq" (formula "65") (term "0,0,0,1,1") (ifseqformula "66")) + (rule "applyEq" (formula "65") (term "0,1,0,0,0,1") (ifseqformula "66")) + (rule "inEqSimp_commuteGeq" (formula "65") (term "1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "65") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "65") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "65") (term "0,0,0")) + (rule "replace_known_left" (formula "65") (term "0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "65")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "56") (term "0")) + (rule "replace_known_right" (formula "56") (term "0,0,0") (ifseqformula "104")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "30")) (ifInst "" (formula "57"))) + (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "67") (term "0")) + (rule "translateJavaMulInt" (formula "67") (term "0,0,2,0")) + (rule "translateJavaAddInt" (formula "67") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "67") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "67") (term "0,2,0")) + (rule "pullOutSelect" (formula "67") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "67")) + (builtin "One Step Simplification" (formula "67") (ifInst "" (formula "101")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "68")) + (rule "applyEqReverse" (formula "67") (term "1") (ifseqformula "68")) + (rule "hideAuxiliaryEq" (formula "68")) + (rule "elementOfArrayRangeConcrete" (formula "67") (term "0,0")) + (rule "replace_known_right" (formula "67") (term "0,0,0,0") (ifseqformula "107")) + (builtin "One Step Simplification" (formula "67")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "44") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "44") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "44") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "44") (term "1,1,0,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "97") (term "1,0") (inst "i=i")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "90") (term "1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "90") (term "0")) + (rule "polySimp_addComm1" (formula "90") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "90") (term "0")) + (rule "polySimp_mulComm0" (formula "90") (term "1,0")) + (rule "polySimp_rightDist" (formula "90") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "90") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "90") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "90") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "90") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "90") (term "0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "62") (term "0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "62")) + (rule "translateJavaSubInt" (formula "62") (term "4,0,0,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "3,0,2,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "4,0,2,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "3,0,0,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "62") (term "0,4,0,0,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "62") (term "4,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "62") (term "1,4,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "4,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "62") (term "0,4,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "62") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "62") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "62") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "62") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "62") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "62") (term "0,0,0,0,0,0,1,0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "16") (term "0,0,0,1,1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "3,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "16") (term "2,0,0,0,1,1,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,3,0,0,0,1,1,0")) + (rule "Contract_axiom_for_classOf_in_Classifier" (formula "139") (term "0")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "1") (term "1,0,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "134")) (ifInst "" (formula "36"))) + (rule "wellFormedAnonEQ" (formula "1") (term "1,0") (ifseqformula "95")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "wellFormedAnon" (formula "1") (term "0,0,1,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0,1,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")) (ifInst "" (formula "92")) (ifInst "" (formula "94"))) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,1")) + (rule "applyEq" (formula "1") (term "0,1,0,0,1,0,1") (ifseqformula "48")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,1")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "62") (term "1,1,0")) + (rule "translateJavaCastInt" (formula "62") (term "0,1,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "castedGetAny" (formula "62") (term "0,0,1,0")) + (rule "eqSymm" (formula "62") (term "1,0")) + (rule "Contract_axiom_for_countElementInBucket_in_Buffers" (formula "16") (term "2,0,0,1,0")) + (rule "replace_known_right" (formula "16") (term "0,1,0") (ifseqformula "139")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "32")) (ifInst "" (formula "34"))) + (rule "true_left" (formula "16")) + (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "16") (term "2,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "3,0,1,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "2,2,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "2,0,1,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "3,2,2,0,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,0,0,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,3,0,1,2,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "1,2,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,0,0,2,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "3,0,1,2,0,0")) + (rule "mul_literals" (formula "16") (term "1,3,0,1,2,0,0")) + (rule "polySimp_homoEq" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "3,0,1,2,0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,2,0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,3,0,1,2,0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,2,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,2,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,2,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,2,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,2,0,1,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,2,1,1,0")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "15") (term "0,1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaAddInt" (formula "15") (term "3,0,0,1,0")) + (rule "translateJavaAddInt" (formula "15") (term "4,0,0,1,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Tree" (formula "60")) + (builtin "One Step Simplification" (formula "60")) + (rule "translateJavaSubInt" (formula "60") (term "3,0,1")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "notLeft" (formula "60")) + (rule "polySimp_elimSub" (formula "66") (term "3,0")) + (rule "mul_literals" (formula "66") (term "1,3,0")) + (rule "polySimp_addComm0" (formula "66") (term "3,0")) + (rule "inEqSimp_commuteLeq" (formula "65")) + (rule "inEqSimp_commuteLeq" (formula "63")) + (rule "inEqSimp_commuteLeq" (formula "64")) + (rule "inEqSimp_commuteLeq" (formula "60")) + (rule "applyEq" (formula "108") (term "0") (ifseqformula "56")) + (rule "applyEq" (formula "58") (term "3,0") (ifseqformula "62")) + (rule "applyEq" (formula "66") (term "1,0") (ifseqformula "56")) + (rule "applyEq" (formula "65") (term "1") (ifseqformula "62")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "applyEq" (formula "55") (term "0,1,0") (ifseqformula "62")) + (rule "applyEq" (formula "65") (term "0,0") (ifseqformula "56")) + (rule "inEqSimp_commuteGeq" (formula "65")) + (rule "applyEq" (formula "66") (term "1,3,0") (ifseqformula "62")) + (rule "applyEq" (formula "55") (term "2,0") (ifseqformula "62")) + (rule "applyEq" (formula "57") (term "3,0") (ifseqformula "62")) + (rule "applyEq" (formula "64") (term "1") (ifseqformula "62")) + (rule "applyEq" (formula "63") (term "0") (ifseqformula "62")) + (rule "applyEq" (formula "59") (term "1,0,2,0") (ifseqformula "62")) + (rule "eqSymm" (formula "59")) + (rule "inEqSimp_exactShadow3" (formula "63") (ifseqformula "65")) + (rule "mul_literals" (formula "63") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "63")) + (rule "mul_literals" (formula "63") (term "1")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "76") (term "0,1,1")) + (builtin "One Step Simplification" (formula "76") (ifInst "" (formula "53")) (ifInst "" (formula "145"))) + (rule "translateJavaAddInt" (formula "76") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "76") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "76") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "76") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "76") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "76") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0,0")) + (rule "replace_known_left" (formula "76") (term "0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "76") (term "1,0,1,1,1")) + (rule "applyEq" (formula "76") (term "1,0,1,0,1") (ifseqformula "72")) + (rule "applyEq" (formula "76") (term "1,0,1,0,0,1") (ifseqformula "72")) + (rule "applyEq" (formula "76") (term "0,1,0,0,0,1,1,1") (ifseqformula "72")) + (rule "applyEq" (formula "76") (term "0,0") (ifseqformula "72")) + (rule "applyEq" (formula "76") (term "0,1,0,1,1,1,1") (ifseqformula "72")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "76") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "76") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "76") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "76") (term "0,0,1,1,1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "76") (term "1,0,1,1,1,1") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "76") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "76") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "76") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "76") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "76")) + (rule "inEqSimp_subsumption1" (formula "76") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "76") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "76") (term "0,0,0")) + (rule "add_literals" (formula "76") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "76") (term "1,0,0,0")) + (rule "add_literals" (formula "76") (term "0,0,0")) + (rule "qeq_literals" (formula "76") (term "0,0")) + (builtin "One Step Simplification" (formula "76")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "77")) + (rule "andLeft" (formula "76")) + (rule "andLeft" (formula "79")) + (rule "andLeft" (formula "76")) + (rule "replace_known_left" (formula "74") (term "0,0,0,0,1") (ifseqformula "76")) + (builtin "One Step Simplification" (formula "74")) + (rule "inEqSimp_exactShadow3" (formula "77") (ifseqformula "78")) + (rule "polySimp_mulComm0" (formula "77") (term "0,0")) + (rule "polySimp_addComm0" (formula "77") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "77")) + (rule "polySimp_mulLiterals" (formula "77") (term "0")) + (rule "polySimp_elimOne" (formula "77") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "53") (inst "b=b")) + (builtin "One Step Simplification" (formula "53") (ifInst "" (formula "116")) (ifInst "" (formula "24")) (ifInst "" (formula "27"))) + (rule "translateJavaMulInt" (formula "53") (term "0,1,0,0,0,0")) + (rule "translateJavaCastInt" (formula "53") (term "0,1,0")) + (rule "translateJavaCastInt" (formula "53") (term "0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "53") (term "1,1,0,0")) + (rule "translateJavaMulInt" (formula "53") (term "1,0,0,0,0,0")) + (rule "translateJavaCastInt" (formula "53") (term "1,1,0,1,0,0,0")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "53")) + (rule "andLeft" (formula "55")) + (rule "polySimp_mulComm0" (formula "54") (term "0")) + (rule "polySimp_mulComm0" (formula "53") (term "1")) + (rule "polySimp_addComm0" (formula "58") (term "1")) + (rule "castedGetAny" (formula "59") (term "0")) + (rule "castedGetAny" (formula "57") (term "0")) + (rule "castedGetAny" (formula "56") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "53")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "applyEq" (formula "53") (term "0,0") (ifseqformula "77")) + (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "77")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "56")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "55") (term "1,0") (ifseqformula "76")) + (rule "applyEq" (formula "54") (term "0,0") (ifseqformula "75")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "54") (term "1,1") (ifseqformula "74")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0") (ifseqformula "74")) + (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "74")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,0")) + (rule "times_zero_1" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "54") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "54") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "52") (ifseqformula "42")) + (rule "mul_literals" (formula "52") (term "1,1,0")) + (rule "greater_literals" (formula "52") (term "0,0")) + (builtin "One Step Simplification" (formula "52")) + (rule "leq_literals" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52")) + (rule "true_left" (formula "52")) + (rule "Contract_axiom_for_writtenCountOfBucket_in_BucketPointers" (formula "83") (term "0")) + (rule "replace_known_left" (formula "83") (term "1,0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "34")) (ifInst "" (formula "152"))) + (rule "inEqSimp_ltToLeq" (formula "83") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "83") (term "0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "83") (term "0,0,0")) + (rule "replace_known_left" (formula "83") (term "0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "83")) + (rule "applyEq" (formula "83") (term "0,1,0,0,0") (ifseqformula "72")) + (rule "inEqSimp_sepNegMonomial0" (formula "83") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,0,0")) + (rule "replace_known_left" (formula "83") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "83")) + (rule "true_left" (formula "83")) + (rule "Definition_axiom_for_writtenCountOfBucket_in_de_wiesler_BucketPointers" (formula "83") (term "0")) + (rule "translateJavaSubInt" (formula "83") (term "0")) + (rule "polySimp_elimSub" (formula "83") (term "0")) + (rule "polySimp_homoEq" (formula "83")) + (rule "polySimp_mulComm0" (formula "83") (term "1,0")) + (rule "polySimp_addComm0" (formula "83") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "83") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "83") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "83") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "83") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "83") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "83") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "83") (term "0,0")) + (rule "add_literals" (formula "83") (term "1,1,0,0")) + (rule "times_zero_1" (formula "83") (term "1,0,0")) + (rule "add_zero_right" (formula "83") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "83")) + (rule "polySimp_mulLiterals" (formula "83") (term "0")) + (rule "polySimp_elimOne" (formula "83") (term "0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "104") (term "0")) + (builtin "One Step Simplification" (formula "104") (ifInst "" (formula "155")) (ifInst "" (formula "108")) (ifInst "" (formula "150")) (ifInst "" (formula "35"))) + (rule "true_left" (formula "104")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "28") (inst "b=b")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "118")) (ifInst "" (formula "117")) (ifInst "" (formula "50"))) + (rule "translateJavaMulInt" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,0")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "28")) + (rule "notLeft" (formula "28")) + (rule "eqSymm" (formula "117")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "50")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "49")) + (rule "applyEq" (formula "29") (term "0,1,0,0,1,0,0") (ifseqformula "49")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (ifseqformula "43")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "104") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "104")) + (rule "inEqSimp_ltToLeq" (formula "104") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "104") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "104") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "104") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "104") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "104") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "104") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "104") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "104") (term "0,1,1,0,0")) + (rule "mul_literals" (formula "104") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "104") (term "1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "104") (term "1,0,1,1,0,0")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "119")) (ifInst "" (formula "120")) (ifInst "" (formula "56"))) + (rule "translateJavaSubInt" (formula "18") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaMulInt" (formula "18") (term "1,1,1,0,0,0")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "eqSymm" (formula "22")) + (rule "eqSymm" (formula "20")) + (rule "polySimp_elimSub" (formula "22") (term "0,2,1")) + (rule "mul_literals" (formula "22") (term "1,0,2,1")) + (rule "polySimp_elimSub" (formula "22") (term "0,2,0")) + (rule "mul_literals" (formula "22") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "51")) + (rule "applyEq" (formula "20") (term "1,0,2,0") (ifseqformula "65")) + (rule "eqSymm" (formula "20")) + (rule "applyEq" (formula "18") (term "2,0") (ifseqformula "65")) + (rule "applyEq" (formula "18") (term "0,1,0") (ifseqformula "65")) + (rule "applyEq" (formula "19") (term "3,0") (ifseqformula "65")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "50")) + (rule "applyEq" (formula "19") (term "1,0,2,0") (ifseqformula "64")) + (rule "eqSymm" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "123")) (ifInst "" (formula "7"))) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "123")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0,0") (ifseqformula "129")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "128")) + (builtin "One Step Simplification" (formula "19")) + (rule "eqSymm" (formula "19")) + (rule "Definition_axiom_for_classOf_in_de_wiesler_Classifier" (formula "156") (term "0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "Definition_axiom_for_isSortedSeqTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "j=j") (inst "i=i")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaCastInt" (formula "27") (term "1,1,0,1,0")) + (rule "translateJavaCastInt" (formula "27") (term "0,1,0,1,0")) + (rule "castedGetAny" (formula "27") (term "1,1,0,1,0")) + (rule "castedGetAny" (formula "27") (term "0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0,1,0") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "applyEq" (formula "27") (term "0,1,0,0,1,0,0") (ifseqformula "53")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "Definition_axiom_for_isBlockAligned_in_de_wiesler_Buffers" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaMod" (formula "25") (term "0")) + (rule "jmod_axiom" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "newSym_eq" (formula "25") (inst "newSymDef=mul(int::final(bucket_pointers, + de.wiesler.BucketPointers::$first_empty_position), + Z(0(#)))") (inst "l=l_1")) + (rule "times_zero_1" (formula "25") (term "1,1")) + (rule "add_zero_right" (formula "25") (term "1")) + (rule "applyEq" (formula "26") (term "0,0") (ifseqformula "25")) + (rule "eqSymm" (formula "26")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "26")) + (rule "applyEq" (formula "25") (term "0,0") (ifseqformula "26")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "26")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "26")) + (rule "elimGcdGeq_antec" (formula "21") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "add_zero_right" (formula "21") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "leq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "elimGcdLeq_antec" (formula "22") (inst "elimGcd=Z(6(5(2(#))))") (inst "elimGcdLeftDiv=l_1") (inst "elimGcdRightDiv=Z(7(0(6(8(8(3(8(#))))))))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "neg_literal" (formula "22") (term "0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,1,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "24")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "inEqSimp_subsumption4" (formula "23") (ifseqformula "22")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "greater_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "leq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "commute_or_2" (formula "87") (term "0,0")) + (rule "cnf_rightDist" (formula "53") (term "0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "102") (term "0")) + (builtin "One Step Simplification" (formula "102") (ifInst "" (formula "154"))) + (rule "translateJavaSubInt" (formula "102") (term "1,0,1,1,1,1,1")) + (rule "translateJavaAddInt" (formula "102") (term "1,1,1,0,1,1,1")) + (rule "polySimp_elimSub" (formula "102") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "102") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "102") (term "1,1,1,0,1,1,1")) + (rule "add_literals" (formula "102") (term "0,1,1,1,0,1,1,1")) + (rule "add_zero_left" (formula "102") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm1" (formula "102") (term "1,0,1,1,1,1,1")) + (rule "add_literals" (formula "102") (term "0,1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "102") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "102") (term "0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "102") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "102") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "102") (term "0,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "102") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "102") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "102") (term "0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "102") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "102") (term "0,0,0,0,0,1,1,1")) + (rule "add_zero_left" (formula "102") (term "0,0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "102") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "102") (term "0,0,0")) + (rule "mul_literals" (formula "102") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "102") (term "0,0,0,0")) + (rule "applyEq" (formula "102") (term "0,1,0,0") (ifseqformula "74")) + (rule "inEqSimp_homoInEq1" (formula "102") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,1,0,0")) + (rule "add_literals" (formula "102") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "102") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "102") (term "0,1,0,0")) + (rule "leq_literals" (formula "102") (term "1,0,0")) + (builtin "One Step Simplification" (formula "102")) + (rule "applyEq" (formula "102") (term "0,1,0,0,0,1,1,1") (ifseqformula "74")) + (rule "polySimp_pullOutFactor1" (formula "102") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "102") (term "1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "102") (term "0,0,0,1,1,1")) + (rule "leq_literals" (formula "102") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "102")) + (rule "applyEq" (formula "102") (term "1,0,1,0,1") (ifseqformula "74")) + (rule "replace_known_left" (formula "102") (term "1,0,1") (ifseqformula "81")) + (builtin "One Step Simplification" (formula "102")) + (rule "applyEq" (formula "102") (term "0,1,0,1,1,1,1") (ifseqformula "74")) + (rule "inEqSimp_homoInEq1" (formula "102") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "102") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "102") (term "1,1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "102") (term "1,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "102") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "102") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "102")) + (rule "applyEq" (formula "102") (term "1,0,1,0,1") (ifseqformula "74")) + (rule "inEqSimp_commuteGeq" (formula "102") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "102") (term "0,0")) + (rule "mul_literals" (formula "102") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "102") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "102") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "102") (term "0,0,1,1,1,1")) + (rule "replace_known_left" (formula "102") (term "0,1,1,1,1") (ifseqformula "44")) + (builtin "One Step Simplification" (formula "102")) + (rule "inEqSimp_subsumption1" (formula "102") (term "0,0") (ifseqformula "44")) + (rule "leq_literals" (formula "102") (term "0,0,0")) + (builtin "One Step Simplification" (formula "102")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "103") (term "0")) + (rule "translateJavaCastInt" (formula "103") (term "0,0")) + (rule "castedGetAny" (formula "103") (term "0,0")) + (rule "cnf_rightDist" (formula "87") (term "0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] TRUE" + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "95") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "95") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "95") (term "0,0")) + (rule "add_literals" (formula "95") (term "1,1,0,0")) + (rule "times_zero_1" (formula "95") (term "1,0,0")) + (rule "add_literals" (formula "95") (term "0,0")) + (rule "qeq_literals" (formula "95") (term "0")) + (builtin "One Step Simplification" (formula "95")) + (rule "true_left" (formula "95")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "3")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_literals" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch " bucket_starts[1 + bucket_0] >= 1 + bucket_starts[bucket_0] FALSE" + (rule "inEqSimp_geqRight" (formula "118")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,1")) + (rule "add_literals" (formula "6") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "6") (term "1,0,0,1")) + (rule "add_zero_right" (formula "6") (term "0,0,1")) + (rule "qeq_literals" (formula "6") (term "0,1")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_antiSymm" (formula "93") (ifseqformula "1")) + (rule "applyEq" (formula "110") (term "1,2,1,0") (ifseqformula "93")) + (rule "applyEq" (formula "112") (term "1,2,1,0,0") (ifseqformula "93")) + (rule "applyEq" (formula "94") (term "0") (ifseqformula "93")) + (rule "inEqSimp_homoInEq1" (formula "94")) + (rule "polySimp_pullOutFactor1" (formula "94") (term "0")) + (rule "add_literals" (formula "94") (term "1,0")) + (rule "times_zero_1" (formula "94") (term "0")) + (rule "leq_literals" (formula "94")) + (rule "true_left" (formula "94")) + (rule "applyEq" (formula "111") (term "1,2,1,0") (ifseqformula "93")) + (rule "applyEq" (formula "106") (term "1,2,1,0,0,1,0") (ifseqformula "93")) + (rule "applyEq" (formula "113") (term "1,1,1") (ifseqformula "93")) + (rule "seqDef_lower_equals_upper" (formula "113") (term "1")) + (rule "seqPermEmpty2" (formula "113")) + (rule "eqSymm" (formula "113")) + (rule "eqSeqEmpty" (formula "113")) + (rule "lenOfSeqDef" (formula "113") (term "0")) + (builtin "One Step Simplification" (formula "113")) + (rule "polySimp_elimSub" (formula "113") (term "0,1")) + (rule "polySimp_mulComm0" (formula "113") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "113") (term "0,1,0,1")) + (rule "polySimp_addComm1" (formula "113") (term "0,1")) + (rule "polySimp_addAssoc" (formula "113") (term "0,0,1")) + (rule "polySimp_pullOutFactor1" (formula "113") (term "0,0,0,1")) + (rule "add_literals" (formula "113") (term "1,0,0,0,1")) + (rule "times_zero_1" (formula "113") (term "0,0,0,1")) + (rule "add_zero_left" (formula "113") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "113") (term "0,0")) + (rule "polySimp_rightDist" (formula "113") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "113") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "113") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "113") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "113") (term "0,0,0,0,0")) + (rule "add_literals" (formula "113") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "113") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "113") (term "0,0,0,0,0")) + (rule "applyEq" (formula "114") (term "1,1,0,0") (ifseqformula "93")) + (rule "bsum_lower_equals_upper" (formula "114") (term "0,0")) + (rule "eqSymm" (formula "114") (term "0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "93")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "93") (term "0") (ifseqformula "92")) + (rule "applyEq" (formula "105") (term "1,2,1,0,0,0,2,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "92")) + (rule "applyEq" (formula "85") (term "1,0,0,1,1,1,0") (ifseqformula "92")) + (rule "applyEq" (formula "105") (term "1,1,0,0") (ifseqformula "92")) + (rule "bsum_lower_equals_upper" (formula "105") (term "0,0")) + (rule "polySimp_homoEq" (formula "105") (term "0")) + (rule "mul_literals" (formula "105") (term "1,0,0")) + (rule "add_zero_right" (formula "105") (term "0,0")) + (rule "applyEq" (formula "104") (term "1,2,1,0,2,0,1,0") (ifseqformula "92")) + (rule "applyEq" (formula "113") (term "1,1,1,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "104") (term "1,1,1,0,0") (ifseqformula "92")) + (rule "applyEq" (formula "112") (term "1,1,0,0") (ifseqformula "92")) + (rule "bsum_lower_equals_upper" (formula "112") (term "0,0")) + (builtin "One Step Simplification" (formula "112")) + (rule "true_left" (formula "112")) + (rule "applyEq" (formula "111") (term "0,1,0,0,0") (ifseqformula "92")) + (rule "polySimp_pullOutFactor1b" (formula "111") (term "0,0,0")) + (rule "add_literals" (formula "111") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "111") (term "1,0,0,0")) + (rule "add_zero_right" (formula "111") (term "0,0,0")) + (rule "leq_literals" (formula "111") (term "0,0")) + (builtin "One Step Simplification" (formula "111")) + (rule "true_left" (formula "111")) + (rule "polySimp_sepPosMonomial" (formula "105") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "2")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "Case 2" + (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "100") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "100")) + (rule "closeTrue" (formula "100")) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "100")) + (rule "allRight" (formula "100") (inst "sk=f_0")) + (rule "allRight" (formula "100") (inst "sk=o_0")) + (rule "orRight" (formula "100")) + (rule "orRight" (formula "100")) + (rule "eqSymm" (formula "100") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "100") (term "1,1,0,1")) + (rule "pullOutSelect" (formula "102") (term "1") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "102"))) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "101")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "103"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) ) - (branch "Case 2" - (rule "andRight" (formula "90")) + (branch "Exceptional Post (fallback_sort)" + (builtin "One Step Simplification" (formula "94")) + (builtin "One Step Simplification" (formula "59")) + (rule "translateJavaSubInt" (formula "59") (term "2,1,0,0")) + (rule "andLeft" (formula "59")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "60") (term "1,0") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "60")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "61")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "62")) + (rule "notLeft" (formula "60")) + (rule "close" (formula "64") (ifseqformula "63")) + ) + (branch "Pre (fallback_sort)" + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "91")) (ifInst "" (formula "56")) (ifInst "" (formula "91")) (ifInst "" (formula "18"))) + (rule "andRight" (formula "92")) (branch "Case 1" - (builtin "One Step Simplification" (formula "90") (userinteraction)) - (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "90") (term "0") (userinteraction)) - (builtin "One Step Simplification" (formula "90")) - (rule "translateJavaAddInt" (formula "90") (term "4,0,0")) - (rule "translateJavaAddInt" (formula "90") (term "3,0,0")) - (rule "replace_known_left" (formula "90") (term "0") (ifseqformula "52")) - (builtin "One Step Simplification" (formula "90")) - (rule "polySimp_homoEq" (formula "53") (term "0")) - (rule "polySimp_homoEq" (formula "38") (term "1,0,1,0")) - (rule "polySimp_homoEq" (formula "10") (term "0")) - (rule "polySimp_homoEq" (formula "43")) - (rule "polySimp_mulComm0" (formula "53") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0,1,0")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "43") (term "0")) - (rule "polySimp_addComm0" (formula "43") (term "0,0")) - (rule "polySimp_rightDist" (formula "53") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0")) - (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0,1,0")) - (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,1,0,1,0")) - (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,1,0,1,0")) - (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0,1,0")) - (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "53") (term "0,0")) - (rule "polySimp_addComm0" (formula "53") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "38") (term "0,1,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "9") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "38") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,0")) + (rule "andRight" (formula "92")) + (branch "Case 1" + (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0")) + (rule "polySimp_homoEq" (formula "54") (term "0")) + (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "92")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "polySimp_elimOne" (formula "45") (term "0,1")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "45")) + (rule "polySimp_sepNegMonomial" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "1")) + (rule "times_zero_1" (formula "48") (term "0,0")) + (rule "add_zero_left" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "25") (ifseqformula "48")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "closeFalse" (formula "25")) + ) + (branch "Case 2" + (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0")) + (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "54") (term "0")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "92")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "polySimp_elimOne" (formula "45") (term "0,1")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "45")) + (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption0" (formula "2") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_contradInEq0" (formula "48") (ifseqformula "1")) + (rule "andLeft" (formula "48")) + (rule "inEqSimp_homoInEq1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0")) + (rule "add_literals" (formula "48") (term "1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0")) + (rule "add_literals" (formula "48") (term "0")) + (rule "leq_literals" (formula "48")) + (rule "closeFalse" (formula "48")) + ) + ) + (branch "Case 2" + (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0")) + (rule "polySimp_homoEq" (formula "54") (term "0")) + (rule "polySimp_homoEq" (formula "44")) + (rule "polySimp_homoEq" (formula "39") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "11") (term "0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "44") (term "0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0")) + (rule "polySimp_rightDist" (formula "54") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "39") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "54") (term "0,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "92")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0")) (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "6")) - (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "6") (term "0")) - (rule "inEqSimp_homoInEq0" (formula "28")) - (rule "polySimp_mulComm0" (formula "28") (term "1,0")) - (rule "polySimp_rightDist" (formula "28") (term "1,0")) - (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) - (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "28") (term "0")) - (rule "polySimp_sepPosMonomial" (formula "43")) - (rule "polySimp_mulComm0" (formula "43") (term "1")) - (rule "polySimp_rightDist" (formula "43") (term "1")) - (rule "polySimp_mulAssoc" (formula "43") (term "0,1")) - (rule "polySimp_mulComm0" (formula "43") (term "0,0,1")) - (rule "polySimp_mulLiterals" (formula "43") (term "0,1")) - (rule "polySimp_elimOne" (formula "43") (term "0,1")) - (rule "polySimp_sepNegMonomial" (formula "53") (term "0")) - (rule "polySimp_mulLiterals" (formula "53") (term "0,0")) - (rule "polySimp_elimOne" (formula "53") (term "0,0")) - (rule "polySimp_sepNegMonomial" (formula "38") (term "1,0,1,0")) - (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0")) - (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0")) - (rule "polySimp_sepNegMonomial" (formula "10") (term "0")) - (rule "polySimp_mulLiterals" (formula "10") (term "0,0")) - (rule "polySimp_elimOne" (formula "10") (term "0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) - (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "38") (term "0,1,0,0,0")) - (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "polySimp_elimOne" (formula "45") (term "0,1")) + (rule "applyEq" (formula "58") (term "1") (ifseqformula "45")) + (rule "polySimp_sepNegMonomial" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "6")) - (rule "polySimp_mulLiterals" (formula "6") (term "0")) - (rule "polySimp_elimOne" (formula "6") (term "0")) - (rule "inEqSimp_sepNegMonomial1" (formula "28")) - (rule "polySimp_mulLiterals" (formula "28") (term "0")) - (rule "polySimp_elimOne" (formula "28") (term "0")) - (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) - (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) - (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) - (rule "add_literals" (formula "8") (term "1,1,0,0")) - (rule "times_zero_1" (formula "8") (term "1,0,0")) - (rule "add_zero_right" (formula "8") (term "0,0")) - (rule "qeq_literals" (formula "8") (term "0")) - (builtin "One Step Simplification" (formula "8")) - (rule "true_left" (formula "8")) - (rule "inEqSimp_exactShadow3" (formula "47") (ifseqformula "48")) - (rule "polySimp_mulComm0" (formula "47") (term "0,0")) - (rule "polySimp_addComm0" (formula "47") (term "0")) - (rule "inEqSimp_sepNegMonomial1" (formula "47")) - (rule "polySimp_mulLiterals" (formula "47") (term "0")) - (rule "polySimp_elimOne" (formula "47") (term "0")) - (rule "inEqSimp_exactShadow3" (formula "46") (ifseqformula "47")) - (rule "times_zero_1" (formula "46") (term "0,0")) - (rule "add_zero_left" (formula "46") (term "0")) - (rule "inEqSimp_sepPosMonomial1" (formula "46")) - (rule "polySimp_mulLiterals" (formula "46") (term "1")) - (rule "polySimp_elimOne" (formula "46") (term "1")) - (rule "nnf_imp2or" (formula "36") (term "0")) - (rule "nnf_imp2or" (formula "8") (term "0")) - (rule "nnf_imp2or" (formula "37") (term "0")) - (rule "nnf_imp2or" (formula "10") (term "0")) - (rule "nnf_notAnd" (formula "36") (term "0,0")) - (rule "inEqSimp_notGeq" (formula "36") (term "0,0,0")) - (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0")) - (rule "add_zero_right" (formula "36") (term "0,0,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0,0")) - (rule "mul_literals" (formula "36") (term "1,0,0,0")) - (rule "inEqSimp_notLeq" (formula "36") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) - (rule "mul_literals" (formula "36") (term "0,1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) - (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0")) - (rule "nnf_notAnd" (formula "8") (term "0,0")) - (rule "inEqSimp_notLeq" (formula "8") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) - (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) - (rule "add_zero_left" (formula "8") (term "0,0,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) - (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0")) - (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) - (rule "inEqSimp_notGeq" (formula "8") (term "1,0,0")) - (rule "times_zero_1" (formula "8") (term "1,0,0,1,0,0")) - (rule "add_zero_right" (formula "8") (term "0,0,1,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) - (rule "mul_literals" (formula "8") (term "1,1,0,0")) - (rule "nnf_notAnd" (formula "37") (term "0,0")) - (rule "inEqSimp_notGeq" (formula "37") (term "1,0,0")) - (rule "mul_literals" (formula "37") (term "1,0,0,1,0,0")) - (rule "add_zero_right" (formula "37") (term "0,0,1,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0")) - (rule "mul_literals" (formula "37") (term "1,1,0,0")) - (rule "inEqSimp_notLeq" (formula "37") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0")) - (rule "add_literals" (formula "37") (term "0,0,0,0,0,0")) - (rule "add_zero_left" (formula "37") (term "0,0,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,0")) - (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,0")) - (rule "polySimp_elimOne" (formula "37") (term "1,0,0,0")) - (rule "nnf_notAnd" (formula "10") (term "0,0")) - (rule "inEqSimp_notLeq" (formula "10") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0,0")) - (rule "add_literals" (formula "10") (term "0,0,0,0,0,0")) - (rule "add_zero_left" (formula "10") (term "0,0,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0,0")) - (rule "polySimp_mulLiterals" (formula "10") (term "1,0,0,0")) - (rule "polySimp_elimOne" (formula "10") (term "1,0,0,0")) - (rule "inEqSimp_notGeq" (formula "10") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,1,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "10") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "10") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "10") (term "1,1,1,0,0")) - (rule "mul_literals" (formula "10") (term "0,1,1,0,0")) - (rule "polySimp_elimOne" (formula "10") (term "1,1,1,0,0")) - (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "12") (inst "b=b")) - (builtin "One Step Simplification" (formula "12")) - (rule "translateJavaMulInt" (formula "12") (term "1,0,1,0,0,0,0")) - (rule "translateJavaAddInt" (formula "12") (term "1,1,0,0")) - (rule "translateJavaCastInt" (formula "12") (term "0,1,0,1,0,0,0")) - (rule "translateJavaCastInt" (formula "12") (term "1,1,0,0,1,0,0,0")) - (rule "translateJavaMulInt" (formula "12") (term "0,1,1,0,0,0,0")) - (rule "translateJavaCastInt" (formula "12") (term "0,0,1,0")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "14")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "13")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "14")) - (rule "andLeft" (formula "13")) - (rule "notLeft" (formula "12")) - (rule "andLeft" (formula "14")) - (rule "replace_known_right" (formula "3") (term "0") (ifseqformula "65")) - (builtin "One Step Simplification" (formula "3")) - (rule "polySimp_mulComm0" (formula "13") (term "0")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_addComm0" (formula "18") (term "1")) - (rule "castedGetAny" (formula "19") (term "0")) - (rule "castedGetAny" (formula "16") (term "0")) - (rule "castedGetAny" (formula "15") (term "1")) - (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "14")) - (rule "inEqSimp_commuteLeq" (formula "12")) - (rule "inEqSimp_commuteLeq" (formula "15")) - (rule "applyEq" (formula "12") (term "0,0") (ifseqformula "48")) - (rule "applyEq" (formula "15") (term "1,0") (ifseqformula "48")) - (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "48")) - (rule "applyEq" (formula "13") (term "0,0") (ifseqformula "48")) - (rule "inEqSimp_commuteLeq" (formula "13")) - (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "48")) - (rule "applyEq" (formula "21") (term "0,1,0,0,1,0,0") (ifseqformula "48")) - (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) - (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) - (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) - (rule "elimGcdGeq_antec" (formula "12") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=result") (inst "elimGcd=Z(2(#))")) - (rule "leq_literals" (formula "12") (term "0,0")) - (builtin "One Step Simplification" (formula "12")) - (rule "add_zero_right" (formula "12") (term "0,0,0,0")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0,0")) - (rule "times_zero_1" (formula "12") (term "1,0,0,0,0")) - (rule "add_zero_right" (formula "12") (term "0,0,0,0")) - (rule "polySimp_pullOutFactor0b" (formula "12") (term "0,0")) - (rule "add_literals" (formula "12") (term "1,1,0,0")) - (rule "times_zero_1" (formula "12") (term "1,0,0")) - (rule "add_zero_right" (formula "12") (term "0,0")) - (rule "leq_literals" (formula "12") (term "0")) - (builtin "One Step Simplification" (formula "12")) - (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) - (rule "polySimp_mulComm0" (formula "15") (term "0,0")) - (rule "polySimp_addComm0" (formula "15") (term "0")) - (rule "inEqSimp_sepNegMonomial1" (formula "15")) - (rule "polySimp_mulLiterals" (formula "15") (term "0")) - (rule "polySimp_elimOne" (formula "15") (term "0")) - (rule "nnf_imp2or" (formula "22") (term "0")) - (rule "Definition_axiom_for_isClassOfSlice_in_de_wiesler_Classifier" (formula "62") (term "0") (inst "i=i")) - (builtin "One Step Simplification" (formula "62")) - (rule "inEqSimp_ltToLeq" (formula "62") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "62") (term "1,0,0,1,0,0")) - (rule "polySimp_mulComm0" (formula "62") (term "0,1,0,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "62") (term "0,0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "62") (term "0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "62") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "62") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "62") (term "1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "62") (term "1,1,1,0,0")) - (rule "polySimp_elimOne" (formula "62") (term "1,1,1,0,0")) - (rule "polySimp_rightDist" (formula "62") (term "0,1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "62") (term "1,0,1,1,0,0")) - (rule "mul_literals" (formula "62") (term "0,0,1,1,0,0")) - (rule "polySimp_elimOne" (formula "62") (term "1,0,1,1,0,0")) - (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "60") (term "1")) - (builtin "One Step Simplification" (formula "60")) - (rule "translateJavaSubInt" (formula "60") (term "0,1,1,1")) - (rule "polySimp_elimSub" (formula "60") (term "0,1,1,1")) - (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,1,1")) - (rule "polySimp_rightDist" (formula "60") (term "1,0,1,1,1")) - (rule "polySimp_mulAssoc" (formula "60") (term "0,1,0,1,1,1")) - (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,1,1")) - (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1,1,1")) - (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1,1,1")) - (rule "polySimp_addComm0" (formula "60") (term "0,1,1,1")) - (rule "inEqSimp_ltToLeq" (formula "60") (term "1,1,1")) - (rule "mul_literals" (formula "60") (term "1,0,0,1,1,1")) - (rule "add_literals" (formula "60") (term "0,0,1,1,1")) - (rule "polySimp_addAssoc" (formula "60") (term "0,1,1,1")) - (rule "polySimp_addAssoc" (formula "60") (term "0,0,1,1,1")) - (rule "inEqSimp_homoInEq0" (formula "60") (term "1,0")) - (rule "polySimp_mulComm0" (formula "60") (term "1,0,1,0")) - (rule "polySimp_rightDist" (formula "60") (term "1,0,1,0")) - (rule "polySimp_mulAssoc" (formula "60") (term "0,1,0,1,0")) - (rule "polySimp_mulComm0" (formula "60") (term "0,0,1,0,1,0")) - (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0,1,0")) - (rule "polySimp_elimOne" (formula "60") (term "0,1,0,1,0")) - (rule "polySimp_addAssoc" (formula "60") (term "0,1,0")) - (rule "inEqSimp_homoInEq0" (formula "60") (term "0,0")) - (rule "times_zero_2" (formula "60") (term "1,0,0,0")) - (rule "add_zero_right" (formula "60") (term "0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "60") (term "1,1,1")) - (rule "polySimp_mulComm0" (formula "60") (term "1,1,1,1")) - (rule "polySimp_rightDist" (formula "60") (term "1,1,1,1")) - (rule "polySimp_mulLiterals" (formula "60") (term "1,1,1,1,1")) - (rule "polySimp_elimOne" (formula "60") (term "1,1,1,1,1")) - (rule "polySimp_rightDist" (formula "60") (term "0,1,1,1,1")) - (rule "mul_literals" (formula "60") (term "0,0,1,1,1,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "60") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "60") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "60") (term "0,1,0")) - (rule "replace_known_left" (formula "60") (term "1,0") (ifseqformula "37")) - (builtin "One Step Simplification" (formula "60")) - (rule "inEqSimp_sepPosMonomial1" (formula "60") (term "0")) - (rule "polySimp_mulLiterals" (formula "60") (term "1,0")) - (rule "polySimp_elimOne" (formula "60") (term "1,0")) - (rule "replace_known_left" (formula "60") (term "0") (ifseqformula "34")) - (builtin "One Step Simplification" (formula "60")) - (rule "andLeft" (formula "60")) - (rule "andLeft" (formula "61")) - (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "11")) - (builtin "One Step Simplification" (formula "11")) - (rule "translateJavaSubInt" (formula "11") (term "0,2,1,1,0")) - (rule "translateJavaSubInt" (formula "11") (term "0,2,0,1,0")) - (rule "translateJavaMulInt" (formula "11") (term "1,1,1,0,0,0,0")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "11")) - (rule "andLeft" (formula "12")) - (rule "andLeft" (formula "11")) - (rule "notLeft" (formula "11")) - (rule "notLeft" (formula "11")) - (rule "eqSymm" (formula "16")) - (rule "eqSymm" (formula "13")) - (rule "replace_known_right" (formula "1") (term "0") (ifseqformula "75")) - (builtin "One Step Simplification" (formula "1")) - (rule "replace_known_right" (formula "2") (term "0") (ifseqformula "76")) - (builtin "One Step Simplification" (formula "2")) - (rule "polySimp_elimSub" (formula "16") (term "0,2,1")) - (rule "mul_literals" (formula "16") (term "1,0,2,1")) - (rule "polySimp_elimSub" (formula "16") (term "0,2,0")) - (rule "mul_literals" (formula "16") (term "1,0,2,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0")) - (rule "polySimp_addComm0" (formula "16") (term "0,2,1")) - (rule "polySimp_addComm0" (formula "16") (term "0,2,0")) - (rule "inEqSimp_commuteLeq" (formula "11")) - (rule "applyEq" (formula "12") (term "0") (ifseqformula "46")) - (rule "applyEq" (formula "11") (term "0") (ifseqformula "46")) - (rule "applyEq" (formula "13") (term "1") (ifseqformula "46")) - (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "11")) - (rule "leq_literals" (formula "18") (term "0")) - (builtin "One Step Simplification" (formula "18")) - (rule "true_left" (formula "18")) - (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_3")) - (rule "simplifySelectOfAnon" (formula "16")) - (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "75")) (ifInst "" (formula "1"))) - (rule "simplifySelectOfAnon" (formula "17")) - (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "75")) (ifInst "" (formula "1"))) - (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) - (rule "replace_known_right" (formula "16") (term "0,0,0,0") (ifseqformula "83")) - (builtin "One Step Simplification" (formula "16")) - (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "16")) - (rule "hideAuxiliaryEq" (formula "16")) - (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) - (rule "replace_known_right" (formula "16") (term "0,0,0,0") (ifseqformula "82")) - (builtin "One Step Simplification" (formula "16")) - (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "12")) - (rule "polySimp_rightDist" (formula "6") (term "0,0")) - (rule "mul_literals" (formula "6") (term "0,0,0")) - (rule "polySimp_addComm1" (formula "6") (term "0")) - (rule "add_literals" (formula "6") (term "0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "6")) - (rule "polySimp_mulLiterals" (formula "6") (term "0")) - (rule "polySimp_elimOne" (formula "6") (term "0")) - (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "44") (term "0")) - (builtin "One Step Simplification" (formula "44")) - (rule "translateJavaAddInt" (formula "44") (term "3,0,1,0")) - (rule "translateJavaAddInt" (formula "44") (term "0,1,0,0")) - (rule "andLeft" (formula "44")) - (rule "andLeft" (formula "44")) - (rule "andLeft" (formula "44")) - (rule "polySimp_addComm0" (formula "46") (term "3,0")) - (rule "polySimp_addComm0" (formula "45") (term "0")) - (rule "inEqSimp_commuteLeq" (formula "44")) - (rule "inEqSimp_commuteLeq" (formula "44")) - (rule "Contract_axiom_for_nextWriteOf_in_BucketPointers" (formula "59") (term "0")) - (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "111")) (ifInst "" (formula "35"))) - (rule "wellFormedAnon" (formula "59") (term "1,0")) - (rule "translateJavaAddInt" (formula "59") (term "1,0,1,0,1")) - (rule "translateJavaAddInt" (formula "59") (term "1,1,1,0,0,1")) - (rule "replace_known_left" (formula "59") (term "1,1,0") (ifseqformula "30")) - (builtin "One Step Simplification" (formula "59") (ifInst "" (formula "31"))) - (rule "polySimp_addComm0" (formula "59") (term "1,1,1,0,0,1")) - (rule "polySimp_addComm0" (formula "59") (term "1,0,1,0,1")) - (rule "inEqSimp_ltToLeq" (formula "59") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "59") (term "1,0,0,1,0,0")) - (rule "polySimp_addComm1" (formula "59") (term "0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0,0,1")) - (rule "inEqSimp_commuteLeq" (formula "59") (term "0,0,0")) - (rule "replace_known_left" (formula "59") (term "0,0,0") (ifseqformula "8")) - (builtin "One Step Simplification" (formula "59")) - (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,1")) - (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,0,1")) - (rule "applyEq" (formula "59") (term "0,1,0,0,1") (ifseqformula "60")) - (rule "inEqSimp_commuteLeq" (formula "59") (term "1,0,0,1")) - (rule "applyEq" (formula "59") (term "1,0,1,0,1") (ifseqformula "57")) - (rule "applyEq" (formula "59") (term "0,0,0,1,1") (ifseqformula "60")) - (rule "applyEq" (formula "59") (term "0,1,0,0,0") (ifseqformula "57")) - (rule "applyEq" (formula "59") (term "0,1,0,0,0,1") (ifseqformula "60")) - (rule "inEqSimp_commuteGeq" (formula "59") (term "1,0,0,0,1")) - (rule "applyEq" (formula "59") (term "0,1,0,1") (ifseqformula "72")) - (rule "inEqSimp_commuteGeq" (formula "59") (term "1,0,1")) - (rule "inEqSimp_sepNegMonomial0" (formula "59") (term "0,0")) - (rule "polySimp_mulLiterals" (formula "59") (term "0,0,0")) - (rule "polySimp_elimOne" (formula "59") (term "0,0,0")) - (rule "replace_known_left" (formula "59") (term "0,0") (ifseqformula "7")) - (builtin "One Step Simplification" (formula "59")) - (rule "Definition_axiom_for_nextWriteOf_in_de_wiesler_BucketPointers" (formula "60") (term "0")) - (rule "translateJavaMulInt" (formula "60") (term "0,0,2,0")) - (rule "translateJavaAddInt" (formula "60") (term "0,2,0")) - (rule "polySimp_mulComm0" (formula "60") (term "0,0,2,0")) - (rule "polySimp_addComm0" (formula "60") (term "0,2,0")) - (rule "pullOutSelect" (formula "60") (term "0") (inst "selectSK=arr_4")) - (rule "simplifySelectOfAnon" (formula "60")) - (builtin "One Step Simplification" (formula "60") (ifInst "" (formula "81")) (ifInst "" (formula "3"))) - (rule "eqSymm" (formula "61")) - (rule "applyEqReverse" (formula "60") (term "1") (ifseqformula "61")) - (rule "hideAuxiliaryEq" (formula "61")) - (rule "elementOfArrayRangeConcrete" (formula "60") (term "0,0")) - (rule "replace_known_right" (formula "60") (term "0,0,0,0") (ifseqformula "83")) - (builtin "One Step Simplification" (formula "60")) - (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "51") (inst "b=b")) - (builtin "One Step Simplification" (formula "51") (ifInst "" (formula "80")) (ifInst "" (formula "24")) (ifInst "" (formula "27"))) - (rule "translateJavaCastInt" (formula "51") (term "1,1,0,1,0,0,0")) - (rule "translateJavaAddInt" (formula "51") (term "1,1,0,0")) - (rule "translateJavaCastInt" (formula "51") (term "0,1,1,0,0,0")) - (rule "translateJavaMulInt" (formula "51") (term "1,0,0,0,0,0")) - (rule "translateJavaMulInt" (formula "51") (term "0,1,0,0,0,0")) - (rule "translateJavaCastInt" (formula "51") (term "0,1,0")) - (rule "andLeft" (formula "51")) - (rule "andLeft" (formula "51")) - (rule "andLeft" (formula "51")) - (rule "andLeft" (formula "51")) - (rule "andLeft" (formula "52")) - (rule "andLeft" (formula "51")) - (rule "andLeft" (formula "53")) - (rule "polySimp_mulComm0" (formula "51") (term "1")) - (rule "polySimp_mulComm0" (formula "52") (term "0")) - (rule "polySimp_addComm0" (formula "56") (term "1")) - (rule "castedGetAny" (formula "57") (term "0")) - (rule "castedGetAny" (formula "55") (term "0")) - (rule "castedGetAny" (formula "54") (term "1")) - (rule "inEqSimp_ltToLeq" (formula "57") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "57") (term "1,0,0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "57") (term "0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "53")) - (rule "inEqSimp_commuteLeq" (formula "51")) - (rule "inEqSimp_commuteLeq" (formula "53")) - (rule "applyEq" (formula "54") (term "1,0") (ifseqformula "62")) - (rule "applyEq" (formula "51") (term "0,0") (ifseqformula "61")) - (rule "applyEq" (formula "53") (term "1,0") (ifseqformula "61")) - (rule "applyEq" (formula "25") (term "0") (ifseqformula "53")) - (rule "polySimp_homoEq" (formula "25")) - (rule "polySimp_mulComm0" (formula "25") (term "1,0")) - (rule "polySimp_rightDist" (formula "25") (term "1,0")) - (rule "mul_literals" (formula "25") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "25") (term "0")) - (rule "polySimp_addComm1" (formula "25") (term "0,0")) - (rule "add_literals" (formula "25") (term "0,0,0")) - (rule "add_zero_left" (formula "25") (term "0,0")) - (rule "applyEq" (formula "52") (term "0,0") (ifseqformula "60")) - (rule "inEqSimp_commuteLeq" (formula "52")) - (rule "applyEq" (formula "52") (term "1,1") (ifseqformula "59")) - (rule "applyEq" (formula "53") (term "0,1,0,0,1,0,0") (ifseqformula "59")) - (rule "applyEq" (formula "25") (term "0,1,0") (ifseqformula "59")) - (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) - (rule "add_literals" (formula "25") (term "1,0")) - (rule "times_zero_1" (formula "25") (term "0")) - (builtin "One Step Simplification" (formula "25")) - (rule "true_left" (formula "25")) - (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0")) - (rule "mul_literals" (formula "52") (term "0,1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0")) - (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0")) - (rule "inEqSimp_subsumption6" (formula "50") (ifseqformula "12")) - (rule "greater_literals" (formula "50") (term "0,0")) - (builtin "One Step Simplification" (formula "50")) - (rule "mul_literals" (formula "50") (term "1,0")) - (rule "leq_literals" (formula "50") (term "0")) - (builtin "One Step Simplification" (formula "50")) - (rule "true_left" (formula "50")) - (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "72") (term "0")) - (builtin "One Step Simplification" (formula "72") (ifInst "" (formula "112"))) - (rule "translateJavaSubInt" (formula "72") (term "1,0,1,1,1,1,1")) - (rule "translateJavaAddInt" (formula "72") (term "1,1,1,0,1,1,1")) - (rule "polySimp_elimSub" (formula "72") (term "1,0,1,1,1,1,1")) - (rule "mul_literals" (formula "72") (term "1,1,0,1,1,1,1,1")) - (rule "polySimp_addComm0" (formula "72") (term "1,1,1,0,1,1,1")) - (rule "polySimp_addComm0" (formula "72") (term "1,0,1,1,1,1,1")) - (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1,1")) - (rule "add_zero_right" (formula "72") (term "0,0,0,1,1,1,1")) - (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,1,1,1,1")) - (rule "inEqSimp_ltToLeq" (formula "72") (term "0,0,1,1,1")) - (rule "polySimp_mulComm0" (formula "72") (term "1,0,0,0,0,1,1,1")) - (rule "polySimp_addComm1" (formula "72") (term "0,0,0,1,1,1")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0,1")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,0,1")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1,1")) - (rule "inEqSimp_commuteLeq" (formula "72") (term "1,0,1,1,1")) - (rule "applyEq" (formula "72") (term "0,0,0,0,1") (ifseqformula "73")) - (rule "applyEq" (formula "72") (term "0,1,0,0") (ifseqformula "57")) - (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,0")) - (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,0")) - (rule "add_literals" (formula "72") (term "1,0,1,0,0")) - (rule "times_zero_1" (formula "72") (term "0,1,0,0")) - (rule "leq_literals" (formula "72") (term "1,0,0")) - (builtin "One Step Simplification" (formula "72")) - (rule "applyEq" (formula "72") (term "1,1,0,0,1") (ifseqformula "73")) - (rule "applyEq" (formula "72") (term "1,0,1,0,1") (ifseqformula "57")) - (rule "applyEq" (formula "72") (term "0,1,0,1,1,1,1") (ifseqformula "57")) - (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,1,1,1,1")) - (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,1,1,1,1")) - (rule "add_literals" (formula "72") (term "1,0,1,0,1,1,1,1")) - (rule "times_zero_1" (formula "72") (term "0,1,0,1,1,1,1")) - (rule "leq_literals" (formula "72") (term "1,0,1,1,1,1")) - (builtin "One Step Simplification" (formula "72")) - (rule "applyEq" (formula "72") (term "0,0,0,1,1") (ifseqformula "73")) - (rule "replace_known_left" (formula "72") (term "0,1,1") (ifseqformula "69")) - (builtin "One Step Simplification" (formula "72")) - (rule "applyEq" (formula "72") (term "1,1,0,1,1") (ifseqformula "73")) - (rule "applyEq" (formula "72") (term "0,1,0,0,0,1,1") (ifseqformula "57")) - (rule "polySimp_pullOutFactor1b" (formula "72") (term "0,0,0,1,1")) - (rule "add_literals" (formula "72") (term "1,1,0,0,0,1,1")) - (rule "times_zero_1" (formula "72") (term "1,0,0,0,1,1")) - (rule "add_zero_right" (formula "72") (term "0,0,0,1,1")) - (rule "leq_literals" (formula "72") (term "0,0,1,1")) - (builtin "One Step Simplification" (formula "72")) - (rule "applyEq" (formula "72") (term "0,1,0,1") (ifseqformula "73")) - (rule "applyEq" (formula "72") (term "1,1,1,1") (ifseqformula "73")) - (rule "applyEq" (formula "72") (term "1,0,1,0,0,1") (ifseqformula "57")) - (rule "applyEq" (formula "72") (term "0,1,0,0,1") (ifseqformula "73")) - (rule "inEqSimp_homoInEq1" (formula "72") (term "1,0,0,1")) - (rule "polySimp_pullOutFactor1" (formula "72") (term "0,1,0,0,1")) - (rule "add_literals" (formula "72") (term "1,0,1,0,0,1")) - (rule "times_zero_1" (formula "72") (term "0,1,0,0,1")) - (rule "leq_literals" (formula "72") (term "1,0,0,1")) - (builtin "One Step Simplification" (formula "72")) - (rule "inEqSimp_sepNegMonomial0" (formula "72") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "72") (term "0,0,1,1")) - (rule "polySimp_elimOne" (formula "72") (term "0,0,1,1")) - (rule "inEqSimp_subsumption1" (formula "72") (term "0,0") (ifseqformula "12")) - (rule "leq_literals" (formula "72") (term "0,0,0")) - (builtin "One Step Simplification" (formula "72")) - (rule "inEqSimp_subsumption1" (formula "72") (term "0,1,1") (ifseqformula "12")) - (rule "leq_literals" (formula "72") (term "0,0,1,1")) - (builtin "One Step Simplification" (formula "72")) - (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "63") (term "0") (inst "b=b")) - (builtin "One Step Simplification" (formula "63")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,0")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,0,0,0,1,1,1,0,1")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,1,0,1,0,1")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,1,0,1,0,1")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,1,1,0,1,1,1,0,1")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,0")) - (rule "translateJavaAddInt" (formula "63") (term "0,2,0,1,1,1,1,0,1")) - (rule "andLeft" (formula "63")) - (rule "andLeft" (formula "63")) - (rule "andLeft" (formula "63")) - (rule "polySimp_addComm0" (formula "66") (term "0,2,0,0,0,1,1,1,0")) - (rule "polySimp_addComm0" (formula "66") (term "0,2,0,1,1,1,1,0")) - (rule "polySimp_addComm0" (formula "66") (term "0,2,0,1,1,0,1,0")) - (rule "polySimp_addComm0" (formula "66") (term "0,2,1,1,0,1,0,1,0")) - (rule "polySimp_addComm0" (formula "66") (term "0,2,1,1,0,1,1,1,0")) - (rule "polySimp_addComm0" (formula "65") (term "0,2,0")) - (rule "polySimp_addComm0" (formula "64") (term "0,2,1")) - (rule "inEqSimp_ltToLeq" (formula "66") (term "1,0,0,0")) - (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,1,0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "66") (term "0,1,1,0")) - (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,1,1,0")) - (rule "inEqSimp_ltToLeq" (formula "66") (term "0,0,1,0")) - (rule "polySimp_mulComm0" (formula "66") (term "1,0,0,0,0,1,0")) - (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "66") (term "0,0,1,0,1,0")) - (rule "inEqSimp_commuteLeq" (formula "63")) - (rule "inEqSimp_commuteLeq" (formula "65") (term "0,0,1,1,1,0")) - (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,0,1,0")) - (rule "inEqSimp_commuteLeq" (formula "65") (term "1,0,1,1,1,0")) - (rule "inEqSimp_commuteLeq" (formula "64")) - (rule "inEqSimp_commuteLeq" (formula "63")) - (rule "applyEq" (formula "64") (term "1,1,1,1,1,0") (ifseqformula "46")) - (rule "applyEq" (formula "63") (term "0") (ifseqformula "46")) - (rule "inEqSimp_commuteGeq" (formula "63")) - (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "1,0,0,0")) - (rule "polySimp_mulComm0" (formula "63") (term "1,1,0,0,0")) - (rule "polySimp_rightDist" (formula "63") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "63") (term "0,1,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "63") (term "1,1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "63") (term "1,1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "63") (term "0,1,1,0")) - (rule "polySimp_mulComm0" (formula "63") (term "1,0,1,1,0")) - (rule "polySimp_rightDist" (formula "63") (term "1,0,1,1,0")) - (rule "mul_literals" (formula "63") (term "0,1,0,1,1,0")) - (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,1,1,0")) - (rule "polySimp_elimOne" (formula "63") (term "1,1,0,1,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "63") (term "0,0,1,0")) - (rule "polySimp_mulComm0" (formula "63") (term "1,0,0,1,0")) - (rule "polySimp_rightDist" (formula "63") (term "1,0,0,1,0")) - (rule "mul_literals" (formula "63") (term "0,1,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "63") (term "1,1,0,0,1,0")) - (rule "polySimp_elimOne" (formula "63") (term "1,1,0,0,1,0")) - (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "73") (term "1")) - (builtin "One Step Simplification" (formula "73")) - (rule "translateJavaSubInt" (formula "73") (term "0,1")) - (rule "translateJavaUnaryMinusInt" (formula "73") (term "1,1")) - (rule "translateJavaAddInt" (formula "73") (term "0,0,1")) - (rule "neg_literal" (formula "73") (term "1,1")) - (rule "polySimp_elimSub" (formula "73") (term "0,1")) - (rule "mul_literals" (formula "73") (term "1,0,1")) - (rule "polySimp_addLiterals" (formula "73") (term "0,1")) - (rule "polySimp_addComm1" (formula "73") (term "0,1")) - (rule "polySimp_addComm0" (formula "73") (term "0,0,1")) - (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "52")) - (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "80")) (ifInst "" (formula "79")) (ifInst "" (formula "15"))) - (rule "translateJavaSubInt" (formula "52") (term "0,2,0,1,0")) - (rule "translateJavaSubInt" (formula "52") (term "0,2,1,1,0")) - (rule "translateJavaMulInt" (formula "52") (term "1,1,1,0,0,0")) - (rule "andLeft" (formula "52")) - (rule "andLeft" (formula "52")) - (rule "andLeft" (formula "52")) - (rule "andLeft" (formula "52")) - (rule "andLeft" (formula "52")) - (rule "eqSymm" (formula "56")) - (rule "eqSymm" (formula "54")) - (rule "polySimp_elimSub" (formula "56") (term "0,2,0")) - (rule "mul_literals" (formula "56") (term "1,0,2,0")) - (rule "eqSymm" (formula "56")) - (rule "polySimp_elimSub" (formula "56") (term "0,2,0")) - (rule "mul_literals" (formula "56") (term "1,0,2,0")) - (rule "eqSymm" (formula "56")) - (rule "polySimp_mulComm0" (formula "54") (term "1,0")) - (rule "polySimp_addComm0" (formula "56") (term "0,2,1")) - (rule "polySimp_addComm0" (formula "56") (term "0,2,0")) - (rule "inEqSimp_commuteLeq" (formula "52")) - (rule "applyEq" (formula "54") (term "0") (ifseqformula "14")) - (rule "eqSymm" (formula "54")) - (rule "applyEq" (formula "52") (term "0") (ifseqformula "47")) - (rule "applyEq" (formula "52") (term "0") (ifseqformula "47")) - (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "49") (inst "b=b")) - (builtin "One Step Simplification" (formula "49")) - (rule "translateJavaMulInt" (formula "49") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "49") (term "1,1,0,0,0")) - (rule "andLeft" (formula "49")) - (rule "andLeft" (formula "49")) - (rule "andLeft" (formula "50")) - (rule "andLeft" (formula "49")) - (rule "andLeft" (formula "49")) - (rule "andLeft" (formula "49")) - (rule "andLeft" (formula "49")) - (rule "notLeft" (formula "51")) - (rule "notLeft" (formula "50")) - (rule "notLeft" (formula "49")) - (rule "eqSymm" (formula "86")) - (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "85")) - (builtin "One Step Simplification" (formula "4")) - (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "84")) - (builtin "One Step Simplification" (formula "5")) - (rule "inEqSimp_ltToLeq" (formula "53") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "53") (term "1,0,0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "53") (term "0,1,0")) - (rule "inEqSimp_commuteLeq" (formula "51")) - (rule "applyEq" (formula "52") (term "0") (ifseqformula "48")) - (rule "applyEq" (formula "51") (term "0") (ifseqformula "48")) - (rule "applyEq" (formula "52") (term "0,1,0,0,1,0,0") (ifseqformula "48")) - (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0")) - (rule "mul_literals" (formula "52") (term "0,1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0")) - (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0")) - (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "12")) - (rule "leq_literals" (formula "51") (term "0")) - (builtin "One Step Simplification" (formula "51")) - (rule "true_left" (formula "51")) - (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "28") (inst "b=b")) - (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "82")) (ifInst "" (formula "83")) (ifInst "" (formula "50"))) - (rule "translateJavaMulInt" (formula "28") (term "1,1,0,0")) - (rule "mul_literals" (formula "28") (term "1,1,0,0")) - (rule "andLeft" (formula "28")) - (rule "andLeft" (formula "28")) - (rule "andLeft" (formula "29")) - (rule "andLeft" (formula "28")) - (rule "notLeft" (formula "28")) - (rule "eqSymm" (formula "84")) - (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0")) - (rule "inEqSimp_commuteLeq" (formula "30") (term "0,1,0")) - (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0")) - (rule "inEqSimp_commuteLeq" (formula "28")) - (rule "applyEq" (formula "30") (term "0,1,0,0,1,0,0") (ifseqformula "50")) - (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0")) - (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0")) - (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0")) - (rule "mul_literals" (formula "30") (term "0,1,1,0,0")) - (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0")) - (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "123") (term "0")) - (builtin "One Step Simplification" (formula "123")) - (rule "closeTrue" (formula "123")) - ) - (branch - (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "53"))) - (rule "closeTrue" (formula "90")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "49") (ifseqformula "50")) + (rule "polySimp_mulComm0" (formula "49") (term "0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "49")) + (rule "polySimp_mulLiterals" (formula "49") (term "0")) + (rule "polySimp_elimOne" (formula "49") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "51")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "29")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) ) ) ) - (branch - (builtin "One Step Simplification" (formula "90")) - (rule "closeTrue" (formula "90")) + (branch "if x_7 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "91")) + (rule "notLeft" (formula "1")) + (rule "orRight" (formula "56")) + (rule "tryEmpty" (formula "92") (term "1")) + (rule "blockEmptyLabel" (formula "92") (term "1")) + (rule "blockEmpty" (formula "92") (term "1")) + (rule "methodCallEmpty" (formula "92") (term "1")) + (rule "emptyModality" (formula "92") (term "1")) + (rule "andRight" (formula "92")) + (branch "Case 1" + (rule "andRight" (formula "92")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (rule "andRight" (formula "92")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "92")) + (rule "Definition_axiom_for_cleanedUpSlice_in_de_wiesler_Cleanup" (formula "92") (term "0") (userinteraction)) + (builtin "One Step Simplification" (formula "92")) + (rule "translateJavaAddInt" (formula "92") (term "3,0,0")) + (rule "translateJavaAddInt" (formula "92") (term "4,0,0")) + (rule "replace_known_left" (formula "92") (term "0") (ifseqformula "52")) + (builtin "One Step Simplification" (formula "92")) + (rule "polySimp_homoEq" (formula "38") (term "1,0,1,0")) + (rule "polySimp_homoEq" (formula "10") (term "0")) + (rule "polySimp_homoEq" (formula "43")) + (rule "polySimp_homoEq" (formula "53") (term "0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "53") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "53") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,1,0,1,0")) + (rule "inEqSimp_leqRight" (formula "56")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "57")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0")) + (rule "polySimp_addComm0" (formula "55") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "45")) + (rule "polySimp_mulComm0" (formula "45") (term "1")) + (rule "polySimp_rightDist" (formula "45") (term "1")) + (rule "polySimp_mulAssoc" (formula "45") (term "0,1")) + (rule "polySimp_mulComm0" (formula "45") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "45") (term "0,1")) + (rule "polySimp_elimOne" (formula "45") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "40") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "12") (term "0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "55") (term "0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_subsumption1" (formula "50") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "50") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "50") (term "0,0")) + (rule "add_literals" (formula "50") (term "1,1,0,0")) + (rule "times_zero_1" (formula "50") (term "1,0,0")) + (rule "add_zero_right" (formula "50") (term "0,0")) + (rule "qeq_literals" (formula "50") (term "0")) + (builtin "One Step Simplification" (formula "50")) + (rule "true_left" (formula "50")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "48")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "48") (ifseqformula "2")) + (rule "times_zero_1" (formula "48") (term "0,0")) + (rule "add_zero_left" (formula "48") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "48") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0")) + (rule "qeq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "nnf_imp2or" (formula "38") (term "0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "39") (term "0")) + (rule "nnf_notAnd" (formula "38") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "38") (term "0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "38") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,0,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "11") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "39") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "39") (term "1,0,0")) + (rule "mul_literals" (formula "39") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "39") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "39") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "1,0,0,0")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "52") (term "0")) + (builtin "One Step Simplification" (formula "52") (ifInst "" (formula "90")) (ifInst "" (formula "56")) (ifInst "" (formula "85")) (ifInst "" (formula "23"))) + (rule "true_left" (formula "52")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "16") (inst "b=b")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaMulInt" (formula "16") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "39") (term "4,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "3,0,0,1,0,0,1,0")) + (rule "translateJavaMulInt" (formula "39") (term "0,4,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0,0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "notLeft" (formula "17")) + (rule "notLeft" (formula "16")) + (rule "eqSymm" (formula "62")) + (rule "replace_known_right" (formula "7") (term "0") (ifseqformula "61")) + (builtin "One Step Simplification" (formula "7")) + (rule "replace_known_right" (formula "8") (term "0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "37")) + (rule "applyEq" (formula "20") (term "0,1,0,0,1,0,0") (ifseqformula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketClassified_in_de_wiesler_BucketPointers" (formula "44") (term "0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "translateJavaSubInt" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "3,0,2,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "0,4,0,0,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "3,0,0,1,0,0,0,1,0")) + (rule "translateJavaAddInt" (formula "44") (term "4,0,2,0,0,0,1,0")) + (rule "translateJavaSubInt" (formula "44") (term "4,0,0,1,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_elimSub" (formula "44") (term "4,0,0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "44") (term "1,4,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "4,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,4,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,0,0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,0,0,0,0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "44") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "44") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "44") (term "0,0,0,0,0,0,1,0")) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "1,1,0") (inst "i=i")) + (rule "polySimp_homoEq" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0")) + (rule "Definition_axiom_for_countElementInBucket_in_de_wiesler_Buffers" (formula "58") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "translateJavaMulInt" (formula "58") (term "0,3,0,0,1,0")) + (rule "translateJavaMulInt" (formula "58") (term "2,0,0,1,0")) + (rule "translateJavaAddInt" (formula "58") (term "3,0,0,1,0")) + (rule "Definition_axiom_for_writtenElementsOfBucketCountElement_in_de_wiesler_BucketPointers" (formula "14") (term "1,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaAddInt" (formula "14") (term "1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "3,2,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "2,2,1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "3,0,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "2,0,1,1,1,0,1,1,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,3,0,1,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "3,0,1,1,1,0,1,1,0")) + (rule "mul_literals" (formula "14") (term "1,3,0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "3,0,1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,3,1,1,1,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,1,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,1,1,0,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "0,0,1,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,0,0,1,1,0,1,1,0")) + (rule "Definition_axiom_for_bucketStartsOrdering_in_de_wiesler_Functions" (formula "51") (term "0") (inst "b=b")) + (builtin "One Step Simplification" (formula "51")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,0,0,0,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,1,1,1,0,1")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,0,1,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,0")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,1,0,1,0,1")) + (rule "translateJavaAddInt" (formula "51") (term "0,2,1,1,0,1,1,1,0,1")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "andLeft" (formula "51")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,0,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,0,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "54") (term "0,2,1,1,0,1,0,1,0")) + (rule "polySimp_addComm0" (formula "53") (term "0,2,0")) + (rule "polySimp_addComm0" (formula "52") (term "0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "54") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "54") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "54") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "0,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "53") (term "1,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "52")) + (rule "inEqSimp_commuteLeq" (formula "51")) + (rule "applyEq" (formula "52") (term "0") (ifseqformula "36")) + (rule "inEqSimp_commuteGeq" (formula "52")) + (rule "applyEq" (formula "52") (term "1,1,1,1,1,0") (ifseqformula "36")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "52") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "52") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "52") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "52") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "52") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "52") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "52") (term "1,1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "51") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "51") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "51") (term "0,0")) + (rule "add_literals" (formula "51") (term "1,1,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0")) + (rule "qeq_literals" (formula "51") (term "0")) + (builtin "One Step Simplification" (formula "51")) + (rule "true_left" (formula "51")) + (rule "nnf_imp2or" (formula "51") (term "0")) + (rule "nnf_notAnd" (formula "51") (term "0,0")) + (builtin "One Step Simplification" (formula "51")) + (rule "nnf_imp2or" (formula "51") (term "0,1,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,0,0,1,0")) + (rule "nnf_imp2or" (formula "51") (term "1,1,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "51") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "51") (term "0,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,0,1,1,0")) + (rule "nnf_notAnd" (formula "51") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "51") (term "0,0,0,0")) + (rule "times_zero_1" (formula "51") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "51") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "51") (term "0,0,0,0")) + (rule "mul_literals" (formula "51") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "51") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "51") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "51") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "51") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "51") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "51") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "51") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "51") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "51") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "43") (term "0,1,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "translateJavaUnaryMinusInt" (formula "43") (term "1,0,1,0")) + (rule "translateJavaSubInt" (formula "43") (term "0,0,1,0")) + (rule "translateJavaAddInt" (formula "43") (term "0,0,0,1,0")) + (rule "neg_literal" (formula "43") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "43") (term "0,0,1,0")) + (rule "mul_literals" (formula "43") (term "1,0,0,1,0")) + (rule "polySimp_addLiterals" (formula "43") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0,1,0")) + (rule "Contract_axiom_for_blockAligned_in_Buffers" (formula "55") (term "1")) + (builtin "One Step Simplification" (formula "55")) + (rule "translateJavaSubInt" (formula "55") (term "0,1,1,1")) + (rule "polySimp_elimSub" (formula "55") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,1,1")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,1,1,1")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "55") (term "0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "55") (term "1,1,1")) + (rule "mul_literals" (formula "55") (term "1,0,0,1,1,1")) + (rule "add_literals" (formula "55") (term "0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,1,1,1")) + (rule "polySimp_addAssoc" (formula "55") (term "0,0,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0")) + (rule "times_zero_2" (formula "55") (term "1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "55") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "55") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "55") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "55") (term "0,1,1,1,1")) + (rule "mul_literals" (formula "55") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "55") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "55") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "55") (term "0,1,0")) + (rule "replace_known_left" (formula "55") (term "1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "55")) + (rule "inEqSimp_subsumption1" (formula "55") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "55") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "55") (term "0,0,0")) + (rule "add_literals" (formula "55") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "55") (term "1,0,0,0")) + (rule "add_zero_right" (formula "55") (term "0,0,0")) + (rule "qeq_literals" (formula "55") (term "0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "56")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "16") (inst "b=b")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaCastInt" (formula "16") (term "0,1,0,1,0,0,0")) + (rule "translateJavaCastInt" (formula "16") (term "1,1,0,0,1,0,0,0")) + (rule "translateJavaMulInt" (formula "16") (term "0,1,1,0,0,0,0")) + (rule "translateJavaMulInt" (formula "16") (term "1,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaCastInt" (formula "16") (term "0,0,1,0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "notLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "replace_known_right" (formula "6") (term "0") (ifseqformula "73")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_mulComm0" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "1")) + (rule "castedGetAny" (formula "23") (term "0")) + (rule "castedGetAny" (formula "20") (term "0")) + (rule "castedGetAny" (formula "19") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "55")) + (rule "applyEq" (formula "19") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "17") (term "0,0") (ifseqformula "55")) + (rule "inEqSimp_commuteLeq" (formula "17")) + (rule "applyEq" (formula "20") (term "1,0") (ifseqformula "55")) + (rule "applyEq" (formula "22") (term "1,1") (ifseqformula "55")) + (rule "applyEq" (formula "25") (term "0,1,0,0,1,0,0") (ifseqformula "55")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "16") (ifseqformula "28")) + (rule "times_zero_1" (formula "16") (term "1,1,0")) + (rule "greater_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "58") (term "0,1,1")) + (builtin "One Step Simplification" (formula "58") (ifInst "" (formula "49")) (ifInst "" (formula "107"))) + (rule "translateJavaAddInt" (formula "58") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "58") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "58") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "58") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "58") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "58") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "58") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "58") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0")) + (rule "replace_known_left" (formula "58") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "58") (term "1,0,1,1,1")) + (rule "applyEq" (formula "58") (term "0,0") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "1,0,1,0,1") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "0,1,0,0,0,1,1,1") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "0,1,0,1,1,1,1") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "1,0,1,0,0,1") (ifseqformula "55")) + (rule "applyEq" (formula "58") (term "0,1,0,1") (ifseqformula "68")) + (rule "applyEq" (formula "58") (term "0,1,0,0,1") (ifseqformula "68")) + (rule "inEqSimp_commuteGeq" (formula "58") (term "1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "58") (term "0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "58") (term "0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "58") (term "0,0,0,1,1,1")) + (rule "replace_known_left" (formula "58") (term "0,0,1,1,1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_subsumption1" (formula "58") (term "1,0,1,1,1,1") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "0,1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,1,0,1,1,1,1")) + (rule "add_literals" (formula "58") (term "1,1,0,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "58") (term "1,0,0,1,0,1,1,1,1")) + (rule "add_zero_right" (formula "58") (term "0,0,1,0,1,1,1,1")) + (rule "qeq_literals" (formula "58") (term "0,1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "58")) + (rule "inEqSimp_subsumption1" (formula "58") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0,0")) + (rule "qeq_literals" (formula "58") (term "0,0")) + (builtin "One Step Simplification" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "60")) + (rule "andLeft" (formula "58")) + (rule "andLeft" (formula "62")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "59")) + (rule "mul_literals" (formula "58") (term "0,0")) + (rule "add_zero_left" (formula "58") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "72") (ifseqformula "61")) + (rule "polySimp_rightDist" (formula "72") (term "0,0")) + (rule "polySimp_mulAssoc" (formula "72") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "72") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "72") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "72") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "72") (term "0")) + (rule "polySimp_addComm0" (formula "72") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "72")) + (rule "polySimp_mulLiterals" (formula "72") (term "0")) + (rule "polySimp_elimOne" (formula "72") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "58") (ifseqformula "73")) + (rule "times_zero_1" (formula "58") (term "0,0")) + (rule "add_zero_left" (formula "58") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1")) + (rule "polySimp_rightDist" (formula "58") (term "1")) + (rule "polySimp_mulLiterals" (formula "58") (term "1,1")) + (rule "mul_literals" (formula "58") (term "0,1")) + (rule "polySimp_elimOne" (formula "58") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "58") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "58") (term "0")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0,0")) + (rule "mul_literals" (formula "58") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "polySimp_addComm1" (formula "58") (term "0,0,0")) + (rule "add_literals" (formula "58") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "1,1,0,0")) + (rule "times_zero_1" (formula "58") (term "1,0,0")) + (rule "add_zero_right" (formula "58") (term "0,0")) + (rule "qeq_literals" (formula "58") (term "0")) + (builtin "One Step Simplification" (formula "58")) + (rule "true_left" (formula "58")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,0,1,0")) + (rule "translateJavaMulInt" (formula "15") (term "1,1,1,0,0,0,0")) + (rule "translateJavaSubInt" (formula "15") (term "0,2,1,1,0")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "17")) + (rule "notLeft" (formula "15")) + (rule "notLeft" (formula "15")) + (rule "eqSymm" (formula "20")) + (rule "eqSymm" (formula "17")) + (rule "replace_known_right" (formula "5") (term "0") (ifseqformula "87")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "86")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_elimSub" (formula "20") (term "0,2,0")) + (rule "mul_literals" (formula "20") (term "1,0,2,0")) + (rule "eqSymm" (formula "20")) + (rule "polySimp_elimSub" (formula "20") (term "0,2,0")) + (rule "mul_literals" (formula "20") (term "1,0,2,0")) + (rule "eqSymm" (formula "20")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,0")) + (rule "eqSymm" (formula "20")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,0")) + (rule "eqSymm" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "51")) + (rule "inEqSimp_subsumption1" (formula "33") (ifseqformula "15")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "85")) (ifInst "" (formula "4"))) + (rule "eqSymm" (formula "20")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "85")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "95")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0,0") (ifseqformula "94")) + (builtin "One Step Simplification" (formula "19")) + (rule "eqSymm" (formula "19")) + (rule "Definition_axiom_for_isValidBucketStarts_in_de_wiesler_Functions" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "translateJavaAddInt" (formula "48") (term "0,1,0,0")) + (rule "translateJavaAddInt" (formula "48") (term "3,0,1,0")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "andLeft" (formula "48")) + (rule "polySimp_addComm0" (formula "50") (term "3,0")) + (rule "polySimp_addComm0" (formula "49") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "inEqSimp_commuteLeq" (formula "48")) + (rule "Contract_axiom_for_bucketStart_in_BucketPointers" (formula "80") (term "0")) + (builtin "One Step Simplification" (formula "80") (ifInst "" (formula "55")) (ifInst "" (formula "122"))) + (rule "translateJavaAddInt" (formula "80") (term "1,1,1,0,1,1,1")) + (rule "translateJavaSubInt" (formula "80") (term "1,0,1,1,1,1,1")) + (rule "polySimp_elimSub" (formula "80") (term "1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "80") (term "1,1,0,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "80") (term "1,1,1,0,1,1,1")) + (rule "polySimp_addComm0" (formula "80") (term "1,0,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "80") (term "0,0,1,1,1,1")) + (rule "add_zero_right" (formula "80") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "80") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "80") (term "1,0,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "80") (term "0,0,0,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,1,1,1,1")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "80") (term "1,0,1,1,1")) + (rule "applyEq" (formula "80") (term "1,1,0,1,1,1") (ifseqformula "81")) + (rule "applyEq" (formula "80") (term "0,0,0,0,1") (ifseqformula "81")) + (rule "replace_known_left" (formula "80") (term "0,0,0,1") (ifseqformula "64")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "0,1,0,1,1,1,1") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "80") (term "1,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0,1,1,1,1")) + (rule "add_literals" (formula "80") (term "1,0,1,0,1,1,1,1")) + (rule "times_zero_1" (formula "80") (term "0,1,0,1,1,1,1")) + (rule "leq_literals" (formula "80") (term "1,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "0,0,0,1,1") (ifseqformula "81")) + (rule "replace_known_left" (formula "80") (term "0,1,1") (ifseqformula "77")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "0,1,0,0,0,1,1") (ifseqformula "61")) + (rule "polySimp_pullOutFactor1b" (formula "80") (term "0,0,0,1,1")) + (rule "add_literals" (formula "80") (term "1,1,0,0,0,1,1")) + (rule "times_zero_1" (formula "80") (term "1,0,0,0,1,1")) + (rule "add_zero_right" (formula "80") (term "0,0,0,1,1")) + (rule "leq_literals" (formula "80") (term "0,0,1,1")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "1,0,0,1") (ifseqformula "81")) + (rule "applyEq" (formula "80") (term "0,1,0") (ifseqformula "61")) + (rule "inEqSimp_homoInEq1" (formula "80") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "80") (term "0,1,0")) + (rule "add_literals" (formula "80") (term "1,0,1,0")) + (rule "times_zero_1" (formula "80") (term "0,1,0")) + (rule "leq_literals" (formula "80") (term "1,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "1,0,0,0,1") (ifseqformula "61")) + (rule "applyEq" (formula "80") (term "1,1,1,1") (ifseqformula "81")) + (rule "applyEq" (formula "80") (term "1,0,1,0,1") (ifseqformula "61")) + (rule "applyEq" (formula "80") (term "0,1,0,1") (ifseqformula "81")) + (rule "replace_known_left" (formula "80") (term "1,0,1") (ifseqformula "67")) + (builtin "One Step Simplification" (formula "80")) + (rule "applyEq" (formula "80") (term "0,0,1") (ifseqformula "81")) + (rule "inEqSimp_homoInEq1" (formula "80") (term "0,1")) + (rule "polySimp_pullOutFactor1" (formula "80") (term "0,0,1")) + (rule "add_literals" (formula "80") (term "1,0,0,1")) + (rule "times_zero_1" (formula "80") (term "0,0,1")) + (rule "leq_literals" (formula "80") (term "0,1")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_sepNegMonomial0" (formula "80") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "80") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "80") (term "0,0,1")) + (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "15")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "inEqSimp_subsumption1" (formula "80") (term "0") (ifseqformula "15")) + (rule "leq_literals" (formula "80") (term "0,0")) + (builtin "One Step Simplification" (formula "80")) + (rule "Contract_axiom_for_isClassOfSlice_in_Classifier" (formula "83") (term "0")) + (builtin "One Step Simplification" (formula "83") (ifInst "" (formula "126")) (ifInst "" (formula "87")) (ifInst "" (formula "121")) (ifInst "" (formula "41"))) + (rule "true_left" (formula "83")) + (rule "Definition_axiom_for_blockAligned_in_de_wiesler_Buffers" (formula "81") (term "1")) + (builtin "One Step Simplification" (formula "81")) + (rule "translateJavaSubInt" (formula "81") (term "0,1")) + (rule "translateJavaUnaryMinusInt" (formula "81") (term "1,1")) + (rule "translateJavaAddInt" (formula "81") (term "0,0,1")) + (rule "neg_literal" (formula "81") (term "1,1")) + (rule "polySimp_elimSub" (formula "81") (term "0,1")) + (rule "mul_literals" (formula "81") (term "1,0,1")) + (rule "polySimp_addLiterals" (formula "81") (term "0,1")) + (rule "polySimp_addComm1" (formula "81") (term "0,1")) + (rule "polySimp_addComm0" (formula "81") (term "0,0,1")) + (rule "Class_invariant_axiom_for_de_wiesler_BucketPointers" (formula "55") (inst "b=b")) + (builtin "One Step Simplification" (formula "55") (ifInst "" (formula "89")) (ifInst "" (formula "26")) (ifInst "" (formula "29"))) + (rule "translateJavaCastInt" (formula "55") (term "0,1,1,0,0,0")) + (rule "translateJavaCastInt" (formula "55") (term "0,1,0")) + (rule "translateJavaCastInt" (formula "55") (term "1,1,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "55") (term "1,1,0,0")) + (rule "translateJavaMulInt" (formula "55") (term "0,1,0,0,0,0")) + (rule "translateJavaMulInt" (formula "55") (term "1,0,0,0,0,0")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "55")) + (rule "andLeft" (formula "57")) + (rule "andLeft" (formula "57")) + (rule "polySimp_mulComm0" (formula "55") (term "1")) + (rule "polySimp_mulComm0" (formula "56") (term "0")) + (rule "polySimp_addComm0" (formula "60") (term "1")) + (rule "castedGetAny" (formula "61") (term "0")) + (rule "castedGetAny" (formula "59") (term "0")) + (rule "castedGetAny" (formula "58") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "61") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "61") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "61") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "inEqSimp_commuteLeq" (formula "55")) + (rule "inEqSimp_commuteLeq" (formula "57")) + (rule "applyEq" (formula "56") (term "0,0") (ifseqformula "66")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "27")) + (rule "polySimp_homoEq" (formula "58")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_rightDist" (formula "58") (term "1,0")) + (rule "mul_literals" (formula "58") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "58") (term "0")) + (rule "polySimp_addAssoc" (formula "58") (term "0,0")) + (rule "add_literals" (formula "58") (term "0,0,0")) + (rule "add_zero_left" (formula "58") (term "0,0")) + (rule "applyEq" (formula "57") (term "1,0") (ifseqformula "65")) + (rule "applyEq" (formula "55") (term "0,0") (ifseqformula "64")) + (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "64")) + (rule "applyEq" (formula "57") (term "0,1,0,0,1,0,0") (ifseqformula "63")) + (rule "applyEq" (formula "56") (term "1,0") (ifseqformula "63")) + (rule "polySimp_pullOutFactor2" (formula "56") (term "0")) + (rule "add_literals" (formula "56") (term "1,0")) + (rule "times_zero_1" (formula "56") (term "0")) + (builtin "One Step Simplification" (formula "56")) + (rule "true_left" (formula "56")) + (rule "inEqSimp_sepPosMonomial0" (formula "56") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "56") (term "1,1,0,0")) + (rule "mul_literals" (formula "56") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "56") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "56") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption6" (formula "55") (ifseqformula "15")) + (rule "mul_literals" (formula "55") (term "1,1,0")) + (rule "greater_literals" (formula "55") (term "0,0")) + (builtin "One Step Simplification" (formula "55")) + (rule "leq_literals" (formula "55") (term "0")) + (builtin "One Step Simplification" (formula "55")) + (rule "true_left" (formula "55")) + (rule "Definition_axiom_for_bucketStart_in_de_wiesler_BucketPointers" (formula "71") (term "0,1,1")) + (rule "translateJavaCastInt" (formula "71") (term "0,0,1,1")) + (rule "polySimp_homoEq" (formula "71")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "castedGetAny" (formula "71") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "71") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "71")) + (rule "polySimp_mulLiterals" (formula "71") (term "0")) + (rule "polySimp_elimOne" (formula "71") (term "0")) + (rule "Class_invariant_axiom_for_de_wiesler_Buffers" (formula "54") (inst "b=b")) + (builtin "One Step Simplification" (formula "54") (ifInst "" (formula "90")) (ifInst "" (formula "91")) (ifInst "" (formula "32"))) + (rule "translateJavaMulInt" (formula "54") (term "1,1,0,0")) + (rule "mul_literals" (formula "54") (term "1,1,0,0")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "54")) + (rule "andLeft" (formula "55")) + (rule "notLeft" (formula "54")) + (rule "eqSymm" (formula "89")) + (rule "inEqSimp_ltToLeq" (formula "56") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "56") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "56") (term "0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "54")) + (rule "applyEq" (formula "54") (term "0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "0") (ifseqformula "53")) + (rule "applyEq" (formula "55") (term "0,1,0,0,1,0,0") (ifseqformula "53")) + (rule "inEqSimp_sepPosMonomial0" (formula "55") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "55") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "55") (term "1,1,0,0")) + (rule "mul_literals" (formula "55") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "55") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "55") (term "1,1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "54") (ifseqformula "15")) + (rule "leq_literals" (formula "54") (term "0")) + (builtin "One Step Simplification" (formula "54")) + (rule "true_left" (formula "54")) + (rule "Class_invariant_axiom_for_de_wiesler_Classifier" (formula "56")) + (builtin "One Step Simplification" (formula "56") (ifInst "" (formula "88")) (ifInst "" (formula "87")) (ifInst "" (formula "17"))) + (rule "translateJavaMulInt" (formula "56") (term "1,1,1,0,0,0")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,0,1,0")) + (rule "translateJavaSubInt" (formula "56") (term "0,2,1,1,0")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "andLeft" (formula "56")) + (rule "eqSymm" (formula "60")) + (rule "eqSymm" (formula "58")) + (rule "polySimp_elimSub" (formula "60") (term "0,2,0")) + (rule "mul_literals" (formula "60") (term "1,0,2,0")) + (rule "eqSymm" (formula "60")) + (rule "polySimp_elimSub" (formula "60") (term "0,2,0")) + (rule "mul_literals" (formula "60") (term "1,0,2,0")) + (rule "eqSymm" (formula "60")) + (rule "polySimp_mulComm0" (formula "58") (term "1,0")) + (rule "polySimp_addComm0" (formula "60") (term "0,2,0")) + (rule "eqSymm" (formula "60")) + (rule "polySimp_addComm0" (formula "60") (term "0,2,0")) + (rule "eqSymm" (formula "60")) + (rule "inEqSimp_commuteLeq" (formula "56")) + (rule "applyEq" (formula "58") (term "0") (ifseqformula "16")) + (rule "eqSymm" (formula "58")) + (rule "applyEq" (formula "57") (term "0") (ifseqformula "52")) + (rule "applyEq" (formula "56") (term "0") (ifseqformula "52")) + (rule "Definition_axiom_for_smallBucketIsSorted_in_de_wiesler_Sorter" (formula "127") (term "0")) + (builtin "One Step Simplification" (formula "127")) + (rule "closeTrue" (formula "127")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "92") (ifInst "" (formula "53"))) + (builtin "SMTRule") + ) + ) + ) + (branch "Case 2" + (builtin "SMTRule") + ) ) ) (branch "Precondition" (rule "andRight" (formula "89")) (branch "Case 1" - (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "23"))) - (rule "closeTrue" (formula "89")) + (rule "andRight" (formula "89")) + (branch "Case 1" + (builtin "SMTRule") + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "89")) + (rule "wellFormedAnon" (formula "89")) + (rule "wellFormedAnon" (formula "89") (term "0")) + (rule "replace_known_left" (formula "89") (term "1") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "89")) + ) ) (branch "Case 2" - (builtin "One Step Simplification" (formula "89")) - (rule "wellFormedAnon" (formula "89")) - (rule "wellFormedAnon" (formula "89") (term "0")) - (rule "translateJavaAddInt" (formula "38") (term "4,0,0,1,0,0,1,0")) - (rule "translateJavaMulInt" (formula "38") (term "3,0,0,1,0,0,1,0")) - (rule "translateJavaMulInt" (formula "38") (term "0,4,0,0,1,0,0,1,0")) - (rule "replace_known_left" (formula "89") (term "1") (ifseqformula "54")) - (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "16")) (ifInst "" (formula "15"))) - (rule "closeTrue" (formula "89")) + (rule "andRight" (formula "89")) + (branch "Case 1" + (rule "andRight" (formula "89")) + (branch "Case 1" + (rule "orRight" (formula "89")) + (builtin "One Step Simplification" (formula "90") (ifInst "" (formula "17"))) + (builtin "One Step Simplification" (formula "89") (ifInst "" (formula "88"))) + (rule "closeTrue" (formula "90")) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "89")) + (rule "closeTrue" (formula "89")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "89")) + (rule "closeTrue" (formula "89")) + ) ) ) (branch "Usage" diff --git a/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof b/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof index f105684..a1565c6 100644 --- a/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Functions/de.wiesler.Functions(de.wiesler.Functions__copy_unique((I,int,int,int,int,(I)).JML normal_behavior operation contract.0.proof @@ -2,7 +2,7 @@ \settings { "#Proof-Settings-Config-File -#Sun Apr 16 17:38:18 CEST 2023 +#Fri Oct 27 16:25:50 CEST 2023 [NewSMT]NoTypeHierarchy=false [Labels]UseOriginLabels=true [StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_OFF @@ -12,7 +12,7 @@ [StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF [StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS [StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF -[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L , finalFields-finalFields\\:immutable +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L [StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET [StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE [SMTSettings]UseBuiltUniqueness=false @@ -20,16 +20,14 @@ [SMTSettings]instantiateHierarchyAssumptions=true [StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_COMPLETION [SMTSettings]SelectedTaclets= -[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF [StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF [Strategy]MaximumNumberOfAutomaticApplications=10000 [StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT -[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_OFF [SMTSettings]useConstantsForBigOrSmallIntegers=true [StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE -[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF [Strategy]Timeout=-1 -[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER [StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF [SMTSettings]useUninterpretedMultiplication=true [NewSMT]sqrtSMTTranslation=SMT @@ -50,7 +48,7 @@ \javaSource "../../../main/java"; \proofObligation "#Proof Obligation Settings -#Sun Apr 16 17:38:18 CEST 2023 +#Fri Oct 27 16:25:50 CEST 2023 contract=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0 name=de.wiesler.Functions[de.wiesler.Functions\\:\\:copy_unique([I,int,int,int,int,[I)].JML normal_behavior operation contract.0 class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO @@ -63,8 +61,9 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (keyLog "3" (keyUser "Julian" ) (keyVersion "802059dea3")) (keyLog "4" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) (keyLog "5" (keyUser "Julian" ) (keyVersion "e1a85b31e7")) +(keyLog "6" (keyUser "wolfram" ) (keyVersion "e1a85b31e7")) -(autoModeTime "401205") +(autoModeTime "580008") (branch "dummy ID" (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre,o,f")) @@ -159,14 +158,157 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "emptyModality" (formula "16") (term "1")) (rule "andRight" (formula "16")) (branch "Case 1" - (rule "andRight" (formula "16")) - (branch "Case 1" - (builtin "One Step Simplification" (formula "16")) - (rule "closeTrue" (formula "16")) - ) - (branch "Case 2" - (builtin "SMTRule") - ) + (builtin "One Step Simplification" (formula "16") (userinteraction)) + (rule "hide_left" (formula "8") (userinteraction)) + (rule "inEqSimp_ltRight" (formula "15")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "10")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "11")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "arrayLengthIsAShort" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "arrayLengthIsAShort" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "arrayLengthNotNegative" (formula "9") (term "0")) + (rule "arrayLengthNotNegative" (formula "8") (term "0")) + (rule "multiply_2_inEq3" (formula "1") (ifseqformula "12")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_elimNeg" (formula "1") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,1")) + (rule "polySimp_mulComm1" (formula "1") (term "1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "polySimp_addComm1" (formula "1") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "15")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "multiply_2_inEq3" (formula "9") (ifseqformula "14")) + (rule "polySimp_elimNeg" (formula "9") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "9") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,0")) + (rule "polySimp_mulAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_zero_right" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_invertInEq1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "times_zero_2" (formula "3") (term "1")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "17") (ifseqformula "3")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "closeFalse" (formula "17")) ) (branch "Case 2" (builtin "One Step Simplification" (formula "16")) @@ -224,7 +366,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (builtin "One Step Simplification" (formula "1")) (rule "true_left" (formula "1")) (rule "blockEmpty" (formula "19") (term "1")) - (rule "eval_order_array_access3" (formula "19") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "eval_order_array_access3" (formula "19") (term "1") (inst "#v0=x_arr") (inst "#v2=x") (inst "#v1=x_1")) (rule "variableDeclarationAssign" (formula "19") (term "1")) (rule "variableDeclaration" (formula "19") (term "1") (newnames "x_arr")) (rule "assignment" (formula "19") (term "1")) @@ -250,7 +392,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "variableDeclarationAssign" (formula "19") (term "1")) (rule "variableDeclaration" (formula "19") (term "1") (newnames "x_4")) (rule "remove_parentheses_right" (formula "19") (term "1")) - (rule "compound_addition_2" (formula "19") (term "1") (inst "#v1=x_6") (inst "#v0=x_5")) + (rule "compound_addition_2" (formula "19") (term "1") (inst "#v0=x_5") (inst "#v1=x_6")) (rule "variableDeclarationAssign" (formula "19") (term "1")) (rule "variableDeclaration" (formula "19") (term "1") (newnames "x_5")) (rule "assignment" (formula "19") (term "1")) @@ -267,13 +409,13 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "widening_identity_cast_5" (formula "19") (term "1")) (rule "assignment" (formula "19") (term "1")) (builtin "One Step Simplification" (formula "19")) - (rule "for_to_while" (formula "19") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "for_to_while" (formula "19") (term "1") (inst "#innerLabel=_label0") (inst "#outerLabel=_label1")) (rule "variableDeclarationAssign" (formula "19") (term "1")) (rule "variableDeclaration" (formula "19") (term "1") (newnames "i")) (rule "assignment" (formula "19") (term "1")) (builtin "One Step Simplification" (formula "19")) (rule "elim_double_block_3" (formula "19") (term "1")) - (rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "#x=x_1") (inst "#variant=x") (inst "#permissionsBefore_LOOP=h_2") (inst "#savedHeapBefore_LOOP=h_1") (inst "#heapBefore_LOOP=h") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_heap_LOOP=anon_heap_LOOP_0")) + (rule "loopScopeInvDia" (formula "19") (term "1") (newnames "i_0,offset_0,target_offset_0,o,f") (inst "anon_heap_LOOP=anon_heap_LOOP_0") (inst "anon_savedHeap_LOOP=anon_savedHeap_LOOP_0") (inst "anon_permissions_LOOP=anon_permissions_LOOP_0") (inst "#heapBefore_LOOP=h") (inst "#savedHeapBefore_LOOP=h_1") (inst "#permissionsBefore_LOOP=h_2") (inst "#variant=x") (inst "#x=x_1")) (branch "Invariant Initially Valid" (rule "andRight" (formula "19")) (branch "Case 1" @@ -460,8 +602,244 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO ) ) (branch "Case 2" - (rule "impRight" (formula "19")) - (builtin "SMTRule") + (builtin "One Step Simplification" (formula "19") (userinteraction)) + (rule "hide_left" (formula "8") (userinteraction)) + (rule "impRight" (formula "18")) + (rule "inEqSimp_ltRight" (formula "19")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "12")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "13")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "mul_literals" (formula "13") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2")) + (rule "leq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "15")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "15")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "arrayLengthNotNegative" (formula "8") (term "0")) + (rule "arrayLengthIsAShort" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "arrayLengthIsAShort" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "arrayLengthNotNegative" (formula "11") (term "0")) + (rule "multiply_2_inEq3" (formula "1") (ifseqformula "2")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimNeg" (formula "1") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1")) + (rule "polySimp_mulComm1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,0,1")) + (rule "polySimp_mulComm1" (formula "1") (term "1,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "polySimp_addComm1" (formula "1") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1")) + (rule "inEqSimp_exactShadow1" (formula "1") (ifseqformula "15")) + (rule "greater_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "multiply_2_inEq3" (formula "15") (ifseqformula "4")) + (rule "neg_literal" (formula "15") (term "0,0,0,1")) + (rule "mul_literals" (formula "15") (term "0,0,1")) + (rule "polySimp_elimOneLeft0" (formula "15") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "polySimp_rightDist" (formula "15") (term "0,0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "inEqSimp_exactShadow2" (formula "17") (ifseqformula "15")) + (rule "mul_literals" (formula "17") (term "1,0,0,1")) + (rule "greater_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "0,1")) + (rule "inEqSimp_exactShadow0" (formula "3") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "3")) + (rule "greater_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq5" (formula "3") (ifseqformula "5")) + (rule "greater_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "mul_literals" (formula "3") (term "1,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) ) ) (branch "Case 2" @@ -1242,7 +1620,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "methodCallWithAssignmentUnfoldArguments" (formula "33") (term "1")) (rule "variableDeclarationAssign" (formula "33") (term "1")) (rule "variableDeclaration" (formula "33") (term "1") (newnames "var")) - (rule "eval_order_array_access5" (formula "33") (term "1") (inst "#v1=x_11") (inst "#ar1=x_arr")) + (rule "eval_order_array_access5" (formula "33") (term "1") (inst "#ar1=x_arr") (inst "#v1=x_11")) (rule "variableDeclarationAssign" (formula "33") (term "1")) (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_arr_1")) (rule "assignment" (formula "33") (term "1")) @@ -1322,7 +1700,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (branch "if x_10 true" (builtin "One Step Simplification" (formula "36")) (builtin "One Step Simplification" (formula "1")) - (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v1=x_9") (inst "#v2=x_8") (inst "#v0=x_arr")) + (rule "eval_order_array_access3" (formula "36") (term "1") (inst "#v0=x_arr") (inst "#v2=x_8") (inst "#v1=x_9")) (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_arr_2")) (rule "assignment" (formula "36") (term "1")) @@ -1346,7 +1724,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_16")) (rule "remove_parentheses_right" (formula "36") (term "1")) - (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_18") (inst "#v0=x_17")) + (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_17") (inst "#v1=x_18")) (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_17")) (rule "assignment" (formula "36") (term "1")) @@ -1369,7 +1747,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_19")) (rule "remove_parentheses_right" (formula "36") (term "1")) - (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_21") (inst "#v0=x_20")) + (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_20") (inst "#v1=x_21")) (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_20")) (rule "assignment" (formula "36") (term "1")) @@ -1409,7 +1787,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (branch "Case 1" (rule "andRight" (formula "36")) (branch "Case 1" - (rule "andRight" (formula "36")) + (rule "impLeft" (formula "32")) (branch "Case 1" (rule "andRight" (formula "36")) (branch "Case 1" @@ -1419,1277 +1797,2584 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (branch "Case 1" (rule "andRight" (formula "36")) (branch "Case 1" - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_geqRight" (formula "36")) - (rule "mul_literals" (formula "1") (term "1,0,0")) - (rule "add_literals" (formula "1") (term "0,0")) - (rule "add_zero_left" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "1")) - (rule "mul_literals" (formula "1") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepNegMonomial0" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "0")) - (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) - (rule "qeq_literals" (formula "6") (term "0")) - (builtin "One Step Simplification" (formula "6")) - (rule "closeFalse" (formula "6")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "2")) + (rule "andLeft" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0")) + (rule "add_literals" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "closeFalse" (formula "6")) + ) ) (branch "Case 2" - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_leqRight" (formula "36")) - (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "polySimp_addComm1" (formula "1") (term "0,0")) - (rule "add_literals" (formula "1") (term "0,0,0")) - (rule "add_zero_left" (formula "1") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "1")) - (rule "polySimp_mulLiterals" (formula "1") (term "1")) - (rule "polySimp_elimOne" (formula "1") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "0")) - (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1")) - (rule "andLeft" (formula "5")) - (rule "inEqSimp_homoInEq1" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0")) - (rule "polySimp_rightDist" (formula "5") (term "1,0")) - (rule "mul_literals" (formula "5") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "5") (term "0")) - (rule "polySimp_addComm0" (formula "5") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) - (rule "add_literals" (formula "5") (term "1,1,0")) - (rule "times_zero_1" (formula "5") (term "1,0")) - (rule "add_literals" (formula "5") (term "0")) - (rule "leq_literals" (formula "5")) - (rule "closeFalse" (formula "5")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_contradEq3" (formula "4") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "1")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) ) ) (branch "Case 2" - (rule "andRight" (formula "36")) - (branch "Case 1" - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_geqRight" (formula "36")) - (rule "mul_literals" (formula "1") (term "1,0,0")) - (rule "add_literals" (formula "1") (term "0,0")) - (rule "add_zero_left" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "1")) - (rule "mul_literals" (formula "1") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "0")) - (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradEq3" (formula "3") (term "0,0") (ifseqformula "1")) - (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) - (rule "add_literals" (formula "3") (term "0,0,0,0")) - (rule "qeq_literals" (formula "3") (term "0,0,0")) - (builtin "One Step Simplification" (formula "3")) - (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) - (rule "hideAuxiliaryEq" (formula "3")) - (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) - (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) - (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) - (rule "mul_literals" (formula "6") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "6") (term "0,0")) - (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) - (rule "add_literals" (formula "6") (term "1,1,0,0")) - (rule "times_zero_1" (formula "6") (term "1,0,0")) - (rule "add_zero_right" (formula "6") (term "0,0")) - (rule "qeq_literals" (formula "6") (term "0")) - (builtin "One Step Simplification" (formula "6")) - (rule "true_left" (formula "6")) - (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) - (rule "qeq_literals" (formula "1") (term "0")) - (builtin "One Step Simplification" (formula "1")) - (rule "closeFalse" (formula "1")) - ) - (branch "Case 2" - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_leqRight" (formula "36")) - (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) - (rule "mul_literals" (formula "1") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0,0")) - (rule "add_literals" (formula "1") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "polySimp_addComm1" (formula "1") (term "0,0")) - (rule "add_literals" (formula "1") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "1")) - (rule "polySimp_mulComm0" (formula "1") (term "1")) - (rule "polySimp_rightDist" (formula "1") (term "1")) - (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) - (rule "mul_literals" (formula "1") (term "0,1")) - (rule "polySimp_elimOne" (formula "1") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "0")) - (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) - (rule "andLeft" (formula "9")) - (rule "inEqSimp_homoInEq1" (formula "9")) - (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) - (rule "add_literals" (formula "9") (term "1,1,0")) - (rule "times_zero_1" (formula "9") (term "1,0")) - (rule "add_literals" (formula "9") (term "0")) - (rule "leq_literals" (formula "9")) - (rule "closeFalse" (formula "9")) - ) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6")) + (rule "applyEq" (formula "10") (term "1") (ifseqformula "2")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "12") (term "0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "6")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "1")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "9")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) ) ) (branch "Case 2" + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_homoEq" (formula "10")) (rule "polySimp_homoEq" (formula "2") (term "0,0")) (rule "times_zero_2" (formula "2") (term "1,0,0,0")) (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_geqRight" (formula "36")) + (rule "inEqSimp_leqRight" (formula "32")) (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) (rule "inEqSimp_ltToLeq" (formula "2")) (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) (rule "inEqSimp_ltToLeq" (formula "12")) (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "1")) - (rule "polySimp_mulComm0" (formula "1") (term "1")) - (rule "polySimp_rightDist" (formula "1") (term "1")) - (rule "polySimp_rightDist" (formula "1") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) - (rule "mul_literals" (formula "1") (term "0,0,1")) - (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "0")) - (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) - (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) - (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) - (rule "mul_literals" (formula "7") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "7") (term "0,0")) - (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) - (rule "add_literals" (formula "7") (term "1,1,0,0")) - (rule "times_zero_1" (formula "7") (term "1,0,0")) - (rule "add_zero_right" (formula "7") (term "0,0")) - (rule "qeq_literals" (formula "7") (term "0")) - (builtin "One Step Simplification" (formula "7")) - (rule "true_left" (formula "7")) - (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) - (rule "mul_literals" (formula "7") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "7")) - (rule "mul_literals" (formula "7") (term "1")) - (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "9") (term "0,0")) - (rule "polySimp_addAssoc" (formula "9") (term "0")) - (rule "polySimp_addComm0" (formula "9") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "9")) - (rule "polySimp_mulComm0" (formula "9") (term "1")) - (rule "polySimp_rightDist" (formula "9") (term "1")) - (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) - (rule "mul_literals" (formula "9") (term "0,1")) - (rule "polySimp_elimOne" (formula "9") (term "1,1")) - (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9")) - (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) - (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) - (rule "add_literals" (formula "21") (term "1,1,0,0")) - (rule "times_zero_1" (formula "21") (term "1,0,0")) - (rule "add_zero_right" (formula "21") (term "0,0")) - (rule "qeq_literals" (formula "21") (term "0")) - (builtin "One Step Simplification" (formula "21")) - (rule "true_left" (formula "21")) - (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30")) - (rule "mul_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "27") (term "0")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "polySimp_mulComm0" (formula "27") (term "1")) - (rule "polySimp_rightDist" (formula "27") (term "1")) - (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) - (rule "mul_literals" (formula "27") (term "0,1")) - (rule "polySimp_elimOne" (formula "27") (term "1,1")) - (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) - (rule "mul_literals" (formula "6") (term "0,0")) - (rule "polySimp_addAssoc" (formula "6") (term "0")) - (rule "add_literals" (formula "6") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "6")) - (rule "mul_literals" (formula "6") (term "1")) - (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6")) - (rule "leq_literals" (formula "27") (term "0")) - (builtin "One Step Simplification" (formula "27")) - (rule "true_left" (formula "27")) - (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1")) - (rule "mul_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "27") (term "0")) - (rule "polySimp_addAssoc" (formula "27") (term "0,0")) - (rule "add_literals" (formula "27") (term "0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "27")) - (rule "polySimp_mulLiterals" (formula "27") (term "0")) - (rule "polySimp_elimOne" (formula "27") (term "0")) - (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27")) - (rule "andLeft" (formula "11")) - (rule "inEqSimp_homoInEq1" (formula "11")) - (rule "polySimp_mulComm0" (formula "11") (term "1,0")) - (rule "polySimp_rightDist" (formula "11") (term "1,0")) - (rule "mul_literals" (formula "11") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "11") (term "0")) - (rule "polySimp_addComm0" (formula "11") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) - (rule "add_literals" (formula "11") (term "1,1,0")) - (rule "times_zero_1" (formula "11") (term "1,0")) - (rule "add_literals" (formula "11") (term "0")) - (rule "leq_literals" (formula "11")) - (rule "closeFalse" (formula "11")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) + (rule "close" (formula "36") (ifseqformula "11")) ) ) (branch "Case 2" - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_homoEq" (formula "36")) - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) - (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) - (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "36") (term "1,0")) - (rule "polySimp_pullOutFactor3b" (formula "36") (term "0,1,0")) - (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "36") (term "0")) - (rule "polySimp_addAssoc" (formula "36") (term "0,0")) - (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) - (rule "add_literals" (formula "36") (term "1,1,0,0")) - (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) - (rule "close" (formula "36") (ifseqformula "10")) + (rule "impRight" (formula "36")) + (rule "polySimp_homoEq" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "34")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "30")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) ) ) (branch "Case 2" - (rule "impRight" (formula "36")) - (rule "polySimp_homoEq" (formula "11")) - (rule "polySimp_homoEq" (formula "3") (term "0,0")) - (rule "times_zero_2" (formula "3") (term "1,0,0,0")) - (rule "add_zero_right" (formula "3") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "11") (term "1,0")) - (rule "polySimp_rightDist" (formula "11") (term "1,0")) - (rule "polySimp_rightDist" (formula "11") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0")) - (rule "mul_literals" (formula "11") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "11") (term "0")) - (rule "polySimp_addAssoc" (formula "11") (term "0,0")) - (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) - (rule "inEqSimp_ltRight" (formula "37")) - (rule "polySimp_mulComm0" (formula "1") (term "0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "3")) - (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) - (rule "polySimp_addComm1" (formula "3") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "2") (term "0")) - (rule "polySimp_addComm1" (formula "2") (term "0,0")) - (rule "add_literals" (formula "2") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "6")) - (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "30")) - (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "30") (term "0")) - (rule "polySimp_addComm1" (formula "30") (term "0,0")) - (rule "inEqSimp_gtToGeq" (formula "29")) - (rule "times_zero_1" (formula "29") (term "1,0,0")) - (rule "add_literals" (formula "29") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "13")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "32")) - (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) - (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) - (rule "add_literals" (formula "30") (term "0,0,0,0")) - (rule "add_zero_left" (formula "30") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) - (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0")) - (rule "polySimp_addComm1" (formula "32") (term "0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) - (rule "add_literals" (formula "32") (term "0,0,0,0")) - (rule "add_zero_left" (formula "32") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "34") (term "1")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "34") (term "0,1")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "34") (term "0")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) - (rule "mul_literals" (formula "34") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "34") (term "0,0")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) - (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) - (rule "add_literals" (formula "5") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) - (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) - (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "12")) - (rule "polySimp_mulLiterals" (formula "12") (term "0")) - (rule "polySimp_elimOne" (formula "12") (term "0")) - (rule "applyEq" (formula "34") (term "0,1,0,1") (ifseqformula "12")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "34") (term "0,1")) - (rule "polySimp_addAssoc" (formula "34") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1")) - (rule "add_literals" (formula "34") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "1")) - (rule "polySimp_mulComm0" (formula "1") (term "1")) - (rule "polySimp_rightDist" (formula "1") (term "1")) - (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) - (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) - (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) - (rule "polySimp_elimOne" (formula "1") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "3")) - (rule "polySimp_mulLiterals" (formula "3") (term "0")) - (rule "polySimp_elimOne" (formula "3") (term "0")) - (rule "inEqSimp_sepPosMonomial0" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1")) - (rule "polySimp_rightDist" (formula "2") (term "1")) - (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) - (rule "mul_literals" (formula "2") (term "0,1")) - (rule "polySimp_elimOne" (formula "2") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "6")) - (rule "polySimp_mulComm0" (formula "6") (term "1")) - (rule "polySimp_rightDist" (formula "6") (term "1")) - (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) - (rule "mul_literals" (formula "6") (term "0,1")) - (rule "polySimp_elimOne" (formula "6") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "29")) - (rule "mul_literals" (formula "29") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13")) - (rule "polySimp_mulComm0" (formula "13") (term "1")) - (rule "polySimp_rightDist" (formula "13") (term "1")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) - (rule "mul_literals" (formula "13") (term "0,1")) - (rule "polySimp_elimOne" (formula "13") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "30")) - (rule "polySimp_mulComm0" (formula "30") (term "1")) - (rule "polySimp_rightDist" (formula "30") (term "1")) - (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) - (rule "polySimp_elimOne" (formula "30") (term "1,1")) - (rule "polySimp_mulComm0" (formula "30") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) - (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "32")) - (rule "polySimp_mulComm0" (formula "32") (term "1")) - (rule "polySimp_rightDist" (formula "32") (term "1")) - (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) - (rule "polySimp_elimOne" (formula "32") (term "1,1")) - (rule "polySimp_mulComm0" (formula "32") (term "0,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0")) - (rule "polySimp_mulLiterals" (formula "34") (term "0,0")) - (rule "polySimp_elimOne" (formula "34") (term "0,0")) - (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "2")) - (builtin "One Step Simplification" (formula "34")) - (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) - (rule "mul_literals" (formula "5") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "34")) - (rule "polySimp_mulComm0" (formula "34") (term "1")) - (rule "polySimp_rightDist" (formula "34") (term "1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,0,1")) - (rule "mul_literals" (formula "34") (term "0,0,0,1")) - (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) - (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) - (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) - (rule "mul_literals" (formula "6") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "6") (term "0,0")) - (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) - (rule "add_literals" (formula "6") (term "0,0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) - (rule "add_literals" (formula "6") (term "1,1,0,0")) - (rule "times_zero_1" (formula "6") (term "1,0,0")) - (rule "add_zero_right" (formula "6") (term "0,0")) - (rule "qeq_literals" (formula "6") (term "0")) - (builtin "One Step Simplification" (formula "6")) - (rule "true_left" (formula "6")) - (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2")) + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "6")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_contradEq3" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "8")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "10")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0")) + (rule "add_literals" (formula "27") (term "0")) + (rule "leq_literals" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "36") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) + (rule "close" (formula "36") (ifseqformula "10")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "36")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_homoEq" (formula "3") (term "0,0")) + (rule "times_zero_2" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "0,0,1,0")) + (rule "mul_literals" (formula "11") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1")) + (rule "mul_literals" (formula "34") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "32")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Case 2" + (rule "impLeft" (formula "32")) + (branch "Case 1" + (rule "hide_left" (formula "23") (userinteraction)) + (rule "hide_left" (formula "13") (userinteraction)) + (rule "hide_left" (formula "2") (userinteraction)) + (rule "hide_left" (formula "2") (userinteraction)) + (rule "allRight" (formula "32") (inst "sk=j_0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) @@ -2703,51 +4388,2253 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "qeq_literals" (formula "7") (term "0")) (builtin "One Step Simplification" (formula "7")) (rule "true_left" (formula "7")) - (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28")) - (rule "polySimp_rightDist" (formula "32") (term "0,0")) - (rule "polySimp_addComm1" (formula "32") (term "0")) - (rule "polySimp_rightDist" (formula "32") (term "0,0,0")) - (rule "polySimp_addComm1" (formula "32") (term "0,0")) - (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0")) - (rule "mul_literals" (formula "32") (term "0,0,0,0,0")) - (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) - (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) - (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) - (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) - (rule "add_literals" (formula "32") (term "0,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "32")) - (rule "polySimp_mulLiterals" (formula "32") (term "0")) - (rule "polySimp_elimOne" (formula "32") (term "0")) - (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "32")) - (rule "andLeft" (formula "1")) - (rule "inEqSimp_homoInEq1" (formula "1")) - (rule "polySimp_mulComm0" (formula "1") (term "1,0")) - (rule "polySimp_rightDist" (formula "1") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) - (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) - (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) - (rule "mul_literals" (formula "1") (term "0,0,1,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "polySimp_addComm1" (formula "1") (term "0,0")) - (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) - (rule "add_literals" (formula "1") (term "1,1,0")) - (rule "times_zero_1" (formula "1") (term "1,0")) - (rule "add_zero_right" (formula "1") (term "0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "polySimp_addComm0" (formula "1") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) - (rule "add_literals" (formula "1") (term "1,1,0")) - (rule "times_zero_1" (formula "1") (term "1,0")) - (rule "add_literals" (formula "1") (term "0")) - (rule "leq_literals" (formula "1")) - (rule "closeFalse" (formula "1")) + (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "9") (term "1") (ifseqformula "2")) + (rule "applyEq" (formula "11") (term "1,0") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "11") (term "0")) + (rule "polySimp_homoEq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "11") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "27")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_ex2all" (formula "34")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "commute_or" (formula "17") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "arrayLengthNotNegative" (formula "27") (term "0")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "commute_and" (formula "17") (term "0,0,1,0")) + (rule "ex_pull_out3" (formula "17") (term "0")) + (rule "cnf_rightDist" (formula "17") (term "0,0")) + (rule "commute_or" (formula "17") (term "1,0,0")) + (rule "cnf_rightDist" (formula "17") (term "0,0,0")) + (rule "commute_or" (formula "17") (term "1,0,0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 = 0 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "2")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "times_zero_2" (formula "7") (term "1,0")) + (rule "add_zero_right" (formula "7") (term "0")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "9")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "leq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "6")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "commute_and_2" (formula "12") (term "0,0")) + (rule "commute_and" (formula "12") (term "0,0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "27")) + (rule "allLeft" (formula "12") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "12") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "exLeft" (formula "12") (inst "sk=k_0")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "13") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "12") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "12")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "34"))) + (rule "eqSymm" (formula "13")) + (rule "simplifySelectOfAnon" (formula "13")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "33"))) + (rule "elementOfArrayRangeConcrete" (formula "12") (term "0,0,0")) + (rule "replace_known_right" (formula "12") (term "0,0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "12")) + (rule "dismissNonSelectedField" (formula "13") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "13")) + (rule "ifthenelse_negated" (formula "12") (term "0")) + (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "leq_literals" (formula "13") (term "0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "simplifySelectOfStore" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "castDel" (formula "13") (term "0")) + (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13")) + (rule "hideAuxiliaryEq" (formula "13")) + (rule "dismissNonSelectedField" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "12")) + (builtin "One Step Simplification" (formula "12")) + (rule "castDel" (formula "12") (term "1,0")) + (rule "eqSymm" (formula "13")) + (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "12")) + (rule "hideAuxiliaryEq" (formula "13")) + (rule "eqSymm" (formula "12") (term "1")) + (rule "eqSymm" (formula "12") (term "0,0")) + (rule "eqSymm" (formula "12") (term "1,0")) + (rule "replace_known_right" (formula "12") (term "0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEq" (formula "15") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "12")) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "12")) + (rule "allLeft" (formula "1") (inst "t=k_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "31")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "1")) + ) + (branch "j_0 = 0 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "31")) + (rule "add_zero_right" (formula "5") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "4")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "commute_and_2" (formula "15") (term "0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "15") (term "0,0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "target_offset_0 = j_0 TRUE" + (rule "close" (formula "31") (ifseqformula "3")) + ) + (branch "target_offset_0 = j_0 FALSE" + (rule "applyEqReverse" (formula "31") (term "1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "allLeft" (formula "14") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet010000000012010012_10" (formula "14") (term "1,1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet1010000000012010012_13" (formula "14") (term "1,1,0,0,0")) + (rule "exLeft" (formula "14") (inst "sk=k_0")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteGeq" (formula "16") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0,0") (ifseqformula "4")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "4")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,0") (ifseqformula "4")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36"))) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "dismissNonSelectedField" (formula "14") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "14") (term "0,1,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "14")) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "castDel" (formula "14") (term "1,0")) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "eqSymm" (formula "14") (term "1,0,0")) + (rule "eqSymm" (formula "14") (term "0,0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "14")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "14")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "14")) + (rule "allLeft" (formula "17") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "17") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "exLeft" (formula "17") (inst "sk=k_1")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "38"))) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "39"))) + (rule "dismissNonSelectedField" (formula "17") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "17")) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "18")) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "simplifySelectOfStore" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "castDel" (formula "17") (term "0")) + (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfStore" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "castDel" (formula "17") (term "1,0")) + (rule "eqSymm" (formula "18")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "17")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "eqSymm" (formula "17") (term "1")) + (rule "eqSymm" (formula "17") (term "0,0")) + (rule "eqSymm" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "20") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "20") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "17")) + (rule "allLeft" (formula "20") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "20") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "exLeft" (formula "20") (inst "sk=k_2")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "42"))) + (rule "eqSymm" (formula "21")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "41"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "20")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "21") (term "0,1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "21")) + (rule "ifthenelse_negated" (formula "20") (term "0")) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "simplifySelectOfStore" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "castDel" (formula "21") (term "0")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "replace_known_left" (formula "20") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfStore" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "castDel" (formula "20") (term "1,0")) + (rule "eqSymm" (formula "21")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "20")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "eqSymm" (formula "20") (term "0,0")) + (rule "eqSymm" (formula "20") (term "1,0")) + (rule "replace_known_right" (formula "20") (term "0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "38")) + (rule "allLeft" (formula "1") (inst "t=k_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "39")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "Case 2" + (rule "hide_left" (formula "23") (userinteraction)) + (rule "hide_left" (formula "13") (userinteraction)) + (rule "hide_left" (formula "2") (userinteraction)) + (rule "hide_left" (formula "2") (userinteraction)) + (rule "allRight" (formula "32") (inst "sk=j_0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "24")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "6")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "29")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "11")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "28") (ifseqformula "33")) + (rule "mul_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "nnf_ex2all" (formula "38")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "commute_or" (formula "17") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "arrayLengthNotNegative" (formula "26") (term "0")) + (rule "arrayLengthIsAShort" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "commute_and" (formula "17") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 = 0 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "applyEqRigid" (formula "3") (term "0,0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEqRigid" (formula "5") (term "1") (ifseqformula "2")) + (rule "applyEqRigid" (formula "3") (term "1,0,0") (ifseqformula "2")) + (rule "inEqSimp_contradEq7" (formula "3") (term "0,0") (ifseqformula "10")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "ex_pull_out3" (formula "12") (term "0")) + (rule "cnf_rightDist" (formula "12") (term "0,0")) + (rule "commute_or" (formula "12") (term "1,0,0")) + (rule "cnf_rightDist" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "1,0,0,0")) + (rule "commute_and_2" (formula "12") (term "0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "31")) + (rule "allLeft" (formula "12") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "12") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "exLeft" (formula "12") (inst "sk=k_0")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "13") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "12") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "7")) + (rule "qeq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "7")) + (rule "qeq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "7")) + (rule "qeq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "pullOutSelect" (formula "13") (term "1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "38"))) + (rule "simplifySelectOfAnon" (formula "13")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "37"))) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "14")) + (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "leq_literals" (formula "13") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "dismissNonSelectedField" (formula "14") (term "0,0,0,0")) + (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "14")) + (rule "simplifySelectOfStore" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "castDel" (formula "14") (term "1,0")) + (rule "eqSymm" (formula "14") (term "1,0,0")) + (rule "eqSymm" (formula "14") (term "0,0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEqReverse" (formula "13") (term "1") (ifseqformula "14")) + (rule "hideAuxiliaryEq" (formula "14")) + (rule "ifthenelse_negated" (formula "13") (term "0")) + (rule "dismissNonSelectedField" (formula "13") (term "0,0,0")) + (rule "replace_known_left" (formula "13") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "13")) + (rule "pullOutSelect" (formula "13") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "castDel" (formula "13") (term "0")) + (rule "applyEqReverse" (formula "14") (term "0") (ifseqformula "13")) + (rule "hideAuxiliaryEq" (formula "13")) + (rule "applyEq" (formula "15") (term "3,0,0,0,1,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "13")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "13")) + (rule "eqSymm" (formula "34")) + (rule "applyEq" (formula "15") (term "3,0,0,1,1,1,0,0,0") (ifseqformula "13")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "13")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_literals" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "commute_and" (formula "15") (term "0,0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "ifthenelse_negated" (formula "1") (term "0")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "34")) + (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "31")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "28")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "34") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "34")) + (rule "close" (formula "34") (ifseqformula "13")) + ) + (branch "j_0 = 0 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "4") (ifseqformula "35")) + (rule "add_zero_right" (formula "4") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "35") (ifseqformula "4")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "ex_pull_out3" (formula "16") (term "0")) + (rule "cnf_rightDist" (formula "16") (term "0,0")) + (rule "commute_or" (formula "16") (term "1,0,0")) + (rule "cnf_rightDist" (formula "16") (term "0,0,0")) + (rule "commute_or" (formula "16") (term "1,0,0,0")) + (rule "commute_and_2" (formula "16") (term "0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "36") (term "0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "commute_and" (formula "16") (term "0,0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 ≤ -1 + count TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "allLeft" (formula "16") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "16") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "exLeft" (formula "16") (inst "sk=k_0")) + (rule "andLeft" (formula "16")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "16") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "11")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "11")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "11")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "pullOutSelect" (formula "16") (term "1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "42"))) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "41"))) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "17")) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "leq_literals" (formula "16") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "17")) + (rule "simplifySelectOfStore" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "castDel" (formula "17") (term "1,0")) + (rule "eqSymm" (formula "17") (term "0,0,0")) + (rule "eqSymm" (formula "17") (term "1,0,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "ifthenelse_negated" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "16") (term "0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "18")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "pullOutSelect" (formula "16") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "castDel" (formula "16") (term "0")) + (rule "applyEqReverse" (formula "17") (term "0") (ifseqformula "16")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "applyEq" (formula "19") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "19") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "16")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "target_offset_0 = j_0 TRUE" + (rule "close" (formula "39") (ifseqformula "4")) + ) + (branch "target_offset_0 = j_0 FALSE" + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "3")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "38")) + (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "37")) + (rule "inEqSimp_contradEq7" (formula "37") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0")) + (rule "add_literals" (formula "37") (term "0,0")) + (rule "leq_literals" (formula "37") (term "0")) + (builtin "One Step Simplification" (formula "37")) + (rule "false_right" (formula "37")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "8")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "3")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "34")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "31")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "37") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "38")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "42"))) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "38") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "15")) + (rule "allLeft" (formula "18") (inst "t=j_0")) + (rule "exLeft" (formula "18") (inst "sk=k_1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,1,0")) + (rule "leq_literals" (formula "18") (term "0,1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "5")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "45"))) + (rule "eqSymm" (formula "19")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "44"))) + (rule "dismissNonSelectedField" (formula "18") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "18") (term "0,1,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "18")) + (rule "dismissNonSelectedField" (formula "19") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "19") (term "0,1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "19")) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "18")) + (rule "simplifySelectOfStore" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "castDel" (formula "18") (term "1,0")) + (rule "eqSymm" (formula "18") (term "1,0,0")) + (rule "eqSymm" (formula "18") (term "0,0,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "2"))) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0")) + (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "41") (term "0") (ifseqformula "18")) + (rule "eqSymm" (formula "41")) + (rule "applyEq" (formula "40") (term "0") (ifseqformula "18")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "18")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "allLeft" (formula "21") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "21") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "exLeft" (formula "21") (inst "sk=k_2")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "21") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "47"))) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "48"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "leq_literals" (formula "21") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0,0,0") (ifseqformula "46")) + (builtin "One Step Simplification" (formula "22")) + (rule "ifthenelse_negated" (formula "21") (term "0")) + (rule "ifthenelse_negated" (formula "22") (term "0")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "21")) + (rule "simplifySelectOfStore" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "castDel" (formula "21") (term "0")) + (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfStore" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "castDel" (formula "21") (term "1,0")) + (rule "eqSymm" (formula "22")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "21")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "eqSymm" (formula "21") (term "0,0")) + (rule "eqSymm" (formula "21") (term "1,0")) + (rule "replace_known_right" (formula "21") (term "0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "allLeft" (formula "24") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "exLeft" (formula "24") (inst "sk=k_3")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "51"))) + (rule "eqSymm" (formula "25") (term "1")) + (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "24")) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (rule "replace_known_right" (formula "24") (term "0,0,0,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "24")) + (rule "simplifySelectOfStore" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "castDel" (formula "24") (term "1,0")) + (rule "eqSymm" (formula "24") (term "1,0,0")) + (rule "eqSymm" (formula "24") (term "0,0,0")) + (rule "replace_known_right" (formula "24") (term "0,0,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "50"))) + (rule "eqSymm" (formula "25") (term "1")) + (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "24")) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "24") (term "2,0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfStore" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "castDel" (formula "24") (term "1,0")) + (rule "polySimp_homoEq" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "commute_or_2" (formula "28")) + (rule "commute_or_2" (formula "27")) + (rule "commute_or" (formula "28") (term "0")) + (rule "commute_or" (formula "27") (term "0")) + (rule "allLeft" (formula "29") (inst "t=k_0")) + (rule "exLeft" (formula "29") (inst "sk=k_4")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteGeq" (formula "31") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "30") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0")) + (rule "pullOutSelect" (formula "29") (term "0,1") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "56"))) + (rule "eqSymm" (formula "30") (term "1")) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0,0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "29")) + (rule "ifthenelse_negated" (formula "29") (term "0")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "29")) + (rule "simplifySelectOfStore" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "castDel" (formula "29") (term "1,0")) + (rule "eqSymm" (formula "29") (term "1,0,0")) + (rule "eqSymm" (formula "29") (term "0,0,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "1,1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "pullOutSelect" (formula "29") (term "0,1") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "55"))) + (rule "eqSymm" (formula "30") (term "1")) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0")) + (rule "pullOutSelect" (formula "29") (term "2,0") (inst "selectSK=arr_18")) + (rule "simplifySelectOfStore" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "castDel" (formula "29") (term "1,0")) + (rule "eqSymm" (formula "29") (term "0,0")) + (rule "commute_or_2" (formula "33")) + (rule "commute_or_2" (formula "32")) + (rule "allLeft" (formula "34") (inst "t=offset_0")) + (rule "exLeft" (formula "34") (inst "sk=k_5")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0")) + (rule "pullOutSelect" (formula "34") (term "1,1") (inst "selectSK=arr_19")) + (rule "simplifySelectOfAnon" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "60"))) + (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0")) + (rule "pullOutSelect" (formula "35") (term "0,1") (inst "selectSK=arr_20")) + (rule "simplifySelectOfAnon" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "62"))) + (rule "dismissNonSelectedField" (formula "35") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "35") (term "0,1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "35")) + (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0")) + (rule "replace_known_right" (formula "35") (term "0,0,0,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "35")) + (rule "simplifySelectOfStore" (formula "35")) + (builtin "One Step Simplification" (formula "35")) + (rule "castDel" (formula "35") (term "1,0")) + (rule "eqSymm" (formula "35") (term "0,0,0")) + (rule "eqSymm" (formula "35") (term "1,0,0")) + (rule "replace_known_right" (formula "35") (term "0,0,0") (ifseqformula "60")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "0,1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "pullOutSelect" (formula "34") (term "2,0") (inst "selectSK=arr_21")) + (rule "simplifySelectOfStore" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "castDel" (formula "34") (term "1,0")) + (rule "eqSymm" (formula "34") (term "0,0")) + (rule "commute_or_2" (formula "38")) + (rule "commute_or_2" (formula "37")) + (rule "commute_or" (formula "38") (term "0")) + (rule "commute_or" (formula "37") (term "0")) + (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "replaceKnownSelect_taclet101110000000012010012_23" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet101110000000012010012_26" (formula "1") (term "0,0,1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "1") (term "0,0,1") (ifseqformula "16")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "allLeft" (formula "1") (inst "t=k_1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "58") (term "0") (inst "selectSK=arr_22")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet101110000000012010012_27" (formula "1") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet101110000000012010012_30" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "59")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "62")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "59"))) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "j_0 ≤ -1 + count FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "34")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "9")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) ) ) - (branch "Case 2" - (builtin "SMTRule") - ) ) (branch "Case 2" (rule "allRight" (formula "36") (inst "sk=j_0")) @@ -7502,7 +11389,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_14")) (rule "remove_parentheses_right" (formula "36") (term "1")) - (rule "compound_addition_2" (formula "36") (term "1") (inst "#v1=x_16") (inst "#v0=x_15")) + (rule "compound_addition_2" (formula "36") (term "1") (inst "#v0=x_15") (inst "#v1=x_16")) (rule "variableDeclarationAssign" (formula "36") (term "1")) (rule "variableDeclaration" (formula "36") (term "1") (newnames "x_15")) (rule "assignment" (formula "36") (term "1")) @@ -7541,17 +11428,343 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "andRight" (formula "36")) (branch "Case 1" (rule "andRight" (formula "36")) - (branch - (rule "andRight" (formula "36")) - (branch + (branch "Case 1" + (rule "impLeft" (formula "31")) + (branch "Case 1" (rule "andRight" (formula "36")) - (branch + (branch "Case 1" (rule "andRight" (formula "36")) - (branch + (branch "Case 1" (rule "andRight" (formula "36")) - (branch + (branch "Case 1" (rule "andRight" (formula "36")) - (branch + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "7") (ifseqformula "3")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "6")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" (rule "polySimp_homoEq" (formula "1") (term "0,0")) (rule "times_zero_2" (formula "1") (term "1,0,0,0")) (rule "add_zero_right" (formula "1") (term "0,0,0")) @@ -7564,173 +11777,1076 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_addAssoc" (formula "9") (term "0")) (rule "polySimp_addAssoc" (formula "9") (term "0,0")) (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) - (rule "inEqSimp_geqRight" (formula "36")) - (rule "mul_literals" (formula "1") (term "1,0,0")) - (rule "add_literals" (formula "1") (term "0,0")) - (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) (rule "inEqSimp_ltRight" (formula "33")) (rule "polySimp_mulComm0" (formula "1") (term "0,0")) (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0")) (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "2")) - (rule "mul_literals" (formula "2") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) (rule "inEqSimp_sepNegMonomial1" (formula "1")) (rule "polySimp_mulLiterals" (formula "1") (term "0")) (rule "polySimp_elimOne" (formula "1") (term "0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) (rule "inEqSimp_sepPosMonomial1" (formula "28")) (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "2")) - (rule "qeq_literals" (formula "6") (term "0")) - (builtin "One Step Simplification" (formula "6")) - (rule "closeFalse" (formula "6")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "12") (term "0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "9") (term "1") (ifseqformula "2")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_subsumption0" (formula "5") (term "1,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "5") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "26") (ifseqformula "6")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "3")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "9")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "36")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "36") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) + (rule "close" (formula "36") (ifseqformula "11")) + ) + ) + (branch "Case 2" + (rule "impRight" (formula "36")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "times_zero_2" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "30")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) + (rule "mul_literals" (formula "30") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "4")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "Case 2" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "andRight" (formula "36")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_contradInEq0" (formula "6") (ifseqformula "1")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "5")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) ) - (branch + (branch "Case 2" (rule "polySimp_homoEq" (formula "1") (term "0,0")) (rule "times_zero_2" (formula "1") (term "1,0,0,0")) (rule "add_zero_right" (formula "1") (term "0,0,0")) @@ -7744,60 +12860,61 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_addAssoc" (formula "9") (term "0,0")) (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) (rule "inEqSimp_leqRight" (formula "36")) - (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) (rule "add_literals" (formula "1") (term "0,0,0")) - (rule "add_zero_left" (formula "1") (term "0,0")) (rule "inEqSimp_ltRight" (formula "33")) (rule "polySimp_mulComm0" (formula "1") (term "0,0")) (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "mul_literals" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "27")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) (rule "polySimp_addAssoc" (formula "31") (term "0")) (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) (rule "add_literals" (formula "31") (term "0,0,0,0")) (rule "add_zero_left" (formula "31") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) @@ -7806,124 +12923,111 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) (rule "mul_literals" (formula "3") (term "1,0,0")) (rule "polySimp_sepNegMonomial" (formula "11")) (rule "polySimp_mulLiterals" (formula "11") (term "0")) (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) (rule "inEqSimp_sepPosMonomial1" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "1")) - (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) (rule "inEqSimp_sepNegMonomial1" (formula "1")) (rule "polySimp_mulLiterals" (formula "1") (term "0")) (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) (rule "inEqSimp_sepPosMonomial0" (formula "5")) (rule "polySimp_mulComm0" (formula "5") (term "1")) (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) (rule "inEqSimp_sepPosMonomial0" (formula "12")) (rule "polySimp_mulComm0" (formula "12") (term "1")) (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) (rule "inEqSimp_sepPosMonomial0" (formula "31")) (rule "polySimp_mulComm0" (formula "31") (term "1")) (rule "polySimp_rightDist" (formula "31") (term "1")) (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) (rule "polySimp_elimOne" (formula "31") (term "1,1")) (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2")) - (rule "andLeft" (formula "5")) - (rule "inEqSimp_homoInEq1" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0")) - (rule "polySimp_rightDist" (formula "5") (term "1,0")) - (rule "mul_literals" (formula "5") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "5") (term "0")) - (rule "polySimp_addComm0" (formula "5") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) - (rule "add_literals" (formula "5") (term "1,1,0")) - (rule "times_zero_1" (formula "5") (term "1,0")) - (rule "add_literals" (formula "5") (term "0")) - (rule "leq_literals" (formula "5")) - (rule "closeFalse" (formula "5")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "9")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) ) ) - (branch + (branch "Case 2" (rule "polySimp_homoEq" (formula "9")) (rule "polySimp_homoEq" (formula "1") (term "0,0")) (rule "times_zero_2" (formula "1") (term "1,0,0,0")) @@ -7939,57 +13043,45 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "inEqSimp_ltRight" (formula "32")) (rule "polySimp_mulComm0" (formula "1") (term "0,0")) (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "inEqSimp_leqRight" (formula "36")) - (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) - (rule "mul_literals" (formula "1") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0,0")) - (rule "add_literals" (formula "1") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_geqRight" (formula "36")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) (rule "inEqSimp_ltToLeq" (formula "29")) (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0")) (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0")) (rule "add_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0")) (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) @@ -7998,645 +13090,1607 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) (rule "mul_literals" (formula "3") (term "1,0,0")) (rule "polySimp_sepNegMonomial" (formula "11")) (rule "polySimp_mulLiterals" (formula "11") (term "0")) (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) + (rule "applyEq" (formula "33") (term "0,1,0") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) (rule "inEqSimp_sepNegMonomial1" (formula "2")) (rule "polySimp_mulLiterals" (formula "2") (term "0")) (rule "polySimp_elimOne" (formula "2") (term "0")) - (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) (rule "polySimp_mulComm0" (formula "1") (term "1")) (rule "polySimp_rightDist" (formula "1") (term "1")) - (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) - (rule "mul_literals" (formula "1") (term "0,1")) - (rule "polySimp_elimOne" (formula "1") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) (rule "inEqSimp_sepPosMonomial1" (formula "28")) (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "mul_literals" (formula "27") (term "1")) (rule "inEqSimp_sepPosMonomial0" (formula "12")) (rule "polySimp_mulComm0" (formula "12") (term "1")) (rule "polySimp_rightDist" (formula "12") (term "1")) (rule "mul_literals" (formula "12") (term "0,1")) (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1")) (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) - (rule "andLeft" (formula "9")) - (rule "inEqSimp_homoInEq1" (formula "9")) - (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) - (rule "add_literals" (formula "9") (term "1,1,0")) - (rule "times_zero_1" (formula "9") (term "1,0")) - (rule "add_literals" (formula "9") (term "0")) - (rule "leq_literals" (formula "9")) - (rule "closeFalse" (formula "9")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "8")) + (rule "mul_literals" (formula "7") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "1")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_literals" (formula "11") (term "0")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) ) ) - (branch + (branch "Case 2" (rule "polySimp_homoEq" (formula "1") (term "0,0")) (rule "times_zero_2" (formula "1") (term "1,0,0,0")) (rule "add_zero_right" (formula "1") (term "0,0,0")) (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_homoEq" (formula "36")) (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) (rule "polySimp_addAssoc" (formula "9") (term "0")) - (rule "polySimp_addAssoc" (formula "9") (term "0,0")) - (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) - (rule "inEqSimp_geqRight" (formula "36")) - (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "inEqSimp_ltRight" (formula "33")) + (rule "inEqSimp_ltRight" (formula "32")) (rule "polySimp_mulComm0" (formula "1") (term "0,0")) (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0")) - (rule "polySimp_addComm1" (formula "29") (term "0,0")) - (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) - (rule "add_literals" (formula "29") (term "0,0,0,0")) - (rule "add_zero_left" (formula "29") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "14") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "1,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_literals" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) - (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0")) - (rule "polySimp_addComm1" (formula "31") (term "0,0")) - (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) - (rule "add_literals" (formula "31") (term "0,0,0,0")) - (rule "add_zero_left" (formula "31") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "4") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "4") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) - (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "4") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) - (rule "mul_literals" (formula "33") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0")) - (rule "polySimp_sepPosMonomial" (formula "3") (term "0,0")) - (rule "mul_literals" (formula "3") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "11")) - (rule "polySimp_mulLiterals" (formula "11") (term "0")) - (rule "polySimp_elimOne" (formula "11") (term "0")) - (rule "applyEq" (formula "33") (term "0,1,0,1") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,0,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "33") (term "0,1")) - (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "33") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,1")) - (rule "add_literals" (formula "33") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1")) - (rule "polySimp_rightDist" (formula "2") (term "1")) - (rule "polySimp_rightDist" (formula "2") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) - (rule "mul_literals" (formula "2") (term "0,0,1")) - (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "1")) - (rule "polySimp_mulLiterals" (formula "1") (term "0")) - (rule "polySimp_elimOne" (formula "1") (term "0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "5")) - (rule "polySimp_mulComm0" (formula "5") (term "1")) - (rule "polySimp_rightDist" (formula "5") (term "1")) - (rule "mul_literals" (formula "5") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) - (rule "polySimp_elimOne" (formula "5") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "29")) - (rule "polySimp_mulComm0" (formula "29") (term "1")) - (rule "polySimp_rightDist" (formula "29") (term "1")) - (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) - (rule "polySimp_elimOne" (formula "29") (term "1,1")) - (rule "polySimp_mulComm0" (formula "29") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "12")) - (rule "polySimp_mulComm0" (formula "12") (term "1")) - (rule "polySimp_rightDist" (formula "12") (term "1")) - (rule "mul_literals" (formula "12") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) - (rule "polySimp_elimOne" (formula "12") (term "1,1")) - (rule "inEqSimp_sepNegMonomial0" (formula "14") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "mul_literals" (formula "27") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "31")) - (rule "polySimp_mulComm0" (formula "31") (term "1")) - (rule "polySimp_rightDist" (formula "31") (term "1")) - (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) - (rule "polySimp_elimOne" (formula "31") (term "1,1")) - (rule "polySimp_mulComm0" (formula "31") (term "0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0")) - (rule "polySimp_mulLiterals" (formula "33") (term "0,0")) - (rule "polySimp_elimOne" (formula "33") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1")) - (rule "polySimp_mulComm0" (formula "33") (term "1,1")) - (rule "polySimp_rightDist" (formula "33") (term "1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,1,1")) - (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,1")) - (rule "polySimp_elimOne" (formula "33") (term "1,0,1,1")) - (rule "polySimp_rightDist" (formula "33") (term "0,0,1,1")) - (rule "mul_literals" (formula "33") (term "0,0,0,1,1")) - (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) - (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) - (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) - (rule "mul_literals" (formula "7") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "7") (term "0,0")) - (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) - (rule "add_literals" (formula "7") (term "1,1,0,0")) - (rule "times_zero_1" (formula "7") (term "1,0,0")) - (rule "add_zero_right" (formula "7") (term "0,0")) - (rule "qeq_literals" (formula "7") (term "0")) - (builtin "One Step Simplification" (formula "7")) - (rule "true_left" (formula "7")) - (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) - (rule "polySimp_mulComm0" (formula "9") (term "0,0")) - (rule "polySimp_addAssoc" (formula "9") (term "0")) - (rule "polySimp_addComm0" (formula "9") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "9")) - (rule "polySimp_mulComm0" (formula "9") (term "1")) - (rule "polySimp_rightDist" (formula "9") (term "1")) - (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) - (rule "mul_literals" (formula "9") (term "0,1")) - (rule "polySimp_elimOne" (formula "9") (term "1,1")) - (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "9")) - (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) - (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) - (rule "add_literals" (formula "21") (term "1,1,0,0")) - (rule "times_zero_1" (formula "21") (term "1,0,0")) - (rule "add_zero_right" (formula "21") (term "0,0")) - (rule "qeq_literals" (formula "21") (term "0")) - (builtin "One Step Simplification" (formula "21")) - (rule "true_left" (formula "21")) - (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) - (rule "mul_literals" (formula "6") (term "0,0")) - (rule "polySimp_addAssoc" (formula "6") (term "0")) - (rule "add_literals" (formula "6") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "6")) - (rule "mul_literals" (formula "6") (term "1")) - (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6")) - (rule "leq_literals" (formula "27") (term "0")) - (builtin "One Step Simplification" (formula "27")) - (rule "true_left" (formula "27")) - (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "2")) - (rule "mul_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "27") (term "0")) - (rule "polySimp_addAssoc" (formula "27") (term "0,0")) - (rule "add_literals" (formula "27") (term "0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "27")) - (rule "polySimp_mulLiterals" (formula "27") (term "0")) - (rule "polySimp_elimOne" (formula "27") (term "0")) - (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "27")) - (rule "andLeft" (formula "11")) - (rule "inEqSimp_homoInEq1" (formula "11")) - (rule "polySimp_mulComm0" (formula "11") (term "1,0")) - (rule "polySimp_rightDist" (formula "11") (term "1,0")) - (rule "mul_literals" (formula "11") (term "0,1,0")) - (rule "polySimp_addAssoc" (formula "11") (term "0")) - (rule "polySimp_addComm0" (formula "11") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) - (rule "add_literals" (formula "11") (term "1,1,0")) - (rule "times_zero_1" (formula "11") (term "1,0")) - (rule "add_literals" (formula "11") (term "0")) - (rule "leq_literals" (formula "11")) - (rule "closeFalse" (formula "11")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "26")) + (rule "mul_literals" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) + (rule "close" (formula "36") (ifseqformula "10")) ) ) - (branch - (rule "polySimp_homoEq" (formula "9")) - (rule "polySimp_homoEq" (formula "1") (term "0,0")) - (rule "times_zero_2" (formula "1") (term "1,0,0,0")) + (branch "Case 2" + (rule "impRight" (formula "36")) + (rule "polySimp_homoEq" (formula "10")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "37")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "29")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_literals" (formula "29") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "28")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "applyEq" (formula "34") (term "0,1,0") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29")) + (rule "mul_literals" (formula "29") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28")) + (rule "mul_literals" (formula "28") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1")) + (rule "polySimp_rightDist" (formula "34") (term "1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "34") (term "0,0,1")) + (rule "mul_literals" (formula "34") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1")) + (rule "polySimp_rightDist" (formula "10") (term "1")) + (rule "mul_literals" (formula "10") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1")) + (rule "polySimp_elimOne" (formula "10") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "30")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "1")) + (rule "andLeft" (formula "32")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0")) + (rule "add_zero_right" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0")) + (rule "add_literals" (formula "32") (term "0")) + (rule "leq_literals" (formula "32")) + (rule "closeFalse" (formula "32")) + ) + ) + ) + (branch "Case 2" + (rule "impLeft" (formula "31")) + (branch "Case 1" + (rule "hide_left" (formula "22") (userinteraction)) + (rule "hide_left" (formula "12") (userinteraction)) + (rule "hide_left" (formula "1") (userinteraction)) + (rule "hide_left" (formula "1") (userinteraction)) + (rule "allRight" (formula "32") (inst "sk=j_0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "26")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "mul_literals" (formula "26") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1")) + (rule "inEqSimp_subsumption0" (formula "7") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "6")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "12") (term "0")) + (rule "polySimp_homoEq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "12") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "qeq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "2")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "27")) + (rule "mul_literals" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_subsumption0" (formula "2") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "2") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "times_zero_1" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "nnf_ex2all" (formula "33")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "commute_or" (formula "16") (term "0,0")) + (rule "arrayLengthIsAShort" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "commute_and" (formula "16") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 = 0 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "2")) + (rule "add_literals" (formula "7") (term "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "times_zero_2" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "mul_literals" (formula "5") (term "1")) + (rule "ex_pull_out3" (formula "12") (term "0")) + (rule "cnf_rightDist" (formula "12") (term "0,0")) + (rule "commute_or" (formula "12") (term "1,0,0")) + (rule "cnf_rightDist" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "1,0,0,0")) + (rule "commute_and_2" (formula "12") (term "0,0")) + (rule "commute_and" (formula "12") (term "0,0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "allLeft" (formula "12") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "12") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "exLeft" (formula "12") (inst "sk=k_0")) + (rule "andLeft" (formula "12")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "12") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "13") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "13") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "13") (term "0,0")) + (builtin "One Step Simplification" (formula "13")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "12") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "12") (term "0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "pullOutSelect" (formula "12") (term "1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "12")) + (builtin "One Step Simplification" (formula "12") (ifInst "" (formula "33"))) + (rule "simplifySelectOfAnon" (formula "13")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "34"))) + (rule "elementOfArrayRangeConcrete" (formula "12") (term "0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "leq_literals" (formula "12") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "12")) + (rule "dismissNonSelectedField" (formula "13") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "13") (term "0,1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "13")) + (rule "ifthenelse_negated" (formula "12") (term "0")) + (rule "elementOfArrayRangeConcrete" (formula "13") (term "0,0")) + (rule "replace_known_right" (formula "13") (term "0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "13")) + (rule "simplifySelectOfStore" (formula "13")) + (builtin "One Step Simplification" (formula "13")) + (rule "castDel" (formula "13") (term "1,0")) + (rule "eqSymm" (formula "13") (term "0,0,0")) + (rule "eqSymm" (formula "13") (term "1,0,0")) + (rule "replace_known_right" (formula "13") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "13")) + (rule "applyEqReverse" (formula "12") (term "1") (ifseqformula "13")) + (rule "hideAuxiliaryEq" (formula "13")) + (rule "dismissNonSelectedField" (formula "12") (term "0,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "pullOutSelect" (formula "12") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "12")) + (builtin "One Step Simplification" (formula "12")) + (rule "castDel" (formula "12") (term "0")) + (rule "applyEqReverse" (formula "13") (term "0") (ifseqformula "12")) + (rule "hideAuxiliaryEq" (formula "12")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "12")) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "15") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "12")) + (rule "allLeft" (formula "1") (inst "t=k_0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35"))) + (rule "eqSymm" (formula "31")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "1")) + ) + (branch "j_0 = 0 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "5") (ifseqformula "30")) + (rule "add_zero_right" (formula "5") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "4")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "ex_pull_out3" (formula "14") (term "0")) + (rule "cnf_rightDist" (formula "14") (term "0,0")) + (rule "commute_or" (formula "14") (term "1,0,0")) + (rule "cnf_rightDist" (formula "14") (term "0,0,0")) + (rule "commute_or" (formula "14") (term "1,0,0,0")) + (rule "commute_and_2" (formula "14") (term "0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) (rule "add_zero_right" (formula "1") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "36")) - (rule "polySimp_mulComm0" (formula "9") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0")) - (rule "polySimp_rightDist" (formula "9") (term "1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0")) - (rule "polySimp_elimOne" (formula "36") (term "0,1,1,1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,1,0")) - (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "1,1,0")) - (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) - (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "1,1,0")) - (rule "polySimp_mulComm0" (formula "36") (term "0,1,1,0")) - (rule "polySimp_rightDist" (formula "36") (term "0,0,1,0")) - (rule "mul_literals" (formula "36") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "9") (term "0")) - (rule "inEqSimp_ltRight" (formula "32")) - (rule "polySimp_mulComm0" (formula "1") (term "0,0")) - (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "polySimp_addAssoc" (formula "36") (term "1,0")) - (rule "polySimp_pullOutFactor3b" (formula "36") (term "0,1,0")) - (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "36") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "30")) - (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "27")) - (rule "times_zero_1" (formula "27") (term "1,0,0")) - (rule "add_zero_right" (formula "27") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "28")) - (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "4")) - (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "11")) - (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "13") (term "0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) - (rule "inEqSimp_gtToGeq" (formula "26")) - (rule "times_zero_1" (formula "26") (term "1,0,0")) - (rule "add_zero_right" (formula "26") (term "0,0")) - (rule "polySimp_addAssoc" (formula "36") (term "0,0")) - (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) - (rule "add_literals" (formula "36") (term "1,1,0,0")) - (rule "polySimp_addComm0" (formula "36") (term "0,0,0")) - (rule "close" (formula "36") (ifseqformula "10")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_and" (formula "14") (term "0,0,0")) + (rule "allLeft" (formula "14") (inst "t=j_0")) + (rule "replaceKnownSelect_taclet0100010012010012_9" (formula "14") (term "1,1,0,0,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10100010012010012_12" (formula "14") (term "1,1,0,0,0")) + (rule "exLeft" (formula "14") (inst "sk=k_0")) + (rule "andLeft" (formula "14")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_commuteGeq" (formula "16") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "14") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "15") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0,0") (ifseqformula "5")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "36"))) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "14")) + (rule "dismissNonSelectedField" (formula "14") (term "0,0,0,0")) + (rule "replace_known_left" (formula "14") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "14")) + (builtin "One Step Simplification" (formula "14")) + (rule "castDel" (formula "14") (term "1,0")) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "eqSymm" (formula "14") (term "1,0,0")) + (rule "eqSymm" (formula "14") (term "0,0,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "14")) + (rule "eqSymm" (formula "14")) + (rule "applyEq" (formula "32") (term "0") (ifseqformula "14")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "14")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "15") (term "0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "allLeft" (formula "17") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "17") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "exLeft" (formula "17") (inst "sk=k_1")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "17") (term "1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "38"))) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "39"))) + (rule "dismissNonSelectedField" (formula "17") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "17") (term "0,1,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "17")) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "18")) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "leq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "simplifySelectOfStore" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "castDel" (formula "17") (term "0")) + (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "dismissNonSelectedField" (formula "17") (term "0,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "castDel" (formula "17") (term "1,0")) + (rule "eqSymm" (formula "18")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "17")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "eqSymm" (formula "17") (term "1")) + (rule "eqSymm" (formula "17") (term "0,0")) + (rule "eqSymm" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEq" (formula "20") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "20") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "17")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "allLeft" (formula "20") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "20") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "exLeft" (formula "20") (inst "sk=k_2")) + (rule "andLeft" (formula "20")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "20") (term "1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "42"))) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "41"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "21")) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "leq_literals" (formula "20") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "21")) + (rule "simplifySelectOfStore" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "castDel" (formula "21") (term "1,0")) + (rule "eqSymm" (formula "21") (term "1,0,0")) + (rule "eqSymm" (formula "21") (term "0,0,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "ifthenelse_negated" (formula "20") (term "0")) + (rule "dismissNonSelectedField" (formula "20") (term "0,0,0")) + (rule "replace_known_left" (formula "20") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfStore" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "castDel" (formula "20") (term "0")) + (rule "applyEqReverse" (formula "21") (term "0") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "eqSymm" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "eqSymm" (formula "39")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "38")) + (rule "allLeft" (formula "1") (inst "t=k_0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "43"))) + (rule "eqSymm" (formula "39")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "39"))) + (rule "closeFalse" (formula "1")) ) ) - (branch - (rule "impRight" (formula "36")) - (rule "polySimp_homoEq" (formula "2") (term "0,0")) - (rule "times_zero_2" (formula "2") (term "1,0,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0,0")) - (rule "polySimp_homoEq" (formula "10")) - (rule "polySimp_mulComm0" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,1,0")) - (rule "polySimp_rightDist" (formula "10") (term "0,0,1,0")) - (rule "mul_literals" (formula "10") (term "0,0,0,1,0")) - (rule "polySimp_addAssoc" (formula "10") (term "0")) - (rule "polySimp_addAssoc" (formula "10") (term "0,0")) - (rule "polySimp_addComm0" (formula "10") (term "0,0,0")) - (rule "inEqSimp_ltRight" (formula "37")) - (rule "polySimp_mulComm0" (formula "1") (term "0,0")) - (rule "polySimp_addAssoc" (formula "1") (term "0")) - (rule "inEqSimp_ltRight" (formula "34")) + (branch "Case 2" + (rule "hide_left" (formula "22") (userinteraction)) + (rule "hide_left" (formula "1") (userinteraction)) + (rule "hide_left" (formula "1") (userinteraction)) + (rule "hide_left" (formula "10") (userinteraction)) + (rule "allRight" (formula "32") (inst "sk=j_0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "30")) (rule "polySimp_mulComm0" (formula "1") (term "0,0")) (rule "polySimp_addComm0" (formula "1") (term "0")) - (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) - (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) - (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) - (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "inEqSimp_gtToGeq" (formula "25")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "inEqSimp_gtToGeq" (formula "24")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) (rule "inEqSimp_ltToLeq" (formula "3")) (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) - (rule "polySimp_addAssoc" (formula "3") (term "0")) - (rule "polySimp_addComm1" (formula "3") (term "0,0")) - (rule "add_literals" (formula "3") (term "0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "30")) - (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "29")) - (rule "times_zero_1" (formula "29") (term "1,0,0")) - (rule "add_literals" (formula "29") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) - (rule "inEqSimp_ltToLeq" (formula "13")) - (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "32")) - (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) - (rule "inEqSimp_ltToLeq" (formula "6")) - (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) - (rule "inEqSimp_gtToGeq" (formula "28")) - (rule "times_zero_1" (formula "28") (term "1,0,0")) - (rule "add_literals" (formula "28") (term "0,0")) - (rule "inEqSimp_ltToLeq" (formula "14") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) - (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0")) - (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0")) - (rule "polySimp_addComm1" (formula "15") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) (rule "polySimp_addAssoc" (formula "30") (term "0")) - (rule "polySimp_addComm1" (formula "30") (term "0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0")) - (rule "polySimp_addComm1" (formula "32") (term "0,0")) - (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) - (rule "add_literals" (formula "30") (term "0,0,0,0")) - (rule "add_zero_left" (formula "30") (term "0,0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) - (rule "add_literals" (formula "32") (term "0,0,0,0")) - (rule "add_zero_left" (formula "32") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "34") (term "0")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) - (rule "mul_literals" (formula "34") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "34") (term "0,0")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) - (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) - (rule "mul_literals" (formula "5") (term "0,1,0,1,0,0")) - (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) - (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0")) - (rule "add_literals" (formula "5") (term "0,0,0,1,0,0")) - (rule "add_zero_left" (formula "5") (term "0,0,1,0,0")) - (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) - (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) - (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) - (rule "add_literals" (formula "5") (term "0,0,0,0,0")) - (rule "inEqSimp_homoInEq0" (formula "34") (term "1")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,1")) - (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1")) - (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1")) - (rule "polySimp_addAssoc" (formula "34") (term "0,1")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,1")) - (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) - (rule "mul_literals" (formula "4") (term "1,0,0")) - (rule "polySimp_sepNegMonomial" (formula "12")) - (rule "polySimp_mulLiterals" (formula "12") (term "0")) - (rule "polySimp_elimOne" (formula "12") (term "0")) - (rule "applyEq" (formula "34") (term "0,1,0,1") (ifseqformula "12")) - (rule "polySimp_mulComm0" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,0,1,0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0,1")) - (rule "mul_literals" (formula "34") (term "0,0,0,1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0,1")) - (rule "polySimp_addComm1" (formula "34") (term "0,1")) - (rule "polySimp_addAssoc" (formula "34") (term "0,0,1")) - (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1")) - (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1")) - (rule "add_literals" (formula "34") (term "1,1,0,0,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "2")) - (rule "polySimp_mulComm0" (formula "2") (term "1")) - (rule "polySimp_rightDist" (formula "2") (term "1")) - (rule "polySimp_mulAssoc" (formula "2") (term "0,1")) - (rule "polySimp_mulComm0" (formula "2") (term "0,0,1")) - (rule "polySimp_mulLiterals" (formula "2") (term "0,1")) - (rule "polySimp_elimOne" (formula "2") (term "0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "applyEq" (formula "30") (term "0,1,0") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) (rule "inEqSimp_sepNegMonomial1" (formula "1")) (rule "polySimp_mulLiterals" (formula "1") (term "0")) (rule "polySimp_elimOne" (formula "1") (term "0")) - (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) - (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "3")) - (rule "polySimp_mulComm0" (formula "3") (term "1")) - (rule "polySimp_rightDist" (formula "3") (term "1")) - (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) - (rule "mul_literals" (formula "3") (term "0,1")) - (rule "polySimp_elimOne" (formula "3") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "29")) - (rule "mul_literals" (formula "29") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "13")) - (rule "polySimp_mulComm0" (formula "13") (term "1")) - (rule "polySimp_rightDist" (formula "13") (term "1")) - (rule "mul_literals" (formula "13") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) - (rule "polySimp_elimOne" (formula "13") (term "1,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "6")) - (rule "polySimp_mulComm0" (formula "6") (term "1")) - (rule "polySimp_rightDist" (formula "6") (term "1")) - (rule "mul_literals" (formula "6") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) - (rule "polySimp_elimOne" (formula "6") (term "1,1")) - (rule "inEqSimp_sepPosMonomial1" (formula "28")) - (rule "mul_literals" (formula "28") (term "1")) - (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) - (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) - (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) - (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) - (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) - (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) - (rule "inEqSimp_sepNegMonomial0" (formula "15") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "15") (term "0,1,0")) - (rule "polySimp_elimOne" (formula "15") (term "0,1,0")) - (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "inEqSimp_sepPosMonomial0" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25")) + (rule "mul_literals" (formula "25") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "mul_literals" (formula "24") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "30")) (rule "polySimp_mulComm0" (formula "30") (term "1")) (rule "polySimp_rightDist" (formula "30") (term "1")) (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) (rule "polySimp_elimOne" (formula "30") (term "1,1")) - (rule "polySimp_mulComm0" (formula "30") (term "0,1")) - (rule "inEqSimp_sepPosMonomial0" (formula "32")) - (rule "polySimp_mulComm0" (formula "32") (term "1")) - (rule "polySimp_rightDist" (formula "32") (term "1")) - (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) - (rule "polySimp_elimOne" (formula "32") (term "1,1")) - (rule "polySimp_mulComm0" (formula "32") (term "0,1")) - (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0")) - (rule "polySimp_mulLiterals" (formula "34") (term "0,0")) - (rule "polySimp_elimOne" (formula "34") (term "0,0")) - (rule "replace_known_left" (formula "34") (term "0") (ifseqformula "3")) - (builtin "One Step Simplification" (formula "34")) - (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "1,0,0")) - (rule "polySimp_mulLiterals" (formula "5") (term "0,1,0,0")) - (rule "polySimp_elimOne" (formula "5") (term "0,1,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) - (rule "mul_literals" (formula "5") (term "1,0,0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "34")) - (rule "polySimp_mulComm0" (formula "34") (term "1")) - (rule "polySimp_rightDist" (formula "34") (term "1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,1")) - (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1")) - (rule "polySimp_elimOne" (formula "34") (term "1,0,1")) - (rule "polySimp_rightDist" (formula "34") (term "0,0,1")) - (rule "mul_literals" (formula "34") (term "0,0,0,1")) - (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "6")) - (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) - (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) - (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) - (rule "mul_literals" (formula "8") (term "0,1,0,0")) - (rule "polySimp_addAssoc" (formula "8") (term "0,0")) - (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) - (rule "add_literals" (formula "8") (term "1,1,0,0")) - (rule "times_zero_1" (formula "8") (term "1,0,0")) - (rule "add_zero_right" (formula "8") (term "0,0")) - (rule "qeq_literals" (formula "8") (term "0")) - (builtin "One Step Simplification" (formula "8")) - (rule "true_left" (formula "8")) - (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "30") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "4")) (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) (rule "mul_literals" (formula "6") (term "0,1,0,0")) (rule "polySimp_addAssoc" (formula "6") (term "0,0")) - (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) - (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0")) (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) (rule "add_literals" (formula "6") (term "1,1,0,0")) (rule "times_zero_1" (formula "6") (term "1,0,0")) @@ -8644,98 +14698,988 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "qeq_literals" (formula "6") (term "0")) (builtin "One Step Simplification" (formula "6")) (rule "true_left" (formula "6")) - (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "3")) + (rule "pullOutSelect" (formula "33") (term "1,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) (rule "mul_literals" (formula "6") (term "0,0")) (rule "polySimp_addAssoc" (formula "6") (term "0")) (rule "add_literals" (formula "6") (term "0,0")) (rule "inEqSimp_sepPosMonomial1" (formula "6")) (rule "mul_literals" (formula "6") (term "1")) - (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "6")) - (rule "leq_literals" (formula "27") (term "0")) - (builtin "One Step Simplification" (formula "27")) - (rule "true_left" (formula "27")) - (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "30")) - (rule "mul_literals" (formula "27") (term "0,0")) - (rule "polySimp_addAssoc" (formula "27") (term "0")) - (rule "inEqSimp_sepPosMonomial1" (formula "27")) - (rule "polySimp_mulComm0" (formula "27") (term "1")) - (rule "polySimp_rightDist" (formula "27") (term "1")) - (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) - (rule "mul_literals" (formula "27") (term "0,1")) - (rule "polySimp_elimOne" (formula "27") (term "1,1")) - (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "27")) - (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) - (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) - (rule "add_literals" (formula "21") (term "1,1,0,0")) - (rule "times_zero_1" (formula "21") (term "1,0,0")) - (rule "add_zero_right" (formula "21") (term "0,0")) - (rule "qeq_literals" (formula "21") (term "0")) - (builtin "One Step Simplification" (formula "21")) - (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "6")) + (rule "leq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "9")) (rule "mul_literals" (formula "8") (term "0,0")) (rule "inEqSimp_sepPosMonomial1" (formula "8")) (rule "mul_literals" (formula "8") (term "1")) - (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "30")) - (rule "polySimp_rightDist" (formula "2") (term "0,0")) - (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0")) - (rule "polySimp_elimOne" (formula "2") (term "1,0,0")) - (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) - (rule "polySimp_addComm1" (formula "2") (term "0")) - (rule "polySimp_addAssoc" (formula "2") (term "0,0")) - (rule "polySimp_addComm0" (formula "2") (term "0,0,0")) - (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0")) - (rule "add_literals" (formula "2") (term "1,1,0,0")) - (rule "times_zero_1" (formula "2") (term "1,0,0")) - (rule "add_zero_right" (formula "2") (term "0,0")) - (rule "inEqSimp_sepPosMonomial1" (formula "2")) - (rule "polySimp_mulLiterals" (formula "2") (term "1")) - (rule "polySimp_elimOne" (formula "2") (term "1")) - (rule "inEqSimp_exactShadow3" (formula "32") (ifseqformula "28")) - (rule "polySimp_rightDist" (formula "32") (term "0,0")) - (rule "polySimp_addComm1" (formula "32") (term "0")) - (rule "polySimp_rightDist" (formula "32") (term "0,0,0")) - (rule "polySimp_addComm1" (formula "32") (term "0,0")) - (rule "polySimp_rightDist" (formula "32") (term "0,0,0,0")) - (rule "mul_literals" (formula "32") (term "0,0,0,0,0")) - (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0")) - (rule "polySimp_elimOne" (formula "32") (term "1,0,0,0,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) - (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) - (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) - (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) - (rule "add_literals" (formula "32") (term "0,0,0,0")) - (rule "inEqSimp_sepNegMonomial1" (formula "32")) - (rule "polySimp_mulLiterals" (formula "32") (term "0")) - (rule "polySimp_elimOne" (formula "32") (term "0")) - (rule "inEqSimp_contradInEq1" (formula "32") (ifseqformula "2")) - (rule "andLeft" (formula "32")) - (rule "inEqSimp_homoInEq1" (formula "32")) - (rule "polySimp_mulComm0" (formula "32") (term "1,0")) - (rule "polySimp_rightDist" (formula "32") (term "1,0")) - (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0")) - (rule "polySimp_elimOne" (formula "32") (term "1,1,0")) - (rule "polySimp_rightDist" (formula "32") (term "0,1,0")) - (rule "mul_literals" (formula "32") (term "0,0,1,0")) - (rule "polySimp_addAssoc" (formula "32") (term "0")) - (rule "polySimp_addComm1" (formula "32") (term "0,0")) - (rule "polySimp_pullOutFactor2b" (formula "32") (term "0")) - (rule "add_literals" (formula "32") (term "1,1,0")) - (rule "times_zero_1" (formula "32") (term "1,0")) - (rule "add_zero_right" (formula "32") (term "0")) - (rule "polySimp_addAssoc" (formula "32") (term "0")) - (rule "polySimp_addComm0" (formula "32") (term "0,0")) - (rule "polySimp_pullOutFactor1b" (formula "32") (term "0")) - (rule "add_literals" (formula "32") (term "1,1,0")) - (rule "times_zero_1" (formula "32") (term "1,0")) - (rule "add_literals" (formula "32") (term "0")) - (rule "leq_literals" (formula "32")) - (rule "closeFalse" (formula "32")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "31") (ifseqformula "27")) + (rule "polySimp_rightDist" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "29")) + (rule "mul_literals" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1")) + (rule "polySimp_rightDist" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1")) + (rule "mul_literals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "32")) + (rule "mul_literals" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "times_zero_1" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "nnf_ex2all" (formula "37")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "commute_or" (formula "16") (term "0,0")) + (rule "arrayLengthNotNegative" (formula "25") (term "0")) + (rule "arrayLengthIsAShort" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "arrayLengthIsAShort" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "arrayLengthNotNegative" (formula "24") (term "0")) + (rule "commute_and" (formula "16") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 = 0 TRUE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "times_zero_2" (formula "3") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,1,0,0")) + (rule "applyEqRigid" (formula "3") (term "0,0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "times_zero_2" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "2")) + (rule "add_zero_right" (formula "6") (term "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "ex_pull_out3" (formula "12") (term "0")) + (rule "cnf_rightDist" (formula "12") (term "0,0")) + (rule "commute_or" (formula "12") (term "1,0,0")) + (rule "cnf_rightDist" (formula "12") (term "0,0,0")) + (rule "commute_or" (formula "12") (term "1,0,0,0")) + (rule "commute_and_2" (formula "12") (term "0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_and" (formula "12") (term "0,0,0")) + (rule "allLeft" (formula "1") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_invertInEq1" (formula "1") (term "0,0")) + (rule "times_zero_2" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "25")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "31") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "36"))) + (rule "eqSymm" (formula "32")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,1,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "1")) + ) + (branch "j_0 = 0 FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen1" (formula "4") (ifseqformula "34")) + (rule "add_zero_right" (formula "4") (term "1")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "34") (ifseqformula "4")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "4")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "mul_literals" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "4")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "ex_pull_out3" (formula "15") (term "0")) + (rule "cnf_rightDist" (formula "15") (term "0,0")) + (rule "commute_or" (formula "15") (term "1,0,0")) + (rule "cnf_rightDist" (formula "15") (term "0,0,0")) + (rule "commute_or" (formula "15") (term "1,0,0,0")) + (rule "commute_and_2" (formula "15") (term "0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "j_0 ≤ -1 + count TRUE" + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "2")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "mul_literals" (formula "6") (term "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "4")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "commute_and" (formula "15") (term "0,0,0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "replaceKnownSelect_taclet0012010012_1" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0012010012_3" (formula "1") (term "0,0,1")) + (rule "eqSymm" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "allLeft" (formula "15") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "15") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "exLeft" (formula "15") (inst "sk=k_0")) + (rule "andLeft" (formula "15")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "15") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "16") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "17") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "16") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "pullOutSelect" (formula "15") (term "1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "15")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "40"))) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "41"))) + (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "leq_literals" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0,0")) + (rule "replace_known_right" (formula "16") (term "0,0,0,0,0") (ifseqformula "39")) + (builtin "One Step Simplification" (formula "16")) + (rule "ifthenelse_negated" (formula "15") (term "0")) + (rule "ifthenelse_negated" (formula "16") (term "0")) + (rule "dismissNonSelectedField" (formula "15") (term "0,0,0")) + (rule "replace_known_left" (formula "15") (term "0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "15")) + (rule "simplifySelectOfStore" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "castDel" (formula "15") (term "0")) + (rule "applyEqReverse" (formula "16") (term "1") (ifseqformula "15")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "dismissNonSelectedField" (formula "15") (term "0,0,0")) + (rule "replace_known_left" (formula "15") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "15")) + (builtin "One Step Simplification" (formula "15")) + (rule "castDel" (formula "15") (term "1,0")) + (rule "eqSymm" (formula "16")) + (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "15")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "eqSymm" (formula "15") (term "1")) + (rule "eqSymm" (formula "15") (term "0,0")) + (rule "eqSymm" (formula "15") (term "1,0")) + (rule "replace_known_right" (formula "15") (term "0,0") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "18") (term "3,0,0,0,1,0,0,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "1") (term "3,0,0,0,0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "18") (term "3,0,0,1,1,0,0,0,0") (ifseqformula "15")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "16") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "allLeft" (formula "18") (inst "t=Z(0(#))")) + (rule "leq_literals" (formula "18") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "exLeft" (formula "18") (inst "sk=k_1")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "19") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "10")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "44"))) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "43"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "19")) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "leq_literals" (formula "18") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "ifthenelse_negated" (formula "19") (term "0")) + (rule "dismissNonSelectedField" (formula "18") (term "0,0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "18")) + (rule "simplifySelectOfStore" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "castDel" (formula "18") (term "0")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "dismissNonSelectedField" (formula "18") (term "0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfStore" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "castDel" (formula "18") (term "1,0")) + (rule "eqSymm" (formula "19")) + (rule "applyEqReverse" (formula "18") (term "1") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "18")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "eqSymm" (formula "18") (term "0,0")) + (rule "eqSymm" (formula "18") (term "1,0")) + (rule "replace_known_right" (formula "18") (term "0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "18")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1,0") (ifseqformula "33")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "pullOutSelect" (formula "40") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "45"))) + (rule "eqSymm" (formula "41")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1")) + (rule "dismissNonSelectedField" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "43")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "41") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "allLeft" (formula "21") (inst "t=j_0")) + (rule "exLeft" (formula "21") (inst "sk=k_2")) + (rule "andLeft" (formula "21")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0") (ifseqformula "6")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,1,0")) + (rule "leq_literals" (formula "23") (term "0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,1,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,0")) + (rule "leq_literals" (formula "21") (term "0,1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "6")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "47"))) + (rule "eqSymm" (formula "22")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "46"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "21")) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "2"))) + (rule "ifthenelse_negated" (formula "21") (term "0")) + (rule "dismissNonSelectedField" (formula "22") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "22") (term "0,1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "22")) + (rule "dismissNonSelectedField" (formula "21") (term "0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "21")) + (rule "simplifySelectOfStore" (formula "21")) + (builtin "One Step Simplification" (formula "21")) + (rule "castDel" (formula "21") (term "1,0")) + (rule "eqSymm" (formula "21") (term "1,0,0")) + (rule "eqSymm" (formula "21") (term "0,0,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "45")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEq" (formula "43") (term "0") (ifseqformula "21")) + (rule "eqSymm" (formula "43")) + (rule "applyEq" (formula "1") (term "1,0,1,0") (ifseqformula "21")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "allLeft" (formula "24") (inst "t=offset_0")) + (rule "exLeft" (formula "24") (inst "sk=k_3")) + (rule "andLeft" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "pullOutSelect" (formula "24") (term "1,1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "49"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "dismissNonSelectedField" (formula "24") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "51"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0,0")) + (rule "replace_known_right" (formula "25") (term "0,0,0,0,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "25")) + (rule "dismissNonSelectedField" (formula "25") (term "0,0,0,0")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "25")) + (rule "simplifySelectOfStore" (formula "25")) + (builtin "One Step Simplification" (formula "25")) + (rule "castDel" (formula "25") (term "1,0")) + (rule "eqSymm" (formula "25") (term "1,0,0")) + (rule "eqSymm" (formula "25") (term "0,0,0")) + (rule "replace_known_right" (formula "25") (term "0,0,0") (ifseqformula "49")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "0,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "24") (term "2,0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfStore" (formula "24")) + (builtin "One Step Simplification" (formula "24")) + (rule "castDel" (formula "24") (term "1,0")) + (rule "eqSymm" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "28")) + (rule "commute_or_2" (formula "27")) + (rule "commute_or" (formula "28") (term "0")) + (rule "commute_or" (formula "27") (term "0")) + (rule "allLeft" (formula "29") (inst "t=k_0")) + (rule "exLeft" (formula "29") (inst "sk=k_4")) + (rule "andLeft" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_commuteGeq" (formula "31") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "29") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "30") (term "1,0")) + (rule "pullOutSelect" (formula "29") (term "1,1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "54"))) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "dismissNonSelectedField" (formula "29") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0")) + (rule "pullOutSelect" (formula "30") (term "0,1") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "30")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "56"))) + (rule "dismissNonSelectedField" (formula "30") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "30") (term "0,1,0,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "30")) + (rule "elementOfArrayRangeConcrete" (formula "30") (term "0,0")) + (rule "replace_known_right" (formula "30") (term "0,0,0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "30")) + (rule "simplifySelectOfStore" (formula "30")) + (builtin "One Step Simplification" (formula "30")) + (rule "castDel" (formula "30") (term "1,0")) + (rule "eqSymm" (formula "30") (term "1,0,0")) + (rule "eqSymm" (formula "30") (term "0,0,0")) + (rule "replace_known_right" (formula "30") (term "0,0,0") (ifseqformula "54")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0,1") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "pullOutSelect" (formula "29") (term "2,0") (inst "selectSK=arr_16")) + (rule "simplifySelectOfStore" (formula "29")) + (builtin "One Step Simplification" (formula "29")) + (rule "castDel" (formula "29") (term "1,0")) + (rule "eqSymm" (formula "29") (term "0,0")) + (rule "commute_or_2" (formula "33")) + (rule "commute_or_2" (formula "32")) + (rule "allLeft" (formula "34") (inst "t=add(add(Z(neglit(1(#))), begin), step)")) + (rule "exLeft" (formula "34") (inst "sk=k_5")) + (rule "andLeft" (formula "34")) + (rule "andLeft" (formula "34")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0")) + (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "60"))) + (rule "eqSymm" (formula "35") (term "1")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "34")) + (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0")) + (rule "replace_known_right" (formula "34") (term "0,0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "34")) + (rule "simplifySelectOfStore" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "castDel" (formula "34") (term "1,0")) + (rule "eqSymm" (formula "34") (term "1,0,0")) + (rule "eqSymm" (formula "34") (term "0,0,0")) + (rule "replace_known_right" (formula "34") (term "0,0,0") (ifseqformula "58")) + (builtin "One Step Simplification" (formula "34")) + (rule "applyEqReverse" (formula "35") (term "1,1") (ifseqformula "34")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "59"))) + (rule "eqSymm" (formula "35") (term "1")) + (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "dismissNonSelectedField" (formula "34") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,0") (ifseqformula "42")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "34") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "34") (term "2,0") (inst "selectSK=arr_19")) + (rule "simplifySelectOfStore" (formula "34")) + (builtin "One Step Simplification" (formula "34")) + (rule "castDel" (formula "34") (term "1,0")) + (rule "polySimp_homoEq" (formula "34") (term "0,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "34") (term "0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0")) + (rule "commute_or_2" (formula "38")) + (rule "commute_or_2" (formula "37")) + (rule "commute_or" (formula "38") (term "0")) + (rule "commute_or" (formula "37") (term "0")) + (rule "allLeft" (formula "1") (inst "t=offset_0")) + (rule "replaceKnownSelect_taclet011100010012010012_25" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet011100010012010012_27" (formula "1") (term "0,0,1")) + (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "59")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "allLeft" (formula "1") (inst "t=k_2")) + (rule "replaceKnownSelect_taclet011100010012010012_28" (formula "1") (term "0,0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet011100010012010012_31" (formula "1") (term "0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "23") (ifseqformula "1")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "add_literals" (formula "23") (term "0")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + (branch "j_0 ≤ -1 + count FALSE" + (rule "applyEqReverse" (formula "1") (term "1,0,1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "10")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) ) ) - (branch "Case 2" - (builtin "SMTRule") - ) ) (branch "Case 2" (rule "allRight" (formula "36") (inst "sk=j_0") (userinteraction)) @@ -8747,7 +15691,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "closeFalse" (formula "3")) ) ) - (branch + (branch "Case 2" (rule "allRight" (formula "36") (inst "sk=f_0")) (rule "allRight" (formula "36") (inst "sk=o_0")) (rule "orRight" (formula "36")) @@ -8951,7 +15895,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "closeFalse" (formula "1")) ) ) - (branch + (branch "Case 2" (rule "polySimp_homoEq" (formula "1") (term "0,0")) (rule "times_zero_2" (formula "1") (term "1,0,0,0")) (rule "add_zero_right" (formula "1") (term "0,0,0")) @@ -11312,7 +18256,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) (rule "mul_literals" (formula "31") (term "0,1,0,0")) - (rule "elimGcdLeq" (formula "31") (term "1,0") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcdRightDiv=Z(0(#))")) + (rule "elimGcdLeq" (formula "31") (term "1,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=end") (inst "elimGcd=Z(2(#))")) (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,1,0")) (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0,0,0,0,0,1,0")) (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,1,0")) @@ -11351,7 +18295,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_mulComm0" (formula "32") (term "1,1,0")) (rule "polySimp_rightDist" (formula "32") (term "1,1,0")) (rule "mul_literals" (formula "32") (term "0,1,1,0")) - (rule "elimGcdGeq" (formula "32") (term "0,0") (inst "elimGcd=Z(2(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcdRightDiv=Z(1(#))")) + (rule "elimGcdGeq" (formula "32") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,0")) (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0,0,0,0")) (rule "sub_literals" (formula "32") (term "0,0,0,0,0,0,0,0,0")) @@ -11908,7 +18852,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) - (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "j=j") (inst "i=i_1")) (builtin "One Step Simplification" (formula "23")) (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) @@ -12635,7 +19579,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "18") (term "0")) (rule "replace_known_left" (formula "18") (term "0,1") (ifseqformula "19")) (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "32")) (ifInst "" (formula "11"))) - (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "j=j") (inst "i=i_1")) (builtin "One Step Simplification" (formula "19")) (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,1,0")) (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0")) @@ -13246,7 +20190,7 @@ class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) (rule "polySimp_elimOne" (formula "9") (term "1,1,0,0,0")) (rule "commute_or" (formula "1")) - (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i") (inst "j=j")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "8") (term "0") (inst "j=j") (inst "i=i")) (builtin "One Step Simplification" (formula "8")) (rule "inEqSimp_ltToLeq" (formula "8") (term "1,0,0")) (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,1,0,0")) diff --git a/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..f516bb6 --- /dev/null +++ b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__fallback_sort((I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,1475 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Wed Oct 25 16:20:54 CEST 2023 +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[Labels]UseOriginLabels=true +[NewSMT]Axiomatisations=false +[NewSMT]NoTypeHierarchy=false +[NewSMT]Presburger=false +[NewSMT]identifier=OPEN +[NewSMT]sqrtSMTTranslation=SMT +[SMTSettings]SelectedTaclets= +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[SMTSettings]integersMaximum=2147483645 +[SMTSettings]integersMinimum=-2147483645 +[SMTSettings]invariantForall=false +[SMTSettings]maxGenericSorts=2 +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[SMTSettings]useUninterpretedMultiplication=true +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[Strategy]ActiveStrategy=JavaCardDLStrategy +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[Strategy]Timeout=-1 +" +} + +\javaSource "../../java"; + +\proofObligation "#Proof Obligation Settings +#Wed Oct 25 16:20:54 CEST 2023 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:fallback_sort([I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:fallback_sort([I,int,int)].JML normal_behavior operation contract.0 +"; + +\proof { +(keyLog "0" (keyUser "Wolfram" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "41646") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "4")) +(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1")) +(rule "eqSymm" (formula "8") (term "0,0,1,0,0,0,1")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1")) +(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv")) +(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_fallback_sort,savedHeapBefore_fallback_sort")) + (builtin "One Step Simplification" (formula "8")) + (builtin "Use Operation Contract" (formula "8") (newnames "heapBefore_insertion_sort,exc_77,heapAfter_insertion_sort,anon_heap_insertion_sort") (contract "de.wiesler.Sorter[de.wiesler.Sorter::insertion_sort([I,int,int)].JML normal_behavior operation contract.0")) +(branch "Post (insertion_sort)" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "andLeft" (formula "10")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0")) + (rule "narrowSelectArrayType" (formula "10") (term "2,1") (ifseqformula "1") (ifseqformula "12")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (rule "tryEmpty" (formula "13") (term "1")) + (rule "emptyModality" (formula "13") (term "1")) + (rule "andRight" (formula "13")) + (branch "Case 1" + (rule "andRight" (formula "13")) + (branch "Case 1" + (rule "andRight" (formula "13")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "13") (userinteraction)) + (rule "narrowSelectArrayType" (formula "13") (term "2,1") (ifseqformula "1") (ifseqformula "12") (userinteraction)) + (rule "close" (formula "13") (ifseqformula "10") (userinteraction)) + ) + (branch "Case 2" + (rule "andRight" (formula "13")) + (branch "Case 1" + (builtin "One Step Simplification" (formula "13") (userinteraction)) + (rule "allRight" (formula "13") (inst "sk=element_0") (userinteraction)) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i") (userinteraction)) + (rule "Definition_axiom_for_countElement_in_de_wiesler_Functions" (formula "13") (term "1") (inst "i=i") (userinteraction)) + (rule "seqPermCountsInt" (formula "10") (inst "element=element") (inst "iv=iv") (userinteraction)) + (rule "lenOfSeqDef" (formula "10") (term "1,0,0") (userinteraction)) + (rule "lenOfSeqDef" (formula "10") (term "1,1,0") (userinteraction)) + (rule "ifthenelse_split" (formula "10") (term "1,1,0") (userinteraction)) + (branch "begin < end TRUE" + (rule "replace_known_left" (formula "11") (term "0,1,0,0") (ifseqformula "10") (userinteraction)) + (builtin "One Step Simplification" (formula "11") (userinteraction)) + (rule "instAll" (formula "14") (term "1,0,2,0") (ifseqformula "11") (userinteraction)) + (rule "hide_left" (formula "12") (userinteraction)) + (rule "bsum_shift_index" (formula "14") (term "0") (inst "uSub1=uSub1") (userinteraction)) + (rule "bsum_shift_index" (formula "14") (term "1") (inst "uSub1=uSub1") (userinteraction)) + (rule "eqTermCut" (formula "14") (term "0") (inst "s=bsum{int iv;}(Z(0(#)), + sub(end, begin), + \\if (( any::seqGet(seqDef{int j;}(begin, + end, + int::select(heap, + values, + arr(j))), + iv) + = element_0)<>) + \\then (Z(1(#))) + \\else (Z(0(#)))<>)") (userinteraction)) + (branch "Assume bsum{int uSub1;}(0, end - begin, if (values[uSub1 + begin] = element_0) then (1) else (0)) = bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, values[j])[iv] = element_0) then (1) else (0))" + (rule "eqTermCut" (formula "15") (term "1") (inst "s=bsum{int iv;}(Z(0(#)), + sub(end, begin), + \\if (( any::seqGet(seqDef{int j;}(begin, + end, + any::select(heapAfter_insertion_sort, + values, + arr(j))), + iv) + = element_0)<>) + \\then (Z(1(#))) + \\else (Z(0(#)))<>)") (userinteraction)) + (branch "Assume bsum{int uSub1;}(0, end - begin, if ( values[uSub1 + begin]@heapAfter_insertion_sort = element_0) then (1) else (0)) = bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, any::select(heapAfter_insertion_sort, values, arr(j)))[iv] = element_0) then (1) else (0))" + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1")) + (rule "getOfSeqDef" (formula "3") (term "0,0,2,1")) + (rule "castDel" (formula "3") (term "2,0,0,2,1")) + (rule "castDel" (formula "3") (term "1,0,0,2,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,0,0,2,1")) + (rule "getOfSeqDef" (formula "2") (term "0,0,2,1")) + (rule "castDel" (formula "2") (term "2,0,0,2,1")) + (rule "castDel" (formula "2") (term "1,0,0,2,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "getOfSeqDef" (formula "3") (term "0,0,2,0")) + (rule "castDel" (formula "3") (term "2,0,0,2,0")) + (rule "castDel" (formula "3") (term "1,0,0,2,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,0,0,2,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,1,0,0,2,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,0,0,2,0")) + (rule "getOfSeqDef" (formula "1") (term "0,0,2,1")) + (rule "castDel" (formula "1") (term "1,0,0,2,1")) + (rule "castDel" (formula "1") (term "2,0,0,2,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,0,0,2,0")) + (rule "eqSymm" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0,0,2,1")) + (rule "eqSymm" (formula "3")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "eqSymm" (formula "3")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0,0,2,1")) + (rule "eqSymm" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0,0,2,0")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "2")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0,0,2,0")) + (rule "eqSymm" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,0,0,0,2,1")) + (rule "eqSymm" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "16") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0")) + (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10")) + (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "15")) (ifInst "" (formula "9")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0")) + (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10")) + (rule "replace_known_right" (formula "13") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "4")) (ifInst "" (formula "9")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "13") (term "0")) + (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10")) + (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")) (ifInst "" (formula "9")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "13") (term "0")) + (rule "wellFormedAnonEQ" (formula "13") (term "1,0") (ifseqformula "10")) + (rule "replace_known_left" (formula "13") (term "0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "17")) (ifInst "" (formula "9")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0,1,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "14") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "commute_or" (formula "13") (term "0,0,1,0")) + (rule "bsum_equal_split3" (formula "16")) + (builtin "One Step Simplification" (formula "16")) + (rule "bsum_lower_equals_upper" (formula "16") (term "0,1,1")) + (rule "bsum_lower_equals_upper" (formula "16") (term "1,2,1")) + (rule "less_literals" (formula "16") (term "0,1")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_elimSub" (formula "16") (term "2,0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "times_zero_2" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "16") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "equal_bsum1" (formula "17")) + (rule "allRight" (formula "17") (inst "sk=uSub1_0")) + (rule "impRight" (formula "17")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "19")) + (rule "replace_known_left" (formula "19") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "replace_known_left" (formula "19") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "19")) + (rule "eqSymm" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0,0,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "20") (term "0,0")) + (rule "eqSymm" (formula "20")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "20") (term "1,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "19") (term "0,1")) + (rule "eqSymm" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "bsum_equal_split1" (formula "20")) + (builtin "One Step Simplification" (formula "20")) + (rule "bsum_lower_equals_upper" (formula "20") (term "1,1,1")) + (rule "bsum_lower_equals_upper" (formula "20") (term "0,2,1")) + (rule "eqSymm" (formula "20") (term "2,1")) + (rule "polySimp_elimSub" (formula "20") (term "2,0,1,1")) + (rule "replace_known_right" (formula "20") (term "1,1") (ifseqformula "18")) + (rule "polySimp_elimSub" (formula "20") (term "2,0,2,1")) + (rule "polySimp_addComm0" (formula "20") (term "2,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "20") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "leq_literals" (formula "20") (term "0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "times_zero_2" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "20") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "arrayLengthIsAShort" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "arrayLengthNotNegative" (formula "10") (term "0")) + (rule "equal_bsum2" (formula "22") (ifseqformula "4")) + (rule "allRight" (formula "22") (inst "sk=uSub1_1")) + (rule "impRight" (formula "22")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "pullOutSelect" (formula "24") (term "0,0,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "21")) (ifInst "" (formula "10"))) + (rule "eqSymm" (formula "25") (term "0,0")) + (rule "eqSymm" (formula "25")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "25") (term "1,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "24") (term "0,1")) + (rule "eqSymm" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "equal_bsum2" (formula "25") (ifseqformula "7")) + (rule "allRight" (formula "25") (inst "sk=iv_0")) + (rule "impRight" (formula "25")) + (rule "andLeft" (formula "1")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0,0,1") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "28") (term "0,1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "28") (term "1,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "27") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "pullOutSelect" (formula "27") (term "0,0,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "23")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "11") (ifseqformula "23")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "17") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "28") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "closeTrue" (formula "28")) + ) + (branch "Assume bsum{int uSub1;}(0, end - begin, if ( values[uSub1 + begin]@heapAfter_insertion_sort = element_0) then (1) else (0)) != bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, any::select(heapAfter_insertion_sort, values, arr(j)))[iv] = element_0) then (1) else (0))" + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimSub" (formula "2") (term "1,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1")) + (rule "polySimp_elimSub" (formula "16") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,1")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1")) + (rule "getOfSeqDef" (formula "1") (term "0,0,2,1")) + (rule "castDel" (formula "1") (term "1,0,0,2,1")) + (rule "castDel" (formula "1") (term "2,0,0,2,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "getOfSeqDef" (formula "2") (term "0,0,2,0")) + (rule "castDel" (formula "2") (term "1,0,0,2,0")) + (rule "castDel" (formula "2") (term "2,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "getOfSeqDef" (formula "14") (term "0,0,2,1")) + (rule "castDel" (formula "14") (term "2,0,0,2,1")) + (rule "castDel" (formula "14") (term "1,0,0,2,1")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "getOfSeqDef" (formula "2") (term "0,0,2,0")) + (rule "castDel" (formula "2") (term "1,0,0,2,0")) + (rule "castDel" (formula "2") (term "2,0,0,2,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,1,0,0,0,2,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,2,1,0,0,2,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "14") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "14") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0,0,2,1")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "0,0,0,0,2,0")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "0")) + (rule "polySimp_elimOne" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "14") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "14") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0,0,2,0")) + (rule "eqSymm" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "12") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "12")) + (rule "translateJavaAddInt" (formula "12") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "12") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,1,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0,0")) + (rule "equal_bsum1" (formula "13")) + (rule "allRight" (formula "13") (inst "sk=uSub1_0")) + (rule "impRight" (formula "13")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "15")) + (rule "replace_known_left" (formula "15") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "replace_known_left" (formula "15") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "0,0,1") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "7"))) + (rule "eqSymm" (formula "16") (term "0,1")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "16") (term "1,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "15") (term "0,1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "pullOutSelect" (formula "15") (term "0,0,0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "11") (ifseqformula "18")) + (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "6") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "16") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "Assume bsum{int uSub1;}(0, end - begin, if (values[uSub1 + begin] = element_0) then (1) else (0)) != bsum{int iv;}(0, end - begin, if ( seqDef{int j;}(begin, end, values[j])[iv] = element_0) then (1) else (0))" + (rule "notLeft" (formula "1")) + (rule "eqSymm" (formula "15")) + (rule "polySimp_elimSub" (formula "1") (term "1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,0,0,2,1")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,0,0,2,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1")) + (rule "getOfSeqDef" (formula "1") (term "0,0,2,0")) + (rule "castDel" (formula "1") (term "1,0,0,2,0")) + (rule "castDel" (formula "1") (term "2,0,0,2,0")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "getOfSeqDef" (formula "13") (term "0,0,2,1")) + (rule "castDel" (formula "13") (term "2,0,0,2,1")) + (rule "castDel" (formula "13") (term "1,0,0,2,1")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0,0,2,1")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,0,0,2,1")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "getOfSeqDef" (formula "1") (term "0,0,2,0")) + (rule "castDel" (formula "1") (term "1,0,0,2,0")) + (rule "castDel" (formula "1") (term "2,0,0,2,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,0,0,2,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,0,0,2,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,0,0,2,0")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "13") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "13") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,2,0")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,0,0,2,0")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "13") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "13") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,2,0")) + (rule "eqSymm" (formula "1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0,0,2,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,0,0,2,1")) + (rule "eqSymm" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "11") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaAddInt" (formula "11") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "11") (term "1,1,0,0")) + (rule "mul_literals" (formula "11") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "11") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "11") (term "0")) + (rule "nnf_notAnd" (formula "11") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "11") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "11") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0,0,1,0,0")) + (rule "add_literals" (formula "11") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "11") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "11") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "11") (term "1,1,1,0,0")) + (rule "equal_bsum1" (formula "14")) + (rule "allRight" (formula "14") (inst "sk=uSub1_0")) + (rule "impRight" (formula "14")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "pullOutSelect" (formula "16") (term "0,0,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnonEQ" (formula "1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "16")) (ifInst "" (formula "6"))) + (rule "eqSymm" (formula "17") (term "0,0")) + (rule "eqSymm" (formula "17")) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "17") (term "1,0,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "eqSymm" (formula "16") (term "0,1")) + (rule "eqSymm" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "times_zero_1" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "bsum_equal_split3" (formula "17")) + (builtin "One Step Simplification" (formula "17")) + (rule "bsum_lower_equals_upper" (formula "17") (term "1,2,1")) + (rule "bsum_lower_equals_upper" (formula "17") (term "0,1,1")) + (rule "less_literals" (formula "17") (term "0,1")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_elimSub" (formula "17") (term "2,0,1")) + (rule "polySimp_addComm0" (formula "17") (term "2,0,1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "times_zero_2" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "17") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "bsum_equal_split1" (formula "18")) + (builtin "One Step Simplification" (formula "18")) + (rule "bsum_lower_equals_upper" (formula "18") (term "0,2,1")) + (rule "bsum_lower_equals_upper" (formula "18") (term "1,1,1")) + (rule "eqSymm" (formula "18") (term "2,1")) + (rule "polySimp_elimSub" (formula "18") (term "2,0,1,1")) + (rule "polySimp_elimSub" (formula "18") (term "2,0,2,1")) + (rule "polySimp_addComm0" (formula "18") (term "2,0,1,1")) + (rule "replace_known_right" (formula "18") (term "1,1") (ifseqformula "17")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,1")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "18") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "18") (term "0,0,1")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1")) + (rule "add_zero_right" (formula "18") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1")) + (rule "add_zero_right" (formula "18") (term "0,0,1")) + (rule "leq_literals" (formula "18") (term "0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "times_zero_2" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "equal_bsum1" (formula "14")) + (rule "allRight" (formula "14") (inst "sk=uSub1_1")) + (rule "impRight" (formula "14")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "16")) + (rule "replace_known_left" (formula "16") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "replace_known_left" (formula "16") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + ) + (branch "begin < end FALSE" + (rule "bsum_lower_equals_upper" (formula "10") (term "1,0")) + (rule "eqSymm" (formula "14")) + (rule "eqSymm" (formula "10") (term "0,2,0,0")) + (rule "replace_known_right" (formula "10") (term "0,1,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "10")) + (rule "bsum_lower_equals_upper" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_ltRight" (formula "11")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "6")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "5")) + (rule "bsum_lower_equals_upper" (formula "12") (term "0")) + (rule "eqSymm" (formula "12")) + (rule "applyEq" (formula "10") (term "3,0") (ifseqformula "5")) + (rule "applyEq" (formula "8") (term "1,2,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "12") (term "1,0") (ifseqformula "5")) + (rule "bsum_lower_equals_upper" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "closeTrue" (formula "12")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "13") (ifInst "" (formula "11"))) + (rule "closeTrue" (formula "13")) + ) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "13")) + (rule "closeTrue" (formula "13")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "13")) + (rule "allRight" (formula "13") (inst "sk=f_0")) + (rule "allRight" (formula "13") (inst "sk=o_0")) + (rule "orRight" (formula "13")) + (rule "orRight" (formula "13")) + (rule "selectOfAnonEQ" (formula "10") (term "2,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "12")) (ifInst "" (formula "2"))) + (rule "elementOfArrayRange" (formula "10") (term "0,2,0") (inst "iv=iv")) + (builtin "One Step Simplification" (formula "10")) + (rule "selectOfAnonEQ" (formula "15") (term "1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "14"))) + (rule "elementOfArrayRange" (formula "15") (term "0,0,1") (inst "iv=iv")) + (builtin "SMTRule") + ) +) +(branch "Exceptional Post (insertion_sort)" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "10")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0")) + (rule "andLeft" (formula "8")) + (rule "selectCreatedOfAnonAsFormulaEQ" (formula "9") (term "1,0") (ifseqformula "8")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "11")) + (rule "notLeft" (formula "9")) + (rule "close" (formula "12") (ifseqformula "11")) +) +(branch "Pre (insertion_sort)" + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "7")) (ifInst "" (formula "1")) (ifInst "" (formula "7")) (ifInst "" (formula "2"))) + (builtin "SMTRule") +) +) +} diff --git a/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof new file mode 100644 index 0000000..95e2d29 --- /dev/null +++ b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__insertion_sort((I,int,int)).JML normal_behavior operation contract.0.proof @@ -0,0 +1,73257 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Fri Oct 27 20:17:19 CEST 2023 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=20000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[Strategy]Timeout=-1 +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java"; + +\proofObligation "#Proof Obligation Settings +#Fri Oct 27 20:17:19 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:insertion_sort([I,int,int)].JML normal_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "mattias" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "326875") + +(branch "dummy ID" + (builtin "One Step Simplification" (formula "1") (newnames "heapAtPre_0,o,f")) +(rule "translateJavaSubInt" (formula "1") (term "2,2,0,0,0,0,1,0,1,1")) +(rule "impRight" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "3")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "4")) +(rule "notLeft" (formula "6")) +(rule "andLeft" (formula "4")) +(rule "eqSymm" (formula "8") (term "1,0,0,1,0,1")) +(rule "replace_known_right" (formula "2") (term "0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "2")) +(rule "polySimp_elimSub" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "mul_literals" (formula "8") (term "1,2,2,0,0,0,0,1,0,1")) +(rule "polySimp_addComm0" (formula "8") (term "2,2,0,0,0,0,1,0,1")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "4")) +(rule "assignment" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "elementOfArrayRange" (formula "8") (term "0,0,0,0,1,0,1") (inst "iv=iv")) +(rule "inEqSimp_commuteLeq" (formula "8") (term "1,0,0,1,0,0,0,0,1,0,1")) +(rule "methodBodyExpand" (formula "8") (term "1") (newnames "heapBefore_insertion_sort,savedHeapBefore_insertion_sort,_beginBefore_insertion_sort,_endBefore_insertion_sort,_valuesBefore_insertion_sort")) + (builtin "One Step Simplification" (formula "8")) +(rule "ifUnfold" (formula "8") (term "1") (inst "#boolv=x")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x")) +(rule "compound_less_than_comparison_1" (formula "8") (term "1") (inst "#v0=x_1")) +(rule "variableDeclarationAssign" (formula "8") (term "1")) +(rule "variableDeclaration" (formula "8") (term "1") (newnames "x_1")) +(rule "assignmentSubtractionInt" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "translateJavaSubInt" (formula "8") (term "0,1,0")) +(rule "polySimp_elimSub" (formula "8") (term "0,1,0")) +(rule "polySimp_addComm0" (formula "8") (term "0,1,0")) +(rule "less_than_comparison_simple" (formula "8") (term "1")) + (builtin "One Step Simplification" (formula "8")) +(rule "ifSplit" (formula "8")) +(branch "if x true" + (builtin "One Step Simplification" (formula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "methodCallEmptyReturn" (formula "9") (term "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "tryEmpty" (formula "9") (term "1")) + (rule "emptyModality" (formula "9") (term "1")) + (rule "andRight" (formula "9")) + (branch + (rule "andRight" (formula "9")) + (branch + (rule "andRight" (formula "9")) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltToLeq" (formula "1")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "9") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaAddInt" (formula "9") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "9") (term "1,1,0,0")) + (rule "allRight" (formula "9") (inst "sk=i_0")) + (rule "impRight" (formula "9")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "11") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "11")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "2")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) +) +(branch "if x false" + (builtin "One Step Simplification" (formula "9")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "variableDeclarationAssign" (formula "9") (term "1")) + (rule "variableDeclaration" (formula "9") (term "1") (newnames "k")) + (rule "assignmentAdditionInt" (formula "9") (term "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "translateJavaAddInt" (formula "9") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "0,1,0")) + (rule "for_to_while" (formula "9") (term "1") (inst "#outerLabel=_label1") (inst "#innerLabel=_label0")) + (rule "elim_double_block_3" (formula "9") (term "1")) + (builtin "Loop Invariant" (formula "9") (newnames "variant,b,heapBefore_LOOP,kBefore_LOOP,k_0,heap_After_LOOP,anon_heap_LOOP,o,f")) + (branch "Invariant Initially Valid" + (rule "andRight" (formula "9")) + (branch + (rule "andRight" (formula "9")) + (branch + (rule "andRight" (formula "9")) + (branch + (rule "andRight" (formula "9")) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) + (branch + (rule "andRight" (formula "9")) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltRight" (formula "7")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "9")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltRight" (formula "7")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "9")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "closeTrue" (formula "9")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_ltRight" (formula "7")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "8") (term "0")) + (rule "replace_known_left" (formula "1") (term "1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "8")) (ifInst "" (formula "9"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "8") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "8")) + (rule "translateJavaAddInt" (formula "8") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "1,1,0,0")) + (rule "allRight" (formula "8") (inst "sk=i_0")) + (rule "impRight" (formula "8")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "10") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "10")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "3")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "9")) + ) + ) + (branch "Body Preserves Invariant" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,2,0,0,0,0")) + (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,0,1,1,0,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,2,0,0,0,0,1,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "11") (term "0,1,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0,0")) + (rule "andLeft" (formula "8")) + (rule "impRight" (formula "12")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "9")) + (rule "andLeft" (formula "10")) + (rule "eqSymm" (formula "16") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "eqSymm" (formula "16") (term "1,0,0,1,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "13") (term "2,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,1,0,1")) + (rule "polySimp_elimSub" (formula "16") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "mul_literals" (formula "16") (term "1,2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "1") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "2,1,0,1,0,1,1,0")) + (rule "mul_literals" (formula "16") (term "1,2,1,0,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "12") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "9") (term "2,1,0,2,0")) + (rule "mul_literals" (formula "9") (term "1,2,1,0,2,0")) + (rule "polySimp_addComm0" (formula "13") (term "2,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "2,2,0,0,0,0,1,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "2,1,0,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "9") (term "2,1,0,2,0")) + (rule "narrowSelectArrayType" (formula "9") (term "2,1") (ifseqformula "2") (ifseqformula "15")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "12") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "1") (term "1")) + (rule "variableDeclarationAssign" (formula "16") (term "1")) + (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_1")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "exc_25")) + (rule "assignment" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "thrownExc")) + (rule "blockThrow" (formula "16") (term "1,0,0,1")) + (rule "elementOfArrayRange" (formula "16") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_and" (formula "11") (term "0,0")) + (rule "less_than_comparison_simple" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "methodCallEmpty" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "emptyModality" (formula "13") (term "1")) + (builtin "One Step Simplification" (formula "13")) + (rule "notRight" (formula "13")) + (rule "ifUnfold" (formula "16") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "16") (term "1") (newnames "x_2")) + (rule "less_than_comparison_simple" (formula "16") (term "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "replace_known_left" (formula "16") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "16")) + (rule "arrayLengthIsAShort" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "arrayLengthNotNegative" (formula "7") (term "0")) + (rule "ifSplit" (formula "17")) + (branch "if x_2 true" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "variableDeclarationAssign" (formula "17") (term "1")) + (rule "variableDeclaration" (formula "17") (term "1") (newnames "value")) + (rule "assignment_array2" (formula "17")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "0,1,0") (inst "selectSK=arr_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "18") (term "1")) + (rule "variableDeclaration" (formula "18") (term "1") (newnames "hole")) + (rule "assignment" (formula "18") (term "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "for_to_while" (formula "18") (term "1") (inst "#outerLabel=_label3") (inst "#innerLabel=_label2")) + (rule "variableDeclarationAssign" (formula "18") (term "1")) + (rule "variableDeclaration" (formula "18") (term "1") (newnames "i")) + (rule "assignmentSubtractionInt" (formula "18") (term "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,0")) + (rule "mul_literals" (formula "18") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,0")) + (rule "elim_double_block_3" (formula "18") (term "1")) + (builtin "Loop Invariant" (formula "18") (newnames "variant_0,b_0,heapBefore_LOOP_0,iBefore_LOOP,holeBefore_LOOP,i_0,hole_0,heap_After_LOOP_0,anon_heap_LOOP_0,o,f")) + (branch "Invariant Initially Valid" + (rule "andRight" (formula "18")) + (branch "Case 1" + (rule "andRight" (formula "18")) + (branch "Case 1" + (rule "andRight" (formula "18")) + (branch + (rule "andRight" (formula "18")) + (branch + (rule "andRight" (formula "18")) + (branch + (rule "andRight" (formula "18")) + (branch + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "18") (term "1")) + (rule "polySimp_homoEq" (formula "18")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,0")) + (rule "times_zero_1" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeTrue" (formula "18")) + ) + (branch + (rule "andRight" (formula "18")) + (branch + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "0")) + (rule "polySimp_elimSub" (formula "18") (term "0")) + (rule "mul_literals" (formula "18") (term "1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_ltRight" (formula "16")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "18")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "leq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "13") (ifseqformula "1")) + (rule "andLeft" (formula "13")) + (rule "inEqSimp_homoInEq1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0")) + (rule "mul_literals" (formula "13") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "1,1,0")) + (rule "times_zero_1" (formula "13") (term "1,0")) + (rule "add_zero_right" (formula "13") (term "0")) + (rule "leq_literals" (formula "13")) + (rule "closeFalse" (formula "13")) + ) + (branch + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltRight" (formula "16")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "18")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch + (rule "orRight" (formula "18")) + (builtin "One Step Simplification" (formula "19")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "19") (term "3,0")) + (rule "translateJavaSubInt" (formula "18") (term "1")) + (rule "eqSymm" (formula "18")) + (rule "polySimp_elimSub" (formula "18") (term "0")) + (rule "mul_literals" (formula "18") (term "1,0")) + (rule "polySimp_homoEq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "3,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,0")) + (rule "times_zero_1" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "closeTrue" (formula "18")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "15"))) + (rule "closeTrue" (formula "18")) + ) + ) + (branch "Case 2" + (builtin "One Step Simplification" (formula "18") (userinteraction)) + (rule "eqTermCut" (formula "11") (term "0") (inst "s=de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, + end, + any::select(anon(heap, + arrayRange(values, + begin, + add(Z(neglit(1(#))), + end)), + anon_heap_LOOP<>), + values, + arr(j))), + javaSubInt(k_0, begin), + arr_0<>)") (userinteraction)) + (branch "Assume seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)], values, arr(j))) = de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)], values, arr(j))), javaSubInt(k_0, begin), arr_0<>)" + (rule "applyEqReverse" (formula "19") (term "0") (ifseqformula "11") (userinteraction)) + (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "3") (ifseqformula "18") (userinteraction)) + (rule "close" (formula "19") (ifseqformula "12") (userinteraction)) + ) + (branch "Assume seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)], values, arr(j))) != de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)], values, arr(j))), javaSubInt(k_0, begin), arr_0<>)" + (rule "notLeft" (formula "11") (userinteraction)) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "16") (term "1") (userinteraction)) + (rule "equalityToSeqGetAndSeqLenRight" (formula "16") (inst "iv=iv") (userinteraction)) + (rule "andRight" (formula "16") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "16") (term "1,1,0,1")) + (rule "translateJavaSubInt" (formula "19") (term "1,0")) + (rule "translateJavaSubInt" (formula "16") (term "2,0,0,0,1")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1")) + (rule "eqSymm" (formula "16")) + (rule "polySimp_elimSub" (formula "19") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "2,0,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "2,0,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,1,0,0")) + (rule "lenOfSeqDef" (formula "16") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,2,1,0,0")) + (rule "lenOfSeqDef" (formula "16") (term "1")) + (rule "polySimp_elimSub" (formula "16") (term "1,1")) + (rule "polySimp_addComm0" (formula "16") (term "1,1")) + (rule "inEqSimp_ltRight" (formula "17")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "narrowSelectArrayType" (formula "19") (term "2,1") (ifseqformula "4") (ifseqformula "18")) + (rule "lenOfSeqConcat" (formula "17") (term "0")) + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "lenOfSeqSub" (formula "17") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "17") (term "0,1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "17") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,0,1,0")) + (rule "times_zero_2" (formula "17") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "17") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "replace_known_left" (formula "17") (term "0,0,1,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "orRight" (formula "17")) + (rule "polySimp_homoEq" (formula "18")) + (rule "times_zero_2" (formula "18") (term "1,0")) + (rule "add_zero_right" (formula "18") (term "0")) + (rule "inEqSimp_leqRight" (formula "17")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "polySimp_rightDist" (formula "18") (term "0,1")) + (rule "mul_literals" (formula "18") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "add_zero_left" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "18") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "false_right" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "17") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "Case 2" + (rule "translateJavaAddInt" (formula "16") (term "1,1,0,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "2,0,0,0,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,0")) + (rule "translateJavaSubInt" (formula "16") (term "0,1,1,0,1,1,0")) + (rule "allRight" (formula "16") (inst "sk=iv_0")) + (rule "impRight" (formula "16")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "18")) + (rule "polySimp_elimSub" (formula "21") (term "1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "2,0,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "2,0,0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0,0")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1")) + (rule "getOfSeqDef" (formula "18") (term "1")) + (rule "castDel" (formula "18") (term "2,1")) + (rule "castDel" (formula "18") (term "1,1")) + (rule "replace_known_left" (formula "18") (term "0,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "polySimp_elimSub" (formula "18") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1")) + (rule "polySimp_addComm0" (formula "18") (term "1,0,1")) + (rule "inEqSimp_ltRight" (formula "19")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "narrowSelectArrayType" (formula "21") (term "2,1") (ifseqformula "6") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "lenOfSeqDef" (formula "19") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "19") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "0,1,0,1")) + (rule "mul_literals" (formula "19") (term "0,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "19") (term "0,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,0,2,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,0,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "17") (term "0,2,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,2,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,2,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,2,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,2,1,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,2,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,2,1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,2,1,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,2,1,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "17") (term "0,1,0,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "19") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1")) + (rule "replace_known_left" (formula "16") (term "0,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "getOfSeqConcat" (formula "16") (term "0")) + (rule "polySimp_elimSub" (formula "16") (term "1,2,0")) + (rule "lenOfSeqConcat" (formula "16") (term "1,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_addComm0" (formula "16") (term "1,0,0")) + (rule "lenOfSeqConcat" (formula "16") (term "0,1,1,2,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,2,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1,2,0")) + (rule "lenOfSeqSub" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,1,0,0")) + (rule "times_zero_2" (formula "16") (term "1,1,1,1,0,0")) + (rule "add_zero_right" (formula "16") (term "1,1,1,0,0")) + (rule "lenOfSeqSub" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,2,0")) + (rule "times_zero_2" (formula "16") (term "1,1,0,1,1,2,0")) + (rule "add_zero_right" (formula "16") (term "1,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,1,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,1,1,2,0")) + (rule "replace_known_left" (formula "16") (term "0,0,1,1,2,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0")) + (rule "getOfSeqConcat" (formula "16") (term "1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,2,1,0")) + (rule "lenOfSeqSub" (formula "16") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,1,0")) + (rule "add_zero_right" (formula "16") (term "1,1,0,1,0")) + (rule "lenOfSeqSub" (formula "16") (term "0,1,1,2,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,0,1,1,2,1,0")) + (rule "times_zero_2" (formula "16") (term "1,1,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "16") (term "1,0,1,1,2,1,0")) + (rule "getOfSeqSingleton" (formula "16") (term "2,1,0")) + (rule "castDel" (formula "16") (term "1,2,1,0")) + (rule "castDel" (formula "16") (term "2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0,1,0")) + (rule "add_zero_right" (formula "16") (term "0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,1,0,0,2,1,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,2,1,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0,2,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "polySimp_homoEq" (formula "16") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,2,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,2,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,2,1,0")) + (rule "polySimp_sepNegMonomial" (formula "16") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,0,0,1,0")) + (rule "replace_known_left" (formula "16") (term "0,0,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "getOfSeqSub" (formula "16") (term "1,1,0")) + (rule "castDel" (formula "16") (term "2,1,1,0")) + (rule "add_zero_right" (formula "16") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,1,1,0")) + (rule "add_zero_right" (formula "16") (term "1,1,0,1,1,0")) + (rule "getOfSeqDef" (formula "16") (term "1,1,1,0")) + (rule "castDel" (formula "16") (term "2,1,1,1,0")) + (rule "castDel" (formula "16") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "16") (term "0,0,1,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "16") (term "0,0,1,1,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial0" (formula "16") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,1,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,1,1,1,0")) + (rule "replace_known_left" (formula "16") (term "0,1,1,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "getOfSeqSub" (formula "16") (term "2,0")) + (rule "castDel" (formula "16") (term "2,2,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,1,1,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,1,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,1,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "16") (term "1,1,2,0")) + (rule "add_literals" (formula "16") (term "1,1,1,1,2,0")) + (rule "times_zero_1" (formula "16") (term "1,1,1,2,0")) + (rule "add_zero_right" (formula "16") (term "1,1,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "1,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,1,2,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,1,2,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,1,1,2,0")) + (rule "add_literals" (formula "16") (term "1,0,1,1,2,0")) + (rule "times_zero_1" (formula "16") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "16") (term "1,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,1,0,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,1,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,1,1,0,2,0")) + (rule "getOfSeqDef" (formula "16") (term "1,2,0")) + (rule "castDel" (formula "16") (term "2,1,2,0")) + (rule "castDel" (formula "16") (term "1,1,2,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,1,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,2,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,0,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0,2,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_mulAssoc" (formula "16") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,1,2,0")) + (rule "replace_known_left" (formula "16") (term "0,0,1,2,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,2,0")) + (rule "times_zero_2" (formula "16") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,1,0,2,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,1,0,2,0")) + (rule "replace_known_left" (formula "16") (term "1,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_sepNegMonomial1" (formula "16") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "0,0,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "0,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0,1,2,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0,1,2,0")) + (rule "replace_known_left" (formula "16") (term "0,1,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "pullOutSelect" (formula "16") (term "1,2,0") (inst "selectSK=arr_1")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "17") (term "1,1,1,0") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "12") (ifseqformula "18")) + (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "6") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "17") (term "1,2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "17") (term "1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "17") (term "1,1,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "18") (term "0")) + (rule "translateJavaAddInt" (formula "18") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "18") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "18") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "18") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "ifthenelse_split" (formula "16") (term "2,1,0")) + (branch "k_0 = begin + iv_0 TRUE" + (rule "applyEq" (formula "17") (term "0,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "applyEq" (formula "19") (term "1,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "19") (term "2,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "19") (term "0,2,0,0,0")) + (rule "add_literals" (formula "19") (term "1,0,2,0,0,0")) + (rule "times_zero_1" (formula "19") (term "0,2,0,0,0")) + (rule "add_zero_left" (formula "19") (term "2,0,0,0")) + (rule "applyEq" (formula "17") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "orRight" (formula "17")) + (rule "orRight" (formula "18")) + (rule "notRight" (formula "17")) + (rule "close" (formula "18") (ifseqformula "1")) + ) + (branch "k_0 = begin + iv_0 FALSE" + (rule "ifthenelse_split" (formula "17") (term "1,1,0")) + (branch "k_0 >= 1 + begin + iv_0 TRUE" + (rule "replace_known_left" (formula "18") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "orRight" (formula "18")) + (rule "orRight" (formula "19")) + (rule "inEqSimp_geqRight" (formula "18")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "19")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "19") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "false_right" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "k_0 >= 1 + begin + iv_0 FALSE" + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "17"))) + (rule "inEqSimp_geqRight" (formula "17")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "17")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "replace_known_left" (formula "18") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "18")) + (rule "orRight" (formula "18")) + (rule "notRight" (formula "18")) + (rule "inEqSimp_contradEq3" (formula "18") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "false_right" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + ) + (branch + (builtin "One Step Simplification" (formula "18")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "1")) + (rule "inEqSimp_ltRight" (formula "16")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "18")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "18")) + (rule "wellFormedAnon" (formula "18")) + (rule "replace_known_left" (formula "18") (term "1") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "3"))) + (rule "closeTrue" (formula "18")) + ) + ) + (branch "Body Preserves Invariant" + (builtin "One Step Simplification" (formula "17")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0")) + (rule "translateJavaAddInt" (formula "17") (term "1,0,0,0,0,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0,0,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "3,0,1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "20") (term "3,0,1,1,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "20") (term "1,0,1,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaSubInt" (formula "20") (term "0,0,1,0,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "20") (term "0,1,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "20") (term "1,0,0,0,0,0,0,0,1,1,0,1,1")) + (rule "translateJavaAddInt" (formula "20") (term "0,1,1,1,0,1")) + (rule "translateJavaSubInt" (formula "20") (term "1,0,1,0,0,0,1,1,0,1,1")) + (rule "andLeft" (formula "17")) + (rule "impRight" (formula "21")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "18")) + (rule "andLeft" (formula "19")) + (rule "eqSymm" (formula "27") (term "1,0,0,1,0,1,1,0,1")) + (rule "eqSymm" (formula "27") (term "0,1,0,0,0,0,0,1,1,0,1")) + (rule "eqSymm" (formula "21") (term "0")) + (rule "polySimp_elimSub" (formula "27") (term "0,0,1,0,0,0,0,0,0,1,1,0,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,0")) + (rule "polySimp_elimSub" (formula "19") (term "0")) + (rule "mul_literals" (formula "19") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_elimSub" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "3,0,1,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,1,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "3,0,1")) + (rule "polySimp_addComm0" (formula "18") (term "1")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1,0,0,0,0,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,0")) + (rule "narrowSelectArrayType" (formula "23") (term "2,1") (ifseqformula "4") (ifseqformula "26")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,1,0,0,0,0,0,0,1,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "variableDeclarationAssign" (formula "1") (term "1")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "1") (term "1") (newnames "b_0_1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "exc_26")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "thrownExc_1")) + (rule "blockThrow" (formula "27") (term "1,0,0,1")) + (rule "blockThrow" (formula "27") (term "1,0,0,1")) + (rule "elementOfArrayRange" (formula "27") (term "0,0,0,0,1,0,1,1,0,1") (inst "iv=iv")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0,1,0,0,0,0,1,0,1,1,0,1")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "27")) (ifInst "" (formula "5"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "pullOutSelect" (formula "24") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "5"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "boxToDiamond" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "commute_or" (formula "20")) + (rule "compound_assignment_3_nonsimple" (formula "26") (term "1")) + (rule "ifUnfold" (formula "29") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_3")) + (rule "compound_assignment_3_nonsimple" (formula "29") (term "1")) + (rule "ifElseUnfold" (formula "26") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_4")) + (rule "compound_assignment_2" (formula "26") (term "1") (inst "#v=x_5")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "x_5")) + (rule "greater_equal_than_comparison_simple" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "compound_assignment_1_new" (formula "26") (term "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "ifElseUnfold" (formula "29") (term "1") (inst "#boolv=x_4")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_6")) + (rule "compound_assignment_2" (formula "29") (term "1") (inst "#v=x_7")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_7")) + (rule "greater_equal_than_comparison_simple" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "compound_assignment_1_new" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "ifElseSplit" (formula "26")) + (branch "if x_4 true" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "30") (term "0,0,1,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "30")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "methodCallEmpty" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "emptyModality" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeTrue" (formula "27")) + ) + (branch "if x_4 false" + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "30") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "compound_less_than_comparison_2" (formula "27") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_8")) + (rule "assignment" (formula "27") (term "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "variableDeclarationAssign" (formula "27") (term "1")) + (rule "variableDeclaration" (formula "27") (term "1") (newnames "x_9")) + (rule "assignment_array2" (formula "27")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "methodCallEmpty" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "emptyModality" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "notRight" (formula "29")) + (rule "ifElseSplit" (formula "32")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "32") (term "1") (inst "#v1=x_5") (inst "#v0=x_4")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_10")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_11")) + (rule "assignment_array2" (formula "32")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "32")) + (rule "replaceKnownSelect_taclet0110011_3" (formula "32") (term "0,1,0")) + (rule "less_than_comparison_simple" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "replace_known_left" (formula "32") (term "0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "ifSplit" (formula "32")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "eval_order_array_access3" (formula "32") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_12")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_13")) + (rule "assignment_array2" (formula "32")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "32")) + (rule "replaceKnownSelect_taclet0110011_3" (formula "32") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "32")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "32")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "postdecrement" (formula "32") (term "1")) + (rule "compound_subtraction_1" (formula "32") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_14")) + (rule "widening_identity_cast_5" (formula "32") (term "1")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "assignmentSubtractionInt" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "translateJavaSubInt" (formula "32") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0")) + (rule "tryEmpty" (formula "32") (term "1")) + (rule "methodCallEmpty" (formula "32") (term "1")) + (rule "emptyModality" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch + (rule "andRight" (formula "32")) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "1")) + (rule "add_literals" (formula "32") (term "0,1")) + (rule "add_zero_left" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + (branch + (rule "andRight" (formula "32")) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "32")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "1") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_contradEq3" (formula "26") (term "1") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "22") (ifseqformula "1")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_zero_right" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + (branch "Case 2" + (rule "orRight" (formula "32")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "32") (term "0,0") (ifseqformula "22")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_contradEq7" (formula "31") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "31") (term "3,0,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "0,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "25")) (ifInst "" (formula "11")) (ifInst "" (formula "16")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "20") (term "0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0")) + (rule "wellFormedStorePrimitiveArray" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "replace_known_left" (formula "1") (term "1,0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "17")) (ifInst "" (formula "27"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "allRight" (formula "26") (inst "sk=i_1_0")) + (rule "impRight" (formula "26")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "31")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "cut_direct" (formula "26") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "29") (term "2,1,0,2,0,0,0,0") (ifseqformula "26")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "28") (term "0,2,0,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "applyEq" (formula "26") (term "1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "8") (term "0,2,1,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "2,1,0,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,1,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "26") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "1,1,0,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "24") (term "2,1,0,0,1,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "18") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "27") (term "0,2,1") (ifseqformula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "26")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "26") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "allLeft" (formula "16") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_8" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_literals" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "16")) + (rule "allLeft" (formula "18") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,1,0")) + (rule "leq_literals" (formula "18") (term "0,1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "29")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteGeq" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0")) + (rule "replace_known_left" (formula "18") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "18") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "29")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "18") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "allLeft" (formula "25") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "25") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet10100000000010110011_20" (formula "25") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10100000000010110011_21" (formula "25") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "30")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet10100000000010110011_18" (formula "25") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet10100000000010110011_19" (formula "25") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "25")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_strengthen1" (formula "25") (ifseqformula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "commute_or" (formula "27") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "1,0,2,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "allLeft" (formula "16") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_7" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_literals" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "0,1,0,0") (ifseqformula "16")) + (rule "all_pull_out3" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,0")) + (rule "allLeft" (formula "23") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "30")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "replace_known_left" (formula "23") (term "1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "30")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "allLeft" (formula "18") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "18") (term "0,2,0,1")) + (rule "add_literals" (formula "18") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "18") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_8" (formula "18") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "18") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "1,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,1,0")) + (rule "leq_literals" (formula "18") (term "0,1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "31")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "18") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "qeq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEqReverse" (formula "19") (term "1") (ifseqformula "18")) + (rule "hideAuxiliaryEq" (formula "18")) + (rule "inEqSimp_commuteGeq" (formula "18")) + (rule "allLeft" (formula "25") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet01100000000010110011_20" (formula "25") (term "1,1")) + (rule "replaceKnownSelect_taclet01100000000010110011_18" (formula "25") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01100000000010110011_21" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01100000000010110011_19" (formula "25") (term "0,1")) + (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "allLeft" (formula "25") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_5" (formula "25") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "32")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "allLeft" (formula "28") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,0,1")) + (rule "add_literals" (formula "28") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "28") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_5" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "1,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")) (ifInst "" (formula "8"))) + (rule "replaceKnownSelect_taclet01100000000010110011_22" (formula "28") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet01100000000010110011_23" (formula "28") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "27")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_7" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "18")) + (rule "all_pull_out3" (formula "26") (term "0")) + (rule "shift_paren_or" (formula "26") (term "0,0")) + (rule "shift_paren_or" (formula "26") (term "0,0,0")) + (rule "allLeft" (formula "25") (inst "t=begin<>")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "allLeft" (formula "28") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,0,1")) + (rule "add_literals" (formula "28") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "28") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_5" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "35")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "allLeft" (formula "27") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "27") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_5" (formula "27") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "1,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "36")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "allLeft" (formula "28") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet111100000000010110011_22" (formula "28") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111100000000010110011_23" (formula "28") (term "1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,0,1")) + (rule "add_literals" (formula "28") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "28") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_5" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "allLeft" (formula "28") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet100000000010110011_12" (formula "28") (term "1,1")) + (rule "replaceKnownSelect_taclet100000000010110011_14" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_13" (formula "28") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000000010110011_15" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "28") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,1")) + (rule "leq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "28")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "28") (term "3,0,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "23") (term "2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "25")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "22"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "15") (term "0")) + (rule "wellFormedAnon" (formula "15") (term "1,0")) + (rule "replace_known_left" (formula "15") (term "0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "26")) (ifInst "" (formula "5")) (ifInst "" (formula "11"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "27")) (ifInst "" (formula "5")) (ifInst "" (formula "11"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "28") (term "0")) + (rule "wellFormedStorePrimitiveArray" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0")) + (rule "allRight" (formula "28") (inst "sk=i_1_0")) + (rule "impRight" (formula "28")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "33")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "2") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "31") (term "0")) + (rule "translateJavaAddInt" (formula "31") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "31") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,2,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "28") (term "0,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "30") (term "0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "30") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "30") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "35")) (ifInst "" (formula "11")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "28") (term "0,1")) + (rule "wellFormedAnon" (formula "28") (term "1,0")) + (rule "wellFormedAnon" (formula "28") (term "0,1,0")) + (rule "replace_known_right" (formula "28") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "29") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1")) + (rule "nnf_imp2or" (formula "29") (term "0,1")) + (rule "nnf_notAnd" (formula "29") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "29") (term "0,1,0,1")) + (rule "nnf_notAnd" (formula "29") (term "0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,1,0,1")) + (rule "cut_direct" (formula "30") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "applyEqRigid" (formula "28") (term "1,3,0,1") (ifseqformula "30")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "29") (term "1,1,0,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "31") (term "2,1,0,0,1,0,1,0") (ifseqformula "30")) + (rule "applyEqRigid" (formula "33") (term "2,1,0,2,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "29") (term "2,1,0,1,1,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "31") (term "1,1,0,0") (ifseqformula "30")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_addComm1" (formula "7") (term "0")) + (rule "applyEqRigid" (formula "23") (term "1,1,1,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "29") (term "1,1,1,0,0,1,0,1") (ifseqformula "30")) + (rule "applyEqRigid" (formula "29") (term "2,1,0,0,1,0,0") (ifseqformula "30")) + (rule "applyEq" (formula "22") (term "1,1,0,0,1,0") (ifseqformula "30")) + (rule "applyEq" (formula "34") (term "0,2,1") (ifseqformula "30")) + (rule "applyEq" (formula "21") (term "3,0") (ifseqformula "30")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "30")) + (rule "applyEqRigid" (formula "21") (term "1,1,0,0") (ifseqformula "29")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,0,0") (ifseqformula "29")) + (rule "applyEqRigid" (formula "32") (term "0,2,0,1,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "28") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "31") (term "1,1,1,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "8") (term "0,2,1,1") (ifseqformula "29")) + (rule "applyEq" (formula "31") (term "2,1,0,1,1,0") (ifseqformula "29")) + (rule "applyEq" (formula "27") (term "1,3,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0,1") (ifseqformula "29")) + (rule "applyEqRigid" (formula "30") (term "2,1,0,1,1,0,1,0") (ifseqformula "29")) + (rule "applyEqRigid" (formula "28") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "29")) + (rule "applyEq" (formula "32") (term "2,1,0,2,0,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,0")) + (rule "times_zero_1" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEq" (formula "30") (term "2,1,0,0,1,0") (ifseqformula "28")) + (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "28")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,0,1") (ifseqformula "27")) + (rule "applyEq" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0,1,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0,0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "0,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "30")) (ifInst "" (formula "14")) (ifInst "" (formula "19")) (ifInst "" (formula "23"))) + (rule "true_left" (formula "22")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "impLeft" (formula "23")) + (branch + (rule "allRight" (formula "28") (inst "sk=i_1_1")) + (rule "orRight" (formula "28")) + (rule "orRight" (formula "28")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "32")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "32")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "commute_or" (formula "27") (term "0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,1")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1")) + (rule "nnf_imp2or" (formula "25") (term "0,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "commute_or" (formula "25") (term "0,0,1,0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "impLeft" (formula "25")) + (branch + (rule "allRight" (formula "30") (inst "sk=i_1_2")) + (rule "orRight" (formula "30")) + (rule "orRight" (formula "30")) + (rule "allRight" (formula "32") (inst "sk=j_0")) + (rule "orRight" (formula "32")) + (rule "orRight" (formula "32")) + (rule "inEqSimp_geqRight" (formula "31")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "34")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "34")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "34")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1")) + (rule "polySimp_elimOne" (formula "5") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "polySimp_elimOne" (formula "4") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "36")) (ifInst "" (formula "18"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "1"))) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "1")) + (rule "polySimp_elimOne" (formula "5") (term "1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "37")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "pullOutSelect" (formula "5") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "38")) (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "8"))) + (rule "inEqSimp_commuteLeq" (formula "5") (term "0,0")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "6") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "all_pull_out3" (formula "33") (term "0")) + (rule "shift_paren_or" (formula "33") (term "0,0")) + (rule "shift_paren_or" (formula "33") (term "0,0,0")) + (rule "allLeft" (formula "26") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "26") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_8" (formula "26") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,0")) + (rule "add_literals" (formula "26") (term "0,1,0")) + (rule "qeq_literals" (formula "26") (term "1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_contradInEq0" (formula "26") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEq" (formula "36") (term "0,1,0,0") (ifseqformula "26")) + (rule "applyEq" (formula "37") (term "1") (ifseqformula "26")) + (rule "applyEq" (formula "17") (term "1,1") (ifseqformula "26")) + (rule "allLeft" (formula "35") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "35") (term "1,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0")) + (rule "leq_literals" (formula "35") (term "0,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "40")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_commuteGeq" (formula "36")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "35") (term "1,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "35") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "40")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0")) + (rule "replace_known_left" (formula "35") (term "0,0,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "35") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "inEqSimp_contradInEq0" (formula "35") (ifseqformula "11")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0")) + (rule "polySimp_addComm0" (formula "35") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "1,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0")) + (rule "add_literals" (formula "35") (term "0")) + (rule "leq_literals" (formula "35")) + (rule "closeFalse" (formula "35")) + ) + (branch + (rule "all_pull_out3" (formula "27") (term "0")) + (rule "shift_paren_or" (formula "27") (term "0,0")) + (rule "shift_paren_or" (formula "27") (term "0,0,0")) + (rule "allLeft" (formula "19") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "19") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_8" (formula "19") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,1,0")) + (rule "add_literals" (formula "19") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,1,0")) + (rule "add_literals" (formula "19") (term "0,1,0")) + (rule "qeq_literals" (formula "19") (term "1,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "19") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "10") (term "1,1") (ifseqformula "19")) + (rule "allLeft" (formula "29") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq0" (formula "29") (term "1,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,0")) + (rule "leq_literals" (formula "29") (term "0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "pullOutSelect" (formula "29") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "29") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_commuteGeq" (formula "30")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "29") (term "1,0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "29") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "29")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or" (formula "25") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "30")) (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "commute_or" (formula "24") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "32")) (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "all_pull_out3" (formula "26") (term "0")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "allLeft" (formula "16") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_8" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_literals" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "28") (term "0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "16")) + (rule "allLeft" (formula "19") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "19") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "32")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "19") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "32")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "replace_known_left" (formula "19") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption0" (formula "19") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "allLeft" (formula "28") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq0" (formula "28") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet1010000000010110011_20" (formula "28") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet1010000000010110011_21" (formula "28") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "28") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet1010000000010110011_18" (formula "28") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet1010000000010110011_19" (formula "28") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteGeq" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "28") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "28") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "28")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_strengthen1" (formula "27") (ifseqformula "35")) + (rule "inEqSimp_contradEq7" (formula "35") (ifseqformula "27")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption0" (formula "26") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_literals" (formula "26") (term "0,0")) + (rule "qeq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "26")) + (rule "polySimp_rightDist" (formula "9") (term "0,0")) + (rule "mul_literals" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "1,0,2,2,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "7") (term "1,1") (ifseqformula "1")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_literals" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "24") (term "0,0")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "32")) (ifInst "" (formula "9")) (ifInst "" (formula "15")) (ifInst "" (formula "22"))) + (rule "true_left" (formula "24")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,1")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1")) + (rule "commute_or" (formula "27") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "9")) (ifInst "" (formula "15")) (ifInst "" (formula "20"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "commute_or" (formula "24") (term "0,0,1,0")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_7" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_literals" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "18")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "allLeft" (formula "22") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "pullOutSelect" (formula "22") (term "1,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "33")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "33")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "allLeft" (formula "23") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "23") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_8" (formula "23") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "23") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "allLeft" (formula "24") (inst "t=begin")) + (rule "replaceKnownSelect_taclet0110000000010110011_18" (formula "24") (term "1,1")) + (rule "replaceKnownSelect_taclet0110000000010110011_20" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_19" (formula "24") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_21" (formula "24") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "24") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_8" (formula "24") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "35")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "allLeft" (formula "25") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0")) + (rule "elimGcdGeq" (formula "25") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "25") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_addLiterals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "25") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_pullOutFactor0" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "36")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "25") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0,1,0,0,0,0")) + (rule "sub_literals" (formula "25") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "25") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "25") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_pullOutFactor0" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "26") (term "0,1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "37")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "26") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "26") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "26") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "allLeft" (formula "34") (inst "t=begin")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0")) + (rule "qeq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0")) + (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "39")) (ifInst "" (formula "10"))) + (rule "replaceKnownSelect_taclet0110000000010110011_20" (formula "34") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_21" (formula "34") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,0")) + (rule "replace_known_left" (formula "34") (term "1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0")) + (rule "qeq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "applyEqReverse" (formula "35") (term "1,1") (ifseqformula "34")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "pullOutSelect" (formula "34") (term "0,1") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnon" (formula "34")) + (builtin "One Step Simplification" (formula "34") (ifInst "" (formula "39")) (ifInst "" (formula "10"))) + (rule "replaceKnownSelect_taclet0110000000010110011_18" (formula "34") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_19" (formula "34") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "0,0,0,0")) + (rule "qeq_literals" (formula "34") (term "0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_subsumption1" (formula "34") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0")) + (rule "qeq_literals" (formula "34") (term "0,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "applyEqReverse" (formula "35") (term "1,1") (ifseqformula "34")) + (rule "hideAuxiliaryEq" (formula "34")) + (rule "allLeft" (formula "35") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "35") (term "0,2,0,1")) + (rule "add_literals" (formula "35") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "35") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "35") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_5" (formula "35") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "35") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "pullOutSelect" (formula "35") (term "0") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "35")) + (builtin "One Step Simplification" (formula "35") (ifInst "" (formula "40")) (ifInst "" (formula "10"))) + (rule "replaceKnownSelect_taclet0110000000010110011_24" (formula "35") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_25" (formula "35") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_commuteLeq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "35") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "applyEqReverse" (formula "36") (term "1") (ifseqformula "35")) + (rule "hideAuxiliaryEq" (formula "35")) + (rule "inEqSimp_commuteGeq" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "35")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "40") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0")) + (rule "add_literals" (formula "40") (term "0,0")) + (rule "qeq_literals" (formula "40") (term "0")) + (builtin "One Step Simplification" (formula "40")) + (rule "true_left" (formula "40")) + (rule "allLeft" (formula "38") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet0110000000010110011_30" (formula "38") (term "1,1")) + (rule "replaceKnownSelect_taclet0110000000010110011_28" (formula "38") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_31" (formula "38") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_29" (formula "38") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0")) + (rule "allLeft" (formula "38") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "38") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_5" (formula "38") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "38") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "leq_literals" (formula "38") (term "0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_contradInEq1" (formula "38") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "leq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "pullOutSelect" (formula "38") (term "0") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "42")) (ifInst "" (formula "12"))) + (rule "replaceKnownSelect_taclet0110000000010110011_22" (formula "38") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet0110000000010110011_23" (formula "38") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_commuteGeq" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "38") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "38") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "38") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "38") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "38")) + (rule "hideAuxiliaryEq" (formula "38")) + (rule "inEqSimp_commuteLeq" (formula "38")) + (rule "inEqSimp_contradInEq0" (formula "38") (ifseqformula "2")) + (rule "andLeft" (formula "38")) + (rule "inEqSimp_homoInEq1" (formula "38")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0")) + (rule "polySimp_addComm0" (formula "38") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0")) + (rule "add_literals" (formula "38") (term "1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0")) + (rule "add_literals" (formula "38") (term "0")) + (rule "leq_literals" (formula "38")) + (rule "closeFalse" (formula "38")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "27") (term "0,0")) + (rule "wellFormedAnon" (formula "27") (term "1,0")) + (rule "wellFormedAnon" (formula "27") (term "0,1,0")) + (rule "replace_known_left" (formula "27") (term "1,0,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "36")) (ifInst "" (formula "10")) (ifInst "" (formula "23")) (ifInst "" (formula "28"))) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0,1")) + (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "27") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,1")) + (rule "nnf_imp2or" (formula "27") (term "0,1")) + (rule "nnf_notAnd" (formula "27") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1")) + (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "33") (term "0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0")) + (rule "add_literals" (formula "33") (term "0")) + (rule "equal_literals" (formula "33")) + (rule "false_right" (formula "33")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "1")) + (rule "add_literals" (formula "6") (term "0,1")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "applyEqRigid" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "commute_or" (formula "28") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "9")) (ifInst "" (formula "15")) (ifInst "" (formula "20"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "commute_or" (formula "26") (term "0,0,1,0")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_7" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "31") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "18")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "allLeft" (formula "22") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "37")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "22") (term "1,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "22") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "37")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "replace_known_left" (formula "22") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "22") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "allLeft" (formula "31") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet10000000010110011_12" (formula "31") (term "1,1")) + (rule "replaceKnownSelect_taclet10000000010110011_14" (formula "31") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_13" (formula "31") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000000010110011_15" (formula "31") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "leq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq0" (formula "31") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,1")) + (rule "leq_literals" (formula "31") (term "0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (ifseqformula "5")) + (rule "andLeft" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0")) + (rule "add_literals" (formula "31") (term "1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0")) + (rule "add_zero_right" (formula "31") (term "0")) + (rule "leq_literals" (formula "31")) + (rule "closeFalse" (formula "31")) + ) + ) + ) + ) + ) + (branch "Case 2" + (rule "seqPermFromSwap" (formula "32") (inst "iv=iv") (inst "jv=jv") (ifseqformula "26") (userinteraction)) + (rule "andRight" (formula "32") (userinteraction)) + (branch "Case 1" + (rule "eqSymm" (formula "32")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "narrowSelectArrayType" (formula "32") (term "2,0") (ifseqformula "7") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + (branch "Case 2" + (rule "exRightHide" (formula "32") (inst "t=sub(add(i_0, Z(1(#))), begin)") (userinteraction)) + (rule "exRightHide" (formula "32") (inst "t=sub(i_0, begin)") (userinteraction)) + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_elimSub" (formula "32") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1")) + (rule "polySimp_addComm1" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_elimSub" (formula "32") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "5")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (rule "polySimp_elimSub" (formula "32") (term "0")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "1") (term "1,1,0,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,1,0,0,1,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "1") (term "3,0,2,0,0,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "1") (term "2,0,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "1") (term "0,0")) + (rule "translateJavaAddInt" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,1,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "1") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "1") (term "0")) + (rule "lenOfSeqSub" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,0,0")) + (rule "lenOfSeqConcat" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_addComm0" (formula "1") (term "1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "lenOfSeqSub" (formula "1") (term "1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "1,1,1,0")) + (rule "add_zero_right" (formula "1") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,1,0")) + (rule "replace_known_left" (formula "1") (term "0,0,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0,1")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,1")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0,1")) + (rule "cut_direct" (formula "23") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "26") (term "0,2,1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "15") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "21") (term "2,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "28") (term "0,2,0,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "29") (term "0,2,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "1,3,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "21") (term "1,3,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "1,3,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "2,1,0,1,1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "2,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "21") (term "1,1,0,0,0,1,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "14") (term "0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "2,1,0,1,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,0,0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "23") (term "2,1,0,1,2,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "19") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "20")) + (rule "applyEqRigid" (formula "24") (term "0,2,2,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "23") (term "0,2,2,0,1,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "23") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "20")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "18")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "times_zero_2" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_antiSymm" (formula "5") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "1,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "15") (term "1,1,0,0")) + (rule "add_literals" (formula "15") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "15") (term "1,1,0,0")) + (rule "applyEq" (formula "28") (term "0,2,0") (ifseqformula "5")) + (rule "applyEq" (formula "20") (term "1,3,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "20") (term "3,0,0")) + (rule "add_literals" (formula "20") (term "0,3,0,0")) + (rule "applyEq" (formula "23") (term "2,1,0,1,1,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,0")) + (rule "times_zero_1" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEq" (formula "20") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "5")) + (rule "applyEq" (formula "20") (term "1,3,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "20") (term "3,0,0")) + (rule "add_literals" (formula "20") (term "0,3,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,1,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0")) + (rule "applyEq" (formula "27") (term "0,2,1") (ifseqformula "5")) + (rule "applyEq" (formula "25") (term "0,2,2,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0")) + (rule "applyEq" (formula "25") (term "2,1,0,2,0,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "4") (term "1,0,2,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,0")) + (rule "add_literals" (formula "4") (term "0,0,2,0")) + (rule "add_zero_left" (formula "4") (term "0,2,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "14") (term "1,1,1,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "14") (term "1,1,0,0")) + (rule "add_literals" (formula "14") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "14") (term "1,1,0,0")) + (rule "applyEq" (formula "18") (term "2,1,0,0,1") (ifseqformula "4")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "19") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "4")) + (rule "applyEq" (formula "23") (term "2,1,0,1,2,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "25") (term "1,2,0,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "25") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "2,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,2,0,0,0")) + (rule "add_zero_right" (formula "25") (term "2,0,0,0")) + (rule "applyEq" (formula "18") (term "2,1,0,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0,1,0,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0,1,0,1")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0,1,0,1")) + (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "1,1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,1,0,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "3") (term "0,2,1,1") (ifseqformula "4")) + (rule "applyEq" (formula "19") (term "2,1,0,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0,1")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0,1")) + (rule "applyEq" (formula "21") (term "1,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "18") (term "1,3,0,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "18") (term "3,0,1")) + (rule "add_literals" (formula "18") (term "0,3,0,1")) + (rule "applyEq" (formula "25") (term "2,1,0,2,0,0,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "25") (term "0,2,0,1,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "applyEq" (formula "23") (term "0,2,1,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "21") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "23") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "23") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "1,0,1,1,0")) + (rule "add_literals" (formula "23") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "23") (term "1,0,1,1,0")) + (rule "applyEq" (formula "23") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,0,0,1,0")) + (rule "applyEq" (formula "23") (term "0,2,2,0,1,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "20") (term "1") (ifseqformula "4")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "16") (term "1")) + (rule "add_literals" (formula "16") (term "0,1")) + (rule "add_zero_left" (formula "16") (term "1")) + (rule "applyEq" (formula "23") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "4")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_strengthen1" (formula "20") (ifseqformula "30")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0,1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "1")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "27") (term "1") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "30")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "true_left" (formula "21")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,1")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,1")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0,1,1,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "inEqSimp_subsumption0" (formula "26") (term "1,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0")) + (rule "qeq_literals" (formula "26") (term "0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0,0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1,0,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "getOfSeqConcat" (formula "28") (term "1,1,0")) + (rule "eqSymm" (formula "28") (term "1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "28") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1,0,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "getOfSeqSub" (formula "28") (term "2,0,1,0")) + (rule "castDel" (formula "28") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "28") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "28") (term "1,2,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "28") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "28") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "28") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "28") (term "2,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "28") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "28") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1,0,2,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "28") (term "1,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "times_zero_2" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "28") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "28") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "2")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_literals" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "inEqSimp_geqRight" (formula "31")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "mul_literals" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1")) + (rule "inEqSimp_antiSymm" (formula "5") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "29") (term "1,1,0,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "29") (term "1,0,1,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,0,1,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "applyEq" (formula "29") (term "1,1,1,0,1,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "2") (term "1,0,2,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,0")) + (rule "add_literals" (formula "2") (term "0,0,2,0")) + (rule "add_zero_left" (formula "2") (term "0,2,0")) + (rule "applyEq" (formula "30") (term "1,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,1,1,0")) + (rule "add_zero_right" (formula "30") (term "1,1,0")) + (rule "applyEq" (formula "30") (term "1,2,0,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "30") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "2,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,2,0,0,0")) + (rule "add_literals" (formula "30") (term "2,0,0,0")) + (rule "applyEq" (formula "28") (term "1,1,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,1,0,0")) + (rule "add_zero_right" (formula "28") (term "1,0,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "28") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,0,1,0")) + (rule "applyEq" (formula "20") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "20") (term "1")) + (rule "add_literals" (formula "20") (term "0,1")) + (rule "applyEq" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "0")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "applyEq" (formula "28") (term "1,1,0,0,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,1,0,0,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,1,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "applyEq" (formula "30") (term "0,2,0") (ifseqformula "4")) + (rule "applyEq" (formula "26") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,1,0")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "18") (term "1")) + (rule "add_literals" (formula "18") (term "0,1")) + (rule "add_zero_left" (formula "18") (term "1")) + (rule "applyEq" (formula "28") (term "1,1,0,2,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,1,0,2,1,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,1,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "applyEq" (formula "26") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,0,1,0")) + (rule "applyEq" (formula "28") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "1,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_elimSub" (formula "32") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "1") (term "1,1,0,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,1,0,0,1,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "1") (term "3,0,2,0,0,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "1") (term "2,0,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17")) (ifInst "" (formula "23"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "1") (term "0,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "1") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1,0,0,0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_addAssoc" (formula "1") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "3") (term "0,0")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "3") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "3") (term "0")) + (rule "lenOfSeqConcat" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "lenOfSeqSub" (formula "3") (term "1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,0")) + (rule "lenOfSeqSub" (formula "3") (term "1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,1,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,1,1")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,1,1")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,1,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,1,1")) + (rule "qeq_literals" (formula "3") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,1")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "25") (term "0")) + (rule "wellFormedAnon" (formula "25") (term "1,0")) + (rule "wellFormedAnon" (formula "25") (term "0,1,0")) + (rule "replace_known_left" (formula "25") (term "1,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "32")) (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "26"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0,0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19")) (ifInst "" (formula "24"))) + (rule "true_left" (formula "23")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "23") (term "0,1")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0,1")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_imp2or" (formula "1") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "30") (term "0,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "30") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "31"))) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addAssoc" (formula "30") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "31") (term "0,0")) + (rule "translateJavaAddInt" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "31") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "31") (term "0,0,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "1")) + (rule "polySimp_addComm1" (formula "31") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_homoEq" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1,0,1")) + (rule "add_zero_right" (formula "31") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "31")) + (rule "replace_known_left" (formula "31") (term "1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0")) + (rule "add_literals" (formula "31") (term "0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "cut_direct" (formula "25") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEqRigid" (formula "1") (term "2,1,0,0,1,2,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "24") (term "1,1,0,0,1,0,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "17") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "27") (term "2,1,0,1,1,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "29") (term "2,1,0,1,2,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "32") (term "0,2,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "26") (term "3,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "31") (term "0,2,0,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "2") (term "0,2,2,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "24") (term "1,1,0,0,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "28") (term "2,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "27") (term "2,1,0,0,1,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "25")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,0")) + (rule "times_zero_1" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "true_left" (formula "21")) + (rule "applyEq" (formula "27") (term "0,2,1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "28") (term "0,2,1,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "26") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "28") (term "2,1,0,1,2,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "29") (term "2,1,0,2,0,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "1,3,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "1,3,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "2,1,0,2,0,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "20") (term "1,3,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "2") (term "2,1,0,0,2,0,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "1") (term "0,2,1,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "26") (term "0,2,2,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,2,2,0,1,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "1") (term "2,1,0,0,2,0,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "1") (term "0,2,2,0,1,1,0") (ifseqformula "22")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0,1")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0,1")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "4")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "add_literals" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "inEqSimp_geqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "times_zero_2" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1")) + (rule "inEqSimp_antiSymm" (formula "7") (ifseqformula "1")) + (rule "applyEq" (formula "29") (term "1,2,0,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "29") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "2,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,2,0,0,0")) + (rule "add_literals" (formula "29") (term "2,0,0,0")) + (rule "applyEq" (formula "29") (term "0,2,0,1,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "23") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "7")) + (rule "applyEq" (formula "29") (term "2,1,0,2,0,0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "27") (term "2,1,0,0,1,0") (ifseqformula "7")) + (rule "applyEq" (formula "3") (term "0,2,0,2,0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "16") (term "1,1,0,0")) + (rule "add_literals" (formula "16") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "16") (term "1,1,0,0")) + (rule "applyEq" (formula "25") (term "1,1,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "applyEq" (formula "21") (term "1,3,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "21") (term "3,0,0")) + (rule "add_literals" (formula "21") (term "0,3,0,0")) + (rule "applyEq" (formula "28") (term "2,1,0,2,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "26") (term "2,1,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "22") (term "1,1,0,0,1")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,1")) + (rule "applyEq" (formula "21") (term "2,1,0,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "22") (term "1,1,0,0,0,1,0,1") (ifseqformula "6")) + (rule "applyEq" (formula "2") (term "2,1,0,0,2,0,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "0,2,0,1,2,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "24") (term "3,0") (ifseqformula "6")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0")) + (rule "add_literals" (formula "17") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,0")) + (rule "applyEq" (formula "2") (term "0,2,2,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "27") (term "2,1,0,1,2,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "22") (term "2,1,0,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "1,0,2,3,0,1,2,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "1") (term "0,2,3,0,1,2,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,2,3,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,2,3,0,1,2,0,1,0")) + (rule "applyEq" (formula "25") (term "2,1,0,1,1,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "5") (term "0,2,1,1") (ifseqformula "6")) + (rule "applyEq" (formula "27") (term "0,2,1,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "25") (term "2,1,0,0,1,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "21") (term "1,3,0,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "21") (term "3,0,1")) + (rule "add_literals" (formula "21") (term "0,3,0,1")) + (rule "applyEq" (formula "22") (term "1,3,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "22") (term "3,0,0")) + (rule "add_literals" (formula "22") (term "0,3,0,0")) + (rule "applyEq" (formula "2") (term "1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "2") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "26") (term "1,1,0,0")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1") (ifseqformula "6")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_pullOutFactor1" (formula "7") (term "0")) + (rule "add_literals" (formula "7") (term "1,0")) + (rule "times_zero_1" (formula "7") (term "0")) + (rule "leq_literals" (formula "7")) + (rule "true_left" (formula "7")) + (rule "applyEq" (formula "28") (term "0,2,0") (ifseqformula "6")) + (rule "applyEq" (formula "21") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "6")) + (rule "applyEq" (formula "28") (term "0,2,1") (ifseqformula "6")) + (rule "applyEq" (formula "3") (term "0,0") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,0,0")) + (rule "applyEq" (formula "1") (term "2,1,0,0,1,2,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "27") (term "1,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0")) + (rule "applyEq" (formula "5") (term "1,0,2,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "5") (term "0,2,0")) + (rule "add_literals" (formula "5") (term "0,0,2,0")) + (rule "add_zero_left" (formula "5") (term "0,2,0")) + (rule "applyEq" (formula "1") (term "0,2,1,0,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "23") (term "2,1,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "2") (term "1,0,2,3,0,2,0,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,3,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,2,3,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,2,3,0,2,0,0,0")) + (rule "applyEq" (formula "1") (term "1,1,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "0,2,2,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "2,1,0,0,2,0,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "26") (term "1,1,0,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,1,0")) + (rule "applyEq" (formula "1") (term "1,1,0,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,1,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,1,1,0")) + (rule "add_zero_left" (formula "1") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "1,0,1,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,1,1,0")) + (rule "applyEq" (formula "26") (term "0,2,2,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "1") (term "0,2,0,2,0,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "18") (term "1")) + (rule "add_literals" (formula "18") (term "0,1")) + (rule "add_zero_left" (formula "18") (term "1")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "6")) + (rule "applyEq" (formula "26") (term "1,1,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,0,1,0")) + (rule "applyEq" (formula "1") (term "1,0,2,3,0,2,0,0,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "1") (term "0,2,3,0,2,0,0,1,1,0")) + (rule "add_literals" (formula "1") (term "0,0,2,3,0,2,0,0,1,1,0")) + (rule "add_zero_left" (formula "1") (term "0,2,3,0,2,0,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "polySimp_elimOne" (formula "3") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "3")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_strengthen1" (formula "22") (ifseqformula "33")) + (rule "inEqSimp_contradEq7" (formula "33") (ifseqformula "22")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "inEqSimp_subsumption0" (formula "21") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_literals" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0,1")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "2") (term "0,0")) + (rule "translateJavaAddInt" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,1,0,0")) + (rule "add_zero_left" (formula "2") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "2") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "2") (term "0")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "lenOfSeqSub" (formula "2") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "2") (term "0,1,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_addComm0" (formula "2") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "2") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "2") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,1,0")) + (rule "add_literals" (formula "2") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "2") (term "0,0,1,0")) + (rule "add_zero_left" (formula "2") (term "0,1,0")) + (rule "inEqSimp_subsumption0" (formula "2") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_homoEq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_homoEq" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,0,1")) + (rule "add_zero_right" (formula "2") (term "0,1")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,1") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,1")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,1")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,1")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "getOfSeqConcat" (formula "29") (term "1,1,0")) + (rule "eqSymm" (formula "29") (term "1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,0,0,0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "2,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,2,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "29") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "29") (term "2,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "29") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,2,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "1") (term "0,1,1,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "1") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1,0,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_addAssoc" (formula "1") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "3") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "3") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,1,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,1,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "3") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "3") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "getOfSeqConcat" (formula "3") (term "1,1,0")) + (rule "eqSymm" (formula "3") (term "1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "3") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "3") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "3") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "3") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,1,1,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,1,0,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "3") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "3") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "3") (term "2,1,0,1,0")) + (rule "castDel" (formula "3") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "3") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "3") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0,0,2,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "3") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "3") (term "2,0,1,0")) + (rule "castDel" (formula "3") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "3") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "3") (term "1,2,0,1,0")) + (rule "castDel" (formula "3") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "3") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0,0,2,1,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,2,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,2,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,2,1,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0,0,1,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,0,1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0,0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,0,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,1,0,0,1,2,0,1,0")) + (rule "getOfSeqSub" (formula "3") (term "1,1,0,1,0")) + (rule "castDel" (formula "3") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "3") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "3") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "3") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "nnf_imp2or" (formula "29") (term "0,1,0")) + (rule "ifthenelse_split" (formula "5") (term "0")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "replace_known_left" (formula "3") (term "0,1,1,0,1,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "5")) (ifInst "" (formula "5"))) + (rule "replace_known_left" (formula "4") (term "0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,2,1,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,1,1,0,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,1,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,1,0,0,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,1,0,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,2,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,2,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,2,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,2,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "23") (ifseqformula "5")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "add_literals" (formula "23") (term "0")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "replace_known_right" (formula "3") (term "0,1,1,0,0,2,0,1,0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "35")) (ifInst "" (formula "35")) (ifInst "" (formula "35")) (ifInst "" (formula "35")) (ifInst "" (formula "35")) (ifInst "" (formula "35")) (ifInst "" (formula "35"))) + (rule "add_zero_right" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,2,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "replace_known_right" (formula "4") (term "0") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "mul_literals" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "applyEq" (formula "6") (term "0,1,0") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0")) + (rule "applyEq" (formula "34") (term "1,2,0,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "34") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "2,0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,2,0,0,0")) + (rule "add_literals" (formula "34") (term "2,0,0,0")) + (rule "applyEq" (formula "2") (term "1,0,2,3,0,1,2,0,1,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,3,0,1,2,0,1,0")) + (rule "add_literals" (formula "2") (term "0,0,2,3,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "2") (term "0,2,3,0,1,2,0,1,0")) + (rule "applyEq" (formula "32") (term "1,1,1,0,1,1,0,1,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,1,1,0,1,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,1,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "7") (term "1,0,2,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "7") (term "0,2,0")) + (rule "add_literals" (formula "7") (term "0,0,2,0")) + (rule "add_zero_left" (formula "7") (term "0,2,0")) + (rule "applyEq" (formula "2") (term "0,2,0,1,2,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "4") (term "0,2,0,1,1,1,1,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "4") (term "0,2,0,1,1,2,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "31") (term "1,1,0,0,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "1,0,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,1,0,0,2,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,1,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,0,2,0,1,0")) + (rule "applyEq" (formula "33") (term "1,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "33") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,1,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "1,1,0")) + (rule "add_literals" (formula "33") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "33") (term "1,1,1,0")) + (rule "add_zero_right" (formula "33") (term "1,1,0")) + (rule "applyEq" (formula "3") (term "1,1,1,0,1,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,1,1,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "3") (term "1,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "24") (term "1")) + (rule "add_literals" (formula "24") (term "0,1")) + (rule "applyEq" (formula "31") (term "1,1,0,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0,1,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,1,0,1,0")) + (rule "add_zero_left" (formula "31") (term "0,1,0,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "31") (term "1,0,1,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,1,0,1,0")) + (rule "applyEq" (formula "2") (term "1,1,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "2") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "2") (term "0,2,0,2,0,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "30") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "1,0,0,1,0")) + (rule "add_literals" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,0,1,0")) + (rule "applyEq" (formula "3") (term "0,1,1,0,0,1,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,2,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,2,0,1,0")) + (rule "applyEq" (formula "3") (term "1,0,2,3,0,1,1,1,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,3,0,1,1,1,1,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,3,0,1,1,1,1,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,3,0,1,1,1,1,0,1,0")) + (rule "applyEq" (formula "3") (term "1,0,2,3,0,1,1,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,3,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,3,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,3,0,1,1,2,0,1,0")) + (rule "applyEq" (formula "2") (term "1,0,2,3,0,2,0,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,3,0,2,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,2,3,0,2,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,2,3,0,2,0,0,0")) + (rule "applyEq" (formula "3") (term "0,1,1,1,0,1,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,1,2,0,1,0")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "3") (term "0,1,1,1,0,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,2,0,1,0")) + (rule "applyEq" (formula "33") (term "0,2,0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "applyEq" (formula "3") (term "0,2,0,1,2,1,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "1") (term "0,2,0,2,0,0,1,1,0") (ifseqformula "4")) + (rule "applyEq" (formula "31") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "1,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,1,0")) + (rule "applyEq" (formula "30") (term "1,1,0,2,1,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "30") (term "1,0,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "1,0,2,1,0,1,0")) + (rule "add_literals" (formula "30") (term "1,1,1,0,2,1,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,1,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,2,1,0,1,0")) + (rule "applyEq" (formula "3") (term "1,0,0,2,1,1,2,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,2,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,2,1,1,2,0,1,0")) + (rule "applyEq" (formula "31") (term "1,1,0,0,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "1,0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,1,0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,0,1,0")) + (rule "applyEq" (formula "1") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "1") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0,1,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0,1,1,0")) + (rule "add_zero_left" (formula "1") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "1,0,1,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,1,1,0")) + (rule "applyEq" (formula "3") (term "1,0,2,3,0,1,2,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,3,0,1,2,1,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,3,0,1,2,1,1,0")) + (rule "add_zero_left" (formula "3") (term "0,2,3,0,1,2,1,1,0")) + (rule "applyEq" (formula "1") (term "1,0,2,3,0,2,0,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "1") (term "0,2,3,0,2,0,0,1,1,0")) + (rule "add_literals" (formula "1") (term "0,0,2,3,0,2,0,0,1,1,0")) + (rule "add_zero_left" (formula "1") (term "0,2,3,0,2,0,0,1,1,0")) + (rule "applyEq" (formula "21") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "21") (term "1")) + (rule "add_literals" (formula "21") (term "0,1")) + (rule "add_zero_left" (formula "21") (term "1")) + (rule "applyEq" (formula "3") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,1,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,1,1,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2" (formula "3") (term "1,0,1,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,1,1,0")) + (rule "applyEq" (formula "30") (term "1,1,0,1,1,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "30") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "1,0,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,1,0,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,1,0,1,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "7")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Case 2" + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "32") (term "0") (userinteraction)) + (rule "equalityToSeqGetAndSeqLenRight" (formula "32") (inst "iv=iv") (userinteraction)) + (rule "andRight" (formula "32") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,0")) + (rule "eqSymm" (formula "32")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_elimSub" (formula "32") (term "1,0,0")) + (rule "polySimp_elimSub" (formula "32") (term "2,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "2,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,1,0,1")) + (rule "polySimp_addComm1" (formula "32") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "lenOfSeqDef" (formula "32") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "lenOfSwap" (formula "32") (term "0")) + (rule "lenOfSeqConcat" (formula "32") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "lenOfSeqConcat" (formula "32") (term "0,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addComm0" (formula "32") (term "0,1")) + (rule "lenOfSeqSub" (formula "32") (term "1,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,1,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,1,0,1")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,1,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,1,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0,1")) + (rule "lenOfSeqSub" (formula "32") (term "1,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1")) + (rule "times_zero_2" (formula "32") (term "1,1,1,1")) + (rule "add_zero_right" (formula "32") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,1")) + (rule "add_zero_right" (formula "32") (term "0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,1")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "replace_known_left" (formula "32") (term "0,1,0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "32") (term "1,1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "32") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,1,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,1,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,1,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,1,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,1,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,1,1")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,1,1")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,1,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,1,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,1,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,1,1")) + (rule "add_zero_right" (formula "31") (term "0,0,1,1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "29") (term "2,0,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "27") (term "3,0,2,0,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0,1,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0,1,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,1,1")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0,1,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0,0")) + (rule "wellFormedAnon" (formula "20") (term "1,0")) + (rule "wellFormedAnon" (formula "20") (term "0,1,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0,1,1") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,0,1") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0,1")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0,1")) + (rule "cut_direct" (formula "21") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEqRigid" (formula "14") (term "1,1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,2,0,0,0,0") (ifseqformula "21")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "21") (term "1,1,0,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "22") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "23") (term "0,2,0,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0,1") (ifseqformula "20")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "18") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "19")) + (rule "applyEqRigid" (formula "18") (term "1,3,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "13") (term "1,1,1,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "0,2,1") (ifseqformula "19")) + (rule "applyEqRigid" (formula "17") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,0")) + (rule "times_zero_1" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEqRigid" (formula "19") (term "1,1,0,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "20") (term "2,1,0,1,1,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "2") (term "0,2,1,1") (ifseqformula "18")) + (rule "applyEqRigid" (formula "17") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "18")) + (rule "applyEqRigid" (formula "17") (term "1,1,1,0,0,1,0,1") (ifseqformula "18")) + (rule "applyEq" (formula "19") (term "2,1,0,1,1,0,1,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "17") (term "2,1,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "21") (term "2,1,0,2,0,1,0") (ifseqformula "18")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "1,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0,0")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0,1")) + (rule "ifthenelse_split" (formula "24") (term "1,1")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "polySimp_addAssoc" (formula "25") (term "1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "1")) + (rule "add_literals" (formula "25") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "orRight" (formula "25")) + (rule "polySimp_homoEq" (formula "26")) + (rule "mul_literals" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "26")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "17") (ifseqformula "1")) + (rule "andLeft" (formula "17")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0")) + (rule "add_zero_right" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "closeFalse" (formula "17")) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "add_zero_right" (formula "25") (term "1")) + (rule "inEqSimp_geqRight" (formula "24")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "4") (ifseqformula "1")) + (rule "applyEq" (formula "24") (term "0,2,0") (ifseqformula "4")) + (rule "applyEq" (formula "24") (term "0,2,1") (ifseqformula "4")) + (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "applyEq" (formula "23") (term "2,1,0,2,0,0,0,0") (ifseqformula "4")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "12") (term "1,1,1,0,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "12") (term "1,1,0,0")) + (rule "add_literals" (formula "12") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "12") (term "1,1,0,0")) + (rule "applyEq" (formula "17") (term "1,1,0,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0,1") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "17") (term "1,1,0,0,1")) + (rule "add_literals" (formula "17") (term "0,1,1,0,0,1")) + (rule "applyEq" (formula "17") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "3")) + (rule "applyEq" (formula "19") (term "2,1,0,1,1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "17") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "3")) + (rule "applyEq" (formula "20") (term "2,1,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "17") (term "2,1,0,0,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "21") (term "2,1,0,2,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "19") (term "1,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "2") (term "0,2,1,1") (ifseqformula "3")) + (rule "applyEq" (formula "24") (term "0,1,1,0") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "applyEq" (formula "21") (term "0,2,0,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "13") (term "1,1,0,0")) + (rule "add_literals" (formula "13") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "13") (term "1,1,0,0")) + (rule "applyEq" (formula "19") (term "1,0,0,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "17") (term "2,1,0,1,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "21") (term "1,2,0,0,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "21") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "2,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,2,0,0,0")) + (rule "add_zero_right" (formula "21") (term "2,0,0,0")) + (rule "applyEq" (formula "20") (term "2,1,0,1,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "17") (term "1,1,0,0,0,1,0,1") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "17") (term "1,0,0,0,1,0,1")) + (rule "add_literals" (formula "17") (term "0,1,0,0,0,1,0,1")) + (rule "applyEq" (formula "19") (term "2,1,0,0,1,0,1,0") (ifseqformula "3")) + (rule "applyEq" (formula "2") (term "1,0,2,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,0")) + (rule "add_literals" (formula "2") (term "0,0,2,0")) + (rule "add_zero_left" (formula "2") (term "0,2,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "21") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,1,0")) + (rule "add_literals" (formula "21") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "1,1,0")) + (rule "add_literals" (formula "21") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,1,1,0")) + (rule "add_zero_right" (formula "21") (term "1,1,0")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "applyEq" (formula "24") (term "0,1,1") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "orRight" (formula "24")) + (rule "polySimp_homoEq" (formula "25")) + (rule "mul_literals" (formula "25") (term "1,0")) + (rule "add_zero_right" (formula "25") (term "0")) + (rule "inEqSimp_geqRight" (formula "24")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "19") (term "1") (ifseqformula "4")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "16") (term "1")) + (rule "add_literals" (formula "16") (term "0,1")) + (rule "add_zero_left" (formula "16") (term "1")) + (rule "polySimp_sepPosMonomial" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "24") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_strengthen1" (formula "19") (ifseqformula "26")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "19")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "19") (term "0,0")) + (rule "mul_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "0,1")) + (rule "mul_literals" (formula "28") (term "0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "orRight" (formula "28")) + (rule "polySimp_homoEq" (formula "29")) + (rule "mul_literals" (formula "29") (term "1,0")) + (rule "add_zero_right" (formula "29") (term "0")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1")) + (rule "mul_literals" (formula "29") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "add_zero_left" (formula "1") (term "1")) + (rule "inEqSimp_contradEq3" (formula "29") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "qeq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "1")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "32") (inst "sk=iv_0") (userinteraction)) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "32") (term "0,0,1,1") (userinteraction)) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,0,1")) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,0,1,1")) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,1,1,0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_homoEq" (formula "23")) + (rule "polySimp_homoEq" (formula "26") (term "1")) + (rule "polySimp_elimSub" (formula "34") (term "2,0,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "34") (term "2,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,1")) + (rule "lenOfSeqDef" (formula "2") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,2,1,0,1")) + (rule "lenOfSeqDef" (formula "34") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,1")) + (rule "lenOfSeqDef" (formula "34") (term "2,1,0,0,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "lenOfSeqConcat" (formula "3") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,2,1,0,1")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,2,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,2,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,2,1,0,0,0")) + (rule "lenOfSeqConcat" (formula "3") (term "0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addComm0" (formula "3") (term "0,1")) + (rule "lenOfSeqSub" (formula "3") (term "1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,1")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,1,0,1")) + (rule "mul_literals" (formula "3") (term "0,0,1,1,1,0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,1,1,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "1,1,0,1")) + (rule "lenOfSeqSub" (formula "3") (term "1,1")) + (rule "polySimp_elimSub" (formula "3") (term "1,1,1")) + (rule "times_zero_2" (formula "3") (term "1,1,1,1")) + (rule "add_zero_right" (formula "3") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,0,1")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "34") (term "1,2,0,0,0,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "34") (term "2,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0,0,0,0,0")) + (rule "applyEq" (formula "34") (term "1,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "34") (term "0,1,0,0")) + (rule "applyEqRigid" (formula "34") (term "1,2,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "34") (term "2,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,0,0")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "34") (term "1,1,1,0,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "34") (term "1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "34") (term "0,1,1,0,0,0")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "applyEqRigid" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,2,1,0,1")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,2,1,0,1")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,2,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,2,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,2,1,0,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,2,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "32") (term "3,0,2,0,0,0,0,0,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "32") (term "3,0,2,0,1,0,0,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "4") (term "0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,2,1,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,1,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,1,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,1,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,2,1,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,2,1,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,1,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,0,1")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,1,0,1")) + (rule "qeq_literals" (formula "31") (term "0,0,2,1,0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "31") (term "0,1,0,0,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "31") (term "0,1,0,0,0,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "3") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,2,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,2,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,2,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,2,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,2,1,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,2,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,2,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,1,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,2,1,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "getOfSwap" (formula "28") (term "0")) + (rule "lenOfSeqConcat" (formula "28") (term "1,1,0,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "1,1,0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,1,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,1,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,1,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "28") (term "0,0,1,0,1,1,0,0,0")) + (rule "add_literals" (formula "28") (term "1,0,0,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "0,0,1,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,1,0,1,1,0,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,1,1,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,1,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,1,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,1,0,1,1,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "28") (term "0,0,1,1,0,1,1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,0,0,1,1,0,1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "0,0,1,1,0,1,1,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,1,1,0,1,1,0,0,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "1,1,1,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,1,0,0,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1,0,0,0,0")) + (rule "times_zero_2" (formula "28") (term "1,1,1,1,1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0,0")) + (rule "ifthenelse_negated" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,1,0,1,1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,1,0,1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0,1,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,1,0,1,1,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,1,0,1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0,1,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,0,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,0,0")) + (rule "times_zero_2" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,0")) + (rule "replace_known_left" (formula "28") (term "1,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,1,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "21"))) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "28") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,2,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,2,1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1,2,1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,1,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,1,0,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,1,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,1,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0,1,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,0,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,1,2,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,1,2,1,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,2,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,2,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,2,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,2,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "eqSymm" (formula "27")) + (rule "replace_known_left" (formula "27") (term "0,0,0,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "0,1")) + (rule "eqSymm" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "2,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,2,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,2,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,2,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,2,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,2,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,2,0")) + (rule "times_zero_2" (formula "27") (term "1,1,0,1,1,2,2,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,1,2,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,1,2,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,1,2,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,2,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,2,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,2,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,2,1,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,1,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,1,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,0,1,1,2,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,1,2,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,1,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,1,2,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,1,2,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,2,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,1,2,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,0,1,1,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,1,2,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,1,2,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,1,2,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,0,2,1,1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,2,1,1")) + (rule "getOfSeqSub" (formula "27") (term "2,1,2,1,1")) + (rule "castDel" (formula "27") (term "2,2,1,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0,0,1,1,2,1,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "27") (term "0,1,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,1,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "27") (term "0,0,1,1,0,2,1,2,1,0")) + (rule "add_literals" (formula "27") (term "1,0,0,1,1,0,2,1,2,1,0")) + (rule "times_zero_1" (formula "27") (term "0,0,1,1,0,2,1,2,1,0")) + (rule "add_zero_left" (formula "27") (term "0,1,1,0,2,1,2,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,1,2,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,1,2,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,1,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,2,1,1,2,1,2,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,1,2,1,2,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,2,1,1,2,1,2,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,1,2,1,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,1,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_pullOutFactor3b" (formula "27") (term "0,0,1,0,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,2,1,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,2,1,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0,2,1,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,1,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0,1,0,1,2,1,2,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,2,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,1,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,2,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,2,1,2,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,2,1,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,2,1,2,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,2,1,2,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,1,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,1,2,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,2,1,2,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,1,2,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,2,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,2,1,2,1,1")) + (rule "getOfSeqSub" (formula "27") (term "1,1,1,2,1,1")) + (rule "castDel" (formula "27") (term "2,1,1,1,2,1,1")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,1,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,1,2,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,1,2,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,1,2,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,1,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,2,1,1,1,1,1,2,1,1")) + (rule "polySimp_pullOutFactor2" (formula "27") (term "0,0,2,1,1,1,1,1,2,1,1")) + (rule "add_literals" (formula "27") (term "1,0,0,2,1,1,1,1,1,2,1,1")) + (rule "times_zero_1" (formula "27") (term "0,0,2,1,1,1,1,1,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,2,1,1,1,1,1,2,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,1,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,1,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,1,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,1,1,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,1,1,1,2,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,0,1,1,1,2,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,1,1,1,2,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,1,1,1,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,1,0,1,1,1,2,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,1,1,1,2,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,1,1,1,2,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,1,1,1,2,1,1")) + (rule "add_literals" (formula "27") (term "0,1,0,1,1,1,2,1,1")) + (rule "leq_literals" (formula "27") (term "1,0,1,1,1,2,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,2,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,2,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,2,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,1,2,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,2,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,2,0")) + (rule "castDel" (formula "27") (term "2,2,1,2,0")) + (rule "castDel" (formula "27") (term "1,2,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,0,2,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,0,2,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,2,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,2,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,2,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,1,2,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,2,1")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,2,1")) + (rule "castDel" (formula "27") (term "2,1,1,2,1")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,2,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,2,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,2,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,2,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,2,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,2,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,2,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,2,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,2,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,2,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,2,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,2,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,1,2,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,2,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,2,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,1,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,1,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,1,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,2,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,1,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,0,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,1,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,1,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,1,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,0,2,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,0,2,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1,0,2,1,1,1,0")) + (rule "times_zero_2" (formula "27") (term "1,0,1,0,2,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,0,2,1,1,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "1,0,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,1,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,2,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,1,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,2,1,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,1,1,1")) + (rule "getOfSeqConcat" (formula "27") (term "2,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,2,2,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,2,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,2,2,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,2,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,2,2,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,2,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,2,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,2,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,1,0,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,1,0,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,1,0,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,1,0,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0,2,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,1,0,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,1,2,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,1,2,2,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,2,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,2,2,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,2,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,2,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,2,1,1")) + (rule "getOfSeqSub" (formula "27") (term "1,1,1,1,1")) + (rule "castDel" (formula "27") (term "2,1,1,1,1,1")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,1,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,1,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,1,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,1,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,1,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,1,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,2,1,1,1,1,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,2,1,1,1,1,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,2,1,1,1,1,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,2,1,1,1,1,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,2,1,1,1,1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,1,1,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,1,1,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,1,1,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,1,1,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,1,1,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,1,1,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,1,1,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,1,0,1,1,1,1,1")) + (rule "leq_literals" (formula "27") (term "1,0,1,1,1,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqSub" (formula "27") (term "2,1,1,1")) + (rule "castDel" (formula "27") (term "2,2,1,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,1,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,1,0,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,1,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,1,0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,1,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "27") (term "0,0,0,1,1,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,1,1,2,1,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "27") (term "0,1,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,1,1,0")) + (rule "polySimp_pullOutFactor2" (formula "27") (term "0,0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "27") (term "1,0,0,1,1,0,2,1,1,0")) + (rule "times_zero_1" (formula "27") (term "0,0,1,1,0,2,1,1,0")) + (rule "add_zero_left" (formula "27") (term "0,1,1,0,2,1,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,1,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,1,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,1,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,2,1,1,2,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,1,2,1,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,2,1,1,2,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,1,2,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,1,1,1")) + (rule "polySimp_pullOutFactor3b" (formula "27") (term "0,0,1,0,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,2,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,2,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,1,0,1,2,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0,1,2,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,1,0,1,2,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,1,0,1,2,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,2,1,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,2,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,2,1,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,2,1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,1,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,1,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,2,1,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,2,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,2,1,1,1")) + (rule "getOfSeqSub" (formula "27") (term "2,2,2,1,1")) + (rule "castDel" (formula "27") (term "2,2,2,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,2,2,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,1,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,2,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "27") (term "0,0,1,1,0,2,2,2,1,0")) + (rule "add_literals" (formula "27") (term "1,0,0,1,1,0,2,2,2,1,0")) + (rule "times_zero_1" (formula "27") (term "0,0,1,1,0,2,2,2,1,0")) + (rule "add_zero_left" (formula "27") (term "0,1,1,0,2,2,2,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,2,2,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,2,2,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,2,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,2,1,1,2,2,2,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,1,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,2,1,1,2,2,2,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0,2,1,1,2,2,2,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,2,1,1,2,2,2,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,2,1,1,2,2,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,2,1,1,2,2,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,2,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,0,2,2,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,2,2,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0,2,2,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0,1,2,2,2,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,2,2,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,2,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,2,2,1,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,2,2,2,1,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,1,2,2,2,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,2,2,2,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,2,2,2,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0,1,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,2,2,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,2,2,2,1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,1,2,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,2,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,2,2,2,1,1")) + (rule "getOfSeqConcat" (formula "27") (term "1,2,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,2,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,2,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,2,2,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,2,2,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,2,2,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,2,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,0,2,1,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,0,2,1,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,0,2,1,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0,0,2,1,2,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,2,2,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,1,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,2,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,2,2,1,1")) + (rule "getOfSeqSub" (formula "27") (term "1,1,2,2,1,1")) + (rule "castDel" (formula "27") (term "2,1,1,2,2,1,1")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,2,2,1,1")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,2,2,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,2,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,2,2,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,2,2,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,2,2,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,2,2,1,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,2,2,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,2,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,1,1,2,2,1,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,1,1,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,1,1,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,1,2,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,1,1,2,2,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,2,2,1,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,2,2,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,1,2,2,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,2,2,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,2,2,1,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,1,2,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,1,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,1,2,2,1,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,1,2,2,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,1,2,2,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,1,2,2,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,1,2,2,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,1,2,2,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,1,2,2,1,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,1,2,2,1,1")) + (rule "getOfSeqSub" (formula "27") (term "2,0")) + (rule "castDel" (formula "27") (term "2,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0")) + (rule "castDel" (formula "27") (term "1,1,2,0")) + (rule "castDel" (formula "27") (term "2,1,2,0")) + (rule "eqSymm" (formula "27")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,2,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,2,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,1")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "24") (term "0")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "getOfSeqSub" (formula "29") (term "2,2,0")) + (rule "castDel" (formula "29") (term "2,2,2,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,0,2,2,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,1,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,1,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,1,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,2,2,0")) + (rule "polySimp_pullOutFactor2" (formula "29") (term "0,0,1,1,0,2,2,0")) + (rule "add_literals" (formula "29") (term "1,0,0,1,1,0,2,2,0")) + (rule "times_zero_1" (formula "29") (term "0,0,1,1,0,2,2,0")) + (rule "add_zero_left" (formula "29") (term "0,1,1,0,2,2,0")) + (rule "getOfSeqDef" (formula "29") (term "1,2,2,0")) + (rule "castDel" (formula "29") (term "1,1,2,2,0")) + (rule "castDel" (formula "29") (term "2,1,2,2,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,2,1,1,2,2,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,2,1,1,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,0,0,2,1,1,2,2,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0,2,1,1,2,2,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,2,1,1,2,2,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,2,1,1,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,1,0,2,2,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,0,2,2,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0,2,2,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,2,2,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,0,0,1,0,1,2,2,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0,0,1,0,1,2,2,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,0,0,1,0,1,2,2,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,0,0,0,0,1,0,1,2,2,0")) + (rule "add_literals" (formula "29") (term "1,0,0,0,0,0,1,0,1,2,2,0")) + (rule "times_zero_1" (formula "29") (term "0,0,0,0,0,1,0,1,2,2,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0,1,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,2,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,2,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,1,2,2,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1,2,2,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,2,2,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29") (term "0,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29") (term "0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,2,2,0")) + (rule "pullOutSelect" (formula "29") (term "1,1,2,1") (inst "selectSK=arr_5")) + (rule "applyEq" (formula "30") (term "1,1,1,1,1") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "20") (ifseqformula "29")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "30") (term "1,1,1,1,2,0") (inst "selectSK=arr_6")) + (rule "applyEq" (formula "31") (term "1,1,1,1,2,2,1,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet1111000000010110011_12" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "pullOutSelect" (formula "31") (term "1,1,2,1,2,1,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_homoEq" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "pullOutSelect" (formula "32") (term "1,1,2,2,2,1,0") (inst "selectSK=arr_8")) + (rule "applyEq" (formula "33") (term "1,1,2,2,0") (ifseqformula "1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "pullOutSelect" (formula "33") (term "1,1,2,1,1,0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0")) + (rule "pullOutSelect" (formula "5") (term "2,0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "14"))) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "narrowSelectArrayType" (formula "5") (term "1,0") (ifseqformula "19") (ifseqformula "34")) + (rule "narrowSelectArrayType" (formula "5") (term "2,0") (ifseqformula "13") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "32") (term "0")) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "32") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,2,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "35")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "narrowSelectArrayType" (formula "3") (term "1,0") (ifseqformula "26") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "36")) (ifInst "" (formula "16"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "27") (ifseqformula "36")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,0,1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "37")) (ifInst "" (formula "17"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "28") (ifseqformula "37")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,1,0,0")) + (rule "pullOutSelect" (formula "5") (term "2,0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "5")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "38")) (ifInst "" (formula "18"))) + (rule "elementOfArrayRangeConcrete" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "narrowSelectArrayType" (formula "5") (term "2,0") (ifseqformula "17") (ifseqformula "38")) + (rule "narrowSelectArrayType" (formula "5") (term "1,0") (ifseqformula "23") (ifseqformula "38")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "5") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,0,0")) + (rule "pullOutSelect" (formula "3") (term "2,0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "39")) (ifInst "" (formula "19"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "narrowSelectArrayType" (formula "3") (term "2,0") (ifseqformula "18") (ifseqformula "39")) + (rule "narrowSelectArrayType" (formula "3") (term "1,0") (ifseqformula "24") (ifseqformula "39")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0,1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")) (ifInst "" (formula "20"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "2,0") (ifseqformula "19") (ifseqformula "40")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "25") (ifseqformula "40")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0,1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,0,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,0")) + (rule "ifthenelse_split" (formula "15") (term "0")) + (branch "hole_0 <= -2 + end TRUE" + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "0,1,0")) + (rule "mul_literals" (formula "16") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_rightDist" (formula "16") (term "0,1")) + (rule "mul_literals" (formula "16") (term "0,0,1")) + (rule "replace_known_left" (formula "42") (term "0,1,1,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "16")) (ifInst "" (formula "16"))) + (rule "replace_known_left" (formula "11") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "12") (term "2,0") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "33") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "qeq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "true_left" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "14")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "14")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "34") (term "0,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_imp2or" (formula "36") (term "0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "29") (term "0")) + (rule "wellFormedAnon" (formula "29") (term "1,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "19")) (ifInst "" (formula "25")) (ifInst "" (formula "30"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "36") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,1,0,0")) + (rule "ifthenelse_split" (formula "6") (term "0,0,0")) + (branch "hole_0 >= 2 + begin TRUE" + (rule "replace_known_left" (formula "8") (term "0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "42") (term "0,0,0,0,1,2,1,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "eqSymm" (formula "42") (term "0,2,1,2,0")) + (rule "eqSymm" (formula "42") (term "0,2,1,2,2,1,0")) + (rule "replace_known_left" (formula "1") (term "0,0,1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "10") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "10")) + (rule "applyEqReverse" (formula "42") (term "1,1,2,1,2,1,0") (ifseqformula "10")) + (rule "hideAuxiliaryEq" (formula "10")) + (rule "replace_known_left" (formula "4") (term "0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "6")) (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "9") (term "0,0,1,0,2,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "5") (term "0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "2") (term "0,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "6")) (ifInst "" (formula "6"))) + (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_homoEq" (formula "7") (term "0,0")) + (rule "polySimp_homoEq" (formula "41") (term "0,2,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,2,1,0")) + (rule "polySimp_homoEq" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,2,2,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,2,2,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,2,2,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,1,0,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "1,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,2,2,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,2,1,0")) + (rule "add_literals" (formula "8") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,2,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,2,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,2,2,0")) + (rule "add_literals" (formula "1") (term "1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,2,2,0")) + (rule "inEqSimp_commuteGeq" (formula "41") (term "0,2,2,1,0")) + (rule "inEqSimp_commuteGeq" (formula "41") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,2,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,2,1,0")) + (rule "add_literals" (formula "2") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "41") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,2,2,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,2,2,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,2,2,0")) + (rule "add_zero_right" (formula "4") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,2,1,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,2,1,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "5") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "1,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,1,1,0")) + (rule "polySimp_pullOutFactor1" (formula "41") (term "0,0,1,1,0")) + (rule "add_literals" (formula "41") (term "1,0,0,1,1,0")) + (rule "times_zero_1" (formula "41") (term "0,0,1,1,0")) + (rule "leq_literals" (formula "41") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,2,2,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,2,2,0")) + (rule "add_literals" (formula "8") (term "1,0,0,2,2,0")) + (rule "times_zero_1" (formula "8") (term "0,0,2,2,0")) + (rule "add_zero_left" (formula "8") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,2,1,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,2,1,0")) + (rule "add_literals" (formula "8") (term "1,0,0,2,1,0")) + (rule "times_zero_1" (formula "8") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "8") (term "0,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,2,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "1") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,2,2,0")) + (rule "add_literals" (formula "4") (term "0,0,0,2,2,0")) + (rule "add_zero_left" (formula "4") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,2,2,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,2,2,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,2,2,0")) + (rule "add_literals" (formula "1") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,2,1,0")) + (rule "add_zero_left" (formula "9") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "9") (term "0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "1,0,0,2,1,0")) + (rule "times_zero_1" (formula "9") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "9") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,2,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "5") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "equal_literals" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,2,1,1,2,1,0")) + (rule "equal_literals" (formula "40") (term "0,2,1,1,2,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,1,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "1") (term "0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,1,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "7") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,1,0,1,2,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,1,2,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "40") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,2,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,2,1,2,1,0")) + (rule "polySimp_pullOutFactor1" (formula "40") (term "0,0,0,2,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,2,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "0,0,0,2,1,2,1,0")) + (rule "qeq_literals" (formula "40") (term "0,0,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "replace_known_left" (formula "4") (term "0,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0,2,2,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,2,2,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,2,2,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,0,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,0,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,0,2,2,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,0,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,0,2,2,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,0,2,2,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,0,2,2,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,1,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0")) + (rule "leq_literals" (formula "40") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,2,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,2,2,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,1,2,1,0")) + (rule "leq_literals" (formula "40") (term "0,1,2,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,2,2,2,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "replace_known_left" (formula "40") (term "0,0,1,2,2,2,1,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "1,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,1,2,2,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,0,1,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,0,1,2,2,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,0,1,2,2,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,0,1,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,0,1,2,2,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0,1,2,2,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,2,2,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,2,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_pullOutFactor2" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "1,0,0,0,0,1,2,2,0")) + (rule "times_zero_1" (formula "40") (term "0,0,0,0,1,2,2,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,1,2,2,0")) + (rule "replace_known_left" (formula "40") (term "0,0,1,2,2,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,2,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,2,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,2,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_sepPosMonomial" (formula "6") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0,0")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "39") (term "1,1,1,1") (ifseqformula "9")) + (rule "applyEqReverse" (formula "8") (term "2,0") (ifseqformula "9")) + (rule "applyEqReverse" (formula "39") (term "1,2,1") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "38") (term "1,1,1,2,2,1,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "38") (term "1,1,1,2,0") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,0,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,2,2,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,2,2,2,1,0")) + (rule "replace_known_left" (formula "37") (term "1,0,2,2,2,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,2,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,2,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,2,2,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,2,2,2,1,0")) + (rule "replace_known_left" (formula "37") (term "0,1,2,2,2,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,1,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,2,2,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,2,2,0")) + (rule "replace_known_left" (formula "37") (term "1,0,2,2,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,2,2,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,2,2,0")) + (rule "replace_known_left" (formula "37") (term "0,1,2,2,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "36") (term "0,0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "33") (term "0,1,2,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,1,2,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,2,1,0")) + (rule "qeq_literals" (formula "33") (term "0,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,0,1,2,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,1,2,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption0" (formula "32") (term "0,1,2,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,2,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,2,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption0" (formula "32") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "cut_direct" (formula "26") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEqRigid" (formula "27") (term "1,1,1,0,0,1,0") (ifseqformula "26")) + (rule "applyEq" (formula "30") (term "0,2,1") (ifseqformula "26")) + (rule "applyEq" (formula "1") (term "0,0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,0,1,0,1,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "18") (term "0") (ifseqformula "26")) + (rule "applyEq" (formula "29") (term "2,1,0,2,0,1,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "29") (term "2,1,0,2,0,0,0,0") (ifseqformula "26")) + (rule "applyEq" (formula "29") (term "0,2,0,1,0,0") (ifseqformula "26")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,0")) + (rule "times_zero_1" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEqRigid" (formula "27") (term "1,1,1,0,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "21") (term "1,1,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "31") (term "0,2,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "31") (term "0,2,1,2,1,2,2,0") (ifseqformula "25")) + (rule "applyEq" (formula "26") (term "2,1,0,1,1,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "8") (term "0,2,1,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "26") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "20") (term "3,0") (ifseqformula "25")) + (rule "applyEq" (formula "31") (term "0,2,1,2,1,1") (ifseqformula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_literals" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_literals" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "18") (term "0")) + (rule "wellFormedAnon" (formula "18") (term "1,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "9")) (ifInst "" (formula "15")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0,1,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "commute_or" (formula "18") (term "0,0,1,0")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "28") (term "2,1,1")) + (branch "iv_0 = begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "eqSymm" (formula "29")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "28") (term "1,1,1,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "28") (term "1,2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "applyEq" (formula "27") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "orRight" (formula "27")) + (rule "notRight" (formula "27")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "29") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "29") (term "1,2,2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "29") (term "1,1,1,2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "iv_0 <= begin * -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "29") (term "1,2,2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "29") (term "1,1,1,1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "29") (term "1,1,1,2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "29") (term "1,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "27")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "1")) (ifInst "" (formula "1"))) + (rule "inEqSimp_contradEq3" (formula "27") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "false_right" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "add_zero_left" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "shift_paren_or" (formula "17") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (rule "allLeft" (formula "16") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_10" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_literals" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "28") (term "1,2,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "25") (term "0,1,0,0") (ifseqformula "16")) + (rule "ifthenelse_split" (formula "28") (term "1,2,0")) + (branch "iv_0 <= -2 + begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "29") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "orRight" (formula "29")) + (rule "notRight" (formula "29")) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "29") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,2,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,2,0")) + (rule "add_literals" (formula "29") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "closeTrue" (formula "29")) + ) + (branch "iv_0 <= -2 + begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "29") (term "0,2,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "2")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "1"))) + (rule "eqSymm" (formula "30")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0")) + (rule "add_zero_left" (formula "8") (term "0,0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "29") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,2,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,2,0")) + (rule "add_literals" (formula "29") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "closeTrue" (formula "29")) + ) + ) + (branch "iv_0 <= begin * -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "29") (term "1,1,1,1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "29") (term "1,2,1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "29") (term "1,1,1,2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "29") (term "1,2,2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_right" (formula "28") (term "0,1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "false_right" (formula "27")) + (rule "inEqSimp_contradEq7" (formula "27") (term "0,2,1,2,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,2,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,2,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,2,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,2,1,2,0")) + (rule "leq_literals" (formula "27") (term "0,0,2,1,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradEq7" (formula "27") (term "0,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "orRight" (formula "27")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_strengthen1" (formula "25") (ifseqformula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_imp2or" (formula "27") (term "0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "k_0 >= begin + iv_0 TRUE" + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "32") (term "1,1,1,1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "32") (term "1,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "ifthenelse_split" (formula "31") (term "2,1,1")) + (branch "iv_0 = begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "32") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "eqSymm" (formula "32")) + (rule "replace_known_left" (formula "5") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "applyEq" (formula "31") (term "0,0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,2,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,2,0")) + (rule "add_zero_right" (formula "31") (term "0,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,2,0")) + (rule "leq_literals" (formula "31") (term "0,2,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "1,0,1")) + (rule "times_zero_1" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "7") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "applyEq" (formula "31") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "orRight" (formula "31")) + (rule "notRight" (formula "31")) + (rule "replace_known_left" (formula "32") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "32") (term "0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "32")) + (rule "replace_known_right" (formula "4") (term "0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "32") (term "1,2,2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "32") (term "1,1,1,2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "commute_or" (formula "25") (term "0,0,1,0")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_9" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "1,2,1,2,0") (ifseqformula "18")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "all_pull_out3" (formula "26") (term "0")) + (rule "shift_paren_or" (formula "26") (term "0,0")) + (rule "shift_paren_or" (formula "26") (term "0,0,0")) + (rule "ifthenelse_split" (formula "32") (term "1,1")) + (branch "iv_0 <= -1 + begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "33") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "1"))) + (rule "inEqSimp_contradEq3" (formula "32") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_subsumption0" (formula "32") (term "0,1") (ifseqformula "1")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "allLeft" (formula "28") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,0,1")) + (rule "add_literals" (formula "28") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "28") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_7" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "33")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "1,0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "28") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "28")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "32") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "allLeft" (formula "27") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_19")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "34")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "allLeft" (formula "28") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet0101001111000000010110011_36" (formula "28") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0101001111000000010110011_37" (formula "28") (term "1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,0,1")) + (rule "add_literals" (formula "28") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "28") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_7" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "allLeft" (formula "28") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "28") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_7" (formula "28") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "1,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0")) + (rule "leq_literals" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_20")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "35")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteGeq" (formula "29")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,0")) + (rule "replace_known_left" (formula "28") (term "1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "allLeft" (formula "21") (inst "t=add(begin, iv_0)")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "21") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "leq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_21")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "36")) (ifInst "" (formula "12"))) + (rule "eqSymm" (formula "22") (term "1")) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "eqSymm" (formula "21") (term "1")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "24") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_10" (formula "24") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_22")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "37")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "ifthenelse_split" (formula "37") (term "0")) + (branch "iv_0 = -1 + begin * -1 + hole_0 TRUE" + (rule "eqSymm" (formula "38")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,1")) + (rule "add_literals" (formula "3") (term "1,1,0,1")) + (rule "times_zero_1" (formula "3") (term "1,0,1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "applyEq" (formula "38") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "38") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,2,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,2,0")) + (rule "add_literals" (formula "38") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "closeTrue" (formula "38")) + ) + (branch "iv_0 = -1 + begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "38") (term "0,2,0") (ifseqformula "37")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "37")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "replace_known_left" (formula "38") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "38")) + ) + ) + (branch "iv_0 <= -1 + begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "33") (term "0,2,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "33")) + (rule "eqSymm" (formula "33")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "replace_known_left" (formula "33") (term "0,2,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradEq7" (formula "33") (term "0,1") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,1")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "33") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0,0,1")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "33") (term "0,0,0,1")) + (rule "leq_literals" (formula "33") (term "0,0,1")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "replace_known_left" (formula "33") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "orRight" (formula "33")) + (rule "notRight" (formula "33")) + (rule "inEqSimp_contradEq7" (formula "33") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "k_0 >= begin + iv_0 FALSE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "32") (term "1,1,1,1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "32") (term "1,2,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1")) + (rule "inEqSimp_contradEq7" (formula "32") (term "0,0") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_contradEq7" (formula "4") (term "0,0") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "32") (term "1,1,1,2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "32") (term "1,2,2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradEq7" (formula "31") (term "0,0") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "leq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (term "0,2,1,1") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,1,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,2,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,2,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,2,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,2,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,1,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,1")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,2,1,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,1")) + (rule "add_literals" (formula "31") (term "0,0,0,2,1,1")) + (rule "leq_literals" (formula "31") (term "0,0,2,1,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (term "0,2,1,0") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,2,1,0")) + (rule "leq_literals" (formula "31") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,2,1") (ifseqformula "23")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,2,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,2,0")) + (rule "qeq_literals" (formula "31") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1")) + (rule "leq_literals" (formula "31") (term "0,0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,1,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,1,0")) + (rule "leq_literals" (formula "31") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,2,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,0")) + (rule "add_literals" (formula "31") (term "0,0,0,2,0")) + (rule "qeq_literals" (formula "31") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "orRight" (formula "31")) + (rule "notRight" (formula "31")) + (rule "inEqSimp_contradInEq0" (formula "24") (ifseqformula "1")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0")) + (rule "add_zero_right" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0")) + (rule "add_literals" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "closeFalse" (formula "24")) + ) + ) + ) + (branch "hole_0 >= 2 + begin FALSE" + (rule "replace_known_right" (formula "4") (term "0,0,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "4") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "4") (term "1,0,2,2,0")) + (rule "add_zero_right" (formula "4") (term "0,2,1,0")) + (rule "add_zero_right" (formula "4") (term "0,2,2,0")) + (rule "replace_known_right" (formula "42") (term "0,0,0,1,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "42") (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "eqSymm" (formula "42") (term "0,2,1,2,0")) + (rule "eqSymm" (formula "42") (term "0,2,1,2,2,1,0")) + (rule "replace_known_right" (formula "7") (term "0,0,1,0,2,2,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "7") (term "1,0,2,2,0")) + (rule "mul_literals" (formula "7") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "7") (term "0,2,2,0")) + (rule "add_zero_right" (formula "7") (term "0,2,1,0")) + (rule "replace_known_right" (formula "8") (term "0,0,1,0,2,1,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "8") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "2") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "2") (term "0,2,1,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "40")) (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "1") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "1") (term "1,0,2,2,0")) + (rule "add_zero_right" (formula "1") (term "0,2,1,0")) + (rule "add_zero_right" (formula "1") (term "0,2,2,0")) + (rule "replace_known_right" (formula "5") (term "0,0,1,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "40")) (ifInst "" (formula "40"))) + (rule "mul_literals" (formula "5") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "5") (term "0,2,1,0")) + (rule "replace_known_right" (formula "9") (term "0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "9")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_homoEq" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "42") (term "0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_homoEq" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "40")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "42") (term "0,2,2,1,0")) + (rule "inEqSimp_commuteGeq" (formula "42") (term "0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,1,2,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,1,2,2,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,1,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,2,2,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,2,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,2,2,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,1,2,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,2,2,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,1,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,1,2,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,1,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,2,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,2,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,2,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "42") (term "0,1,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,2,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,2,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,2,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,2,2,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,2,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "1,0,2,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,0,2,2,0")) + (rule "add_zero_right" (formula "42") (term "0,1,0,2,2,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,2,1,2,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,2,1,2,1,0")) + (rule "polySimp_sepPosMonomial" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "42") (term "0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,2,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,2,2,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,1,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,2,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,2,2,2,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1,2,2,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,0,0,1,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,1,2,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,2,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,2,0")) + (rule "mul_literals" (formula "42") (term "1,0,1,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,2,2,2,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,2,2,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,1,0,2,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,2,1,2,1,0")) + (rule "replace_known_left" (formula "42") (term "0,0,2,1,2,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_contradEq3" (formula "4") (term "0,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradEq7" (formula "41") (term "0,2,1,1,2,1,0") (ifseqformula "17")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,2,1,1,2,1,0")) + (rule "leq_literals" (formula "41") (term "0,0,2,1,1,2,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_subsumption6" (formula "7") (term "0,0,0") (ifseqformula "17")) + (rule "greater_literals" (formula "7") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_subsumption6" (formula "2") (term "0,0,0") (ifseqformula "17")) + (rule "greater_literals" (formula "2") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption6" (formula "8") (term "0,0,0") (ifseqformula "17")) + (rule "greater_literals" (formula "8") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_subsumption6" (formula "3") (term "0,0,0") (ifseqformula "17")) + (rule "greater_literals" (formula "3") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption6" (formula "41") (term "0,0,1,2,1,2,1,0") (ifseqformula "17")) + (rule "greater_literals" (formula "41") (term "0,0,0,0,1,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0,1,2,1,2,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "qeq_literals" (formula "41") (term "0,0,0,1,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_contradInEq1" (formula "41") (term "0,1,2,0") (ifseqformula "12")) + (rule "qeq_literals" (formula "41") (term "0,0,1,2,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_contradInEq1" (formula "41") (term "0,1,1,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,1,0")) + (rule "leq_literals" (formula "41") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_contradInEq1" (formula "41") (term "0,1,2,2,1,0") (ifseqformula "12")) + (rule "qeq_literals" (formula "41") (term "0,0,1,2,2,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_contradInEq1" (formula "41") (term "0,1,2,1,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,2,1,0")) + (rule "leq_literals" (formula "41") (term "0,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1")) + (rule "replace_known_left" (formula "9") (term "0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEqReverse" (formula "42") (term "1,1,1,2,1,0") (ifseqformula "9")) + (rule "hideAuxiliaryEq" (formula "9")) + (rule "replace_known_left" (formula "41") (term "0,1,1,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "41")) + (rule "applyEq" (formula "41") (term "0,0,0,0,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0,0")) + (rule "applyEq" (formula "41") (term "0,0,0,1,2,1,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "41") (term "0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "0,0,1,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,0,1,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,1,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,1,2,1,0")) + (rule "applyEq" (formula "41") (term "0,1,1,1,0,1,2,2,2,1,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "41") (term "1,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,1,1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "41") (term "0,1,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "41") (term "1,1,0,1,2,2,2,1,0")) + (rule "replace_known_left" (formula "41") (term "1,0,1,2,2,2,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "41")) + (rule "applyEq" (formula "2") (term "0,1,0,2,2,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,2,2,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,2,2,0")) + (rule "add_literals" (formula "2") (term "0,0,0,2,2,0")) + (rule "add_zero_left" (formula "2") (term "0,0,2,2,0")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,2,2,0")) + (rule "add_literals" (formula "2") (term "1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,2,2,0")) + (rule "applyEq" (formula "38") (term "1,1,1,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "38") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,1,0")) + (rule "add_literals" (formula "38") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "38") (term "1,1,0")) + (rule "add_literals" (formula "38") (term "1,1,1,1,0")) + (rule "times_zero_1" (formula "38") (term "1,1,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0")) + (rule "applyEq" (formula "3") (term "0,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor0" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0")) + (rule "applyEq" (formula "12") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "12") (term "0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "applyEq" (formula "6") (term "1,0,2,1,0") (ifseqformula "16")) + (rule "polySimp_addAssoc" (formula "6") (term "0,2,1,0")) + (rule "add_literals" (formula "6") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "6") (term "0,2,1,0")) + (rule "applyEq" (formula "8") (term "0,1,1,0,0") (ifseqformula "16")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0,0")) + (rule "replace_known_left" (formula "8") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "applyEq" (formula "7") (term "0,0,0,0") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "7") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "applyEq" (formula "38") (term "0,2,0") (ifseqformula "15")) + (rule "applyEq" (formula "33") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "8") (term "1,0,2,1,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "8") (term "0,2,1,0")) + (rule "add_literals" (formula "8") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "8") (term "0,2,1,0")) + (rule "applyEq" (formula "13") (term "1,0,2,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "13") (term "0,2,0")) + (rule "add_literals" (formula "13") (term "0,0,2,0")) + (rule "add_zero_left" (formula "13") (term "0,2,0")) + (rule "applyEq" (formula "7") (term "0,1,0,2,2,0") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,2,2,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,2,2,0")) + (rule "add_literals" (formula "7") (term "0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,2,2,0")) + (rule "add_literals" (formula "7") (term "1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,2,2,0")) + (rule "applyEq" (formula "2") (term "0,1,0,2,1,0") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,2,1,0")) + (rule "add_literals" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,2,1,0")) + (rule "applyEq" (formula "4") (term "0,1,1,0,0,0") (ifseqformula "15")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "1,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "replace_known_left" (formula "4") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "36") (term "1,2,0,0,0") (ifseqformula "15")) + (rule "polySimp_addAssoc" (formula "36") (term "2,0,0,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,2,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "36") (term "2,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,2,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,2,0,0,0")) + (rule "add_literals" (formula "36") (term "2,0,0,0")) + (rule "applyEq" (formula "5") (term "0,1,1,0,0,0") (ifseqformula "15")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "1,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEq" (formula "2") (term "0,0,0,0") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "0,0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "applyEq" (formula "7") (term "0,1,0,2,1,0") (ifseqformula "15")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,2,1,0")) + (rule "add_literals" (formula "7") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "7") (term "0,2,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,2,1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "15") (term "0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,0")) + (rule "times_zero_1" (formula "15") (term "0")) + (rule "leq_literals" (formula "15")) + (rule "true_left" (formula "15")) + (rule "applyEq" (formula "2") (term "0,1,0,2,1,0") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0" (formula "2") (term "0,2,1,0")) + (rule "add_literals" (formula "2") (term "1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,2,1,0")) + (rule "applyEq" (formula "7") (term "1,1,0,0") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "7") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "7") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "1,1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,1,0,0")) + (rule "add_zero_right" (formula "7") (term "1,0,0")) + (rule "applyEq" (formula "31") (term "1,1") (ifseqformula "14")) + (rule "applyEq" (formula "30") (term "1,1") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "30") (term "1")) + (rule "add_literals" (formula "30") (term "0,1")) + (rule "add_zero_left" (formula "30") (term "1")) + (rule "applyEq" (formula "37") (term "1,0,2,1,1,1,2,1,0") (ifseqformula "14")) + (rule "polySimp_addAssoc" (formula "37") (term "0,2,1,1,1,2,1,0")) + (rule "add_literals" (formula "37") (term "0,0,2,1,1,1,2,1,0")) + (rule "add_zero_left" (formula "37") (term "0,2,1,1,1,2,1,0")) + (rule "applyEq" (formula "37") (term "0,0,1,0,0") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1,0,0")) + (rule "applyEq" (formula "37") (term "0,0,0,1,1,2,1,0") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,0,1,1,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,0,1,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,1,2,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,1,2,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,0,0,0,1,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,1,1,2,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0,1,1,2,1,0")) + (rule "applyEq" (formula "37") (term "0,1,1,0,1,2,2,2,1,0") (ifseqformula "14")) + (rule "polySimp_pullOutFactor1" (formula "37") (term "1,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,1,2,2,2,1,0")) + (rule "replace_known_left" (formula "37") (term "0,1,2,2,2,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "37")) + (rule "applyEq" (formula "3") (term "0,1,1,0,0") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "3") (term "1,0,1,0,0") (ifseqformula "13")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "3") (term "0,1,0,0")) + (rule "applyEq" (formula "3") (term "1,0,0,2,1,0") (ifseqformula "13")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "3") (term "0,0,2,1,0")) + (rule "applyEq" (formula "36") (term "0,1,1,1,0,1,2,2,0") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0,1,2,2,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,1,0,1,2,2,0")) + (rule "polySimp_addComm0" (formula "36") (term "1,1,0,1,2,2,0")) + (rule "replace_known_left" (formula "36") (term "1,0,1,2,2,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEq" (formula "3") (term "1,0,0,2,2,0") (ifseqformula "13")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,2,0")) + (rule "add_literals" (formula "3") (term "0,0,0,2,2,0")) + (rule "add_zero_left" (formula "3") (term "0,0,2,2,0")) + (rule "applyEq" (formula "36") (term "0,1,1,1,0,2,2,0") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "36") (term "1,1,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,1,1,0,2,2,0")) + (rule "mul_literals" (formula "36") (term "0,1,1,1,0,2,2,0")) + (rule "polySimp_addComm0" (formula "36") (term "1,1,0,2,2,0")) + (rule "replace_known_left" (formula "36") (term "1,0,2,2,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "36") (term "1,1,1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "36") (term "1,2,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "6") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "applyEq" (formula "34") (term "0,1,1,0,1,2,2,0") (ifseqformula "11")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "1,0,1,2,2,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,2,2,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,2,2,0")) + (rule "replace_known_left" (formula "34") (term "0,1,2,2,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "34")) + (rule "applyEq" (formula "34") (term "0,1,1,1,0,2,2,2,1,0") (ifseqformula "11")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0,2,2,2,1,1")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0,2,2,2,1,1")) + (rule "mul_literals" (formula "34") (term "0,1,1,1,0,2,2,2,1,1")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,2,2,2,1,1")) + (rule "replace_known_left" (formula "34") (term "1,0,2,2,2,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "34")) + (rule "applyEq" (formula "34") (term "1,1,0,1,1,0") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,1,1,0")) + (rule "add_zero_left" (formula "34") (term "0,1,0,1,1,0")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,1,0")) + (rule "applyEq" (formula "34") (term "1,1,0,1,0") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,1,0")) + (rule "add_zero_left" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "1,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,0")) + (rule "applyEq" (formula "34") (term "1,1,0,2,0") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,2,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,2,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "1,0,2,0")) + (rule "add_literals" (formula "34") (term "1,1,1,0,2,0")) + (rule "times_zero_1" (formula "34") (term "1,1,0,2,0")) + (rule "add_literals" (formula "34") (term "1,0,2,0")) + (rule "applyEq" (formula "34") (term "1,1,0,0") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "1,0,0")) + (rule "add_literals" (formula "34") (term "1,1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,1,0,0")) + (rule "add_literals" (formula "34") (term "1,0,0")) + (rule "applyEq" (formula "34") (term "1,1,0,2,1,0") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,2,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "1,0,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,1,0,2,1,0")) + (rule "times_zero_1" (formula "34") (term "1,1,0,2,1,0")) + (rule "add_literals" (formula "34") (term "1,0,2,1,0")) + (rule "applyEq" (formula "34") (term "1,1,0,2,1,1") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,2,1,1")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,0,2,1,1")) + (rule "add_literals" (formula "34") (term "0,0,1,0,2,1,1")) + (rule "add_zero_left" (formula "34") (term "0,1,0,2,1,1")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "1,0,2,1,1")) + (rule "add_literals" (formula "34") (term "1,1,0,2,1,1")) + (rule "times_zero_1" (formula "34") (term "1,0,2,1,1")) + (rule "applyEq" (formula "34") (term "1,1,0,1,1") (ifseqformula "11")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,1,1")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,0,1,1")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "1,0,1,1")) + (rule "add_literals" (formula "34") (term "1,1,1,0,1,1")) + (rule "times_zero_1" (formula "34") (term "1,1,0,1,1")) + (rule "add_literals" (formula "34") (term "1,0,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,2,1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,1,2,1,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,1,2,1,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,2,1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1,2,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,1,1,2,1,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,1,1,2,1,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,1,1,2,1,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,1,1,2,1,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1,1,2,1,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1,1,2,1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "31") (term "1,0,1") (ifseqformula "7")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "31") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1") (ifseqformula "6")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,2,1") (ifseqformula "6")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,2,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,2,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,2,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,2,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,2,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,2,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,2,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,2,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,2,1") (ifseqformula "6")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,2,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,2,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,2,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,2,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,2,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,2,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,2,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,2,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,2,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_imp2or" (formula "25") (term "0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "k_0 >= begin + iv_0 TRUE" + (rule "applyEqReverse" (formula "30") (term "1,1,1,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "30") (term "1,2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "cut_direct" (formula "23") (term "1")) + (branch "CUT: k_0 = 1 + begin TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,0")) + (rule "times_zero_1" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "18") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "2,1,0,0,1,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "25") (term "0,2,0,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "26") (term "0,2,1") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "1,1,0,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "2,1,0,1,1,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0,2,1,1") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "2,1,0,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "0,2,1,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "applyEq" (formula "19") (term "1,1,1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "19") (term "1,1,0,0")) + (rule "applyEq" (formula "24") (term "2,1,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "0,2,1,1,2,2,1") (ifseqformula "22")) + (rule "applyEq" (formula "28") (term "0,2,1,1") (ifseqformula "22")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_or_antiSymm0" (formula "22") (term "0,0")) + (rule "polySimp_homoEq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "1,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,1,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_or_antiSymm0" (formula "17") (term "0,0")) + (rule "polySimp_homoEq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,1,0,1,0,0")) + (rule "add_zero_left" (formula "17") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "1,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_or_tautInEq0" (formula "23") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0,1,0,0")) + (rule "add_literals" (formula "23") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "23") (term "0,1,0,0")) + (rule "leq_literals" (formula "23") (term "1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_or_tautInEq0" (formula "18") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0,1,0,0")) + (rule "add_literals" (formula "18") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "18") (term "0,1,0,0")) + (rule "leq_literals" (formula "18") (term "1,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "commute_or" (formula "16") (term "0,0")) + (rule "commute_or" (formula "21") (term "0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "iv_0 = 1 TRUE" + (rule "applyEqReverse" (formula "26") (term "1,2,2,2,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_left" (formula "25") (term "0,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "2"))) + (rule "orRight" (formula "25")) + (rule "notRight" (formula "25")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "3")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = 1 FALSE" + (rule "applyEqReverse" (formula "26") (term "1,2,2,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "25") (term "0,1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "23"))) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "23")) + (rule "add_literals" (formula "1") (term "1")) + (rule "replace_known_left" (formula "25") (term "0,2,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "1")) (ifInst "" (formula "1"))) + (rule "eqSymm" (formula "25")) + (rule "inEqSimp_contradEq3" (formula "23") (ifseqformula "1")) + (rule "mul_literals" (formula "23") (term "1,0,0")) + (rule "add_literals" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "false_right" (formula "23")) + (rule "inEqSimp_antiSymm" (formula "2") (ifseqformula "1")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "2"))) + (rule "eqSymm" (formula "25")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "applyEqRigid" (formula "25") (term "1,0,2,0") (ifseqformula "2")) + (rule "add_zero_right" (formula "25") (term "0,2,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) + ) + ) + (branch "CUT: k_0 = 1 + begin FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_strengthen1" (formula "17") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "17") (term "1")) + (rule "add_literals" (formula "17") (term "0,1")) + (rule "inEqSimp_contradEq7" (formula "28") (ifseqformula "17")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "commute_or" (formula "24") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "29") (term "2,1,0")) + (branch "iv_0 = 1 TRUE" + (rule "replace_known_left" (formula "30") (term "0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEqRigid" (formula "29") (term "0,0,1,1,0") (ifseqformula "1")) + (rule "leq_literals" (formula "29") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "applyEqRigid" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEqRigid" (formula "28") (term "1,0,2,1,2,0") (ifseqformula "1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,2,0")) + (rule "applyEq" (formula "28") (term "0,0,2,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "28") (term "0,2,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqRigid" (formula "28") (term "0,0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "orRight" (formula "28")) + (rule "notRight" (formula "28")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = 1 FALSE" + (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "30") (term "1,2,2,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "29") (term "0,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "29")) + (rule "allLeft" (formula "17") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1111000000010110011_9" (formula "17") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,1,0")) + (rule "add_literals" (formula "17") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,1,0")) + (rule "add_literals" (formula "17") (term "0,1,0")) + (rule "qeq_literals" (formula "17") (term "1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "26") (term "0,1,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "17")) + (rule "applyEq" (formula "30") (term "1,1,2,1") (ifseqformula "17")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "shift_paren_or" (formula "19") (term "0,0")) + (rule "shift_paren_or" (formula "19") (term "0,0,0")) + (rule "all_pull_out3" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,0")) + (rule "ifthenelse_split" (formula "30") (term "1,0")) + (branch "iv_0 <= 0 TRUE" + (rule "replace_known_left" (formula "31") (term "0,2,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "1"))) + (rule "inEqSimp_contradEq3" (formula "30") (ifseqformula "1")) + (rule "mul_literals" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "qeq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_contradInEq0" (formula "30") (term "0,2,0") (ifseqformula "1")) + (rule "qeq_literals" (formula "30") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "30") (term "0,0") (ifseqformula "1")) + (rule "leq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "1")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "31") (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "3")) + (rule "add_zero_right" (formula "2") (term "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "mul_literals" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "applyEqRigid" (formula "30") (term "1,0,2,0") (ifseqformula "3")) + (rule "add_zero_right" (formula "30") (term "0,2,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "closeTrue" (formula "30")) + ) + (branch "iv_0 <= 0 FALSE" + (rule "replace_known_right" (formula "31") (term "0,2,1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "replace_known_left" (formula "31") (term "0,2,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (term "0,1") (ifseqformula "1")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1")) + (rule "leq_literals" (formula "31") (term "0,0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "30")) + (rule "add_literals" (formula "1") (term "1")) + (rule "replace_known_left" (formula "31") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "orRight" (formula "31")) + (rule "notRight" (formula "31")) + (rule "inEqSimp_contradEq7" (formula "31") (ifseqformula "2")) + (rule "mul_literals" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "leq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "2")) + (rule "leq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "k_0 >= begin + iv_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "30") (term "1,2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "30") (term "1,1,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "replace_known_left" (formula "30") (term "0,2,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_contradEq7" (formula "30") (term "0,1,2,2,1") (ifseqformula "17")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,1,2,2,1")) + (rule "add_literals" (formula "30") (term "0,0,0,1,2,2,1")) + (rule "leq_literals" (formula "30") (term "0,0,1,2,2,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "17")) + (rule "mul_literals" (formula "2") (term "1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "30") (term "1,2,2,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_contradEq7" (formula "29") (term "0,1") (ifseqformula "16")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1")) + (rule "leq_literals" (formula "29") (term "0,0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (term "0,2,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,2,1,0")) + (rule "leq_literals" (formula "29") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (term "0,1") (ifseqformula "16")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1")) + (rule "leq_literals" (formula "29") (term "0,0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "16")) + (rule "leq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1") (ifseqformula "15")) + (rule "leq_literals" (formula "28") (term "0,0,2,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0,1") (ifseqformula "15")) + (rule "qeq_literals" (formula "28") (term "0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "orRight" (formula "28")) + (rule "notRight" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "0,1,0") (ifseqformula "16")) + (rule "qeq_literals" (formula "29") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + ) + ) + (branch "hole_0 <= -2 + end FALSE" + (rule "inEqSimp_leqRight" (formula "40")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "mul_literals" (formula "16") (term "1,0")) + (rule "add_zero_right" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "polySimp_mulComm0" (formula "16") (term "0,1")) + (rule "replace_known_left" (formula "42") (term "0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "34")) + (rule "applyEq" (formula "9") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "applyEq" (formula "43") (term "0,0,0,1,0,2,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "43") (term "0,0,1,0,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,1,0,2,1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,1,0,2,1,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,1,0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,0,1,0,2,1,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,1,0,2,1,1,0")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "applyEq" (formula "43") (term "0,0,0,0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "43") (term "0,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,2,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,2,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,2,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,0,0,2,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,0,2,0")) + (rule "applyEq" (formula "43") (term "1,1,0,1,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "43") (term "1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,1,0,1,1,1,0")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0,0,0")) + (rule "applyEq" (formula "43") (term "0,0,0,0,0,2,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "43") (term "0,0,0,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0,0,2,1,2,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0,0,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,0,0,0,2,1,2,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,0,0,2,1,2,1,0")) + (rule "applyEq" (formula "43") (term "0,1,1,0,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,1,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "1,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,1,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "43") (term "0,0,1,0,0,1,2,1,2,1,0")) + (rule "applyEq" (formula "7") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "7") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,1,0,2,1,0")) + (rule "applyEq" (formula "6") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,1,2,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,0,1,2,2,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,0,1,2,2,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,2,2,1,0")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "applyEq" (formula "3") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,2,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,0,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,2,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,0,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,0,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,0,2,1,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,2,1,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,2,1,2,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,2,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,2,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,2,1,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,2,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,2,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,2,1,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,2,1,2,2,1,0")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,1,1,0")) + (rule "applyEq" (formula "3") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "8") (term "0,0,0,1,0,2,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,1,0,2,2,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,1,0,2,2,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,1,1,0")) + (rule "applyEq" (formula "4") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,0")) + (rule "applyEq" (formula "2") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,1,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,1,1,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,1,2,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,1,2,2,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,1,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,1,0,1,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0,1,2,2,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,2,1,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,2,1,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,2,1,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,2,1,2,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,2,1,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,2,1,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,2,1,2,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,2,1,2,0")) + (rule "applyEq" (formula "42") (term "0,1,1,1,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "1,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "1,1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,1,0,1,2,1,2,1,0")) + (rule "applyEq" (formula "9") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,1,2,1,2,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "1,0,0,0")) + (rule "add_literals" (formula "42") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,0,0,0")) + (rule "applyEq" (formula "7") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0,0,0,0")) + (rule "applyEq" (formula "2") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,1,0,2,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,0,0,1,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0,1,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,0,0,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,2,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,1,0,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "1,1,0,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "1,1,1,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,1,0,2,1,2,1,0")) + (rule "applyEq" (formula "2") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,2,1,0")) + (rule "applyEq" (formula "17") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "17") (term "0,2,0")) + (rule "add_literals" (formula "17") (term "0,0,2,0")) + (rule "applyEq" (formula "11") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "0,2,1,0")) + (rule "add_literals" (formula "11") (term "0,0,2,1,0")) + (rule "applyEq" (formula "8") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,2,1,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,2,1,1,2,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,1,2,2,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,2,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,1,0,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,1,0,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0,2,1,2,1,0")) + (rule "applyEq" (formula "10") (term "0,1,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "10") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,1,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,1,1,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,1,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,1,2,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,0,1,2,1,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,2,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,2,2,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,1,0,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0,2,2,0")) + (rule "applyEq" (formula "42") (term "0,1,0,2,1,1,1,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "42") (term "1,0,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0,2,1,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0,2,1,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,0,2,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,0,2,1,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0,2,1,1,1,0")) + (rule "applyEq" (formula "42") (term "0,1,1,1,0,1,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,1,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,1,2,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "1,1,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "1,1,1,1,0,1,2,1,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,1,2,1,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,1,2,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,1,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,1,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,1,0,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,1,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0,1,2,1,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,2,2,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,0,2,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,0,0,2,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,0,0,2,2,2,1,0")) + (rule "applyEq" (formula "3") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,2,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,2,2,2,1,0")) + (rule "applyEq" (formula "2") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,1,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0,1,2,1,2,1,0")) + (rule "applyEq" (formula "40") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0,0")) + (rule "applyEq" (formula "8") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,1,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,1,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,1,2,2,1,0")) + (rule "applyEq" (formula "2") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,1,2,1,0")) + (rule "add_zero_left" (formula "42") (term "0,1,0,1,1,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "1,1,0,1,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,1,0,2,2,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,1,0,2,2,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,1,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,1,2,1,0")) + (rule "applyEq" (formula "7") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "7") (term "0,2,1,0")) + (rule "add_literals" (formula "7") (term "0,0,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "2") (term "1,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,1,0,0")) + (rule "applyEq" (formula "2") (term "1,1,0,1,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,1,0,2,2,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,1,0,2,2,0")) + (rule "applyEq" (formula "9") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,2,2,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,2,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,2,2,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,2,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,2,1,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,1,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,1,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,1,2,2,0")) + (rule "applyEq" (formula "8") (term "0,1,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "applyEq" (formula "10") (term "0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,1,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,1,2,1,1,0")) + (rule "applyEq" (formula "9") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "9") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,1,0,0")) + (rule "applyEq" (formula "4") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,2,1,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "9") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,0,0,0")) + (rule "applyEq" (formula "34") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,2,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "8") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "8") (term "0,0,1,0,1,0,2,1,0")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "1,1,0,1,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "1,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,1,0,2,2,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,1,0,2,2,0")) + (rule "applyEq" (formula "5") (term "0,0,0,1,0,2,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "39") (term "1,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "39") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,1,1,0")) + (rule "add_literals" (formula "39") (term "0,0,1,1,0")) + (rule "add_zero_left" (formula "39") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,1,2,1,0")) + (rule "applyEq" (formula "5") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,1,0,2,1,0")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,2,1,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "0,0,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "7") (term "1,1,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,1,2,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,1,2,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,2,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,1,1,0,0")) + (rule "applyEq" (formula "5") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,1,2,1,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,1,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,1,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "6") (term "0,0,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,0,1,2,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "1,1,0,1,0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,1,1,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,0,0,0,1,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0,0")) + (rule "applyEq" (formula "6") (term "0,0,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,1,0,0,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "0,1,1,1,0,2,1,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,2,1,1,0")) + (rule "applyEq" (formula "2") (term "0,0,0,1,0,2,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "42") (term "1,1,0,1,0,2,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,2,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0")) + (rule "add_literals" (formula "10") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,2,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,2,1,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,2,2,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "1,1,0,0")) + (rule "add_literals" (formula "8") (term "1,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,1,2,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,0,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,1,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,0,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,0,2,2,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,1,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,1,2,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,1,2,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,0,1,2,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,1,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,1,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "42") (term "1,1,0,0")) + (rule "add_literals" (formula "42") (term "1,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "42") (term "0,0,2,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0")) + (rule "add_literals" (formula "34") (term "1,0")) + (rule "times_zero_1" (formula "34") (term "0")) + (rule "qeq_literals" (formula "34")) + (rule "true_left" (formula "34")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,1")) + (rule "replace_known_left" (formula "41") (term "0,1,1,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "41") (ifInst "" (formula "16")) (ifInst "" (formula "16"))) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEqReverse" (formula "13") (term "2,0") (ifseqformula "12")) + (rule "hideAuxiliaryEq" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0,1,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0,2,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "40") (term "1,1,0,2,1,1,0")) + (rule "add_literals" (formula "40") (term "1,1,1,1,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,1,0,2,2,0")) + (rule "add_literals" (formula "40") (term "0,0,1,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,2,1,1,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,2,1,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,2,2,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,1,0,2,2,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,1,0,2,1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,1,0,2,2,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,2,1,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,2,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,0,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,0,2,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,1,0,2,2,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,1,0,2,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0,1,0,2,2,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,0,1,0,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0,0,1,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0,1,2,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,1,2,1,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,0,1,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,1,2,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,1,2,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,1,2,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,1,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,1,2,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,0,1,2,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,0,1,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,1,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,0,0,0")) + (rule "applyEq" (formula "8") (term "0,1,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,2,1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "9") (term "0,1,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,2,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "8") (term "0,1,0,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,2,2,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,2,2,0")) + (rule "applyEq" (formula "2") (term "0,1,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,2,1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "5") (term "1,0,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,1,0,0,0")) + (rule "applyEq" (formula "5") (term "1,0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1,1,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,1,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,1,1,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,1,1,0,0")) + (rule "applyEq" (formula "9") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,1,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,1,1,0,0")) + (rule "applyEq" (formula "6") (term "1,0,1,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,0,0,0")) + (rule "applyEq" (formula "2") (term "0,1,0,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,2,2,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,2,2,0")) + (rule "applyEq" (formula "3") (term "0,1,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,2,1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "4") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,1,0,0")) + (rule "applyEq" (formula "32") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "32") (term "1")) + (rule "add_literals" (formula "32") (term "0,1")) + (rule "applyEq" (formula "11") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "0,1,0,0")) + (rule "applyEq" (formula "3") (term "0,1,0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,1,0,0")) + (rule "applyEq" (formula "34") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "5") (term "1,0,0,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,2,2,0")) + (rule "applyEq" (formula "6") (term "1,0,0,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,1,0,0")) + (rule "applyEq" (formula "6") (term "1,0,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "5") (term "1,0,0,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,2,1,0")) + (rule "applyEq" (formula "37") (term "1,2,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "37") (term "2,0,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,2,0,0")) + (rule "applyEq" (formula "40") (term "1,0,1,1,0,1,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0,1,2,2,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,1,0,1,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,1,1,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,1,0,1,2,2,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,1,0,1,2,2,0")) + (rule "add_zero_right" (formula "40") (term "0,1,1,0,1,2,2,0")) + (rule "applyEq" (formula "40") (term "1,0,1,1,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,1,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,1,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,1,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,1,1,0,1,2,2,2,1,0")) + (rule "applyEq" (formula "40") (term "1,1,0,2,1,1,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,2,1,1,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,2,1,1,2,1,0")) + (rule "applyEq" (formula "40") (term "1,1,0,1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,1,1")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,1,1")) + (rule "add_literals" (formula "40") (term "0,0,1,0,1,1")) + (rule "applyEq" (formula "40") (term "1,1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,1,0,2,1,0")) + (rule "applyEq" (formula "40") (term "1,0,1,0,0,1,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0,1,2,2,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,1,2,2,0")) + (rule "applyEq" (formula "40") (term "1,1,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,1,0")) + (rule "applyEq" (formula "40") (term "1,0,1,0,0,1,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0,1,2,2,2,1,0")) + (rule "applyEq" (formula "40") (term "1,1,0,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,0,1")) + (rule "add_literals" (formula "40") (term "0,0,1,0,1")) + (rule "applyEq" (formula "40") (term "1,0,1,1,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0,2,2,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,1,0,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,1,1,0,2,2,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,1,0,2,2,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,1,0,2,2,0")) + (rule "add_zero_right" (formula "40") (term "0,1,1,0,2,2,0")) + (rule "applyEq" (formula "40") (term "1,0,1,1,0,2,2,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,0,2,2,2,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,1,0,2,2,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,1,1,0,2,2,2,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,1,0,2,2,2,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,1,0,2,2,2,1,0")) + (rule "add_zero_right" (formula "40") (term "0,1,1,0,2,2,2,1,0")) + (rule "applyEq" (formula "40") (term "1,1,0,2,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "40") (term "1,0,2,1")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,0,2,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_sepNegMonomial" (formula "10") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_sepNegMonomial" (formula "39") (term "1,0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,2,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,1,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,1,2,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,1,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,1,2,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,1,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,2,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,2,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,2,1,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,2,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,2,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,1,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,2,1,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,2,1,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,2,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "10") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "10") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,2,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,2,1,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,2,1,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,2,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,2,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0,1,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,0,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0,1,0,2,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,1,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,1,2,1,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,1,2,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,2,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,1,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,1,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,0,0,0,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "nnf_imp2or" (formula "33") (term "0,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "nnf_imp2or" (formula "35") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "34") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0")) + (rule "inEqSimp_antiSymm" (formula "32") (ifseqformula "17")) + (rule "replace_known_left" (formula "34") (term "1") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "34")) + (rule "true_left" (formula "34")) + (rule "applyEq" (formula "39") (term "0,2,1,2,1,2,0") (ifseqformula "32")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0,1,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "applyEq" (formula "36") (term "0,2,0,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "36") (term "2,1,0,2,0,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "27") (term "1,0,1,0,0") (ifseqformula "32")) + (rule "applyEq" (formula "6") (term "0,1,1,1,0,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "6") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,1,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,1,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,1,1,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,1,1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,1,1,0,0")) + (rule "applyEq" (formula "35") (term "1,1,1,0,0,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "39") (term "0,2,1,2,1,1,2,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "34") (term "1,1,1,0,0,1,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "34") (term "1,1,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "applyEq" (formula "35") (term "2,1,0,0,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "3") (term "0,1,1,1,0,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "1,1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,1,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,1,0,0")) + (rule "applyEq" (formula "29") (term "1,1,1,0,0,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "39") (term "0,2,1,2,1,2,2,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "35") (term "2,1,0,1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "34") (term "1,1,1,0,0") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "34") (term "1,1,0,0")) + (rule "add_literals" (formula "34") (term "0,1,1,0,0")) + (rule "applyEq" (formula "12") (term "0,0,0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0,0,0,0")) + (rule "applyEq" (formula "39") (term "0,2,1,2,1,1,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "9") (term "0,1,1,1,0,0") (ifseqformula "32")) + (rule "polySimp_mulComm0" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "1,1,0,0")) + (rule "add_literals" (formula "9") (term "1,1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,1,0,0")) + (rule "add_literals" (formula "9") (term "0,0,1,1,0,0")) + (rule "applyEq" (formula "16") (term "0,2,1,1") (ifseqformula "32")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_pullOutFactor1" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,0")) + (rule "times_zero_1" (formula "33") (term "0")) + (rule "leq_literals" (formula "33")) + (rule "true_left" (formula "33")) + (rule "applyEq" (formula "36") (term "0,2,1") (ifseqformula "32")) + (rule "applyEq" (formula "33") (term "2,1,0,1,1,0,1,0") (ifseqformula "32")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "17")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,0")) + (rule "times_zero_1" (formula "17") (term "0")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "32") (term "2,1,0,0,1,0,1,0") (ifseqformula "31")) + (rule "applyEq" (formula "27") (term "1,1,1,0,0") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0")) + (rule "add_literals" (formula "27") (term "0,1,1,0,0")) + (rule "applyEq" (formula "37") (term "0,2,1,2,1") (ifseqformula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "0,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "12") (term "0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "12")) + (rule "applyEqReverse" (formula "11") (term "2,0") (ifseqformula "12")) + (rule "applyEqReverse" (formula "37") (term "1,1,1") (ifseqformula "12")) + (rule "hideAuxiliaryEq" (formula "12")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "14")) + (rule "mul_literals" (formula "13") (term "0,0")) + (rule "add_zero_left" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_and_antiSymm0" (formula "35") (term "0,2,1,1,0")) + (rule "inEqSimp_and_antiSymm0" (formula "35") (term "0,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_homoEq" (formula "35") (term "1,0,2,1,2,1,0")) + (rule "mul_literals" (formula "35") (term "1,0,1,0,2,1,2,1,0")) + (rule "add_zero_right" (formula "35") (term "0,1,0,2,1,2,1,0")) + (rule "polySimp_sepPosMonomial" (formula "35") (term "1,0,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,2,1,2,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,2,1,2,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,2,1,2,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_and_antiSymm0" (formula "35") (term "0,2,2,0")) + (rule "inEqSimp_and_antiSymm0" (formula "35") (term "0,2,2,2,1,0")) + (rule "ifthenelse_split" (formula "2") (term "0,1,0,2,2,0")) + (branch "end >= 3 + begin TRUE" + (rule "replace_known_left" (formula "3") (term "0,0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "36") (term "0,0,0,0,1,2,1,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "eqSymm" (formula "36") (term "0,2,1,2,0")) + (rule "eqSymm" (formula "36") (term "0,2,1,2,2,1,0")) + (rule "replace_known_left" (formula "6") (term "0,0,1,0,2,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "5") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "5")) + (rule "replace_known_left" (formula "7") (term "0,0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "7") (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "10") (term "0,0,1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "10") (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "4") (term "0,0,1,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "4") (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "9") (term "0,0,1,0,2,1,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "2")) (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "replace_known_left" (formula "11") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "11")) + (rule "applyEqReverse" (formula "36") (term "1,2,1,2,1,0") (ifseqformula "11")) + (rule "hideAuxiliaryEq" (formula "11")) + (rule "replace_known_left" (formula "8") (term "0,0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_homoEq" (formula "35") (term "0,2,1,1,0")) + (rule "polySimp_homoEq" (formula "35") (term "0,2,2,2,1,0")) + (rule "polySimp_homoEq" (formula "35") (term "0,2,2,0")) + (rule "polySimp_homoEq" (formula "35") (term "0,2,1,1,2,1,0")) + (rule "polySimp_homoEq" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,2,2,0")) + (rule "polySimp_homoEq" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,2,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,2,2,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,2,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,2,1,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,2,2,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,2,2,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,2,1,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,2,1,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "10") (term "0,1,0,2,1,0")) + (rule "mul_literals" (formula "10") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,2,1,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,2,2,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,2,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,2,1,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,2,1,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,2,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,2,1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,2,2,2,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,2,2,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,2,2,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,2,2,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "5") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,2,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "0,2,0")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "0,2,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,2,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,2,2,0")) + (rule "add_literals" (formula "3") (term "1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "10") (term "0,2,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,2,1,0")) + (rule "add_literals" (formula "4") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,2,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,2,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,2,2,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,2,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,2,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,2,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,2,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,2,1,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,2,1,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,2,1,1,0")) + (rule "add_zero_right" (formula "35") (term "0,0,2,1,1,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "1,0,2,1,2,1,0")) + (rule "polySimp_pullOutFactor1" (formula "35") (term "0,1,0,2,1,2,1,0")) + (rule "add_literals" (formula "35") (term "1,0,1,0,2,1,2,1,0")) + (rule "times_zero_1" (formula "35") (term "0,1,0,2,1,2,1,0")) + (rule "leq_literals" (formula "35") (term "1,0,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "10") (term "0,1,0,0")) + (rule "add_literals" (formula "10") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "10") (term "0,1,0,0")) + (rule "leq_literals" (formula "10") (term "1,0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "9") (term "0,1,0,0")) + (rule "add_literals" (formula "9") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "9") (term "0,1,0,0")) + (rule "leq_literals" (formula "9") (term "1,0,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,2,2,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,2,2,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,2,2,0")) + (rule "add_zero_right" (formula "6") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,2,2,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,2,1,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "6") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,2,1,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,2,1,0")) + (rule "add_zero_right" (formula "7") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,2,1,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "3") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,2,2,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,2,2,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,2,2,0")) + (rule "add_literals" (formula "3") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,0,1,2,1,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "35") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,2,1,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,2,1,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,2,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "35") (term "0,0,2,1,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,2,1,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,2,1,1,0")) + (rule "add_literals" (formula "35") (term "0,0,2,1,1,0")) + (rule "equal_literals" (formula "35") (term "0,2,1,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,2,2,0")) + (rule "add_literals" (formula "6") (term "0,0,0,2,2,0")) + (rule "add_zero_left" (formula "6") (term "0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "10") (term "0,0,2,1,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "10") (term "0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,2,1,0")) + (rule "add_literals" (formula "6") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "6") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0,2,1,0")) + (rule "add_literals" (formula "7") (term "0,0,0,2,1,0")) + (rule "add_zero_left" (formula "7") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,2,2,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,2,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0,2,2,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,2,2,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,2,2,0")) + (rule "add_literals" (formula "9") (term "0,0,2,2,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,2,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,2,1,0")) + (rule "add_literals" (formula "9") (term "0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "0,0,2,1,1,2,1,0")) + (rule "equal_literals" (formula "35") (term "0,2,1,1,2,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "equal_literals" (formula "5") (term "0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,1,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,2,2,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,2,2,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,2,2,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,1,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "9") (term "0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,2,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "3") (term "0,1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,1,0,0")) + (rule "leq_literals" (formula "3") (term "1,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,1,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,1,0,0")) + (rule "add_literals" (formula "4") (term "0,1,0,0")) + (rule "leq_literals" (formula "4") (term "1,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0")) + (rule "replace_known_left" (formula "5") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "5")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "6") (term "0,0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0,0,0")) + (rule "replace_known_left" (formula "6") (term "0,0,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "6")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,1,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,0,0")) + (rule "add_literals" (formula "34") (term "0,1,0,0")) + (rule "leq_literals" (formula "34") (term "1,0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,2,1,0")) + (rule "leq_literals" (formula "34") (term "0,1,2,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "0,0,0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,2,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "34") (term "0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,1,2,2,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,0,1,2,2,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,1,2,2,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,1,2,2,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,1,2,2,0")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "add_literals" (formula "34") (term "1,0,0,0,0,1,2,2,0")) + (rule "times_zero_1" (formula "34") (term "0,0,0,0,1,2,2,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,1,2,2,0")) + (rule "replace_known_left" (formula "34") (term "0,0,1,2,2,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,2,2,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,1,2,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,1,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1,1,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,1,0")) + (rule "leq_literals" (formula "34") (term "0,1,1,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "polySimp_pullOutFactor2" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "34") (term "1,0,0,0,0,1,2,2,2,1,0")) + (rule "times_zero_1" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,1,2,2,2,1,0")) + (rule "replace_known_left" (formula "34") (term "0,0,1,2,2,2,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,2,2,2,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,2,2,2,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0,0,1,0")) + (rule "add_literals" (formula "34") (term "1,0,0,1,0")) + (rule "times_zero_1" (formula "34") (term "0,0,1,0")) + (rule "leq_literals" (formula "34") (term "0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_sepPosMonomial" (formula "7") (term "0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "30") (term "1,1,2,2,2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "polySimp_sepPosMonomial" (formula "29") (term "0,2,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,2,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,2,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,2,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,2,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,2,2,2,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,2,2,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,2,2,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,2,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,2,2,2,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,2,2,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,2,2,2,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,2,2,2,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,2,2,2,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,2,2,2,0")) + (rule "replace_known_left" (formula "29") (term "0,1,2,2,2,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,2,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,2,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,2,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,2,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,2,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,2,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,2,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,2,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,2,0")) + (rule "qeq_literals" (formula "26") (term "0,0,1,2,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "commute_or" (formula "15") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "15") (term "0,0")) + (rule "polySimp_homoEq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "iv_0 = -1 + begin * -1 + end TRUE" + (rule "applyEqReverse" (formula "27") (term "1,1,1,2,2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "27") (term "1,2,2,2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "3")) (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "26")) + (builtin "One Step Simplification" (formula "26")) + (rule "orRight" (formula "26")) + (rule "notRight" (formula "26")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,0")) + (rule "times_zero_1" (formula "6") (term "0")) + (rule "qeq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "4")) + (rule "applyEq" (formula "26") (term "1,0,2,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "26") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,2,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,2,0")) + (rule "add_literals" (formula "26") (term "0,0,2,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = -1 + begin * -1 + end FALSE" + (rule "applyEqReverse" (formula "27") (term "1,1,1,2,2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "27") (term "1,2,2,2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_right" (formula "26") (term "0,2,2,2,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "24")) (ifInst "" (formula "24"))) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1")) + (rule "add_literals" (formula "4") (term "0,0,1")) + (rule "replace_known_left" (formula "26") (term "0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "4")) (ifInst "" (formula "4"))) + (rule "inEqSimp_contradEq3" (formula "24") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "add_zero_left" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "commute_or" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "25")) (ifInst "" (formula "7"))) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "14")) + (rule "hideAuxiliaryEq" (formula "15")) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,1,0,0")) + (rule "add_literals" (formula "14") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "14") (term "0,1,0,0")) + (rule "qeq_literals" (formula "14") (term "1,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEq" (formula "25") (term "1,2,2,0") (ifseqformula "14")) + (rule "applyEq" (formula "22") (term "0,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "14")) + (rule "applyEq" (formula "23") (term "1") (ifseqformula "14")) + (rule "commute_or" (formula "15") (term "0,0,1,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "25") (term "1,2,0")) + (branch "iv_0 <= -3 + begin * -1 + end TRUE" + (rule "replace_known_left" (formula "26") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "26")) + (rule "orRight" (formula "26")) + (rule "notRight" (formula "26")) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "27") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeTrue" (formula "27")) + ) + (branch "iv_0 <= -3 + begin * -1 + end FALSE" + (rule "replace_known_right" (formula "26") (term "0,2,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "5")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "1"))) + (rule "eqSymm" (formula "27")) + (rule "applyEq" (formula "27") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "closeTrue" (formula "27")) + ) + ) + ) + (branch "end >= 3 + begin FALSE" + (rule "mul_literals" (formula "2") (term "1,0,2,2,0")) + (rule "add_zero_right" (formula "2") (term "0,2,2,0")) + (rule "replace_known_right" (formula "36") (term "0,0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "eqSymm" (formula "36") (term "0,2,1,2,0")) + (rule "eqSymm" (formula "36") (term "0,2,1,2,2,1,0")) + (rule "replace_known_right" (formula "3") (term "0,0,1,0,2,1,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "3") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "3") (term "0,2,1,0")) + (rule "replace_known_right" (formula "9") (term "0,0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "9") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "9") (term "0,2,1,0")) + (rule "replace_known_right" (formula "4") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_right" (formula "6") (term "0,0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "6") (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "6") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "6") (term "0,2,1,0")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "2") (term "1,0,2,1,0")) + (rule "add_zero_right" (formula "2") (term "0,2,1,0")) + (rule "replace_known_right" (formula "8") (term "0,0,1,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "8") (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "8") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "8") (term "1,0,2,2,0")) + (rule "add_zero_right" (formula "8") (term "0,2,1,0")) + (rule "add_zero_right" (formula "8") (term "0,2,2,0")) + (rule "replace_known_right" (formula "5") (term "0,0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "5") (ifInst "" (formula "34")) (ifInst "" (formula "34")) (ifInst "" (formula "34"))) + (rule "mul_literals" (formula "5") (term "1,0,2,1,0")) + (rule "mul_literals" (formula "5") (term "1,0,2,2,0")) + (rule "add_zero_right" (formula "5") (term "0,2,1,0")) + (rule "add_zero_right" (formula "5") (term "0,2,2,0")) + (rule "replace_known_right" (formula "10") (term "0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "10")) + (rule "replace_known_right" (formula "7") (term "0,0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "7")) + (rule "polySimp_homoEq" (formula "36") (term "0,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,2,2,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,2,2,2,1,0")) + (rule "polySimp_homoEq" (formula "36") (term "0,2,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,2,2,0")) + (rule "add_zero_right" (formula "36") (term "0,0,2,2,0")) + (rule "polySimp_homoEq" (formula "36") (term "0,2,1,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,2,1,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,2,1,1,0")) + (rule "polySimp_homoEq" (formula "36") (term "0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,2,1,1,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,2,1,1,2,1,0")) + (rule "polySimp_homoEq" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "polySimp_homoEq" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0")) + (rule "inEqSimp_geqRight" (formula "34")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "0,2,0")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "0,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,1,2,1,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,2,1,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,1,2,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,1,2,2,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "36") (term "0,1,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "mul_literals" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,1,0,0")) + (rule "replace_known_left" (formula "10") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,1,0,0")) + (rule "replace_known_left" (formula "9") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,0,1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "1,0,1,2,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,1,2,2,0")) + (rule "add_zero_right" (formula "36") (term "0,1,0,1,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,2,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,2,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,1,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,2,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,2,2,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,0")) + (rule "replace_known_left" (formula "36") (term "0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0,0")) + (rule "mul_literals" (formula "10") (term "1,0,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,0,1,2,1,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,1,0,1,2,1,2,1,0")) + (rule "replace_known_left" (formula "36") (term "1,0,1,2,1,2,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,1,2,1,0")) + (rule "add_zero_right" (formula "36") (term "0,0,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,1,2,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,1,2,2,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0,1,2,2,0")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0")) + (rule "add_zero_right" (formula "36") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "1,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "36") (term "0,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,2,2,1,0")) + (rule "polySimp_sepPosMonomial" (formula "36") (term "0,2,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,2,2,0")) + (rule "polySimp_sepPosMonomial" (formula "36") (term "0,2,1,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,2,1,1,2,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,2,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,2,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,2,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "7") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "0,1,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "6") (term "1,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10") (term "0,0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,1,2,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,1,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,2,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0,1,2,2,0")) + (rule "mul_literals" (formula "36") (term "1,1,0,1,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "1,0,1,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0,1,2,2,2,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,2,2,2,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,2,2,2,1,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,0,1,2,2,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,2,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,2,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,1,2,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,1,2,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0,1,2,2,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,1,2,2,0")) + (rule "polySimp_rightDist" (formula "36") (term "0,1,0,0,1,2,2,0")) + (rule "mul_literals" (formula "36") (term "0,0,1,0,0,1,2,2,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,1,2,2,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,0,1,0,0,1,2,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0")) + (rule "inEqSimp_contradEq3" (formula "5") (term "0,0") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_contradEq7" (formula "35") (term "0,2,1,1,2,1,0") (ifseqformula "12")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,2,1,1,2,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,2,1,1,2,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,2,1,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,2,1,1,2,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,2,1,1,2,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,2,1,1,2,1,0")) + (rule "leq_literals" (formula "35") (term "0,0,2,1,1,2,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "3") (term "1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1,0,0")) + (rule "add_literals" (formula "3") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "3") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_subsumption6" (formula "4") (term "0,0,0") (ifseqformula "12")) + (rule "greater_literals" (formula "4") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_subsumption6" (formula "8") (term "0,0") (ifseqformula "12")) + (rule "greater_literals" (formula "8") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "9") (term "2,0") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_subsumption6" (formula "8") (term "0,0") (ifseqformula "11")) + (rule "greater_literals" (formula "8") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "9") (term "2,0") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_subsumption6" (formula "33") (term "0,1,2,1,2,1,0") (ifseqformula "10")) + (rule "greater_literals" (formula "33") (term "0,0,0,1,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1,2,1,2,1,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,1,2,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0,1,2,1,2,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,2,1,2,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,1,2,1,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,1,2,1,2,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,1,2,1,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,2,1,2,1,0")) + (rule "qeq_literals" (formula "33") (term "0,0,1,2,1,2,1,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_subsumption6" (formula "3") (term "0,0") (ifseqformula "10")) + (rule "greater_literals" (formula "3") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,2,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "31") (term "0,0,1,2,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,2,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1,2,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,2,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,2,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,2,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,2,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,2,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,2,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,2,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,2,1,0")) + (rule "leq_literals" (formula "31") (term "0,0,1,2,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,1,0")) + (rule "leq_literals" (formula "31") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "31") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_contradInEq1" (formula "31") (term "0,1,2,2,0") (ifseqformula "9")) + (rule "qeq_literals" (formula "31") (term "0,0,1,2,2,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "eqSymm" (formula "31")) + (rule "inEqSimp_antiSymm" (formula "8") (ifseqformula "1")) + (rule "replace_known_left" (formula "32") (term "0,1,2,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "8"))) + (rule "replace_known_left" (formula "6") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "32") (term "1,2,1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "20") (term "0,2,1,0,0,1,0,1,0")) + (rule "applyEq" (formula "9") (term "1,1") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "9") (term "1")) + (rule "polySimp_addComm1" (formula "9") (term "0,1")) + (rule "add_literals" (formula "9") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "9") (term "1")) + (rule "add_literals" (formula "9") (term "1,1,1")) + (rule "times_zero_1" (formula "9") (term "1,1")) + (rule "add_literals" (formula "9") (term "1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_left" (formula "30") (term "1,0,1,2,2,2,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "27") (term "1,0,2,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,2,0,1,0")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "18") (term "1,0") (ifseqformula "7")) + (rule "applyEq" (formula "10") (term "1,0,2,1,1") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "10") (term "0,2,1,1")) + (rule "add_literals" (formula "10") (term "0,0,2,1,1")) + (rule "applyEq" (formula "16") (term "1") (ifseqformula "7")) + (rule "applyEq" (formula "27") (term "1,2,1,0,2,0,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "27") (term "2,1,0,2,0,0,0")) + (rule "add_literals" (formula "27") (term "0,2,1,0,2,0,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "18") (term "1,2,1,0,2,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,2,0")) + (rule "add_literals" (formula "18") (term "0,2,1,0,2,0")) + (rule "applyEq" (formula "25") (term "1,1,1,0,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,1,0")) + (rule "applyEq" (formula "27") (term "1,0,0,0") (ifseqformula "7")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,1,1,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0")) + (rule "applyEq" (formula "20") (term "1,2,1,0,1,1,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "20") (term "0,2,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "7")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,1,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,1,0,1,0")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,0,1,0,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,0,1,0,1,0")) + (rule "applyEq" (formula "21") (term "1,2,1,0,1,1,0") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "21") (term "0,2,1,0,1,1,0")) + (rule "applyEq" (formula "28") (term "1,0,2,1") (ifseqformula "7")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,1")) + (rule "add_literals" (formula "28") (term "0,0,2,1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,1,1,0")) + (rule "applyEq" (formula "4") (term "1,0,2,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "4") (term "0,2,1,0")) + (rule "add_literals" (formula "4") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "4") (term "0,2,1,0")) + (rule "applyEq" (formula "18") (term "1,0,0,0") (ifseqformula "6")) + (rule "applyEq" (formula "27") (term "1,0,2,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,2,0")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0")) + (rule "applyEq" (formula "26") (term "1,1") (ifseqformula "6")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,0,1,0")) + (rule "applyEq" (formula "26") (term "1,2,1,0,0,2,0,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "26") (term "2,1,0,0,2,0,0,0")) + (rule "add_literals" (formula "26") (term "0,2,1,0,0,2,0,0,0")) + (rule "applyEq" (formula "25") (term "1,2,1,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "24") (term "1,2,1,0,1,1,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "24") (term "2,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "24") (term "0,2,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "18") (term "1,1,0,0")) + (rule "applyEq" (formula "18") (term "1,2,1,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "18") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "20") (term "1,2,1,0,0,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "26") (term "1,2,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "26") (term "2,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,2,0,0")) + (rule "add_literals" (formula "26") (term "0,0,2,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "2,0,0")) + (rule "add_literals" (formula "26") (term "1,1,2,0,0")) + (rule "times_zero_1" (formula "26") (term "1,2,0,0")) + (rule "add_literals" (formula "26") (term "2,0,0")) + (rule "applyEq" (formula "25") (term "1,2,1,0,1,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "applyEq" (formula "9") (term "1,0,2,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "9") (term "0,2,0")) + (rule "add_literals" (formula "9") (term "0,0,2,0")) + (rule "add_zero_left" (formula "9") (term "0,2,0")) + (rule "applyEq" (formula "5") (term "1,0,2,1,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "5") (term "0,2,1,0")) + (rule "add_literals" (formula "5") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "5") (term "0,2,1,0")) + (rule "applyEq" (formula "23") (term "1,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "23") (term "1")) + (rule "add_literals" (formula "23") (term "0,1")) + (rule "applyEq" (formula "22") (term "1,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "22") (term "1")) + (rule "add_literals" (formula "22") (term "0,1")) + (rule "add_zero_left" (formula "22") (term "1")) + (rule "applyEq" (formula "5") (term "1,1,0,0") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "5") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,1,0,0")) + (rule "add_literals" (formula "5") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "1,1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,1,0,0")) + (rule "add_zero_right" (formula "5") (term "1,0,0")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "6")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "applyEq" (formula "3") (term "0,1,1,0,0") (ifseqformula "6")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "1,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "applyEq" (formula "28") (term "1,0,2,1,2,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,1,2,0")) + (rule "add_literals" (formula "28") (term "0,0,2,1,2,0")) + (rule "applyEq" (formula "28") (term "1,1,0,1,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_pullOutFactor2" (formula "28") (term "1,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,0")) + (rule "applyEq" (formula "2") (term "0,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "27") (term "1,1,0,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor2" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "applyEq" (formula "27") (term "1,0,2,1,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,1,1")) + (rule "add_literals" (formula "27") (term "0,0,2,1,1")) + (rule "applyEq" (formula "27") (term "1,1,0,2,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "1,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,1,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,1,0,2,0")) + (rule "add_literals" (formula "27") (term "1,0,2,0")) + (rule "applyEq" (formula "27") (term "0,1,1,0,1,2,2,2,1") (ifseqformula "4")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "1,0,1,2,2,2,1")) + (rule "add_literals" (formula "27") (term "1,1,0,1,2,2,2,1")) + (rule "times_zero_1" (formula "27") (term "1,0,1,2,2,2,1")) + (rule "replace_known_left" (formula "27") (term "0,1,2,2,2,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEq" (formula "27") (term "1,0,2,1,1,2,2,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,1,1,2,2,1")) + (rule "add_literals" (formula "27") (term "0,0,2,1,1,2,2,1")) + (rule "applyEq" (formula "27") (term "1,0,2,1,2,1") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,1,2,1")) + (rule "add_literals" (formula "27") (term "0,0,2,1,2,1")) + (rule "add_zero_left" (formula "27") (term "0,2,1,2,1")) + (rule "applyEq" (formula "2") (term "1,0,0,2,2,0") (ifseqformula "4")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,2,2,0")) + (rule "add_literals" (formula "2") (term "0,0,0,2,2,0")) + (rule "add_zero_left" (formula "2") (term "0,0,2,2,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "27") (term "1,2,2,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "26") (term "1,1,0,2,1") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,2,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0,2,1")) + (rule "add_literals" (formula "26") (term "0,0,1,0,2,1")) + (rule "add_zero_left" (formula "26") (term "0,1,0,2,1")) + (rule "polySimp_pullOutFactor2" (formula "26") (term "1,0,2,1")) + (rule "add_literals" (formula "26") (term "1,1,0,2,1")) + (rule "times_zero_1" (formula "26") (term "1,0,2,1")) + (rule "applyEq" (formula "26") (term "1,1,0,1") (ifseqformula "3")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0,1")) + (rule "add_literals" (formula "26") (term "0,0,1,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,1")) + (rule "add_literals" (formula "26") (term "1,1,1,0,1")) + (rule "times_zero_1" (formula "26") (term "1,1,0,1")) + (rule "add_literals" (formula "26") (term "1,0,1")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "16") (term "0,0")) + (rule "polySimp_homoEq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,1,0,1,0,0")) + (rule "add_zero_left" (formula "16") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "1,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "20") (term "0,0")) + (rule "polySimp_homoEq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "1,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "commute_or" (formula "15") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "commute_or" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "pullOutSelect" (formula "15") (term "0") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "15")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "24")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "16")) + (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "15")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "elementOfArrayRangeConcrete" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0,0")) + (rule "qeq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "15")) + (rule "applyEq" (formula "21") (term "0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "24") (term "1,2,0") (ifseqformula "15")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "24") (term "1,1,2,2,1") (ifseqformula "15")) + (rule "applyEq" (formula "24") (term "1,1") (ifseqformula "15")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "iv_0 = 1 TRUE" + (rule "applyEqReverse" (formula "25") (term "1,2,2,2,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_left" (formula "24") (term "0,1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "2")) (ifInst "" (formula "2"))) + (rule "orRight" (formula "24")) + (rule "notRight" (formula "24")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "3")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = 1 FALSE" + (rule "applyEqReverse" (formula "25") (term "1,2,2,2,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_right" (formula "24") (term "0,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "22")) (ifInst "" (formula "22"))) + (rule "inEqSimp_strengthen0" (formula "4") (ifseqformula "22")) + (rule "add_literals" (formula "4") (term "1")) + (rule "replace_known_left" (formula "24") (term "0,2,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "4")) (ifInst "" (formula "4"))) + (rule "eqSymm" (formula "24")) + (rule "inEqSimp_contradEq3" (formula "22") (ifseqformula "4")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "false_right" (formula "22")) + (rule "inEqSimp_antiSymm" (formula "3") (ifseqformula "4")) + (rule "replace_known_left" (formula "24") (term "0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "3"))) + (rule "eqSymm" (formula "24")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "3")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "23") (term "1,0,2,0") (ifseqformula "3")) + (rule "add_zero_right" (formula "23") (term "0,2,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "closeTrue" (formula "23")) + ) + ) + ) + ) + ) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "1") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "28") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "3")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "32") (inst "sk=f_0")) + (rule "allRight" (formula "32") (inst "sk=o_0")) + (rule "orRight" (formula "32")) + (rule "orRight" (formula "32")) + (rule "eqSymm" (formula "34")) + (rule "eqSymm" (formula "32") (term "0,0,0,1")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "31") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "23") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "pullOutSelect" (formula "28") (term "1") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0,0")) + (rule "pullOutSelect" (formula "29") (term "0") (inst "selectSK=f_0_1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "replaceKnownSelect_taclet10000010110011_8" (formula "1") (term "2,0")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0,0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0,0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "replace_known_left" (formula "26") (term "1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0,0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "31")) (ifInst "" (formula "7")) (ifInst "" (formula "19")) (ifInst "" (formula "24"))) + (rule "true_left" (formula "23")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "commute_and" (formula "1") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "cut_direct" (formula "32") (term "0,0")) + (branch "CUT: o_0 = null TRUE" + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "replace_known_left" (formula "3") (term "0,0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "3") (term "0,0,0,0")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "3")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "31") (term "0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "31") (term "0")) + (rule "replace_known_right" (formula "31") (term "0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "applyEq" (formula "2") (term "0,1,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: o_0 = null FALSE" + (builtin "One Step Simplification" (formula "33")) + (rule "notRight" (formula "33")) + (rule "replace_known_right" (formula "3") (term "0,0,1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "3")) + (rule "cut_direct" (formula "32") (term "0")) + (branch "CUT: o_0 = values TRUE" + (builtin "One Step Simplification" (formula "33")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "replace_known_left" (formula "4") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "4") (term "1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "1")) + (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "3") (term "1,0,0,1,0,0") (ifseqformula "1")) + (rule "replace_known_left" (formula "3") (term "0,1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "1")) + (rule "nnf_ex2all" (formula "32")) + (rule "nnf_imp2or" (formula "25") (term "0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "29") (term "0,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "29")) + (rule "eqSymm" (formula "29") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "29") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "29") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "29") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,1,1,1,0,0,0,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0")) + (rule "replace_known_left" (formula "29") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "31"))) + (rule "true_left" (formula "30")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "30") (term "0,0")) + (rule "translateJavaAddInt" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "30") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "30") (term "0")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "30") (term "0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "30") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "1")) + (rule "polySimp_addComm1" (formula "30") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1")) + (rule "add_zero_right" (formula "30") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_homoEq" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1,0,1")) + (rule "add_zero_right" (formula "30") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "30")) + (rule "replace_known_left" (formula "30") (term "1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "30") (term "1,0")) + (rule "add_literals" (formula "30") (term "0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "25") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1")) + (rule "cut_direct" (formula "26") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEqRigid" (formula "25") (term "1,1,0,0,1,0,1") (ifseqformula "26")) + (rule "applyEqRigid" (formula "30") (term "2,1,0,2,0,0,0,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "25") (term "1,1,0,0,1") (ifseqformula "26")) + (rule "applyEq" (formula "30") (term "2,1,0,2,0,1,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEqRigid" (formula "28") (term "0,2,1,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "27") (term "0,2,1,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,2,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "29") (term "0,2,0,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "24") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "26") (term "2,1,0,1,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "19") (term "1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "28") (term "2,1,0,1,2,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "30") (term "0,2,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "1") (term "1,1,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "24") (term "2,1,0,0,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "25")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0,2,1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "18") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "17") (term "1,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "1,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "26") (term "0,2,2,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "0,2,2,0,1,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,1")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0,1")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= -1 + end) & !f_0 = java.lang.Object:: TRUE" + (rule "andLeft" (formula "4")) + (rule "notLeft" (formula "5")) + (rule "exLeft" (formula "4") (inst "sk=iv_0")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "eqSymm" (formula "4")) + (rule "eqSymm" (formula "32")) + (rule "applyEqRigid" (formula "32") (term "2,0") (ifseqformula "4")) + (rule "narrowSelectArrayType" (formula "32") (term "0") (ifseqformula "16") (ifseqformula "31")) + (rule "eqSymm" (formula "32")) + (rule "applyEq" (formula "3") (term "2,2,0") (ifseqformula "4")) + (rule "narrowSelectArrayType" (formula "3") (term "2,0") (ifseqformula "16") (ifseqformula "31")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "1") (term "1,0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0,1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqSub" (formula "27") (term "2,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,2,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,1,0,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "commute_or" (formula "1") (term "0,0")) + (rule "impLeft" (formula "24")) + (branch + (rule "allRight" (formula "29") (inst "sk=i_1_0")) + (rule "orRight" (formula "29")) + (rule "orRight" (formula "29")) + (rule "inEqSimp_geqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "33")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "33")) (ifInst "" (formula "15"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "6") (term "0")) + (branch "iv_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "6")) + (rule "applyEqRigid" (formula "9") (term "0") (ifseqformula "6")) + (rule "applyEqRigid" (formula "7") (term "0,1") (ifseqformula "6")) + (rule "applyEq" (formula "32") (term "0,2,1") (ifseqformula "6")) + (rule "applyEq" (formula "4") (term "1,0,1,0,0") (ifseqformula "6")) + (rule "inEqSimp_contradEq7" (formula "32") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "commute_or_2" (formula "27") (term "0")) + (rule "commute_or_2" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,1")) + (rule "add_literals" (formula "4") (term "0,1")) + (rule "leq_literals" (formula "4") (term "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "10")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "iv_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "34")) + (rule "closeTrue" (formula "34")) + ) + ) + (branch + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "iv_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "30") (term "0,2,1") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0,1") (ifseqformula "3")) + (rule "applyEqRigid" (formula "1") (term "1,0,1,0,0") (ifseqformula "3")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_literals" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "commute_or_2" (formula "25") (term "0")) + (rule "commute_or_2" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "leq_literals" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "7")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + ) + ) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= -1 + end) & !f_0 = java.lang.Object:: FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "eqSymm" (formula "29")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1,0,1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0,1,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "getOfSeqConcat" (formula "24") (term "1,1,0")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "24") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addComm0" (formula "24") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "24") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "24")) + (rule "getOfSeqConcat" (formula "24") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "24") (term "2,1,0,1,0")) + (rule "castDel" (formula "24") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "24") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,2,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,1,1,0,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "24") (term "1,1,0,1,0")) + (rule "castDel" (formula "24") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "24") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "24") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "24") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "24") (term "2,0,1,0")) + (rule "castDel" (formula "24") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "24") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "24") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "24") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "24") (term "1,2,0,1,0")) + (rule "castDel" (formula "24") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "24") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,2,0,1,0")) + (rule "commute_or" (formula "16") (term "0,0,1,0")) + (rule "impLeft" (formula "21")) + (branch + (rule "allRight" (formula "26") (inst "sk=i_1_0")) + (rule "orRight" (formula "26")) + (rule "orRight" (formula "26")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "31")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepPosMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "pullOutSelect" (formula "3") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "3")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "31")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "3") (term "0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "6") (term "0")) + (branch "f_0 = arr(hole_0) TRUE" + (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "applyEqRigid" (formula "29") (term "1,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqRigid" (formula "31") (term "2,0") (ifseqformula "6")) + (rule "narrowSelectArrayType" (formula "31") (term "0") (ifseqformula "10") (ifseqformula "30")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "4") (term "1,0,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqRigid" (formula "29") (term "0,0,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "29")) + (rule "nnf_ex2all" (formula "29")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "27") (term "0")) + (rule "commute_or" (formula "5") (term "0,0")) + (rule "commute_or_2" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,1")) + (rule "add_literals" (formula "5") (term "1,1,0,1")) + (rule "times_zero_1" (formula "5") (term "1,0,1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "leq_literals" (formula "5") (term "1")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "10")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + (branch "f_0 = arr(hole_0) FALSE" + (rule "close" (formula "32") (ifseqformula "6")) + ) + ) + (branch + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "f_0 = arr(hole_0) TRUE" + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "applyEqRigid" (formula "1") (term "1,0,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqRigid" (formula "27") (term "0,0,1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqRigid" (formula "29") (term "2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "29") (term "0") (ifseqformula "7") (ifseqformula "28")) + (rule "eqSymm" (formula "29")) + (rule "applyEqRigid" (formula "27") (term "1,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "27")) + (rule "nnf_ex2all" (formula "27")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "commute_or_2" (formula "25") (term "0")) + (rule "commute_or" (formula "2") (term "0,0")) + (rule "commute_or_2" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "1,1,0,1")) + (rule "times_zero_1" (formula "2") (term "1,0,1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "leq_literals" (formula "2") (term "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "7")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "f_0 = arr(hole_0) FALSE" + (rule "close" (formula "30") (ifseqformula "3")) + ) + ) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_strengthen1" (formula "24") (ifseqformula "32")) + (rule "inEqSimp_contradEq7" (formula "32") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption0" (formula "23") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "28") (term "0,1,1,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "28")) + (rule "eqSymm" (formula "28") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "28") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1,0,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0,0,1")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption0" (formula "28") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "getOfSeqConcat" (formula "29") (term "1,1,0")) + (rule "eqSymm" (formula "29") (term "1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,0,0,0,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "29") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "29") (term "2,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "29") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,2,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "2,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,2,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "ifthenelse_split" (formula "4") (term "0")) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= -1 + end) & !f_0 = java.lang.Object:: TRUE" + (rule "andLeft" (formula "4")) + (rule "notLeft" (formula "5")) + (rule "exLeft" (formula "4") (inst "sk=iv_0")) + (rule "andLeft" (formula "4")) + (rule "andLeft" (formula "4")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "38") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "eqSymm" (formula "4")) + (rule "eqSymm" (formula "37")) + (rule "applyEqRigid" (formula "37") (term "2,0") (ifseqformula "4")) + (rule "narrowSelectArrayType" (formula "37") (term "0") (ifseqformula "17") (ifseqformula "36")) + (rule "eqSymm" (formula "37")) + (rule "applyEqRigid" (formula "35") (term "0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "applyEqRigid" (formula "1") (term "1,0,0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqRigid" (formula "3") (term "2,2,0") (ifseqformula "4")) + (rule "narrowSelectArrayType" (formula "3") (term "2,0") (ifseqformula "17") (ifseqformula "35")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "30") (term "0,0")) + (rule "translateJavaAddInt" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "30") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "30") (term "0")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "lenOfSeqConcat" (formula "30") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "30") (term "0,0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "1")) + (rule "polySimp_addComm1" (formula "30") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_homoEq" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1,0,1")) + (rule "add_zero_right" (formula "30") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "30") (term "1") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,1")) + (rule "qeq_literals" (formula "30") (term "0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1")) + (rule "polySimp_rightDist" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1")) + (rule "mul_literals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1")) + (rule "allLeft" (formula "20") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_7" (formula "20") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,1,0")) + (rule "add_literals" (formula "20") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,1,0")) + (rule "add_literals" (formula "20") (term "0,1,0")) + (rule "qeq_literals" (formula "20") (term "1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq0" (formula "20") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEq" (formula "34") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "20")) + (rule "applyEq" (formula "31") (term "1,2,1,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "32") (term "1,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "33") (term "0,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "31") (term "1,1,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "32") (term "2,0,1,1,0") (ifseqformula "20")) + (rule "nnf_notAnd" (formula "32") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "32") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "32") (term "0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "28") (term "0,1,0")) + (rule "allLeft" (formula "23") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "23") (term "0,2,0,1")) + (rule "add_literals" (formula "23") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "23") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "23") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_10" (formula "23") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "37")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0")) + (rule "inEqSimp_subsumption0" (formula "23") (term "0,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "23")) + (rule "allLeft" (formula "24") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "38")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "38")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1,1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "allLeft" (formula "25") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_10" (formula "25") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "39")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "allLeft" (formula "26") (inst "t=begin")) + (rule "replaceKnownSelect_taclet010110000010110011_19" (formula "26") (term "1,1")) + (rule "replaceKnownSelect_taclet010110000010110011_17" (formula "26") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_20" (formula "26") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_18" (formula "26") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0")) + (rule "allLeft" (formula "26") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0")) + (rule "elimGcdGeq" (formula "26") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "26") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "26") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_pullOutFactor0" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "40")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "elimGcdLeq" (formula "26") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,0,0")) + (rule "sub_literals" (formula "26") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "26") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_pullOutFactor0" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "41")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "27") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "27") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "commute_or" (formula "1") (term "0,0")) + (rule "nnf_notAnd" (formula "34") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "commute_and" (formula "37") (term "0,2,0,1,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "38") (term "0,1,1,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "38")) + (rule "eqSymm" (formula "38") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "38") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "38") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "38") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "38") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "38") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "38") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "38") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "38") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "38") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "38") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0")) + (rule "add_zero_right" (formula "38") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "38") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "38") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "38") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "38") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "38") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "38") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "38") (term "0,0,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "38") (term "0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "38") (term "0,1,1,1,0,0,0,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "38") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "38") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_addAssoc" (formula "38") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "38") (term "0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "38") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "38") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_subsumption1" (formula "38") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_subsumption0" (formula "38") (term "0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "38") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "andLeft" (formula "38")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "40") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "40") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "40") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "40") (term "0,2,1,0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "40") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "getOfSeqConcat" (formula "40") (term "1,1,0")) + (rule "eqSymm" (formula "40") (term "1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "40") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_addComm0" (formula "40") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "40") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "40") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "40") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "40") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "40") (term "0,0,0,0,0,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,1,0,0,1,0")) + (rule "getOfSeqSub" (formula "40") (term "2,0,1,0")) + (rule "castDel" (formula "40") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "40") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "40") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "40") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "40") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "40") (term "1,2,0,1,0")) + (rule "castDel" (formula "40") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "40") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "40") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "40") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "40") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "40") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "40") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "40") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "40") (term "2,1,0,1,0")) + (rule "castDel" (formula "40") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "40") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "40") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "40") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "40") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "40")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "40") (term "0,1,0,2,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "40") (term "1,1,0,1,0")) + (rule "castDel" (formula "40") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "40") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "40") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "40") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "40") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "40") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "40") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "40") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "40") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "allLeft" (formula "36") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1")) + (rule "add_literals" (formula "36") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "36") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "36") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_5" (formula "36") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "36") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "36") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "leq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_contradInEq1" (formula "36") (term "0") (ifseqformula "33")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0")) + (rule "leq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "pullOutSelect" (formula "36") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "45")) (ifInst "" (formula "12"))) + (rule "replaceKnownSelect_taclet010110000010110011_15" (formula "36") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_16" (formula "36") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "36") (term "0,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "36") (term "0,0") (ifseqformula "33")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEqReverse" (formula "37") (term "1") (ifseqformula "36")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "inEqSimp_commuteGeq" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "36")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "44") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "44") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "44") (term "0,0")) + (rule "add_literals" (formula "44") (term "1,1,0,0")) + (rule "times_zero_1" (formula "44") (term "1,0,0")) + (rule "add_literals" (formula "44") (term "0,0")) + (rule "qeq_literals" (formula "44") (term "0")) + (builtin "One Step Simplification" (formula "44")) + (rule "true_left" (formula "44")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch "iv_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "46") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "3")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "3")) + (rule "applyEq" (formula "1") (term "1,0,1,0,0") (ifseqformula "3")) + (rule "applyEq" (formula "4") (term "0,1") (ifseqformula "3")) + (rule "applyEqRigid" (formula "45") (term "0,2,1") (ifseqformula "3")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "5") (ifseqformula "32")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "allLeft" (formula "36") (inst "t=begin")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq1" (formula "36") (term "0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "36") (term "1,1,0")) + (rule "pullOutSelect" (formula "36") (term "1,1") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "44")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet010110000010110011_19" (formula "36") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_20" (formula "36") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_subsumption1" (formula "36") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEqReverse" (formula "37") (term "1,1") (ifseqformula "36")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "pullOutSelect" (formula "36") (term "0,1") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "36")) + (builtin "One Step Simplification" (formula "36") (ifInst "" (formula "44")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet010110000010110011_17" (formula "36") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_18" (formula "36") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_commuteGeq" (formula "37") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1,0,0")) + (rule "replace_known_left" (formula "36") (term "1,0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "36")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEqReverse" (formula "37") (term "1,1") (ifseqformula "36")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "36") (term "1")) + (rule "allLeft" (formula "37") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet0010110000010110011_28" (formula "37") (term "1,1")) + (rule "replaceKnownSelect_taclet0010110000010110011_30" (formula "37") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_29" (formula "37") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_31" (formula "37") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0")) + (rule "qeq_literals" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_homoInEq1" (formula "37") (term "0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0")) + (rule "allLeft" (formula "37") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "37") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_5" (formula "37") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "37") (term "1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "37") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "37") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "leq_literals" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "pullOutSelect" (formula "37") (term "0,1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "37")) + (builtin "One Step Simplification" (formula "37") (ifInst "" (formula "45")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet010110000010110011_21" (formula "37") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_22" (formula "37") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "37") (term "0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_commuteGeq" (formula "38") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1,0,0")) + (rule "replace_known_left" (formula "37") (term "1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "37") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0")) + (rule "qeq_literals" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "applyEqReverse" (formula "38") (term "1,1") (ifseqformula "37")) + (rule "hideAuxiliaryEq" (formula "37")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1")) + (rule "allLeft" (formula "38") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq1" (formula "38") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "38") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "38") (term "0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "38") (term "1,0")) + (rule "polySimp_mulComm0" (formula "38") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "38") (term "1,1,0")) + (rule "mul_literals" (formula "38") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "38") (term "0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0")) + (rule "elimGcdGeq" (formula "38") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "sub_literals" (formula "38") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "38") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "38") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_pullOutFactor0" (formula "38") (term "0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "pullOutSelect" (formula "38") (term "0,1") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "38")) + (builtin "One Step Simplification" (formula "38") (ifInst "" (formula "46")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet010110000010110011_23" (formula "38") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "38") (term "0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "inEqSimp_commuteGeq" (formula "39") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "38") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "38") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "38") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "38") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "38") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,0,0,0,1,0,0,0,0")) + (rule "sub_literals" (formula "38") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "38") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "38") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "38") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "38") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "38") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "38") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "polySimp_pullOutFactor0" (formula "38") (term "0,0,0,0,0")) + (rule "add_literals" (formula "38") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "38") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "38") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "38")) + (rule "pullOutSelect" (formula "39") (term "0,1") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnon" (formula "39")) + (builtin "One Step Simplification" (formula "39") (ifInst "" (formula "47")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet010110000010110011_24" (formula "39") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "39") (term "0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_commuteLeq" (formula "39") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "39") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "39") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0")) + (rule "inEqSimp_invertInEq1" (formula "39") (term "0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "39") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "sub_literals" (formula "39") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "39") (term "0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "39") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "39") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "39") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "39") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "polySimp_pullOutFactor0b" (formula "39") (term "0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "39") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "39") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "allLeft" (formula "34") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_1" (formula "34") (term "1,1")) + (rule "replaceKnownSelect_taclet0010110000010110011_32" (formula "34") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_5" (formula "34") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_33" (formula "34") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "34") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "34") (term "1,0") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,0")) + (rule "leq_literals" (formula "34") (term "0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_contradInEq1" (formula "34") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "34") (term "0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0")) + (rule "add_literals" (formula "34") (term "0,0,0")) + (rule "leq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "38") (term "1") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "allLeft" (formula "35") (inst "t=begin")) + (rule "replaceKnownSelect_taclet0010110000010110011_28" (formula "35") (term "1,1")) + (rule "replaceKnownSelect_taclet0010110000010110011_30" (formula "35") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_29" (formula "35") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_31" (formula "35") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "35") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_contradInEq1" (formula "35") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "leq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "replace_known_left" (formula "38") (term "1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "38")) + (rule "true_left" (formula "38")) + (rule "allLeft" (formula "36") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet0010110000010110011_28" (formula "36") (term "1,1")) + (rule "replaceKnownSelect_taclet0010110000010110011_30" (formula "36") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_29" (formula "36") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010110000010110011_31" (formula "36") (term "0,1")) + (rule "replace_known_left" (formula "36") (term "1") (ifseqformula "35")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "allLeft" (formula "36") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "replaceKnownSelect_taclet010110000010110011_25" (formula "36") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010110000010110011_26" (formula "36") (term "1,1")) + (rule "polySimp_addAssoc" (formula "36") (term "0,2,0,1")) + (rule "add_literals" (formula "36") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "36") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "36") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_5" (formula "36") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1")) + (rule "replace_known_left" (formula "36") (term "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "nnf_imp2or" (formula "43") (term "0")) + (rule "commute_or_2" (formula "27")) + (rule "allLeft" (formula "36") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "replaceKnownSelect_taclet0010110000010110011_35" (formula "36") (term "1,1")) + (rule "replaceKnownSelect_taclet0010110000010110011_34" (formula "36") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "36") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "36") (term "0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0")) + (rule "elimGcdGeq" (formula "36") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "1,0,1,0,0,0")) + (rule "sub_literals" (formula "36") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "36") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "36") (term "1,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "36") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_addLiterals" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "36") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "36") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "36") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "polySimp_pullOutFactor0" (formula "36") (term "0,0,0,0")) + (rule "add_literals" (formula "36") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "36") (term "0,0,0,0")) + (rule "qeq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "commute_or_2" (formula "43") (term "0")) + (rule "cut_direct" (formula "23") (term "0")) + (branch "CUT: k_0 <= 1 + begin TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_antiSymm" (formula "18") (ifseqformula "23")) + (rule "applyEq" (formula "45") (term "2,1,0,1,2,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "0,0,0")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0")) + (rule "applyEq" (formula "38") (term "1,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "46") (term "2,1,0,2,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "48") (term "0,2,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "6") (term "0,2,1,1") (ifseqformula "18")) + (rule "applyEq" (formula "47") (term "0,2,1,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "44") (term "2,1,0,1,1,1,1,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "48") (term "2,1,0,2,0,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "38") (term "2,1,0,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "0,1,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "42") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,0")) + (rule "times_zero_1" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEq" (formula "21") (term "1,0,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "21") (term "1,1,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "40") (term "0,1,0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "40") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "40") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,0,1,0,0")) + (rule "applyEq" (formula "39") (term "0,1,0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq1" (formula "39") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "39") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "39") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "39") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "39") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "39") (term "0,0,1,0,0")) + (rule "add_literals" (formula "39") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "39") (term "0,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "39") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0")) + (rule "applyEq" (formula "43") (term "2,1,0,1,1,2,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "46") (term "2,1,0,1,1,2,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "36") (term "0,1,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "1,0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,1,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "36") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "36") (term "0,1,0")) + (rule "add_literals" (formula "36") (term "1,1,0,1,0")) + (rule "applyEq" (formula "47") (term "2,1,0,2,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "2,1,0,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "45") (term "0,2,2,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0")) + (rule "applyEq" (formula "19") (term "0,2,0") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "2,1,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "37") (term "2,1,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "42") (term "1,1,0,0")) + (rule "applyEq" (formula "1") (term "1,1,1,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "1") (term "1,1,0")) + (rule "add_literals" (formula "1") (term "0,1,1,0")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "28") (term "1,1,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "23")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,0")) + (rule "times_zero_1" (formula "23") (term "0")) + (rule "qeq_literals" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "26") (term "0,1") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_pullOutFactor3" (formula "26") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "applyEq" (formula "45") (term "2,1,0,1,1,1,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,1") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0,0")) + (rule "add_literals" (formula "32") (term "0,1,1,0,0")) + (rule "applyEq" (formula "32") (term "1,1,1,0,0,1,0") (ifseqformula "18")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,1,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "0,2,1,2,1,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "43") (term "0,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "2,1,0,1,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "2,1,0,0,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "43") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "0,2,1,1,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "43") (term "0,2,2,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "19") (term "0,2,1") (ifseqformula "18")) + (rule "applyEq" (formula "42") (term "2,1,0,1,2,1,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "45") (term "0,2,1,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "45") (term "2,1,0,1,2,1,1,0") (ifseqformula "18")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "1")) + (rule "polySimp_elimOne" (formula "31") (term "1")) + (rule "inEqSimp_invertInEq1" (formula "40") (term "1,0")) + (rule "mul_literals" (formula "40") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0")) + (rule "inEqSimp_invertInEq0" (formula "38") (term "1,0,0")) + (rule "mul_literals" (formula "38") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "35") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "inEqSimp_invertInEq1" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0")) + (rule "inEqSimp_contradInEq0" (formula "8") (ifseqformula "31")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_literals" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + (branch "CUT: k_0 <= 1 + begin FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_leqRight" (formula "48")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "allLeft" (formula "28") (inst "t=int::select(heap, values, arr(k_0))")) + (rule "pullOutSelect" (formula "28") (term "1,1") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "50")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "pullOutSelect" (formula "29") (term "0,1") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "29")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "51")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0")) + (rule "commute_or" (formula "36") (term "0,0,1,0")) + (rule "cut_direct" (formula "24") (term "0")) + (branch "CUT: k_0 <= 1 + hole_0 TRUE" + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_antiSymm" (formula "35") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "0,1") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "applyEq" (formula "21") (term "1,0,1,0,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "40") (term "0,1,0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "40") (term "1,0")) + (rule "polySimp_mulComm0" (formula "40") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,1,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "40") (term "0,0,1,0")) + (rule "applyEqRigid" (formula "29") (term "0,2,1,0,2,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0") (ifseqformula "35")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0")) + (rule "applyEq" (formula "46") (term "2,1,0,1,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "47") (term "2,1,0,1,1,2,0,1,0,0") (ifseqformula "35")) + (rule "applyEq" (formula "51") (term "2,1,0,2,0,0,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "46") (term "2,1,0,0,1,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "29") (term "0,2,0,1,0,0") (ifseqformula "35")) + (rule "applyEq" (formula "21") (term "1,1,0,0,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "50") (term "2,1,0,1,1,2,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "50") (term "2,1,0,1,1,1,1,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "30") (term "0,2,0,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "47") (term "0,2,1,2,1,0,1,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "19") (term "0,2,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "10") (term "0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "applyEqRigid" (formula "31") (term "1,1,1,0,0") (ifseqformula "35")) + (rule "polySimp_addAssoc" (formula "31") (term "1,1,0,0")) + (rule "add_literals" (formula "31") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "31") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "29") (term "0,2,1,0,2,2,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "48") (term "2,1,0,1,2,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "44") (term "0,1,0,0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq1" (formula "44") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "44") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "44") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "44") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "44") (term "0,0,1,0,0")) + (rule "applyEq" (formula "30") (term "0,2,0,1,0") (ifseqformula "35")) + (rule "applyEq" (formula "47") (term "2,1,0,1,1,1,1,0,1,0,0") (ifseqformula "35")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "35")) + (rule "inEqSimp_homoInEq0" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "qeq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "40") (term "2,1,0,0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "27") (term "0,2,0,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "6") (term "0,2,1,1") (ifseqformula "34")) + (rule "applyEqRigid" (formula "7") (term "0,2,1,1") (ifseqformula "34")) + (rule "applyEqRigid" (formula "35") (term "0") (ifseqformula "34")) + (rule "inEqSimp_homoInEq1" (formula "35")) + (rule "polySimp_pullOutFactor1" (formula "35") (term "0")) + (rule "add_literals" (formula "35") (term "1,0")) + (rule "times_zero_1" (formula "35") (term "0")) + (rule "leq_literals" (formula "35")) + (rule "true_left" (formula "35")) + (rule "applyEq" (formula "46") (term "0,2,1,0,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "47") (term "0,2,2,0,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "2") (term "1,1,1,0") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "2") (term "1,1,0")) + (rule "add_literals" (formula "2") (term "0,1,1,0")) + (rule "applyEq" (formula "39") (term "1,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "39") (term "2,1,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "28") (term "0,2,0,0,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "41") (term "0,1,0,0") (ifseqformula "34")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "41") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "41") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "41") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "41") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "41") (term "0,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "41") (term "0,0,1,0,0")) + (rule "applyEqRigid" (formula "48") (term "0,2,1,2,1,0,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "44") (term "1,1,1,0,0") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "44") (term "1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "44") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "27") (term "0,2,0,0,0,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "35") (term "2,1,0,0,1,0,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "43") (term "0,1,0") (ifseqformula "34")) + (rule "inEqSimp_homoInEq0" (formula "43") (term "1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "43") (term "0,0,1,0")) + (rule "applyEq" (formula "49") (term "0,2,0,1,0,0") (ifseqformula "34")) + (rule "applyEq" (formula "35") (term "1,1,0,0,0,1,0") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "35") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,1,0,0,0,1,0")) + (rule "applyEqRigid" (formula "27") (term "0,2,0,2,2,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "49") (term "2,1,0,2,0,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "35") (term "1,1,1,0,0") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,1,1,0,0")) + (rule "applyEq" (formula "47") (term "2,1,0,2,0,0,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "27") (term "0,2,0,2,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "29") (term "1,1,1,0") (ifseqformula "34")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0")) + (rule "add_literals" (formula "29") (term "0,1,1,0")) + (rule "add_zero_left" (formula "29") (term "1,1,0")) + (rule "applyEq" (formula "35") (term "2,1,0,1,1,0,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "48") (term "2,1,0,1,2,1,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "46") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "34")) + (rule "applyEq" (formula "45") (term "2,1,0,1,2,1,1,0,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "46") (term "0,2,2,0,1,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "19") (term "0,2,1") (ifseqformula "34")) + (rule "applyEq" (formula "48") (term "0,2,1,1,1,0") (ifseqformula "34")) + (rule "applyEqRigid" (formula "45") (term "0,2,1,1,1,0,0") (ifseqformula "34")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "38") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "38") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "38") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "39") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "39") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "39") (term "0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "41") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "41") (term "0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "38")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "ifthenelse_split" (formula "22") (term "0")) + (branch "begin <= 0 & end >= 2 + begin * -1 TRUE" + (rule "andLeft" (formula "22")) + (rule "applyEqReverse" (formula "41") (term "2,0") (ifseqformula "24")) + (rule "applyEqReverse" (formula "26") (term "0,1,0") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "replace_known_left" (formula "41") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "41")) + (rule "replace_known_left" (formula "40") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "40")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq0" (formula "42") (term "0,0") (ifseqformula "22")) + (rule "qeq_literals" (formula "42") (term "0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_contradInEq0" (formula "25") (term "0,0") (ifseqformula "22")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "37") (term "0,0") (ifseqformula "22")) + (rule "qeq_literals" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1,0") (ifseqformula "24")) + (rule "applyEqReverse" (formula "41") (term "2,0") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_antiSymm" (formula "12") (ifseqformula "22")) + (rule "applyEq" (formula "22") (term "0,2,1") (ifseqformula "12")) + (rule "applyEq" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "43") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_zero_right" (formula "43") (term "1,0,0,0")) + (rule "applyEq" (formula "48") (term "0,1") (ifseqformula "12")) + (rule "applyEq" (formula "38") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "38") (term "1,0,0,0")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "12")) + (rule "qeq_literals" (formula "13")) + (rule "true_left" (formula "13")) + (rule "applyEq" (formula "35") (term "1,0,2,0") (ifseqformula "12")) + (rule "add_literals" (formula "35") (term "0,2,0")) + (rule "inEqSimp_commuteGeq" (formula "35")) + (rule "applyEq" (formula "33") (term "1,1,0,0,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "0,1,1,0") (ifseqformula "12")) + (rule "times_zero_2" (formula "36") (term "1,1,0")) + (rule "add_literals" (formula "36") (term "1,0")) + (rule "applyEq" (formula "43") (term "1,1,0,1,1,1,1,0,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "8") (term "1,1") (ifseqformula "12")) + (rule "add_zero_right" (formula "8") (term "1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "12")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "32") (term "1,1,0,0,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "32") (term "1,1,0,0,0,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "0,1,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "39") (term "1,1,0,0")) + (rule "add_literals" (formula "39") (term "1,0,0")) + (rule "applyEq" (formula "46") (term "1,1,0,0,2,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "46") (term "0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "40") (term "0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "40") (term "1,0")) + (rule "applyEq" (formula "44") (term "0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "42") (term "1,1,0,1,1,2,0,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "12")) + (rule "add_literals" (formula "7") (term "1")) + (rule "applyEq" (formula "46") (term "1,1,0,2,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,1,2,0,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "23") (term "0,0,2,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "23") (term "0,2,1,0")) + (rule "applyEq" (formula "32") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "32") (term "1,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,0,0,1,1,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "1,1,0,2,0") (ifseqformula "12")) + (rule "applyEq" (formula "41") (term "1,1,0,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "1,1,0,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "23") (term "0,1,0,2,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "23") (term "1,0,2,0,0")) + (rule "add_literals" (formula "23") (term "0,2,0,0")) + (rule "applyEq" (formula "39") (term "0,0,2,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "39") (term "0,2,1,0")) + (rule "applyEq" (formula "38") (term "0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "38") (term "1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,1,1,1,1,0,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "38") (term "0,1,0,2,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "38") (term "1,0,2,1,0")) + (rule "add_literals" (formula "38") (term "0,2,1,0")) + (rule "applyEq" (formula "26") (term "1,1,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "26") (term "1,0,0")) + (rule "applyEq" (formula "19") (term "1,1,0,0,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "45") (term "1,1,0,1,1,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "19") (term "1,1,0,0,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "19") (term "1,0,0,0,0,0")) + (rule "applyEq" (formula "19") (term "1,1,0,1,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "25") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "25") (term "1,0,0,0")) + (rule "applyEq" (formula "43") (term "1,1,0,0,1,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "46") (term "0,0,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "0,0") (ifseqformula "12")) + (rule "applyEq" (formula "27") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "27") (term "1,0,0,0")) + (rule "applyEq" (formula "44") (term "1,1,0,0,2,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "32") (term "1,1,0,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "27") (term "1,1,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "46") (term "1,1,0,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "16") (term "0,1") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "1,1,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "24") (term "1,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "36") (term "1,1,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "39") (term "0,0,2,2,0") (ifseqformula "12")) + (rule "mul_literals" (formula "39") (term "0,2,2,0")) + (rule "applyEq" (formula "21") (term "1,0,2,0") (ifseqformula "12")) + (rule "add_literals" (formula "21") (term "0,2,0")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "44") (term "1,1,0,0,1,1,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "40") (term "1,1,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "44") (term "1,1,0,1,1,1,1,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "1") (term "1,1,0,0,0") (ifseqformula "12")) + (rule "add_literals" (formula "1") (term "1,0,0,0")) + (rule "applyEq" (formula "35") (term "1,1,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "26") (term "1,1,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "40") (term "1,1,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "22") (term "0,1,1") (ifseqformula "12")) + (rule "mul_literals" (formula "22") (term "1,1")) + (rule "add_literals" (formula "22") (term "1")) + (rule "applyEq" (formula "37") (term "0,1,0,2,2,0") (ifseqformula "12")) + (rule "mul_literals" (formula "37") (term "1,0,2,2,0")) + (rule "add_literals" (formula "37") (term "0,2,2,0")) + (rule "applyEq" (formula "45") (term "1,1,0,0,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "42") (term "1,1,0,1,2,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "43") (term "1,1,0,2,0,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "33") (term "0,2,0") (ifseqformula "12")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,2,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,2,0,1,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,0,0,2,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,0,2,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,0,0,2,0,1,0,0")) + (rule "applyEq" (formula "45") (term "0,0,2,0,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "45") (term "0,2,0,0,0")) + (rule "add_zero_left" (formula "45") (term "2,0,0,0")) + (rule "applyEq" (formula "45") (term "0,0,2,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "45") (term "0,2,1,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,0,0,2,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,0,0,2,0,1,0")) + (rule "applyEq" (formula "45") (term "0,1,0,1,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "45") (term "1,0,1,1,0")) + (rule "add_literals" (formula "45") (term "0,1,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,1,1,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,1,1,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,1,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "41") (term "1,1,0,0,1,2,1,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "44") (term "1,1,0,0,1,2,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,2,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,2,0,1,0")) + (rule "applyEq" (formula "41") (term "1,1,0,1,2,1,1,0,0") (ifseqformula "12")) + (rule "applyEq" (formula "44") (term "1,1,0,1,2,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "41") (term "0,0,1,0,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "0,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "41") (term "1,0,0,1,0,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,1,0,1,1,1,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,2,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "44") (term "0,0,2,1,1,1,1,0,1,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "44") (term "0,2,1,1,1,1,0,1,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,1,0,1,2,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,1,2,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,0,1,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,1,0,1,0")) + (rule "add_literals" (formula "44") (term "0,1,0,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0")) + (rule "add_zero_left" (formula "44") (term "1,0,0,1,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,1,0,1,1,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,1,1,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,1,0,1,1,0,1,0,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,1,0,2,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,2,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,1,0,2,0,1,0,0")) + (rule "applyEq" (formula "41") (term "0,0,2,1,1,1,1,0,1,0,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "41") (term "0,2,1,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "0,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "41") (term "0,0,2,1,1,2,0,1,0,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "41") (term "0,2,1,1,2,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,0,2,1,1,2,0,1,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "44") (term "0,2,1,1,2,0,1,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,0,1,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,0,1,0,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,0,1,0,1,0,0")) + (rule "applyEq" (formula "43") (term "0,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "43") (term "0,1,0,0")) + (rule "add_zero_left" (formula "43") (term "1,0,0")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,0,0,1,1,0") (ifseqformula "12")) + (rule "applyEq" (formula "42") (term "0,1,0,1,1,0,2,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "42") (term "1,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "applyEq" (formula "42") (term "0,0,2,1,2,0,1,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "42") (term "0,2,1,2,0,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "44") (term "1,1,0,0")) + (rule "applyEq" (formula "42") (term "0,1,0,1,1,0,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "42") (term "1,0,1,1,0,0,0")) + (rule "add_literals" (formula "42") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "41") (term "0,0,1,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "0,1,1,0")) + (rule "add_zero_left" (formula "41") (term "1,1,0")) + (rule "applyEq" (formula "42") (term "0,0,1,0,0,1,0") (ifseqformula "12")) + (rule "times_zero_2" (formula "42") (term "0,1,0,0,1,0")) + (rule "add_zero_left" (formula "42") (term "1,0,0,1,0")) + (rule "applyEq" (formula "41") (term "0,1,0,1,1,0,2,1,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "1,0,1,1,0,2,1,1,0,0")) + (rule "add_literals" (formula "41") (term "0,1,1,0,2,1,1,0,0")) + (rule "applyEq" (formula "41") (term "0,0,2,1,2,1,1,0,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "41") (term "0,2,1,2,1,1,0,0")) + (rule "applyEq" (formula "43") (term "0,0,1") (ifseqformula "12")) + (rule "mul_literals" (formula "43") (term "0,1")) + (rule "add_zero_left" (formula "43") (term "1")) + (rule "applyEq" (formula "41") (term "0,0,1,0,2,1,0,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "0,1,0,2,1,0,1,0,0")) + (rule "add_zero_left" (formula "41") (term "1,0,2,1,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,0,2,1,2,1,1,0") (ifseqformula "12")) + (rule "add_zero_left" (formula "44") (term "0,2,1,2,1,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,2,1,0,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "0,1,0,2,1,0,1,0")) + (rule "add_zero_left" (formula "44") (term "1,0,2,1,0,1,0")) + (rule "applyEq" (formula "42") (term "0,0,1,0,1,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,1,0")) + (rule "add_zero_left" (formula "42") (term "1,0,1,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,2,1,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,2,1,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,1,1,0") (ifseqformula "12")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,1,0")) + (rule "add_zero_left" (formula "44") (term "1,0,1,1,0")) + (rule "applyEq" (formula "41") (term "0,0,1,0,1,1,0,0") (ifseqformula "12")) + (rule "mul_literals" (formula "41") (term "0,1,0,1,1,0,0")) + (rule "add_zero_left" (formula "41") (term "1,0,1,1,0,0")) + (rule "inEqSimp_contradInEq1" (formula "34") (term "0") (ifseqformula "8")) + (rule "qeq_literals" (formula "34") (term "0,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "39") (term "1") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "39")) + (rule "true_left" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "7")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "37") (term "0,0") (ifseqformula "8")) + (rule "leq_literals" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "applyEqReverse" (formula "33") (term "0") (ifseqformula "37")) + (rule "hideAuxiliaryEq" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "36") (term "0,0") (ifseqformula "8")) + (rule "leq_literals" (formula "36") (term "0,0,0")) + (builtin "One Step Simplification" (formula "36")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "36")) + (rule "hideAuxiliaryEq" (formula "36")) + (rule "inEqSimp_commuteLeq" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "28")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1")) + (rule "nnf_notAnd" (formula "37") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "37") (term "0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "37") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0")) + (rule "commute_or_2" (formula "24")) + (rule "commute_or_2" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "leq_literals" (formula "1") (term "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "8")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "begin <= 0 & end >= 2 + begin * -1 FALSE" + (rule "applyEqReverse" (formula "24") (term "0,1,0") (ifseqformula "22")) + (rule "applyEqReverse" (formula "39") (term "2,0") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "ifthenelse_split" (formula "22") (term "0")) + (branch "begin <= 0 & end >= 1 + begin * -1 TRUE" + (rule "andLeft" (formula "22")) + (rule "applyEqReverse" (formula "41") (term "2,0") (ifseqformula "24")) + (rule "applyEqReverse" (formula "25") (term "1,1,0") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "replace_known_left" (formula "40") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "40")) + (rule "replace_known_left" (formula "39") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "39")) + (rule "replace_known_left" (formula "48") (term "0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_geqRight" (formula "48")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "37") (term "0,0") (ifseqformula "23")) + (rule "qeq_literals" (formula "37") (term "0,0,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_contradInEq0" (formula "42") (term "0,0") (ifseqformula "23")) + (rule "qeq_literals" (formula "42") (term "0,0,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_contradInEq0" (formula "25") (term "0,0") (ifseqformula "23")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_antiSymm" (formula "24") (ifseqformula "1")) + (rule "applyEq" (formula "45") (term "1,1,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "45") (term "0,1,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "45") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,1,0")) + (rule "applyEq" (formula "15") (term "1") (ifseqformula "24")) + (rule "applyEq" (formula "20") (term "1,2,1,0,1,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,2,1,0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "2,1,0,1,1,0,0")) + (rule "applyEq" (formula "48") (term "1,2,1,0,0,1,1,2,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "48") (term "2,1,0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "48") (term "0,2,1,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "48") (term "2,1,0,0,1,1,2,0,1,0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,2,0,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,2,0,0,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,2,0,0,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,2,0,0,0")) + (rule "applyEq" (formula "44") (term "1,2,1,0,0,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "44") (term "2,1,0,0,0,1,0")) + (rule "add_literals" (formula "44") (term "0,2,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "44") (term "2,1,0,0,0,1,0")) + (rule "applyEq" (formula "30") (term "1,2,1,0,1,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "30") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "30") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "45") (term "1,2,1,0,0,1,1,2,0,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "45") (term "2,1,0,0,1,1,2,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,2,1,0,0,1,1,2,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0,0,1,1,2,0,1,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,0")) + (rule "times_zero_1" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "45") (term "1,1,1,0,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "45") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "45") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,0,0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,1,1,1,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,1,1,1,0,1,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,1,1,1,1,0,1,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,1,1,1,1,0,1,0")) + (rule "applyEq" (formula "32") (term "1,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "32") (term "1")) + (rule "add_literals" (formula "32") (term "0,1")) + (rule "replace_known_left" (formula "37") (term "0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "applyEq" (formula "19") (term "1,0,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "43") (term "1,2,1,0,0,1,1,1,1,0,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "43") (term "2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "43") (term "0,2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "add_zero_left" (formula "43") (term "2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,2,0,0,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,2,0,0,0,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,2,0,0,0,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,2,0,0,0,0")) + (rule "applyEq" (formula "44") (term "1,2,1,0,0,1,2,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "44") (term "2,1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "44") (term "0,2,1,0,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "44") (term "2,1,0,0,1,2,0,1,0")) + (rule "applyEq" (formula "47") (term "1,1") (ifseqformula "24")) + (rule "applyEq" (formula "47") (term "1,2,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor3b" (formula "47") (term "2,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,2,1,0")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "8") (term "0")) + (rule "applyEq" (formula "34") (term "1,2,1,0,0,1,1,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "34") (term "2,1,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "34") (term "0,2,1,0,0,1,1,0,1,0")) + (rule "add_zero_left" (formula "34") (term "2,1,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,2,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,2,0,1,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,2,0,1,0")) + (rule "applyEq" (formula "46") (term "1,1,1,0,2,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "46") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "46") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,2,0,1,0")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "46") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "46") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "46") (term "1,1,0,0")) + (rule "add_literals" (formula "46") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "26") (term "1,1,0,0")) + (rule "applyEq" (formula "37") (term "1,2,1,0,0,1,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "37") (term "2,1,0,0,1,1,0")) + (rule "add_literals" (formula "37") (term "0,2,1,0,0,1,1,0")) + (rule "add_zero_left" (formula "37") (term "2,1,0,0,1,1,0")) + (rule "applyEq" (formula "46") (term "1,1,1,0,1,2,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "46") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,1,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "46") (term "0,1,1,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "46") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,1,2,0,1,0")) + (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "19") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "19") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "17") (term "1,1") (ifseqformula "24")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "44") (term "1,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "46") (term "1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "42") (term "1,1,0,0,2,0,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,0,2,0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,0,0,2,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,0,0,2,0,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,1,0,0,2,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "42") (term "1,0,0,2,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,0,2,0,1,0,0")) + (rule "applyEq" (formula "16") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "45") (term "1,1,1,0,1,1,1,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "add_zero_left" (formula "45") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "45") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,1,0")) + (rule "applyEq" (formula "33") (term "1,2,1,0,0,0,1,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "33") (term "2,1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "33") (term "0,2,1,0,0,0,1,0,1,0")) + (rule "add_zero_left" (formula "33") (term "2,1,0,0,0,1,0,1,0")) + (rule "applyEq" (formula "16") (term "1,2,1,0,2,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "16") (term "2,1,0,2,0")) + (rule "add_literals" (formula "16") (term "0,2,1,0,2,0")) + (rule "add_zero_left" (formula "16") (term "2,1,0,2,0")) + (rule "applyEq" (formula "41") (term "1,2,1,0,0,1,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,1,0")) + (rule "add_literals" (formula "41") (term "0,2,1,0,0,1,1,0")) + (rule "add_zero_left" (formula "41") (term "2,1,0,0,1,1,0")) + (rule "applyEq" (formula "19") (term "1,2,1,0,0,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "19") (term "2,1,0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,2,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "19") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "46") (term "1,0,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,1,1,0,0")) + (rule "applyEq" (formula "36") (term "1,2,1,0,0,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "36") (term "2,1,0,0,0,1,0")) + (rule "add_literals" (formula "36") (term "0,2,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "36") (term "2,1,0,0,0,1,0")) + (rule "applyEq" (formula "42") (term "1,1,1,0,1,2,0,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,1,2,0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,1,2,0,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "42") (term "1,1,0,1,2,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,2,0,1,0,0")) + (rule "applyEq" (formula "43") (term "1,1,1,0,2,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "43") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "43") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "43") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1,0,2,0,1,0")) + (rule "applyEq" (formula "28") (term "1,2,1,0,0,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "28") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "42") (term "1,1,1,0,1,1,1,0,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "42") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "42") (term "1,2,1,0,0,1,2,1,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "42") (term "2,1,0,0,1,2,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,2,1,0,0,1,2,1,1,0,0")) + (rule "add_zero_left" (formula "42") (term "2,1,0,0,1,2,1,1,0,0")) + (rule "applyEq" (formula "43") (term "1,2,1,0,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "43") (term "2,1,0,0,2,0,0,1,1,0")) + (rule "add_literals" (formula "43") (term "0,2,1,0,0,2,0,0,1,1,0")) + (rule "add_zero_left" (formula "43") (term "2,1,0,0,2,0,0,1,1,0")) + (rule "applyEq" (formula "45") (term "1,2,1,0,0,1,2,1,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "45") (term "2,1,0,0,1,2,1,1,0")) + (rule "add_literals" (formula "45") (term "0,2,1,0,0,1,2,1,1,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0,0,1,2,1,1,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,2,1,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,2,1,1,0")) + (rule "add_zero_left" (formula "45") (term "0,1,1,0,2,1,1,0")) + (rule "polySimp_pullOutFactor3" (formula "45") (term "1,1,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,2,1,1,0")) + (rule "applyEq" (formula "43") (term "1,0,0,1,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "44") (term "1,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "44") (term "1")) + (rule "polySimp_addComm0" (formula "44") (term "0,1")) + (rule "polySimp_pullOutFactor3b" (formula "44") (term "1")) + (rule "polySimp_mulLiterals" (formula "44") (term "1,1")) + (rule "applyEq" (formula "42") (term "1,1,1,0,2,1,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,2,1,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,2,1,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,1,1,0,2,1,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "42") (term "1,1,0,2,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,2,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "mul_literals" (formula "7") (term "1")) + (rule "inEqSimp_contradInEq5" (formula "7") (ifseqformula "12")) + (rule "mul_literals" (formula "7") (term "1,1,0")) + (rule "greater_literals" (formula "7") (term "0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "closeFalse" (formula "7")) + ) + (branch "begin <= 0 & end >= 1 + begin * -1 FALSE" + (rule "applyEqReverse" (formula "39") (term "2,0") (ifseqformula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1,0") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "commute_and" (formula "44") (term "0,2,0,1,0")) + (rule "applyEq_or_int2" (formula "1") (term "0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "nnf_notAnd" (formula "42") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "42") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "42") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "42") (term "0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0")) + (rule "shift_paren_or" (formula "19") (term "0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "43") (term "0,0")) + (rule "translateJavaAddInt" (formula "43") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "43") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "43") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "43") (term "0")) + (rule "polySimp_homoEq" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0")) + (rule "lenOfSeqConcat" (formula "43") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "43") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "43") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "polySimp_rightDist" (formula "43") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "43") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "43") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "43") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "43") (term "1,0,1,0")) + (rule "mul_literals" (formula "43") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "43") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "43") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "43")) + (rule "polySimp_mulLiterals" (formula "43") (term "0")) + (rule "polySimp_elimOne" (formula "43") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "43") (term "0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,1")) + (rule "polySimp_rightDist" (formula "43") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "43") (term "1")) + (rule "polySimp_addComm1" (formula "43") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "43") (term "0,0,1")) + (rule "add_literals" (formula "43") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "43") (term "1,0,0,1")) + (rule "add_literals" (formula "43") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "43") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "43") (term "0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "43") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "43") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "43") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_addComm1" (formula "43") (term "1,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,1,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,1,0")) + (rule "add_literals" (formula "43") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "polySimp_homoEq" (formula "43") (term "1")) + (rule "mul_literals" (formula "43") (term "1,0,1")) + (rule "add_zero_right" (formula "43") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "43") (term "1")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1")) + (rule "polySimp_elimOne" (formula "43") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "43") (term "1") (ifseqformula "29")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,1")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,1")) + (rule "add_literals" (formula "43") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,1")) + (rule "add_literals" (formula "43") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "43") (term "1,0,0,1")) + (rule "add_literals" (formula "43") (term "0,0,1")) + (rule "qeq_literals" (formula "43") (term "0,1")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_subsumption1" (formula "43") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "43") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "43") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "43") (term "0,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "43") (term "0,0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0,0")) + (rule "qeq_literals" (formula "43") (term "0,0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "inEqSimp_homoInEq1" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1,0")) + (rule "polySimp_rightDist" (formula "43") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "43") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "43") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "43") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "43") (term "0")) + (rule "polySimp_addAssoc" (formula "43") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "43") (term "0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "43")) + (rule "polySimp_mulComm0" (formula "43") (term "1")) + (rule "polySimp_rightDist" (formula "43") (term "1")) + (rule "mul_literals" (formula "43") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,1")) + (rule "polySimp_elimOne" (formula "43") (term "1,1")) + (rule "commute_or_2" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "42") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "42") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "42") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "42") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "42") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "getOfSeqConcat" (formula "42") (term "1,1,0")) + (rule "eqSymm" (formula "42") (term "1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "42") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_addComm0" (formula "42") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "42") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "42") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "42") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,0,1,0,1,2,0,1,0")) + (rule "times_zero_2" (formula "42") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "42") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "42") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "42") (term "0,0,0,0,0,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "42") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "42") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "42") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "42") (term "2,1,0,1,0")) + (rule "castDel" (formula "42") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "42") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "42") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "42") (term "0,1,0,2,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "42")) + (rule "inEqSimp_sepNegMonomial0" (formula "42") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "42") (term "0,1,1,0,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "42")) + (rule "polySimp_addAssoc" (formula "42") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "42") (term "2,0,1,0")) + (rule "castDel" (formula "42") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "42") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "42") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "42") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "42") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "42") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "42") (term "1,2,0,1,0")) + (rule "castDel" (formula "42") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "42") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "42") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "42") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "42") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "42") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "42") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "42") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "42") (term "1,1,0,1,0")) + (rule "castDel" (formula "42") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "42") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "42") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "42") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "42") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "42") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "42") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "42") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "42") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "42") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "42") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "42") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "42") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "42") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "42") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "42") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "42") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "commute_or_2" (formula "34")) + (rule "commute_or_2" (formula "39")) + (rule "commute_or_2" (formula "22")) + (rule "commute_or" (formula "41") (term "0,0")) + (rule "commute_or_2" (formula "43") (term "0")) + (rule "commute_or" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "CUT: k_0 <= 1 + hole_0 FALSE" + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_leqRight" (formula "51")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "36") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "11")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_subsumption0" (formula "36") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "36") (term "0")) + (rule "polySimp_mulComm0" (formula "36") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "36") (term "1,0,0")) + (rule "mul_literals" (formula "36") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "36") (term "0,0")) + (rule "polySimp_addComm1" (formula "36") (term "0,0,0")) + (rule "add_literals" (formula "36") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "36") (term "0,0")) + (rule "add_literals" (formula "36") (term "1,1,0,0")) + (rule "times_zero_1" (formula "36") (term "1,0,0")) + (rule "add_literals" (formula "36") (term "0,0")) + (rule "qeq_literals" (formula "36") (term "0")) + (builtin "One Step Simplification" (formula "36")) + (rule "true_left" (formula "36")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0,0")) + (rule "mul_literals" (formula "10") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0,0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0,0")) + (rule "add_literals" (formula "10") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_literals" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "48") (term "0,0")) + (rule "translateJavaAddInt" (formula "48") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "48") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "48") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "48") (term "0")) + (rule "polySimp_homoEq" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "lenOfSeqSub" (formula "48") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_rightDist" (formula "48") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "48") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "48") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "48") (term "0,1,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_addComm0" (formula "48") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "48") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "48") (term "1,0,1,0")) + (rule "mul_literals" (formula "48") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "48") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "48") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "48") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "48")) + (rule "polySimp_mulLiterals" (formula "48") (term "0")) + (rule "polySimp_elimOne" (formula "48") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "48") (term "0,0,1,1") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,1")) + (rule "polySimp_rightDist" (formula "48") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "48") (term "1")) + (rule "polySimp_addComm1" (formula "48") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "48") (term "1,0,0,1")) + (rule "add_literals" (formula "48") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "48") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "48") (term "0,1,1,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "48") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "48") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_addComm1" (formula "48") (term "1,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,1,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,1,0")) + (rule "add_literals" (formula "48") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "polySimp_homoEq" (formula "48") (term "1")) + (rule "mul_literals" (formula "48") (term "1,0,1")) + (rule "add_zero_right" (formula "48") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1")) + (rule "polySimp_elimOne" (formula "48") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "48") (term "1") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,1")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0,1")) + (rule "add_literals" (formula "48") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,1")) + (rule "add_literals" (formula "48") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "48") (term "1,0,0,1")) + (rule "add_literals" (formula "48") (term "0,0,1")) + (rule "qeq_literals" (formula "48") (term "0,1")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_subsumption1" (formula "48") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0,0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0")) + (rule "qeq_literals" (formula "48") (term "0,0,0")) + (builtin "One Step Simplification" (formula "48")) + (rule "inEqSimp_homoInEq1" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "48") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "48") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "48") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "48") (term "0,0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "48")) + (rule "polySimp_mulComm0" (formula "48") (term "1")) + (rule "polySimp_rightDist" (formula "48") (term "1")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1")) + (rule "mul_literals" (formula "48") (term "0,1")) + (rule "polySimp_elimOne" (formula "48") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "48") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "48") (term "0")) + (rule "polySimp_mulComm0" (formula "48") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "48") (term "1,0,0")) + (rule "mul_literals" (formula "48") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "48") (term "0,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,0,0")) + (rule "add_literals" (formula "48") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "48") (term "0,0")) + (rule "add_literals" (formula "48") (term "1,1,0,0")) + (rule "times_zero_1" (formula "48") (term "1,0,0")) + (rule "add_literals" (formula "48") (term "0,0")) + (rule "qeq_literals" (formula "48") (term "0")) + (builtin "One Step Simplification" (formula "48")) + (rule "true_left" (formula "48")) + (rule "ifthenelse_split" (formula "27") (term "0")) + (branch "begin <= 0 & end >= 2 + begin * -1 TRUE" + (rule "andLeft" (formula "27")) + (rule "applyEqReverse" (formula "44") (term "2,0") (ifseqformula "29")) + (rule "applyEqReverse" (formula "31") (term "0,1,0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "replace_known_left" (formula "43") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "43")) + (rule "replace_known_left" (formula "44") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "44")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "44") (term "2,0") (ifseqformula "29")) + (rule "applyEqReverse" (formula "30") (term "1,1,0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_contradInEq0" (formula "44") (term "0,0") (ifseqformula "27")) + (rule "qeq_literals" (formula "44") (term "0,0,0")) + (builtin "One Step Simplification" (formula "44")) + (rule "inEqSimp_contradInEq0" (formula "39") (term "0,0") (ifseqformula "27")) + (rule "qeq_literals" (formula "39") (term "0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "inEqSimp_contradInEq0" (formula "29") (term "0,0") (ifseqformula "27")) + (rule "qeq_literals" (formula "29") (term "0,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_antiSymm" (formula "16") (ifseqformula "27")) + (rule "applyEq" (formula "47") (term "1,1,0,0,1,1,2,0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "0,2,1") (ifseqformula "16")) + (rule "applyEq" (formula "50") (term "1,1,0,2,0,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "37") (term "1,1,0,0,0,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "0,1") (ifseqformula "16")) + (rule "applyEq" (formula "4") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "4") (term "1,0,0,0")) + (rule "applyEq" (formula "47") (term "1,1,0,1,1,2,0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "1,1,0,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "49") (term "1,1,0,0,1,1,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "33") (term "1,1,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "33") (term "1,0,0")) + (rule "applyEq" (formula "49") (term "1,1,0,0,1,1,1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "37") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "37") (term "1,0,0,0")) + (rule "applyEq" (formula "37") (term "1,1,0,1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "40") (term "0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "40") (term "1,0")) + (rule "applyEq" (formula "45") (term "0,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "45") (term "1,1,0")) + (rule "add_literals" (formula "45") (term "1,0")) + (rule "applyEq" (formula "47") (term "1,1,0,0,1,1,1,1,0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "34") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "34") (term "1,0,0,0")) + (rule "applyEq" (formula "49") (term "1,1,0,1,1,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "41") (term "1,1,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "46") (term "1,1,0,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "48") (term "1,1,0,1,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "43") (term "0,1,0,2,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "43") (term "1,0,2,1,0")) + (rule "add_literals" (formula "43") (term "0,2,1,0")) + (rule "applyEq" (formula "41") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "41") (term "1,0,0,0")) + (rule "applyEq" (formula "24") (term "1,1,0,0,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "applyEq" (formula "37") (term "1,1,0,0,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "37") (term "1,1,0,0,1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "28") (term "0") (ifseqformula "16")) + (rule "leq_literals" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "49") (term "1,1,0,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "40") (term "1,1,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "30") (term "1,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "38") (term "0,2,1") (ifseqformula "16")) + (rule "applyEq" (formula "40") (term "1,1,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "42") (term "0,1,0,2,2,0") (ifseqformula "16")) + (rule "mul_literals" (formula "42") (term "1,0,2,2,0")) + (rule "add_literals" (formula "42") (term "0,2,2,0")) + (rule "applyEq" (formula "33") (term "1,1,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "qeq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "41") (term "0,1,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "41") (term "1,1,0,0")) + (rule "add_literals" (formula "41") (term "1,0,0")) + (rule "applyEq" (formula "20") (term "0,0") (ifseqformula "16")) + (rule "applyEq" (formula "22") (term "1,1,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "30") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "30") (term "1,0,0,0")) + (rule "applyEq" (formula "28") (term "0,0,2,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "28") (term "0,2,1,0")) + (rule "applyEq" (formula "48") (term "1,1,0,0,2,0,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "28") (term "0,1,1,1") (ifseqformula "16")) + (rule "mul_literals" (formula "28") (term "1,1,1")) + (rule "add_literals" (formula "28") (term "1,1")) + (rule "applyEq" (formula "42") (term "0,0,2,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "42") (term "0,2,1,0")) + (rule "applyEq" (formula "45") (term "1,1,0,1,1,1,1,0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "48") (term "1,1,0,0,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "42") (term "0,0,2,2,0") (ifseqformula "16")) + (rule "mul_literals" (formula "42") (term "0,2,2,0")) + (rule "applyEq" (formula "23") (term "1,1,0,1,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "25") (term "1,0,2,0") (ifseqformula "16")) + (rule "add_literals" (formula "25") (term "0,2,0")) + (rule "applyEq" (formula "28") (term "0,1,0,2,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "28") (term "1,0,2,0,0")) + (rule "add_literals" (formula "28") (term "0,2,0,0")) + (rule "replace_known_left" (formula "28") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "38") (term "1,1,0,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "11") (term "1,1") (ifseqformula "16")) + (rule "add_literals" (formula "11") (term "1")) + (rule "applyEq" (formula "47") (term "0,1") (ifseqformula "16")) + (rule "applyEq" (formula "43") (term "1,1,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "23") (term "1,1,0,0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "43") (term "1,1,0,0,0") (ifseqformula "16")) + (rule "add_literals" (formula "43") (term "1,0,0,0")) + (rule "applyEq" (formula "43") (term "1,1,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "10") (term "1,1") (ifseqformula "16")) + (rule "add_literals" (formula "10") (term "1")) + (rule "applyEq" (formula "43") (term "1,1,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "36") (term "1,0,2,0") (ifseqformula "16")) + (rule "add_literals" (formula "36") (term "0,2,0")) + (rule "applyEq" (formula "45") (term "1,1,0,0,1,2,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "47") (term "0,0,0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "16")) + (rule "add_literals" (formula "3") (term "1")) + (rule "applyEq" (formula "46") (term "1,1,0,1,1,1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "31") (term "1,1,0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "27") (term "0,1,1") (ifseqformula "16")) + (rule "mul_literals" (formula "27") (term "1,1")) + (rule "add_literals" (formula "27") (term "1")) + (rule "applyEq" (formula "41") (term "0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "41") (term "1,0,0")) + (rule "applyEq" (formula "47") (term "0,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "46") (term "0,1,0,1,1,0,1,1,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "46") (term "1,1,0,0,1,2,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "46") (term "0,1,0,1,1,0,1,2,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,1,2,0,1,0")) + (rule "applyEq" (formula "45") (term "0,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "44") (term "0,0,2,1,1,1,1,0,1,0,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "44") (term "0,2,1,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "46") (term "1,1,0,1,2,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "47") (term "0,1,0,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "47") (term "1,0,1,1,0")) + (rule "add_literals" (formula "47") (term "0,1,1,0")) + (rule "applyEq" (formula "45") (term "0,0,2,1,2,0,1,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "45") (term "0,2,1,2,0,1,0")) + (rule "applyEq" (formula "46") (term "0,1,0,1,0,1,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,1,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,0,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "0,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "44") (term "1,0,0,1,0,0")) + (rule "applyEq" (formula "45") (term "0,1,0,1,1,0,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "45") (term "1,0,1,1,0,0,0")) + (rule "add_literals" (formula "45") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "46") (term "0,0,1,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "46") (term "1,1,0,0")) + (rule "applyEq" (formula "44") (term "0,0,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "0,1,1,0")) + (rule "add_zero_left" (formula "44") (term "1,1,0")) + (rule "applyEq" (formula "44") (term "1,1,0,0,1,2,1,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "46") (term "0,0,1,0,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "0,1,0,0,1,0")) + (rule "add_zero_left" (formula "46") (term "1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "0,0,2,1,1,2,0,1,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "46") (term "0,2,1,1,2,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,2,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,2,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,1,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,1,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,1,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,0,1,1,0,2,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,2,0,1,0")) + (rule "applyEq" (formula "47") (term "0,0,2,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "47") (term "0,2,1,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0")) + (rule "applyEq" (formula "47") (term "0,0,2,0,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "47") (term "0,2,0,0,0")) + (rule "add_zero_left" (formula "47") (term "2,0,0,0")) + (rule "applyEq" (formula "45") (term "1,1,0,0,2,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,2,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,2,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,2,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,1,0,1,0,0,2,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,0,0,2,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,0,0,2,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,0,2,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,0,0,2,0,1,0,0")) + (rule "applyEq" (formula "45") (term "0,1,0,1,1,0,2,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "45") (term "1,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "45") (term "0,1,1,0,2,0,1,0")) + (rule "applyEq" (formula "46") (term "0,1,0,1,1,0,1,1,1,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,0,1,1,1,0,1,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,0,1,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,0,1,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,0,1,0,1,0,0")) + (rule "applyEq" (formula "45") (term "1,1,0,2,0,0,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "46") (term "0,0,2,1,1,1,1,0,1,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "46") (term "0,2,1,1,1,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,0,2,1,1,2,0,1,0,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "44") (term "0,2,1,1,2,0,1,0,0")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,1,1,1,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "44") (term "1,1,0,1,2,1,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "44") (term "0,1,0,1,1,0,2,1,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "1,0,1,1,0,2,1,1,0,0")) + (rule "add_literals" (formula "44") (term "0,1,1,0,2,1,1,0,0")) + (rule "applyEq" (formula "46") (term "0,0,1,0,2,1,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "0,1,0,2,1,0,1,0")) + (rule "add_zero_left" (formula "46") (term "1,0,2,1,0,1,0")) + (rule "applyEq" (formula "44") (term "0,0,2,1,2,1,1,0,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "44") (term "0,2,1,2,1,1,0,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,2,1,0,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "0,1,0,2,1,0,1,0,0")) + (rule "add_zero_left" (formula "44") (term "1,0,2,1,0,1,0,0")) + (rule "applyEq" (formula "46") (term "0,0,2,1,2,1,1,0") (ifseqformula "16")) + (rule "add_zero_left" (formula "46") (term "0,2,1,2,1,1,0")) + (rule "applyEq" (formula "45") (term "0,0,1,0,0,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "45") (term "0,1,0,0,1,0")) + (rule "add_zero_left" (formula "45") (term "1,0,0,1,0")) + (rule "applyEq" (formula "46") (term "0,1,0,1,1,0,2,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "1,0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "46") (term "0,1,1,0,2,1,1,0")) + (rule "applyEq" (formula "45") (term "0,0,1,0,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "45") (term "0,1,0,1,1,0")) + (rule "add_zero_left" (formula "45") (term "1,0,1,1,0")) + (rule "applyEq" (formula "44") (term "0,0,1,0,1,1,0,0") (ifseqformula "16")) + (rule "mul_literals" (formula "44") (term "0,1,0,1,1,0,0")) + (rule "add_zero_left" (formula "44") (term "1,0,1,1,0,0")) + (rule "applyEq" (formula "46") (term "0,0,1,0,1,1,0") (ifseqformula "16")) + (rule "mul_literals" (formula "46") (term "0,1,0,1,1,0")) + (rule "add_zero_left" (formula "46") (term "1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "40") (term "0,0") (ifseqformula "3")) + (rule "leq_literals" (formula "40") (term "0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "applyEqReverse" (formula "42") (term "1,1") (ifseqformula "40")) + (rule "applyEqReverse" (formula "37") (term "1,1") (ifseqformula "40")) + (rule "hideAuxiliaryEq" (formula "40")) + (rule "inEqSimp_commuteLeq" (formula "41") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "41") (term "0") (ifseqformula "3")) + (rule "qeq_literals" (formula "41") (term "0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "replace_known_left" (formula "37") (term "1") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "37")) + (rule "true_left" (formula "37")) + (rule "inEqSimp_subsumption1" (formula "39") (term "0,0") (ifseqformula "3")) + (rule "leq_literals" (formula "39") (term "0,0,0")) + (builtin "One Step Simplification" (formula "39")) + (rule "applyEqReverse" (formula "40") (term "1") (ifseqformula "39")) + (rule "hideAuxiliaryEq" (formula "39")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "10")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "1")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "12")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "mul_literals" (formula "3") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "11")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "nnf_notAnd" (formula "40") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "40") (term "0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "40") (term "0,0,0")) + (rule "mul_literals" (formula "40") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "40") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "40") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "40") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "40") (term "0,0,1,0,0")) + (rule "add_literals" (formula "40") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "40") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "40") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "40") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "40") (term "1,1,0,0")) + (rule "commute_or_2" (formula "29")) + (rule "commute_or_2" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1")) + (rule "polySimp_addComm1" (formula "4") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1")) + (rule "inEqSimp_contradInEq1" (formula "4") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,1")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,1")) + (rule "add_literals" (formula "4") (term "0,0,1")) + (rule "leq_literals" (formula "4") (term "0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "4")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + (branch "begin <= 0 & end >= 2 + begin * -1 FALSE" + (rule "applyEqReverse" (formula "29") (term "0,1,0") (ifseqformula "27")) + (rule "applyEqReverse" (formula "42") (term "2,0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "ifthenelse_split" (formula "27") (term "0")) + (branch "begin <= 0 & end >= 1 + begin * -1 TRUE" + (rule "andLeft" (formula "27")) + (rule "applyEqReverse" (formula "30") (term "1,1,0") (ifseqformula "29")) + (rule "applyEqReverse" (formula "44") (term "2,0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "replace_known_left" (formula "43") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "43")) + (rule "replace_known_left" (formula "42") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "42")) + (rule "replace_known_left" (formula "50") (term "0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "50")) + (rule "inEqSimp_geqRight" (formula "50")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "30") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq0" (formula "30") (term "0,0") (ifseqformula "28")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_contradInEq0" (formula "45") (term "0,0") (ifseqformula "28")) + (rule "qeq_literals" (formula "45") (term "0,0,0")) + (builtin "One Step Simplification" (formula "45")) + (rule "inEqSimp_contradInEq0" (formula "40") (term "0,0") (ifseqformula "28")) + (rule "qeq_literals" (formula "40") (term "0,0,0")) + (builtin "One Step Simplification" (formula "40")) + (rule "inEqSimp_antiSymm" (formula "29") (ifseqformula "1")) + (rule "applyEq" (formula "13") (term "1,1") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "13") (term "1")) + (rule "add_literals" (formula "13") (term "0,1")) + (rule "add_zero_left" (formula "13") (term "1")) + (rule "replace_known_left" (formula "41") (term "0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "applyEq" (formula "50") (term "1,2,1,0,0,2,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "50") (term "2,1,0,0,2,0,1,0")) + (rule "add_literals" (formula "50") (term "0,2,1,0,0,2,0,1,0")) + (rule "add_zero_left" (formula "50") (term "2,1,0,0,2,0,1,0")) + (rule "applyEq" (formula "35") (term "1,2,1,0,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "35") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "35") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "35") (term "1,2,1,0,1,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "35") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "35") (term "0,2,1,0,1,1,0")) + (rule "add_zero_left" (formula "35") (term "2,1,0,1,1,0")) + (rule "applyEq" (formula "23") (term "1,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "24") (term "1,2,1,0,1,1,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "24") (term "2,1,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,2,1,0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "2,1,0,1,1,0,0")) + (rule "applyEq" (formula "49") (term "1,1,1,0,2,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "49") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "49") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "49") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,2,0,1,0")) + (rule "applyEq" (formula "33") (term "1,1,1,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "33") (term "1,1,0,0")) + (rule "add_literals" (formula "33") (term "0,1,1,0,0")) + (rule "applyEq" (formula "46") (term "1,2,1,0,0,1,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "46") (term "2,1,0,0,1,1,0")) + (rule "add_literals" (formula "46") (term "0,2,1,0,0,1,1,0")) + (rule "add_zero_left" (formula "46") (term "2,1,0,0,1,1,0")) + (rule "applyEq" (formula "48") (term "1,2,1,0,0,1,2,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "48") (term "2,1,0,0,1,2,0,1,0")) + (rule "add_literals" (formula "48") (term "0,2,1,0,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "48") (term "2,1,0,0,1,2,0,1,0")) + (rule "applyEq" (formula "47") (term "1,1,1,0,1,2,0,1,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "47") (term "1,1,0,1,2,0,1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,1,2,0,1,0,0")) + (rule "add_zero_left" (formula "47") (term "0,1,1,0,1,2,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "47") (term "1,1,0,1,2,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,2,0,1,0,0")) + (rule "applyEq" (formula "50") (term "1,1") (ifseqformula "29")) + (rule "applyEq" (formula "50") (term "1,2,1,0,0,2,0,0,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "50") (term "2,1,0,0,2,0,0,0,0")) + (rule "add_literals" (formula "50") (term "0,2,1,0,0,2,0,0,0,0")) + (rule "add_zero_left" (formula "50") (term "2,1,0,0,2,0,0,0,0")) + (rule "applyEq" (formula "47") (term "1,1,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "47") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "47") (term "0,1,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "47") (term "1,1,0")) + (rule "add_literals" (formula "47") (term "1,1,1,1,0")) + (rule "applyEq" (formula "48") (term "1,1,1,0,2,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "48") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "48") (term "0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "48") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_zero_left" (formula "48") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "48") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "48") (term "1,1,0,2,0,1,0")) + (rule "applyEq" (formula "46") (term "1,2,1,0,0,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "46") (term "2,1,0,0,0,1,0")) + (rule "add_literals" (formula "46") (term "0,2,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "46") (term "2,1,0,0,0,1,0")) + (rule "applyEq" (formula "47") (term "1,1,0,0,2,0,1,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "47") (term "1,0,0,2,0,1,0,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,0,0,2,0,1,0,0")) + (rule "add_literals" (formula "47") (term "0,0,1,0,0,2,0,1,0,0")) + (rule "add_zero_left" (formula "47") (term "0,1,0,0,2,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "47") (term "1,0,0,2,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,0,0,2,0,1,0,0")) + (rule "applyEq" (formula "23") (term "1,2,1,0,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,2,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "2,1,0,0,1,0")) + (rule "applyEq" (formula "49") (term "1,2,1,0,0,1,1,1,1,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "49") (term "2,1,0,0,1,1,1,1,0,1,0")) + (rule "add_literals" (formula "49") (term "0,2,1,0,0,1,1,1,1,0,1,0")) + (rule "add_zero_left" (formula "49") (term "2,1,0,0,1,1,1,1,0,1,0")) + (rule "applyEq" (formula "49") (term "1,1,1,0,1,2,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "49") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "49") (term "0,1,1,0,1,2,0,1,0")) + (rule "add_literals" (formula "49") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "add_zero_left" (formula "49") (term "0,1,1,0,1,2,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "49") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "49") (term "1,1,0,1,2,0,1,0")) + (rule "applyEq" (formula "41") (term "1,2,1,0,0,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,0,1,0")) + (rule "add_literals" (formula "41") (term "0,2,1,0,0,0,1,0")) + (rule "add_zero_left" (formula "41") (term "2,1,0,0,0,1,0")) + (rule "applyEq" (formula "49") (term "1,1,1,0,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "49") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "49") (term "0,1,1,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "49") (term "1,1,0,0")) + (rule "add_literals" (formula "49") (term "1,1,1,1,0,0")) + (rule "applyEq" (formula "21") (term "1,0") (ifseqformula "29")) + (rule "applyEq" (formula "50") (term "1,0,0,0,0") (ifseqformula "29")) + (rule "applyEq" (formula "38") (term "1,2,1,0,0,1,1,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "38") (term "2,1,0,0,1,1,0,1,0")) + (rule "add_literals" (formula "38") (term "0,2,1,0,0,1,1,0,1,0")) + (rule "add_zero_left" (formula "38") (term "2,1,0,0,1,1,0,1,0")) + (rule "applyEq" (formula "41") (term "1,2,1,0,0,1,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "41") (term "2,1,0,0,1,1,0")) + (rule "add_literals" (formula "41") (term "0,2,1,0,0,1,1,0")) + (rule "add_zero_left" (formula "41") (term "2,1,0,0,1,1,0")) + (rule "applyEq" (formula "38") (term "1,2,1,0,0,0,1,0,1,0") (ifseqformula "29")) + (rule "polySimp_addAssoc" (formula "38") (term "2,1,0,0,0,1,0,1,0")) + (rule "add_literals" (formula "38") (term "0,2,1,0,0,0,1,0,1,0")) + (rule "add_zero_left" (formula "38") (term "2,1,0,0,0,1,0,1,0")) + (rule "applyEq" (formula "21") (term "1,1") (ifseqformula "29")) + (rule "applyEq" (formula "30") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_pullOutFactor1" (formula "30") (term "0")) + (rule "add_literals" (formula "30") (term "1,0")) + (rule "times_zero_1" (formula "30") (term "0")) + (rule "leq_literals" (formula "30")) + (rule "true_left" (formula "30")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "23") (term "1,2,1,0,0,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,2,1,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "2,1,0,0,1,0,0")) + (rule "applyEq" (formula "30") (term "1,1,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "30") (term "1,1,0,0")) + (rule "add_literals" (formula "30") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "30") (term "1,1,0,0")) + (rule "applyEq" (formula "46") (term "1,1,1,0,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_addComm1" (formula "46") (term "0,1,1,0,0,0")) + (rule "add_literals" (formula "46") (term "0,0,1,1,0,0,0")) + (rule "add_zero_left" (formula "46") (term "0,1,1,0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "46") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "46") (term "1,1,0,0,0")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "10") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "10") (term "1,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "10") (term "0")) + (rule "applyEq" (formula "1") (term "1,1") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "add_literals" (formula "1") (term "0,1")) + (rule "applyEq" (formula "20") (term "1,2,1,0,2,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "20") (term "2,1,0,2,0")) + (rule "add_literals" (formula "20") (term "0,2,1,0,2,0")) + (rule "add_zero_left" (formula "20") (term "2,1,0,2,0")) + (rule "applyEq" (formula "48") (term "1,0,1,0") (ifseqformula "28")) + (rule "applyEq" (formula "45") (term "1,2,1,0,0,1,1,2,0,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "45") (term "2,1,0,0,1,1,2,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,2,1,0,0,1,1,2,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0,0,1,1,2,0,1,0,0")) + (rule "applyEq" (formula "48") (term "1,2,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "48") (term "2,1,0")) + (rule "polySimp_addComm0" (formula "48") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor0b" (formula "48") (term "2,1,0")) + (rule "add_literals" (formula "48") (term "1,1,2,1,0")) + (rule "applyEq" (formula "47") (term "1,1,1,0,1,1,1,0,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "47") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "add_zero_left" (formula "47") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_pullOutFactor3" (formula "47") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,1,1,1,0,1,0")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,1,2,0,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,1,1,2,0,1,0")) + (rule "applyEq" (formula "45") (term "1,2,1,0,0,1,1,1,1,0,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "45") (term "2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0,0,1,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "28")) + (rule "applyEq" (formula "45") (term "1,1,1,0,1,1,1,0,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,1,1,1,0,1,0,0")) + (rule "add_zero_left" (formula "45") (term "0,1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "45") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,1,1,1,0,1,0,0")) + (rule "applyEq" (formula "46") (term "1,2,1,0,0,2,0,0,1,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "46") (term "2,1,0,0,2,0,0,1,1,0")) + (rule "add_literals" (formula "46") (term "0,2,1,0,0,2,0,0,1,1,0")) + (rule "add_zero_left" (formula "46") (term "2,1,0,0,2,0,0,1,1,0")) + (rule "applyEq" (formula "45") (term "1,1,1,0,2,1,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "45") (term "1,1,0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "45") (term "0,1,1,0,2,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,0,1,1,0,2,1,1,0,0")) + (rule "add_zero_left" (formula "45") (term "0,1,1,0,2,1,1,0,0")) + (rule "polySimp_pullOutFactor3" (formula "45") (term "1,1,0,2,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "45") (term "1,1,0,2,1,1,0,0")) + (rule "applyEq" (formula "45") (term "1,2,1,0,0,1,2,1,1,0,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "45") (term "2,1,0,0,1,2,1,1,0,0")) + (rule "add_literals" (formula "45") (term "0,2,1,0,0,1,2,1,1,0,0")) + (rule "add_zero_left" (formula "45") (term "2,1,0,0,1,2,1,1,0,0")) + (rule "applyEq" (formula "46") (term "1,0,0,1,1,0") (ifseqformula "28")) + (rule "applyEq" (formula "47") (term "1,2,1,0,0,1,2,1,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "47") (term "2,1,0,0,1,2,1,1,0")) + (rule "add_literals" (formula "47") (term "0,2,1,0,0,1,2,1,1,0")) + (rule "add_zero_left" (formula "47") (term "2,1,0,0,1,2,1,1,0")) + (rule "applyEq" (formula "47") (term "1,1,1,0,2,1,1,0") (ifseqformula "28")) + (rule "polySimp_addAssoc" (formula "47") (term "1,1,0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "47") (term "0,1,1,0,2,1,1,0")) + (rule "add_literals" (formula "47") (term "0,0,1,1,0,2,1,1,0")) + (rule "add_zero_left" (formula "47") (term "0,1,1,0,2,1,1,0")) + (rule "polySimp_pullOutFactor3" (formula "47") (term "1,1,0,2,1,1,0")) + (rule "polySimp_mulLiterals" (formula "47") (term "1,1,0,2,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_subsumption0" (formula "43") (term "0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "43") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "43") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "43") (term "0,0,0")) + (rule "add_literals" (formula "43") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "43") (term "1,0,0,0")) + (rule "add_literals" (formula "43") (term "0,0,0")) + (rule "qeq_literals" (formula "43") (term "0,0")) + (builtin "One Step Simplification" (formula "43")) + (rule "true_left" (formula "43")) + (rule "inEqSimp_contradInEq0" (formula "41") (term "0,0") (ifseqformula "12")) + (rule "inEqSimp_homoInEq1" (formula "41") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "41") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "41") (term "0,0,0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0,0,0")) + (rule "add_literals" (formula "41") (term "0,0,0,0")) + (rule "leq_literals" (formula "41") (term "0,0,0")) + (builtin "One Step Simplification" (formula "41")) + (rule "hideAuxiliaryEq" (formula "41")) + (rule "inEqSimp_contradInEq5" (formula "10") (ifseqformula "16")) + (rule "mul_literals" (formula "10") (term "1,1,0")) + (rule "greater_literals" (formula "10") (term "0,0")) + (builtin "One Step Simplification" (formula "10")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "begin <= 0 & end >= 1 + begin * -1 FALSE" + (rule "applyEqReverse" (formula "28") (term "1,1,0") (ifseqformula "27")) + (rule "applyEqReverse" (formula "42") (term "2,0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "commute_or_2" (formula "46") (term "0")) + (rule "commute_or_2" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "1")) + (rule "polySimp_addComm1" (formula "4") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,1")) + (rule "inEqSimp_contradInEq1" (formula "4") (term "1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,1")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1")) + (rule "add_literals" (formula "4") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,1")) + (rule "add_literals" (formula "4") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "4") (term "1,0,0,1")) + (rule "add_literals" (formula "4") (term "0,0,1")) + (rule "leq_literals" (formula "4") (term "0,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "11")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + ) + ) + ) + (branch "iv_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "46") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "46")) + (rule "closeTrue" (formula "46")) + ) + ) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= -1 + end) & !f_0 = java.lang.Object:: FALSE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "eqSymm" (formula "34")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "1")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "27") (term "1") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "allLeft" (formula "17") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_7" (formula "17") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,1,0")) + (rule "add_literals" (formula "17") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,1,0")) + (rule "add_zero_right" (formula "17") (term "0,1,0")) + (rule "qeq_literals" (formula "17") (term "1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "17")) + (rule "applyEq" (formula "28") (term "1,2,1,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "29") (term "1,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "28") (term "1,1,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "29") (term "2,0,1,1,0") (ifseqformula "17")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0,1,0")) + (rule "allLeft" (formula "20") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1")) + (rule "add_literals" (formula "20") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "20") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_2" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_10" (formula "20") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "35")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "20") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0")) + (rule "inEqSimp_subsumption0" (formula "20") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "allLeft" (formula "21") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "36")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "36")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "allLeft" (formula "22") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet10011_2" (formula "22") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_10" (formula "22") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "37")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,1,0,0")) + (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "allLeft" (formula "23") (inst "t=begin")) + (rule "replaceKnownSelect_taclet110110000010110011_19" (formula "23") (term "1,1")) + (rule "replaceKnownSelect_taclet110110000010110011_17" (formula "23") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110110000010110011_20" (formula "23") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110110000010110011_18" (formula "23") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "allLeft" (formula "23") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "23") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0")) + (rule "elimGcdGeq" (formula "23") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "23") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "1,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "38")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "elimGcdLeq" (formula "23") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "39")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "elimGcdLeq" (formula "24") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "sub_literals" (formula "24") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_pullOutFactor0" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "nnf_notAnd" (formula "31") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "commute_and" (formula "34") (term "0,2,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "35") (term "0,1,1,0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "35")) + (rule "eqSymm" (formula "35") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "35") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "35") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "35") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "35") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "35") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "35") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "35") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "35") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "35") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "35") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "35") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "35") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "35") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0")) + (rule "mul_literals" (formula "35") (term "1,0,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "35") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "35") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "35") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "35") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "35") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "35") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "35") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,0,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_homoInEq1" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "35") (term "0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "35") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "35") (term "1,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,1,0")) + (rule "mul_literals" (formula "35") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "35") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "inEqSimp_subsumption0" (formula "35") (term "0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "andLeft" (formula "35")) + (rule "inEqSimp_subsumption1" (formula "35") (term "0,1,1,1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "35") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "35") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "35") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "35") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "35")) + (rule "polySimp_addAssoc" (formula "35") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "37") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "37") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "37") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "37") (term "0,2,1,0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "37") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "getOfSeqConcat" (formula "37") (term "1,1,0")) + (rule "eqSymm" (formula "37") (term "1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "37") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_addComm0" (formula "37") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "37") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "37") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "37") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "37") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "37") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "37") (term "0,1,0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "37")) + (rule "getOfSeqConcat" (formula "37") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "37") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "37") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "37") (term "2,1,0,1,0")) + (rule "castDel" (formula "37") (term "1,2,1,0,1,0")) + (rule "castDel" (formula "37") (term "2,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "37") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "37") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "37") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "37")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "37") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "37") (term "0,1,0,2,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "37")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "37") (term "1,1,0,1,0")) + (rule "castDel" (formula "37") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "37") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "37") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "37") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "37") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "37") (term "2,0,1,0")) + (rule "castDel" (formula "37") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "37") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "37") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "37") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "37") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "37") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "37") (term "1,2,0,1,0")) + (rule "castDel" (formula "37") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "37") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "37") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "37") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "37") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "37") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "37") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "37") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "37") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "37") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "37") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "37") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "37") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "37") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "37") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "37") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "37") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "37") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "37") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "37") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "37") (term "0,0,1,0,0,2,0,1,0")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "allLeft" (formula "33") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "33") (term "0,2,0,1")) + (rule "add_literals" (formula "33") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "33") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet10011_1" (formula "33") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet10000010110011_5" (formula "33") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "33") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "pullOutSelect" (formula "33") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "43")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet110110000010110011_15" (formula "33") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet110110000010110011_16" (formula "33") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "33") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "33") (term "0,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "qeq_literals" (formula "33") (term "0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "33")) + (rule "hideAuxiliaryEq" (formula "33")) + (rule "inEqSimp_commuteGeq" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "33")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "41") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "41") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "41") (term "0,0")) + (rule "add_literals" (formula "41") (term "1,1,0,0")) + (rule "times_zero_1" (formula "41") (term "1,0,0")) + (rule "add_zero_right" (formula "41") (term "0,0")) + (rule "qeq_literals" (formula "41") (term "0")) + (builtin "One Step Simplification" (formula "41")) + (rule "true_left" (formula "41")) + (rule "allLeft" (formula "1") (inst "t=hole_0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "1")) + (rule "polySimp_addComm1" (formula "1") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "32")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "3") (term "0,0") (ifseqformula "41")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "44"))) + (rule "closeFalse" (formula "3")) + ) + ) + ) + (branch "CUT: o_0 = values FALSE" + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "34") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "34")) + (rule "closeTrue" (formula "34")) + ) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "add_zero_left" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "precOfInt" (formula "32")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,0,1")) + (rule "add_zero_left" (formula "32") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "32") (term "0,1")) + (rule "add_literals" (formula "32") (term "1,0,1")) + (rule "times_zero_1" (formula "32") (term "0,1")) + (rule "leq_literals" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "1") (term "0,1,0") (ifseqformula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_invertInEq1" (formula "1")) + (rule "times_zero_2" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "polySimp_rightDist" (formula "5") (term "0")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "5")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_right" (formula "16") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "commute_or" (formula "2")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,1,0")) + (rule "commute_or" (formula "16") (term "0,0,1,0")) + (rule "cut_direct" (formula "22") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "14") (term "0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "24") (term "0,2,1") (ifseqformula "21")) + (rule "applyEqRigid" (formula "20") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "22") (term "2,1,0,2,0,0,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,1") (ifseqformula "20")) + (rule "applyEq" (formula "15") (term "1,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "16") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "22") (term "0,2,0,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,2,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "14") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "2,1,0,1,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "15") (term "1,0,0,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "20")) + (rule "cut_direct" (formula "2") (term "1")) + (branch "CUT: values.length <= hole_0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1")) + (rule "polySimp_elimOne" (formula "10") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "19")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: values.length <= hole_0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "23")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "5")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_strengthen1" (formula "21") (ifseqformula "26")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "cut_direct" (formula "1") (term "1")) + (branch "CUT: values.length <= hole_0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "1")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1")) + (rule "polySimp_elimOne" (formula "12") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "12")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_zero_right" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + (branch "CUT: values.length <= hole_0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "11")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "2") (term "1,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "add_zero_left" (formula "2") (term "0,1")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "commute_or" (formula "2")) + (rule "nnf_imp2or" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "24") (term "0") (inst "x=x_14")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "24") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0")) + (rule "replace_known_left" (formula "24") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "29")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "26") (term "0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm1" (formula "26") (term "1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_homoEq" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "1,0,1")) + (rule "add_zero_right" (formula "26") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "26")) + (rule "replace_known_left" (formula "26") (term "1") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_14")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "times_zero_2" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0,0,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,2,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,1,0,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "2,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "cut_direct" (formula "21") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,1,2,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "0,2,1,2,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "22") (term "1,1,0,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "22") (term "1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "14") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "24") (term "0,2,2,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,1,2,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,1") (ifseqformula "20")) + (rule "applyEq" (formula "22") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "27") (term "0,2,1") (ifseqformula "20")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,0")) + (rule "times_zero_1" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEqRigid" (formula "24") (term "0,2,0,1,0,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "20") (term "2,1,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,0,0,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "21") (term "0,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "13") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "19") (term "2,1,0,0,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "2,1,0,1,1,1,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "21") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "21") (term "0,2,2,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "0,2,1,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "23") (term "2,1,0,1,2,1,1,0") (ifseqformula "18")) + (rule "cut_direct" (formula "2") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "4")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "18")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "20")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_literals" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_strengthen1" (formula "20") (ifseqformula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_literals" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "cut_direct" (formula "1") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "10")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "12")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_literals" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + ) + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "false_right" (formula "33")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "2") (term "1,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "add_zero_left" (formula "2") (term "0,1")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "commute_or" (formula "2")) + (rule "nnf_imp2or" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "23") (term "0") (inst "x=x_12")) + (builtin "One Step Simplification" (formula "23")) + (rule "eqSymm" (formula "23") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "23") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0,0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "24") (term "0")) + (rule "polySimp_homoEq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "lenOfSeqSub" (formula "24") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "24") (term "0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "24") (term "1")) + (rule "polySimp_addComm1" (formula "24") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addComm1" (formula "24") (term "1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "1,0,1")) + (rule "add_zero_right" (formula "24") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "24")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "24") (term "1,0")) + (rule "add_literals" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "23") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "23") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "23") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,2,1,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "23") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "getOfSeqConcat" (formula "23") (term "1,1,0")) + (rule "eqSymm" (formula "23") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "23") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addComm0" (formula "23") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "23") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "23") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,0,0,0,0,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "23") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "23") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "23") (term "2,1,0,1,0")) + (rule "castDel" (formula "23") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "23") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "23") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "23") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,1,0,2,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,1,1,0,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addAssoc" (formula "23") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "23") (term "2,0,1,0")) + (rule "castDel" (formula "23") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "23") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "23") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "23") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "23") (term "1,2,0,1,0")) + (rule "castDel" (formula "23") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "23") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "23") (term "1,1,0,1,0")) + (rule "castDel" (formula "23") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "23") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "23") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "23") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "23") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "cut_direct" (formula "21") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEqRigid" (formula "23") (term "2,1,0,1,1,2,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,0,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "20") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEqRigid" (formula "21") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEq" (formula "22") (term "0,2,1,2,1,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "23") (term "2,1,0,2,0,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "24") (term "0,2,1") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "2,1,0,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "23") (term "0,2,0,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,1") (ifseqformula "19")) + (rule "applyEqRigid" (formula "13") (term "0") (ifseqformula "19")) + (rule "applyEq" (formula "13") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "applyEqRigid" (formula "20") (term "2,1,0,1,1,1,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "20") (term "2,1,0,1,2,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "20") (term "0,2,1,1,1,0") (ifseqformula "18")) + (rule "cut_direct" (formula "2") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "2")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "9") (ifseqformula "4")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "19") (ifseqformula "11")) + (rule "andLeft" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0")) + (rule "add_zero_right" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "closeFalse" (formula "19")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_strengthen1" (formula "20") (ifseqformula "26")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "cut_direct" (formula "1") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "4")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "21")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "28")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "false_right" (formula "28")) + (rule "commute_or" (formula "1")) + (rule "ifElseSplit" (formula "30")) + (branch "if x_6 true" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "if x_6 false" + (builtin "One Step Simplification" (formula "31")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "30") (term "1") (inst "#v1=x_5") (inst "#v0=x_4")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_10")) + (rule "assignment" (formula "30") (term "1")) + (builtin "One Step Simplification" (formula "30")) + (rule "variableDeclarationAssign" (formula "30") (term "1")) + (rule "variableDeclaration" (formula "30") (term "1") (newnames "x_11")) + (rule "assignment_array2" (formula "30")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "30")) + (rule "pullOutSelect" (formula "30") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "31")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "ifSplit" (formula "32")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "eval_order_array_access3" (formula "33") (term "1") (inst "#v1=x_1") (inst "#v2=x") (inst "#v0=x_arr")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_arr")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_12")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_13")) + (rule "assignment_array2" (formula "33")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "33")) + (rule "replaceKnownSelect_taclet012110011_3" (formula "33") (term "0,1,0")) + (rule "assignment_to_primitive_array_component" (formula "33")) + (branch "Normal Execution (x_arr != null)" + (builtin "One Step Simplification" (formula "33")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "blockEmpty" (formula "33") (term "1")) + (rule "postdecrement" (formula "33") (term "1")) + (rule "compound_subtraction_1" (formula "33") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "33") (term "1")) + (rule "variableDeclaration" (formula "33") (term "1") (newnames "x_14")) + (rule "widening_identity_cast_5" (formula "33") (term "1")) + (rule "assignment" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "assignmentSubtractionInt" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "translateJavaSubInt" (formula "33") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "0,1,0")) + (rule "mul_literals" (formula "33") (term "1,0,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,1,0")) + (rule "tryEmpty" (formula "33") (term "1")) + (rule "methodCallEmpty" (formula "33") (term "1")) + (rule "emptyModality" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "1")) + (rule "add_literals" (formula "33") (term "0,1")) + (rule "add_zero_left" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "33")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "6")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_contradEq3" (formula "27") (term "1") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq0" (formula "5") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "leq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_contradInEq1" (formula "2") (ifseqformula "23")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch + (rule "orRight" (formula "33")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "33") (term "0,0") (ifseqformula "23")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "33")) + (rule "polySimp_mulLiterals" (formula "33") (term "0")) + (rule "polySimp_elimOne" (formula "33") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_contradEq7" (formula "32") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "31") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_right" (formula "16") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0")) + (rule "allRight" (formula "28") (inst "sk=i_1_0")) + (rule "impRight" (formula "28")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "33")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "31") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "31")) + (rule "eqSymm" (formula "31") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "31") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "31") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "31") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "31") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "31") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,1,0,0,0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addAssoc" (formula "31") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,0,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0")) + (rule "replace_known_left" (formula "31") (term "1,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "andLeft" (formula "31")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "33") (term "0")) + (rule "translateJavaAddInt" (formula "33") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "33") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "33") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "33") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "33") (term "0,2,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "33") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "28") (term "0,1")) + (rule "wellFormedAnon" (formula "28") (term "1,0")) + (rule "wellFormedAnon" (formula "28") (term "0,1,0")) + (rule "replace_known_left" (formula "28") (term "1,1,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "36")) (ifInst "" (formula "12")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "29") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "29") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "cut_direct" (formula "9") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "polySimp_rightDist" (formula "10") (term "0")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "10")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "28")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0")) + (rule "add_zero_right" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "28") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "12"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "30") (term "0")) + (rule "wellFormedStorePrimitiveArray" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "1,0")) + (rule "wellFormedAnon" (formula "1") (term "0,1,0")) + (rule "replace_known_right" (formula "1") (term "0,1") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "true_left" (formula "1")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "30")) + (rule "translateJavaAddInt" (formula "30") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "30") (term "1,1,0,0")) + (rule "allRight" (formula "30") (inst "sk=i_1_0")) + (rule "impRight" (formula "30")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1")) + (rule "polySimp_addComm0" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "35")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "35")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,1,0,0")) + (rule "qeq_literals" (formula "2") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "10")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "27") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "29") (term "0")) + (rule "wellFormedAnon" (formula "29") (term "1,0")) + (rule "wellFormedAnon" (formula "29") (term "0,1,0")) + (rule "replace_known_right" (formula "29") (term "0,0,0") (ifseqformula "36")) + (builtin "One Step Simplification" (formula "29") (ifInst "" (formula "12")) (ifInst "" (formula "18")) (ifInst "" (formula "23")) (ifInst "" (formula "30"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "30") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "cut_direct" (formula "9") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "9")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "polySimp_rightDist" (formula "10") (term "0")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "0")) + (rule "polySimp_elimOne" (formula "10") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "10") (ifseqformula "16")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_leqRight" (formula "36")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "10")) + (rule "mul_literals" (formula "17") (term "0,0")) + (rule "add_zero_left" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1")) + (rule "polySimp_rightDist" (formula "18") (term "1")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1")) + (rule "mul_literals" (formula "18") (term "0,1")) + (rule "polySimp_elimOne" (formula "18") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "27")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0")) + (rule "add_zero_right" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "narrowSelectArrayType" (formula "33") (term "2,1") (ifseqformula "8") (ifseqformula "32")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEq" (formula "33") (term "1,1,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "33") (term "1,0")) + (rule "polySimp_addComm0" (formula "33") (term "0,1,0")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "31") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "30") (term "3,0,2,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,0,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0") (inst "x=x_15")) + (builtin "One Step Simplification" (formula "1")) + (rule "eqSymm" (formula "1") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "1") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "1") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "1") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "polySimp_addAssoc" (formula "1") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "andLeft" (formula "1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,1,1,0")) + (rule "add_zero_left" (formula "29") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "23") (term "0,1")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "29")) (ifInst "" (formula "8")) (ifInst "" (formula "14"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "1") (term "0")) + (rule "cut_direct" (formula "5") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "5")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "polySimp_rightDist" (formula "6") (term "0")) + (rule "mul_literals" (formula "6") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "6") (ifseqformula "12")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "closeFalse" (formula "6")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "14") (term "0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "23") (ifseqformula "14")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "add_zero_right" (formula "23") (term "0")) + (rule "leq_literals" (formula "23")) + (rule "closeFalse" (formula "23")) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "1") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEqRigid" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "30") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "28") (term "2,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "1") (term "1,1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "1") (term "3,0,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "equal_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "1")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + ) + (branch + (rule "allRight" (formula "33") (inst "sk=f_0")) + (rule "allRight" (formula "33") (inst "sk=o_0")) + (rule "orRight" (formula "33")) + (rule "orRight" (formula "33")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "33") (term "0,0,0,1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "23") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "qeq_literals" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "32") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "pullOutSelect" (formula "29") (term "1") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0,0")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=f_0_1")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "replaceKnownSelect_taclet10000012110011_8" (formula "1") (term "2,0")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "6") (ifseqformula "21")) + (rule "polySimp_rightDist" (formula "6") (term "0,0")) + (rule "mul_literals" (formula "6") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0,0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,0,1,0") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "28")) (ifInst "" (formula "8")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "18") (term "0")) + (rule "wellFormedAnon" (formula "18") (term "1,0")) + (rule "replace_known_right" (formula "18") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "17") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,0")) + (rule "commute_and" (formula "1") (term "0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0,1,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "cut_direct" (formula "31") (term "0,0")) + (branch "CUT: o_0 = null TRUE" + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "replace_known_left" (formula "3") (term "0,0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqRigid" (formula "3") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "3") (term "0,0,0,0")) + (rule "replace_known_right" (formula "3") (term "0,0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "32") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "31")) + (rule "applyEq" (formula "2") (term "0,1,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "2")) + ) + (branch "CUT: o_0 = null FALSE" + (builtin "One Step Simplification" (formula "32")) + (rule "notRight" (formula "32")) + (rule "replace_known_right" (formula "3") (term "0,0,1,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "3")) + (rule "cut_direct" (formula "31") (term "0")) + (branch "CUT: o_0 = values TRUE" + (builtin "One Step Simplification" (formula "32")) + (rule "replace_known_left" (formula "4") (term "0,0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "4") (term "1,0,0,1,0,0") (ifseqformula "1")) + (rule "replace_known_left" (formula "4") (term "0,1,0,0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEq" (formula "33") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,0") (ifseqformula "1")) + (rule "replace_known_left" (formula "2") (term "0") (ifseqformula "11")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "3") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,2,0") (ifseqformula "1")) + (rule "nnf_ex2all" (formula "31")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "cut_direct" (formula "7") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "7")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "polySimp_rightDist" (formula "8") (term "0")) + (rule "mul_literals" (formula "8") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "14") (ifseqformula "8")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "closeFalse" (formula "14")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "16") (term "0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "26") (ifseqformula "16")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0")) + (rule "add_zero_right" (formula "26") (term "0")) + (rule "leq_literals" (formula "26")) + (rule "closeFalse" (formula "26")) + ) + ) + (branch "CUT: o_0 = values FALSE" + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "33") (term "0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "33")) + (rule "closeTrue" (formula "33")) + ) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "0,0")) + (rule "add_zero_left" (formula "33") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "precOfInt" (formula "33")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,0,1")) + (rule "add_zero_left" (formula "33") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "33") (term "0,1")) + (rule "add_literals" (formula "33") (term "1,0,1")) + (rule "times_zero_1" (formula "33") (term "0,1")) + (rule "leq_literals" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_leqRight" (formula "33")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "1") (term "0,1,0") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "applyEqRigid" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_invertInEq1" (formula "1")) + (rule "times_zero_2" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "replace_known_left" (formula "6") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "1")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "10")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + (branch "Null Reference (x_arr = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (x_arr != null, but x_12 Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "polySimp_homoEq" (formula "23")) + (rule "polySimp_homoEq" (formula "26") (term "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0,0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,0,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "27")) (ifInst "" (formula "7")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "commute_or" (formula "2")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_14")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0,1")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0,0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18")) (ifInst "" (formula "24"))) + (rule "true_left" (formula "23")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "cut_direct" (formula "4") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "polySimp_rightDist" (formula "5") (term "0")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "5")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_subsumption0" (formula "3") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,1")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,1")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,1")) + (rule "add_literals" (formula "3") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1")) + (rule "add_literals" (formula "3") (term "0,0,1")) + (rule "qeq_literals" (formula "3") (term "0,1")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "4")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "21") (ifseqformula "12")) + (rule "andLeft" (formula "21")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "add_literals" (formula "21") (term "0")) + (rule "leq_literals" (formula "21")) + (rule "closeFalse" (formula "21")) + ) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33"))) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "polySimp_homoEq" (formula "23")) + (rule "polySimp_homoEq" (formula "26") (term "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "6") (term "0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "add_zero_left" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,1") (ifseqformula "24")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "2") (term "1,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "add_zero_left" (formula "2") (term "0,1")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEqRigid" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "7") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0,0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0,0,0")) + (rule "qeq_literals" (formula "7") (term "0,0,0")) + (builtin "One Step Simplification" (formula "7")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "7")) + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "7")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "7")) + (rule "hideAuxiliaryEq" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "commute_or" (formula "2")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "27")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "cut_direct" (formula "3") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "3")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "10")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "4")) + (rule "mul_literals" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "21")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_zero_right" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "33")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "tryEmpty" (formula "33") (term "1")) + (rule "methodCallEmpty" (formula "33") (term "1")) + (rule "emptyModality" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "21")) (ifInst "" (formula "22")) (ifInst "" (formula "23")) (ifInst "" (formula "25"))) + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "andRight" (formula "33")) + (branch + (rule "orRight" (formula "33")) + (rule "replace_known_right" (formula "24") (term "1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "24")) + ) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "narrowSelectArrayType" (formula "33") (term "2,1") (ifseqformula "7") (ifseqformula "32")) + (rule "close" (formula "33") (ifseqformula "26")) + ) + ) + (branch + (rule "replaceKnownSelect_taclet10011_1" (formula "33") (term "0")) + (rule "close" (formula "33") (ifseqformula "29")) + ) + ) + (branch + (rule "allRight" (formula "33") (inst "sk=f_0")) + (rule "allRight" (formula "33") (inst "sk=o_0")) + (rule "orRight" (formula "33")) + (rule "orRight" (formula "33")) + (rule "eqSymm" (formula "35")) + (rule "eqSymm" (formula "33") (term "0,0,0,1")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "21") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0")) + (rule "qeq_literals" (formula "21") (term "0")) + (builtin "One Step Simplification" (formula "21")) + (rule "true_left" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "pullOutSelect" (formula "29") (term "1") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "30") (term "0") (inst "selectSK=f_0_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "replaceKnownSelect_taclet101012110011_8" (formula "1") (term "2,0")) + (rule "elementOfArrayRange" (formula "2") (term "0,0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "2") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0,1,0,0,0,0")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "closeTrue" (formula "31")) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "precOfInt" (formula "33")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5") (term "0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1")) + (rule "add_literals" (formula "33") (term "0,0,0,1")) + (rule "add_zero_left" (formula "33") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,1")) + (rule "polySimp_addComm0" (formula "33") (term "0,0,1")) + (rule "polySimp_pullOutFactor2b" (formula "33") (term "0,1")) + (rule "add_literals" (formula "33") (term "1,1,0,1")) + (rule "times_zero_1" (formula "33") (term "1,0,1")) + (rule "add_zero_right" (formula "33") (term "0,1")) + (rule "leq_literals" (formula "33") (term "1")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "24") (term "0") (inst "x=x_12")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "24") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0")) + (rule "replace_known_left" (formula "24") (term "1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "cut_direct" (formula "3") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "3")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "polySimp_rightDist" (formula "4") (term "0")) + (rule "mul_literals" (formula "4") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "4")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "20")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "5")) + (rule "mul_literals" (formula "12") (term "0,0")) + (rule "add_zero_left" (formula "12") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "mul_literals" (formula "12") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "13") (term "0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm0" (formula "13") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "13")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (rule "false_right" (formula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (rule "false_right" (formula "31")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30"))) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "applyEq" (formula "2") (term "1,0,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "add_zero_left" (formula "2") (term "0,1")) + (rule "applyEq" (formula "3") (term "1,0,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0")) + (rule "applyEq" (formula "3") (term "1,1") (ifseqformula "21")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "24") (term "1,0,0,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1")) + (rule "applyEqRigid" (formula "23") (term "1,0,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "replace_known_left" (formula "5") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "23") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_left" (formula "16") (term "1,1,0") (ifseqformula "12")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0,0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "27")) (ifInst "" (formula "6")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "commute_or" (formula "2")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "24") (term "0") (inst "x=x_12")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "24") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "times_zero_2" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "replace_known_left" (formula "24") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "cut_direct" (formula "2") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "28")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "20")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "4")) + (rule "times_zero_1" (formula "11") (term "0,0")) + (rule "add_zero_left" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "mul_literals" (formula "11") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "22") (ifseqformula "12")) + (rule "andLeft" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "closeFalse" (formula "22")) + ) + ) + ) + ) + ) + ) + (branch "Use Case" + (builtin "One Step Simplification" (formula "17")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "0,0,1,0,0,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "3,0,1,1,0,0,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,0,1,0,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "1,0,0,0,0,0")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "17")) + (rule "andLeft" (formula "18")) + (rule "eqSymm" (formula "20") (term "0")) + (rule "polySimp_elimSub" (formula "22") (term "1,0")) + (rule "polySimp_elimSub" (formula "18") (term "0")) + (rule "mul_literals" (formula "18") (term "1,0")) + (rule "polySimp_elimSub" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "3,0,1")) + (rule "polySimp_addComm0" (formula "17") (term "1")) + (rule "polySimp_addComm0" (formula "22") (term "1,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "narrowSelectArrayType" (formula "22") (term "2,1") (ifseqformula "3") (ifseqformula "25")) + (rule "inEqSimp_commuteLeq" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "18")) + (rule "variableDeclarationAssign" (formula "26") (term "1")) + (rule "variableDeclaration" (formula "26") (term "1") (newnames "b_0_1")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_1")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "26")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,0")) + (rule "pullOutSelect" (formula "23") (term "2,0") (inst "selectSK=arr_2")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "27")) (ifInst "" (formula "4"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "commute_or" (formula "20")) + (rule "compound_assignment_3_nonsimple" (formula "28") (term "1")) + (rule "ifElseUnfold" (formula "28") (term "1") (inst "#boolv=x")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_3")) + (rule "compound_assignment_2" (formula "28") (term "1") (inst "#v=x_4")) + (rule "variableDeclarationAssign" (formula "28") (term "1")) + (rule "variableDeclaration" (formula "28") (term "1") (newnames "x_4")) + (rule "greater_equal_than_comparison_simple" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "compound_assignment_1_new" (formula "28") (term "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "ifElseSplit" (formula "28")) + (branch "if x_3 true" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "methodCallEmpty" (formula "29") (term "1")) + (rule "emptyModality" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "assignment_to_primitive_array_component" (formula "29")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "blockEmpty" (formula "29") (term "1")) + (rule "preincrement" (formula "29") (term "1")) + (rule "compound_int_cast_expression" (formula "29") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_5")) + (rule "remove_parentheses_right" (formula "29") (term "1")) + (rule "assignmentAdditionInt" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "translateJavaAddInt" (formula "29") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "29") (term "1")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "tryEmpty" (formula "29") (term "1")) + (rule "methodCallEmpty" (formula "29") (term "1")) + (rule "emptyModality" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "andRight" (formula "29")) + (branch "Case 1" + (rule "eqTermCut" (formula "29") (term "0") (inst "s=de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin<>, + end<>, + any::select(anon(anon(heap, + arrayRange(values, + begin, + add(Z(neglit(1(#))), + end)), + anon_heap_LOOP<>), + arrayRange(values, + begin, + k_0), + anon_heap_LOOP_0<>), + values<>, + arr(j))), + add(mul(begin, + Z(neglit(1(#)))), + hole_0), + arr_0<>)") (userinteraction)) + (branch "Assume seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] [values[hole_0] := arr_0<>], values, arr(j))) = de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)], values, arr(j))), begin * -1 + hole_0, arr_0<>)" + (rule "applyEq" (formula "30") (term "0") (ifseqformula "1") (userinteraction)) + (rule "narrowSelectArrayType" (formula "30") (term "2,1") (ifseqformula "4") (ifseqformula "29") (userinteraction)) + (rule "close" (formula "30") (ifseqformula "23") (userinteraction)) + ) + (branch "Assume seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] [values[hole_0] := arr_0<>], values, arr(j))) != de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)], values, arr(j))), begin * -1 + hole_0, arr_0<>)" + (rule "notLeft" (formula "1") (userinteraction)) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "1") (userinteraction)) + (rule "equalityToSeqGetAndSeqLenRight" (formula "26") (inst "iv=iv") (userinteraction)) + (rule "andRight" (formula "26") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,1")) + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,1")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "0")) + (rule "eqSymm" (formula "26")) + (rule "polySimp_elimSub" (formula "26") (term "1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "narrowSelectArrayType" (formula "30") (term "2,1") (ifseqformula "5") (ifseqformula "29")) + (rule "lenOfSeqConcat" (formula "28") (term "0")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,0,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "times_zero_2" (formula "28") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEqRigid" (formula "21") (term "1,0,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,0,1") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "polySimp_sepNegMonomial" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm1" (formula "26") (term "1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "3")) + (rule "applyEqReverse" (formula "22") (term "2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "27") (term "3,0,2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_contradInEq0" (formula "24") (term "0,0,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,1,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,1,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,1,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,1")) + (rule "leq_literals" (formula "24") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "times_zero_2" (formula "24") (term "1,1")) + (rule "add_zero_right" (formula "24") (term "1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1") (ifseqformula "2")) + (rule "polySimp_homoEq" (formula "24")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1")) + (rule "applyEq" (formula "22") (term "1,1,0") (ifseqformula "17")) + (rule "polySimp_pullOutFactor2" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "applyEq" (formula "23") (term "0,2,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "24") (term "0,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "applyEq" (formula "22") (term "0,2,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "0,2,0,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,0")) + (rule "times_zero_1" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "23") (term "0,1,1,0") (ifseqformula "16")) + (rule "polySimp_addComm1" (formula "23") (term "1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "orRight" (formula "23")) + (rule "polySimp_homoEq" (formula "24")) + (rule "times_zero_2" (formula "24") (term "1,0")) + (rule "add_zero_right" (formula "24") (term "0")) + (rule "inEqSimp_geqRight" (formula "23")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "23") (term "0,2,0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "17")) + (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "17")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "19") (term "1") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,1")) + (rule "add_literals" (formula "19") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1")) + (rule "add_zero_right" (formula "19") (term "0,0,1")) + (rule "leq_literals" (formula "19") (term "0,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradEq7" (formula "24") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "leq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "Case 2" + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,1,1,0")) + (rule "allRight" (formula "26") (inst "sk=iv_0")) + (rule "impRight" (formula "26")) + (rule "andLeft" (formula "1")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_homoEq" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,1")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,1")) + (rule "getOfSeqDef" (formula "28") (term "0")) + (rule "castDel" (formula "28") (term "2,0")) + (rule "castDel" (formula "28") (term "1,0")) + (rule "eqSymm" (formula "28")) + (rule "replace_known_left" (formula "28") (term "0,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1")) + (rule "lenOfSeqDef" (formula "2") (term "1")) + (rule "polySimp_elimSub" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "narrowSelectArrayType" (formula "32") (term "2,1") (ifseqformula "7") (ifseqformula "31")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,2,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "applyEq" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEq" (formula "24") (term "1,0,0,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1")) + (rule "applyEqRigid" (formula "23") (term "1,0,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "replace_known_left" (formula "5") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,2,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,2,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1")) + (rule "replace_known_left" (formula "29") (term "0,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "28") (term "0,1,0,0,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "30") (term "3,0,2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "28") (term "3,0,1") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,1,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqConcat" (formula "26") (term "0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,0")) + (rule "lenOfSeqConcat" (formula "26") (term "1,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0,1,1,2,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,2,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,2,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,2,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "26") (term "1,2,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,2,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,1,0,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,0,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,1,2,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,1,2,0")) + (rule "times_zero_2" (formula "26") (term "1,1,0,1,1,2,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,1,2,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,2,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "26") (term "0,0,1,1,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,1,1,2,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,1,2,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,1,2,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,1,2,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,1,1,2,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "times_zero_2" (formula "26") (term "1,1,2,0")) + (rule "add_zero_right" (formula "26") (term "1,2,0")) + (rule "inEqSimp_contradInEq0" (formula "26") (term "0,0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "0,0")) + (rule "getOfSeqConcat" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "26") (term "2,1,0")) + (rule "castDel" (formula "26") (term "2,2,1,0")) + (rule "castDel" (formula "26") (term "1,2,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0,0,2,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0,0,2,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,1,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,0,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,0,1,0")) + (rule "inEqSimp_contradInEq0" (formula "26") (term "0,0,0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0,2,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,2,1,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,0,2,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "0,2,1,0")) + (rule "inEqSimp_contradInEq0" (formula "26") (term "0,0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "leq_literals" (formula "26") (term "0,0,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,1,0")) + (rule "times_zero_2" (formula "26") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,1,0")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "0,1,0") (ifseqformula "3")) + (rule "qeq_literals" (formula "26") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_antiSymm" (formula "19") (ifseqformula "1")) + (rule "applyEq" (formula "29") (term "0,2,0,2,0") (ifseqformula "19")) + (rule "applyEq" (formula "21") (term "1") (ifseqformula "19")) + (rule "applyEq" (formula "25") (term "0,2,2,0") (ifseqformula "19")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "25") (term "0,2,0") (ifseqformula "19")) + (rule "applyEq" (formula "23") (term "1,1,0") (ifseqformula "19")) + (rule "polySimp_pullOutFactor2" (formula "23") (term "1,0")) + (rule "add_literals" (formula "23") (term "1,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0")) + (rule "applyEq" (formula "26") (term "1,1,0,2,0") (ifseqformula "19")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "1,0,2,0")) + (rule "add_literals" (formula "26") (term "1,1,1,0,2,0")) + (rule "times_zero_1" (formula "26") (term "1,1,0,2,0")) + (rule "add_zero_right" (formula "26") (term "1,0,2,0")) + (rule "applyEq" (formula "24") (term "0,0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "23") (term "0,2,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "25") (term "0,2,0,1") (ifseqformula "18")) + (rule "applyEq" (formula "20") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "17") (term "1,1") (ifseqformula "18")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "20") (term "1") (ifseqformula "13")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,1")) + (rule "add_literals" (formula "20") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "20") (term "1,0,0,1")) + (rule "add_zero_right" (formula "20") (term "0,0,1")) + (rule "leq_literals" (formula "20") (term "0,1")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "times_zero_1" (formula "2") (term "0,0")) + (rule "add_zero_left" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "getOfSeqSub" (formula "23") (term "2,0")) + (rule "castDel" (formula "23") (term "2,2,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,2,0")) + (rule "add_literals" (formula "23") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "23") (term "1,1,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0,2,0")) + (rule "getOfSeqDef" (formula "23") (term "1,2,0")) + (rule "castDel" (formula "23") (term "2,1,2,0")) + (rule "castDel" (formula "23") (term "1,1,2,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,1,2,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,2,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,1,0,2,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,1,2,0")) + (rule "replace_known_left" (formula "23") (term "0,0,1,2,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,2,0")) + (rule "times_zero_2" (formula "23") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0")) + (rule "replace_known_left" (formula "23") (term "1,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,1,2,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,1,2,0")) + (rule "replace_known_left" (formula "23") (term "0,1,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,2,0")) + (rule "mul_literals" (formula "23") (term "1,0,2,0")) + (rule "pullOutSelect" (formula "23") (term "1,2,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "17") (ifseqformula "25")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "24") (term "1") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet11000000020011_6" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "14") (ifseqformula "27")) + (rule "narrowSelectArrayType" (formula "2") (term "2,0") (ifseqformula "8") (ifseqformula "27")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "27")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0")) + (rule "add_zero_left" (formula "24") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "28")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "29")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "ifthenelse_split" (formula "27") (term "1,0")) + (branch "iv_0 = 0 TRUE" + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "28")) + (rule "orRight" (formula "28")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "mul_literals" (formula "6") (term "1,0")) + (rule "add_zero_right" (formula "6") (term "0")) + (rule "applyEqRigid" (formula "3") (term "1,1,0,0") (ifseqformula "2")) + (rule "add_zero_right" (formula "3") (term "1,0,0")) + (rule "applyEq" (formula "28") (term "0,0,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = 0 FALSE" + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "3") (ifseqformula "26")) + (rule "add_zero_right" (formula "3") (term "1")) + (rule "replace_known_left" (formula "27") (term "0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "27")) + (rule "orRight" (formula "27")) + (rule "notRight" (formula "27")) + (rule "inEqSimp_contradEq7" (formula "27") (ifseqformula "4")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "leq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "false_right" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "4")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch + (rule "andRight" (formula "29")) + (branch + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEqRigid" (formula "3") (term "1,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0")) + (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEqRigid" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "polySimp_elimOne" (formula "3") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "4")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_contradInEq0" (formula "14") (ifseqformula "2")) + (rule "andLeft" (formula "14")) + (rule "inEqSimp_homoInEq1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0")) + (rule "add_literals" (formula "14") (term "1,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0")) + (rule "add_zero_right" (formula "14") (term "0")) + (rule "leq_literals" (formula "14")) + (rule "closeFalse" (formula "14")) + ) + (branch + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEqRigid" (formula "3") (term "1,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0")) + (rule "applyEqRigid" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "applyEq" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "polySimp_elimOne" (formula "3") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "1")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "29") (inst "sk=x_0")) + (rule "impRight" (formula "29")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_homoEq" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1")) + (rule "polySimp_rightDist" (formula "21") (term "1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1")) + (rule "mul_literals" (formula "21") (term "0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1")) + (rule "applyEqRigid" (formula "22") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "applyEqRigid" (formula "23") (term "1,0,0") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "24") (term "1,0,0,1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1")) + (rule "add_zero_left" (formula "24") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1")) + (rule "polySimp_rightDist" (formula "6") (term "1")) + (rule "mul_literals" (formula "6") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "6") (term "1,1")) + (rule "polySimp_elimOne" (formula "6") (term "1,1")) + (rule "replace_known_left" (formula "5") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "5")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEqReverse" (formula "29") (term "0") (ifseqformula "28")) + (rule "hideAuxiliaryEq" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "30") (term "3,0,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "28")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_antiSymm" (formula "20") (ifseqformula "3")) + (rule "applyEq" (formula "27") (term "0,2,0") (ifseqformula "20")) + (rule "applyEq" (formula "22") (term "1") (ifseqformula "20")) + (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "qeq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "24") (term "1,1,0") (ifseqformula "19")) + (rule "polySimp_pullOutFactor2" (formula "24") (term "1,0")) + (rule "add_literals" (formula "24") (term "1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0")) + (rule "applyEq" (formula "25") (term "0,2,2,0") (ifseqformula "19")) + (rule "applyEq" (formula "25") (term "0,2,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,0")) + (rule "times_zero_1" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "true_left" (formula "20")) + (rule "applyEq" (formula "1") (term "1,0,0") (ifseqformula "19")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "19")) + (rule "applyEq" (formula "21") (term "1,1") (ifseqformula "19")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "21") (term "1") (ifseqformula "14")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,1")) + (rule "add_literals" (formula "21") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "21") (term "1,0,0,1")) + (rule "add_zero_right" (formula "21") (term "0,0,1")) + (rule "leq_literals" (formula "21") (term "0,1")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0,0")) + (rule "leq_literals" (formula "1") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "6"))) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_left" (formula "22") (term "1,1,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "26")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "0,1") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "28")) (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_left" (formula "17") (term "0,1") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "29")) (ifInst "" (formula "6")) (ifInst "" (formula "12"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0,1,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "x_0 >= begin TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "23") (term "0,0")) + (rule "shift_paren_or" (formula "23") (term "0,0,0")) + (rule "all_pull_out3" (formula "17") (term "0")) + (rule "shift_paren_or" (formula "17") (term "0,0")) + (rule "shift_paren_or" (formula "17") (term "0,0,0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "x_0 = begin TRUE" + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "28")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "27") (term "0,2,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "13")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "x_0 = begin FALSE" + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "28")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "26")) + (rule "inEqSimp_contradEq7" (formula "26") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "leq_literals" (formula "26") (term "0")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "allLeft" (formula "15") (inst "t=x_0")) + (rule "replaceKnownSelect_taclet10000020011_8" (formula "15") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000020011_9" (formula "15") (term "0,1")) + (rule "replace_known_right" (formula "15") (term "1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq1" (formula "15") (term "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,1")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "15") (term "0,0,0,1")) + (rule "add_literals" (formula "15") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,1")) + (rule "add_literals" (formula "15") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "15") (term "1,0,0,1")) + (rule "add_zero_right" (formula "15") (term "0,0,1")) + (rule "leq_literals" (formula "15") (term "0,1")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (ifseqformula "4")) + (rule "andLeft" (formula "15")) + (rule "inEqSimp_homoInEq1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0")) + (rule "add_literals" (formula "15") (term "1,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0")) + (rule "add_zero_right" (formula "15") (term "0")) + (rule "leq_literals" (formula "15")) + (rule "closeFalse" (formula "15")) + ) + ) + (branch "x_0 >= begin FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_contradEq3" (formula "2") (term "0,0") (ifseqformula "1")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28"))) + (rule "closeFalse" (formula "2")) + ) + ) + ) + (branch "Case 2" + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,0,1") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1")) + (rule "applyEq" (formula "21") (term "1,0,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "28") (term "3,0,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1")) + (rule "applyEq" (formula "26") (term "0,2,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,0")) + (rule "times_zero_1" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "23") (term "0,2,0") (ifseqformula "17")) + (rule "applyEq" (formula "21") (term "1,1,0") (ifseqformula "17")) + (rule "polySimp_pullOutFactor2" (formula "21") (term "1,0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "17") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "0,2,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "0,2,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "16")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "18") (term "1") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1")) + (rule "add_zero_right" (formula "18") (term "0,0,1")) + (rule "leq_literals" (formula "18") (term "0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "20") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "nnf_imp2or" (formula "12") (term "0")) + (rule "nnf_notAnd" (formula "12") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "12") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "12") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "12") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "12") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0,0,0,0,0")) + (rule "add_literals" (formula "12") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "12") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "12") (term "1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "18") (term "0")) + (rule "wellFormedAnon" (formula "18") (term "1,0")) + (rule "wellFormedAnon" (formula "18") (term "0,1,0")) + (rule "replace_known_left" (formula "18") (term "0,0,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "22")) (ifInst "" (formula "9")) (ifInst "" (formula "14")) (ifInst "" (formula "19"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "13") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "13")) + (rule "translateJavaAddInt" (formula "13") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "13") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "13") (term "1,1,0,0")) + (rule "mul_literals" (formula "13") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "13") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "13") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "13") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,1,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "allRight" (formula "23") (inst "sk=i_1_0")) + (rule "impRight" (formula "23")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "25")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_3")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "25")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0,0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "26")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0")) + (rule "add_zero_right" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "27"))) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1")) + (rule "inEqSimp_contradEq7" (formula "27") (term "1") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "leq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0,1,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "getOfSeqConcat" (formula "25") (term "1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,0,1,0")) + (rule "getOfSeqSingleton" (formula "25") (term "1,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "getOfSeqSub" (formula "25") (term "2,1,1,0")) + (rule "castDel" (formula "25") (term "2,2,1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "25") (term "1,2,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,2,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = begin TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,0")) + (rule "times_zero_1" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "true_left" (formula "3")) + (rule "applyEq" (formula "2") (term "1,0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,1,1,0,0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "23") (term "0,1,1,0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "23")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "eqSymm" (formula "23") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "23") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0")) + (rule "add_zero_right" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0,1,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "getOfSeqConcat" (formula "25") (term "1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,0,1,0")) + (rule "getOfSeqSingleton" (formula "25") (term "1,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "getOfSeqSub" (formula "25") (term "2,1,1,0")) + (rule "castDel" (formula "25") (term "2,2,1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "25") (term "1,2,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,2,0,1,0")) + (rule "allLeft" (formula "14") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "14") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_4" (formula "14") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,1,0")) + (rule "add_literals" (formula "14") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "14") (term "1,0,1,0")) + (rule "add_zero_right" (formula "14") (term "0,1,0")) + (rule "qeq_literals" (formula "14") (term "1,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_contradInEq0" (formula "14") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEq" (formula "24") (term "1,0,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "25") (term "2,0,0") (ifseqformula "14")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "14")) + (rule "applyEq" (formula "26") (term "0,0,0") (ifseqformula "14")) + (rule "applyEq" (formula "27") (term "1") (ifseqformula "14")) + (rule "applyEq" (formula "23") (term "1,1,0,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "24") (term "2,0,1,1,0") (ifseqformula "14")) + (rule "applyEq" (formula "23") (term "1,1,1,0") (ifseqformula "14")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0")) + (rule "allLeft" (formula "22") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "pullOutSelect" (formula "22") (term "1,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "30")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "30")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "replace_known_left" (formula "22") (term "1,0,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "allLeft" (formula "23") (inst "t=begin")) + (rule "replaceKnownSelect_taclet01000020011_13" (formula "23") (term "1,1")) + (rule "replaceKnownSelect_taclet01000020011_15" (formula "23") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_14" (formula "23") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_16" (formula "23") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "allLeft" (formula "16") (inst "t=begin")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0")) + (rule "pullOutSelect" (formula "16") (term "1,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "31")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "16") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEqReverse" (formula "17") (term "1,1") (ifseqformula "16")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "pullOutSelect" (formula "16") (term "0,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "16")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "31")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_commuteGeq" (formula "17") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0")) + (rule "qeq_literals" (formula "16") (term "0,0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "replace_known_left" (formula "16") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEqReverse" (formula "17") (term "1,1") (ifseqformula "16")) + (rule "hideAuxiliaryEq" (formula "16")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1")) + (rule "allLeft" (formula "17") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet01000020011_17" (formula "17") (term "1,1")) + (rule "replaceKnownSelect_taclet01000020011_19" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_18" (formula "17") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_20" (formula "17") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "27")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "29"))) + (rule "true_left" (formula "28")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1,0,1")) + (rule "add_zero_right" (formula "28") (term "0,1")) + (rule "polySimp_sepPosMonomial" (formula "28") (term "1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1")) + (rule "mul_literals" (formula "28") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1")) + (rule "inEqSimp_contradEq7" (formula "28") (term "1") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,1")) + (rule "leq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "allLeft" (formula "21") (inst "t=begin")) + (rule "replaceKnownSelect_taclet01000020011_13" (formula "21") (term "1,1")) + (rule "replaceKnownSelect_taclet01000020011_15" (formula "21") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_14" (formula "21") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet01000020011_16" (formula "21") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "21") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "replace_known_left" (formula "24") (term "1") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "30") (ifseqformula "21")) + (rule "andLeft" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0")) + (rule "add_literals" (formula "30") (term "1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0")) + (rule "add_literals" (formula "30") (term "0")) + (rule "leq_literals" (formula "30")) + (rule "closeFalse" (formula "30")) + ) + (branch "i_1_0 = begin FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_strengthen1" (formula "2") (ifseqformula "28")) + (rule "inEqSimp_contradEq7" (formula "28") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "25")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "getOfSeqSub" (formula "27") (term "2,1,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "allLeft" (formula "16") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_4" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_zero_right" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "28") (term "0,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "29") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "25") (term "1,1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "1,0,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "27") (term "2,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "25") (term "1,1,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "26") (term "2,0,1,1,0") (ifseqformula "16")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "allLeft" (formula "17") (inst "t=add(Z(1(#)), i_1_0)")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "pullOutSelect" (formula "17") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "17")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "32")) (ifInst "" (formula "8"))) + (rule "eqSymm" (formula "18") (term "1")) + (rule "elementOfArrayRangeConcrete" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "0,1,0,0")) + (rule "replace_known_left" (formula "17") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "17") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0,0,0")) + (rule "qeq_literals" (formula "17") (term "0,0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEqReverse" (formula "18") (term "1,1") (ifseqformula "17")) + (rule "hideAuxiliaryEq" (formula "17")) + (rule "eqSymm" (formula "17") (term "1")) + (rule "allLeft" (formula "25") (inst "t=begin")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0")) + (rule "pullOutSelect" (formula "25") (term "1,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "33")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "33")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1")) + (rule "allLeft" (formula "26") (inst "t=add(Z(1(#)), i_1_0)")) + (rule "replaceKnownSelect_taclet1000020011_8" (formula "26") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_9" (formula "26") (term "1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,2,0,1")) + (rule "add_literals" (formula "26") (term "0,0,2,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "34")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "2,0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "35")) (ifInst "" (formula "8"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "allLeft" (formula "29") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet11000020011_15" (formula "29") (term "1,1")) + (rule "replaceKnownSelect_taclet11000020011_17" (formula "29") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet11000020011_16" (formula "29") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet11000020011_18" (formula "29") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0")) + (rule "allLeft" (formula "29") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet1000020011_10" (formula "29") (term "1,1")) + (rule "replaceKnownSelect_taclet1000020011_8" (formula "29") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_11" (formula "29") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000020011_9" (formula "29") (term "0,1")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq0" (formula "29") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,1")) + (rule "leq_literals" (formula "29") (term "0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq1" (formula "29") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "leq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_contradInEq0" (formula "27") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1,1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_subsumption0" (formula "27") (term "0") (ifseqformula "28")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "inEqSimp_antiSymm" (formula "5") (ifseqformula "27")) + (rule "applyEq" (formula "29") (term "1,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,0")) + (rule "add_literals" (formula "29") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "29") (term "1,1,0,0")) + (rule "applyEq" (formula "17") (term "0,2,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "26") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0")) + (rule "applyEqRigid" (formula "30") (term "0,2,1,1,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "32") (term "2,1,0,2,0,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "33") (term "2,1,0,2,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "29") (term "2,1,0,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,1,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "31") (term "2,1,0,1,2,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "7") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "applyEq" (formula "24") (term "2,1,0,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "34") (term "0,2,1") (ifseqformula "5")) + (rule "applyEqRigid" (formula "16") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0")) + (rule "applyEq" (formula "29") (term "2,1,0,1,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "19") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "33") (term "0,2,0,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "25") (term "2,1,0,0,1,0,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "32") (term "0,2,2,0,0") (ifseqformula "5")) + (rule "applyEq" (formula "30") (term "2,1,0,1,1,2,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "25") (term "1,1,0,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "31") (term "0,2,1,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_pullOutFactor1" (formula "6") (term "0")) + (rule "add_literals" (formula "6") (term "1,0")) + (rule "times_zero_1" (formula "6") (term "0")) + (rule "leq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEqRigid" (formula "24") (term "1,0,0,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0") (ifseqformula "5")) + (rule "polySimp_addAssoc" (formula "19") (term "1,1,0,0")) + (rule "add_literals" (formula "19") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "19") (term "1,1,0,0")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,1,1,0,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "27") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "1,0")) + (rule "times_zero_1" (formula "27") (term "0")) + (rule "qeq_literals" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "17")) + (rule "eqSymm" (formula "16")) + (rule "applyEqRigid" (formula "16") (term "0,2,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "applyEqRigid" (formula "28") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,2,1,1,0") (ifseqformula "5")) + (rule "applyEqRigid" (formula "28") (term "0,2,2,0,1,1,0") (ifseqformula "5")) + (rule "applyEq" (formula "27") (term "0,2,1,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_literals" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_contradInEq1" (formula "22") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,0") (inst "x=x_6")) + (builtin "One Step Simplification" (formula "27")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0")) + (rule "add_zero_right" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "28"))) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1")) + (rule "inEqSimp_contradEq7" (formula "27") (term "1") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,1")) + (rule "leq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_subsumption1" (formula "27") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0")) + (rule "add_literals" (formula "27") (term "0,0")) + (rule "qeq_literals" (formula "27") (term "0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqConcat" (formula "26") (term "1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,0,1,0")) + (rule "getOfSeqSingleton" (formula "26") (term "1,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "getOfSeqSub" (formula "26") (term "2,1,1,0")) + (rule "castDel" (formula "26") (term "2,2,1,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,2,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,2,0,1,0")) + (rule "commute_or_2" (formula "25") (term "0")) + (rule "ifthenelse_split" (formula "23") (term "0")) + (branch "i_1_0 <= -3 + end TRUE" + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "4") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "2") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0")) + (rule "add_literals" (formula "2") (term "0,0")) + (rule "qeq_literals" (formula "2") (term "0")) + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "all_pull_out3" (formula "20") (term "0")) + (rule "commute_or" (formula "24") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0")) + (rule "shift_paren_or" (formula "20") (term "0,0,0")) + (rule "ifthenelse_to_or_left" (formula "24") (term "0,0,0")) + (rule "eqSymm" (formula "24") (term "1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "commute_or" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0")) + (rule "commute_or" (formula "24") (term "0,1,0")) + (rule "commute_or" (formula "24") (term "1,1,0")) + (rule "cnf_rightDist" (formula "24") (term "0")) + (rule "distr_forallAnd" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "commute_or_2" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "25") (term "0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "inEqSimp_or_subsumption1" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "commute_or" (formula "24") (term "0,0,0")) + (rule "inEqSimp_or_antiSymm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "commute_or_2" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "ifthenelse_to_or_left" (formula "24") (term "0,0,0")) + (rule "eqSymm" (formula "24") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,1,0,0,0,0")) + (rule "eqSymm" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0,0,0,0")) + (rule "commute_or" (formula "24") (term "0,0")) + (rule "commute_or_2" (formula "24") (term "0")) + (rule "commute_or_2" (formula "24") (term "0,1,0")) + (rule "commute_or" (formula "24") (term "1,1,0")) + (rule "shift_paren_or" (formula "24") (term "0,0,1,0")) + (rule "commute_or_2" (formula "24") (term "0,0,1,0")) + (rule "applyEq_or_int5" (formula "24") (term "0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,0,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,1,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "commute_or" (formula "24") (term "0,0,1,0")) + (rule "applyEq_or_int3" (formula "24") (term "0,1,0")) + (rule "leq_literals" (formula "24") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "cnf_rightDist" (formula "24") (term "1,0")) + (rule "commute_or" (formula "24") (term "1,1,0")) + (rule "cnf_rightDist" (formula "24") (term "0")) + (rule "distr_forallAnd" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "commute_or_2" (formula "24") (term "0")) + (rule "shift_paren_or" (formula "25") (term "0")) + (rule "commute_or_2" (formula "25") (term "0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,1,0")) + (rule "add_literals" (formula "25") (term "1,0,1,0")) + (rule "times_zero_1" (formula "25") (term "0,1,0")) + (rule "leq_literals" (formula "25") (term "1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "shift_paren_or" (formula "24") (term "0,0")) + (rule "commute_or" (formula "24") (term "0,0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "qeq_literals" (formula "24") (term "1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "allLeft" (formula "23") (inst "t=begin<>")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_contradInEq1" (formula "23") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteLeq" (formula "24")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "allLeft" (formula "19") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet011000020011_25" (formula "19") (term "1,1")) + (rule "replaceKnownSelect_taclet011000020011_23" (formula "19") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet011000020011_26" (formula "19") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet011000020011_24" (formula "19") (term "0,1")) + (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "allLeft" (formula "19") (inst "t=i_1_0")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,1,0")) + (rule "add_literals" (formula "19") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "19") (term "1,0,1,0")) + (rule "add_literals" (formula "19") (term "0,1,0")) + (rule "leq_literals" (formula "19") (term "1,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "1") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,1,0,0")) + (rule "qeq_literals" (formula "19") (term "1,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "replaceKnownSelect_taclet11000020011_13" (formula "19") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet11000020011_14" (formula "19") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0,1,0,0")) + (rule "add_literals" (formula "19") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "19") (term "0,1,0,0")) + (rule "qeq_literals" (formula "19") (term "1,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEq" (formula "19") (term "2,0") (ifseqformula "13")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "19")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "i_1_0 <= -3 + end FALSE" + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "5")) + (rule "applyEq" (formula "25") (term "1,2,1,0,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "25") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "applyEq" (formula "3") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "3") (term "0,2,0")) + (rule "add_literals" (formula "3") (term "0,0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "23") (term "1,1,0,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "applyEq" (formula "23") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,1,1,0,0")) + (rule "applyEq" (formula "23") (term "1,2,1,0,1,1,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,1,1,0,1,0")) + (rule "add_literals" (formula "23") (term "0,2,1,0,1,1,0,1,0")) + (rule "applyEq" (formula "27") (term "1,2,1,0,2,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "27") (term "2,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,2,1,0,2,0,1,0")) + (rule "applyEq" (formula "26") (term "1,0,2,1,1,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,2,1,1,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,2,1,1,0,1,0,0")) + (rule "applyEq" (formula "23") (term "1,2,1,0,0,1,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "2,1,0,0,1,0,1,0")) + (rule "add_literals" (formula "23") (term "0,2,1,0,0,1,0,1,0")) + (rule "applyEq" (formula "28") (term "1,0,2,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,2,1")) + (rule "add_literals" (formula "28") (term "0,0,2,1")) + (rule "applyEq" (formula "18") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "16") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "15") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "15") (term "0,2,0")) + (rule "add_literals" (formula "15") (term "0,0,2,0")) + (rule "applyEq" (formula "21") (term "1,2,1,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "24") (term "1,1,0,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "applyEq" (formula "21") (term "1,2,1,0,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "21") (term "2,1,0,1,1,0")) + (rule "add_literals" (formula "21") (term "0,2,1,0,1,1,0")) + (rule "applyEq" (formula "21") (term "1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "21") (term "1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0")) + (rule "applyEq" (formula "24") (term "1,2,1,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "2,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,2,1,0,0,1,0")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "5")) + (rule "polySimp_pullOutFactor1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,0")) + (rule "times_zero_1" (formula "5") (term "0")) + (rule "qeq_literals" (formula "5")) + (rule "true_left" (formula "5")) + (rule "applyEq" (formula "24") (term "1,2,1,0,1,1,2,0,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "2,1,0,1,1,2,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,2,1,0,1,1,2,0,1,0,0")) + (rule "applyEq" (formula "25") (term "1,0,2,0,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,2,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,2,0,0,0")) + (rule "applyEq" (formula "2") (term "0,2,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "24") (term "1,2,1,0,1,2,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "2,1,0,1,2,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,2,1,0,1,2,1,1,0,0")) + (rule "applyEq" (formula "5") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "applyEq" (formula "14") (term "1,0,2,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "14") (term "0,2,1")) + (rule "add_literals" (formula "14") (term "0,0,2,1")) + (rule "applyEq" (formula "24") (term "1,0,2,1,1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,1,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,2,1,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "commute_or" (formula "14") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "14") (term "0,0")) + (rule "polySimp_homoEq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "1,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "commute_or" (formula "23") (term "0,0")) + (rule "commute_or" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "27")) (ifInst "" (formula "6"))) + (rule "eqSymm" (formula "15")) + (rule "applyEqReverse" (formula "14") (term "1") (ifseqformula "15")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "13"))) + (rule "true_left" (formula "14")) + (rule "hideAuxiliaryEq" (formula "14")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "shift_paren_or" (formula "19") (term "0,0")) + (rule "shift_paren_or" (formula "19") (term "0,0,0")) + (rule "ifthenelse_to_or_right" (formula "22") (term "0,0,0")) + (rule "commute_or" (formula "22") (term "0,0")) + (rule "commute_or_2" (formula "22") (term "0")) + (rule "commute_or" (formula "22") (term "0,1,0")) + (rule "commute_or" (formula "22") (term "1,1,0")) + (rule "cnf_rightDist" (formula "22") (term "0")) + (rule "distr_forallAnd" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "shift_paren_or" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "qeq_literals" (formula "22") (term "0,0,0,1,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "leq_literals" (formula "22") (term "0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "shift_paren_or" (formula "22") (term "0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (rule "inEqSimp_or_weaken2" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,0,1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "ifthenelse_to_or_right" (formula "22") (term "0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "commute_or" (formula "22") (term "0,0")) + (rule "commute_or_2" (formula "22") (term "0")) + (rule "commute_or" (formula "22") (term "1,1,0")) + (rule "commute_or_2" (formula "22") (term "0,1,0")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "22") (term "1,1,0")) + (rule "cnf_rightDist" (formula "22") (term "0")) + (rule "distr_forallAnd" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "commute_or" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or" (formula "22") (term "0,0")) + (rule "inEqSimp_or_subsumption1" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0,1,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or" (formula "23") (term "1,1,0")) + (rule "cnf_rightDist" (formula "23") (term "0")) + (rule "distr_forallAnd" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "commute_or_2" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,1,0")) + (rule "add_literals" (formula "24") (term "1,0,1,0")) + (rule "times_zero_1" (formula "24") (term "0,1,0")) + (rule "leq_literals" (formula "24") (term "1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "shift_paren_or" (formula "23") (term "0,0")) + (rule "commute_or" (formula "23") (term "0,0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "qeq_literals" (formula "23") (term "1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "ifthenelse_to_or_left" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0")) + (rule "commute_or" (formula "22") (term "0,0")) + (rule "commute_or_2" (formula "22") (term "0")) + (rule "commute_or" (formula "22") (term "1,1,0")) + (rule "commute_or" (formula "22") (term "0,1,0")) + (rule "cnf_rightDist" (formula "22") (term "0")) + (rule "distr_forallAnd" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "commute_or_2" (formula "22") (term "0")) + (rule "shift_paren_or" (formula "23") (term "0")) + (builtin "One Step Simplification" (formula "23")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "commute_or" (formula "22") (term "0,0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "qeq_literals" (formula "22") (term "1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "ifthenelse_to_or_left" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "eqSymm" (formula "22") (term "1,1,0,0,0,0")) + (rule "eqSymm" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "commute_or" (formula "22") (term "0,0")) + (rule "commute_or_2" (formula "22") (term "0")) + (rule "commute_or" (formula "22") (term "1,1,0")) + (rule "commute_or" (formula "22") (term "1,0,1,0")) + (rule "cnf_rightDist" (formula "22") (term "1,1,0")) + (rule "commute_or" (formula "22") (term "1,1,1,0")) + (rule "cnf_rightDist" (formula "22") (term "1,0,1,0")) + (rule "commute_or" (formula "22") (term "1,1,0,1,0")) + (rule "cnf_rightDist" (formula "22") (term "0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,0,1,0")) + (rule "shift_paren_or" (formula "22") (term "1,0,1,0")) + (rule "commute_or_2" (formula "22") (term "0,1,0,1,0")) + (rule "inEqSimp_or_tautInEq1" (formula "22") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "1,1,1,0,1,0")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,1,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,1,1,0,1,0")) + (rule "add_literals" (formula "22") (term "1,0,1,1,0,1,0")) + (rule "times_zero_1" (formula "22") (term "0,1,1,0,1,0")) + (rule "leq_literals" (formula "22") (term "1,1,0,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "shift_paren_or" (formula "22") (term "0,0,1,0")) + (rule "cnf_rightDist" (formula "22") (term "0")) + (rule "distr_forallAnd" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "commute_or" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "22") (term "0")) + (rule "commute_or_2" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "shift_paren_or" (formula "22") (term "0,0")) + (rule "cnf_rightDist" (formula "23") (term "0")) + (rule "distr_forallAnd" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "commute_or_2" (formula "23") (term "0")) + (rule "shift_paren_or" (formula "24") (term "0")) + (rule "commute_or_2" (formula "24") (term "0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0,1,0")) + (rule "add_literals" (formula "24") (term "1,0,1,0")) + (rule "times_zero_1" (formula "24") (term "0,1,0")) + (rule "leq_literals" (formula "24") (term "1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "shift_paren_or" (formula "23") (term "0,0")) + (rule "commute_or" (formula "23") (term "0,0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0")) + (rule "qeq_literals" (formula "23") (term "1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "shift_paren_or" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "commute_or" (formula "22") (term "0,0,0")) + (rule "inEqSimp_or_tautInEq1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "qeq_literals" (formula "22") (term "1,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "allLeft" (formula "14") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0")) + (rule "mul_literals" (formula "14") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "14") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "leq_literals" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "26")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteGeq" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "14")) + (rule "hideAuxiliaryEq" (formula "14")) + (rule "pullOutSelect" (formula "14") (term "0") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "14")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "26")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "14") (term "0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_commuteLeq" (formula "15")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "14") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0,0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0")) + (rule "qeq_literals" (formula "14") (term "0,0,0")) + (builtin "One Step Simplification" (formula "14")) + (rule "applyEqReverse" (formula "15") (term "1") (ifseqformula "14")) + (rule "hideAuxiliaryEq" (formula "14")) + (rule "allLeft" (formula "19") (inst "t=begin<>")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "1,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "1") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "27")) (ifInst "" (formula "6"))) + (rule "replaceKnownSelect_taclet111000020011_27" (formula "19") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_28" (formula "19") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_15")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "27")) (ifInst "" (formula "6"))) + (rule "replaceKnownSelect_taclet111000020011_25" (formula "19") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_26" (formula "19") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "allLeft" (formula "19") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet111000020011_29" (formula "19") (term "1,1")) + (rule "replaceKnownSelect_taclet111000020011_31" (formula "19") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_30" (formula "19") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_32" (formula "19") (term "0,1")) + (rule "replace_known_left" (formula "19") (term "1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "allLeft" (formula "15") (inst "t=begin<>")) + (rule "replaceKnownSelect_taclet111000020011_27" (formula "15") (term "1,1")) + (rule "replaceKnownSelect_taclet111000020011_25" (formula "15") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_28" (formula "15") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_26" (formula "15") (term "0,1")) + (rule "replace_known_left" (formula "15") (term "1") (ifseqformula "14")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "allLeft" (formula "19") (inst "t=add(Z(1(#)), + begin<>)")) + (rule "replaceKnownSelect_taclet111000020011_31" (formula "19") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_32" (formula "19") (term "1,1")) + (rule "polySimp_addAssoc" (formula "19") (term "0,2,0,1")) + (rule "add_literals" (formula "19") (term "0,0,2,0,1")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0")) + (rule "mul_literals" (formula "19") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "19") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0")) + (rule "leq_literals" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_16")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "27")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0")) + (rule "replace_known_left" (formula "19") (term "0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "19")) + (rule "applyEqReverse" (formula "20") (term "1") (ifseqformula "19")) + (rule "hideAuxiliaryEq" (formula "19")) + (rule "inEqSimp_commuteLeq" (formula "19")) + (rule "allLeft" (formula "20") (inst "t=add(Z(neglit(2(#))), end)")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1")) + (rule "add_literals" (formula "20") (term "0,0,2,0,1")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,1,0")) + (rule "add_literals" (formula "20") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0,1,0")) + (rule "add_literals" (formula "20") (term "0,1,0")) + (rule "leq_literals" (formula "20") (term "1,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "1") (inst "selectSK=arr_17")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "replaceKnownSelect_taclet111000020011_23" (formula "20") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet111000020011_24" (formula "20") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "20") (term "0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "0,1,0,0")) + (rule "qeq_literals" (formula "20") (term "1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "20") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_18")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "28")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,1,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,0,0")) + (rule "qeq_literals" (formula "20") (term "1,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "20") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "2")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_literals" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "29") (inst "sk=f_0")) + (rule "allRight" (formula "29") (inst "sk=o_0")) + (rule "orRight" (formula "29")) + (rule "orRight" (formula "29")) + (rule "eqSymm" (formula "31")) + (rule "eqSymm" (formula "29") (term "0,0,0,1")) + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1")) + (rule "polySimp_rightDist" (formula "19") (term "1")) + (rule "mul_literals" (formula "19") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1")) + (rule "polySimp_elimOne" (formula "19") (term "1,1")) + (rule "applyEq" (formula "20") (term "0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "applyEqRigid" (formula "21") (term "1,0,0") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEq" (formula "22") (term "1,0,0,1") (ifseqformula "19")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "14")) + (rule "polySimp_mulLiterals" (formula "14") (term "0")) + (rule "polySimp_elimOne" (formula "14") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "replace_known_left" (formula "3") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "0") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_subsumption1" (formula "3") (term "0,0") (ifseqformula "13")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "22") (term "2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "28") (term "3,0,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_antiSymm" (formula "17") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,0")) + (rule "times_zero_1" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "23") (term "0,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "22") (term "0,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "applyEq" (formula "22") (term "0,2,1,0") (ifseqformula "16")) + (rule "applyEq" (formula "27") (term "0,2,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "22") (term "0,2,2,0") (ifseqformula "16")) + (rule "applyEq" (formula "21") (term "1,1,0") (ifseqformula "16")) + (rule "polySimp_pullOutFactor2" (formula "21") (term "1,0")) + (rule "add_literals" (formula "21") (term "1,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_pullOutFactor1" (formula "17") (term "0")) + (rule "add_literals" (formula "17") (term "1,0")) + (rule "times_zero_1" (formula "17") (term "0")) + (rule "leq_literals" (formula "17")) + (rule "true_left" (formula "17")) + (rule "applyEq" (formula "15") (term "1,1") (ifseqformula "16")) + (rule "applyEq" (formula "18") (term "1,1") (ifseqformula "16")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "18") (term "1") (ifseqformula "11")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,1")) + (rule "add_literals" (formula "18") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "18") (term "1,0,0,1")) + (rule "add_zero_right" (formula "18") (term "0,0,1")) + (rule "leq_literals" (formula "18") (term "0,1")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "11")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "11") (term "0,0")) + (rule "mul_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "25")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26"))) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "15") (term "0")) + (rule "wellFormedAnon" (formula "15") (term "1,0")) + (rule "replace_known_left" (formula "15") (term "0,1") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "24")) (ifInst "" (formula "5")) (ifInst "" (formula "11"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "1,1,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0")) + (rule "lenOfSeqDef" (formula "22") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,2,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "22") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0")) + (rule "wellFormedAnon" (formula "20") (term "1,0")) + (rule "wellFormedAnon" (formula "20") (term "0,1,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "commute_and" (formula "2") (term "0,0")) + (rule "cut_direct" (formula "27") (term "0,0")) + (branch "CUT: o_0 = null TRUE" + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "replace_known_left" (formula "2") (term "0,0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "2") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "0,0,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "27") (term "1,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "26") (term "0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "26") (term "0")) + (rule "replace_known_right" (formula "26") (term "0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "26")) + (rule "false_right" (formula "26")) + (rule "applyEqRigid" (formula "2") (term "0,1,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "25")) + (rule "applyEq" (formula "25") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "25")) + (rule "closeTrue" (formula "25")) + ) + (branch "CUT: o_0 = null FALSE" + (builtin "One Step Simplification" (formula "28")) + (rule "notRight" (formula "28")) + (rule "replace_known_right" (formula "2") (term "0,0,1,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "1"))) + (rule "cut_direct" (formula "27") (term "0")) + (branch "CUT: o_0 = values TRUE" + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "29") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "1")) + (rule "applyEq" (formula "28") (term "1,0") (ifseqformula "1")) + (rule "nnf_ex2all" (formula "27")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "commute_or" (formula "22") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= k_0) & !f_0 = java.lang.Object:: TRUE" + (rule "andLeft" (formula "3")) + (rule "notLeft" (formula "4")) + (rule "exLeft" (formula "3") (inst "sk=iv_0")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "applyEqReverse" (formula "7") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "eqSymm" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "applyEqRigid" (formula "29") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "applyEqRigid" (formula "6") (term "2,2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "6") (term "2,0") (ifseqformula "21") (ifseqformula "29")) + (rule "applyEq" (formula "6") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqRigid" (formula "1") (term "1,0,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "30") (term "2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "30") (term "0") (ifseqformula "9") (ifseqformula "29")) + (rule "eqSymm" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "commute_or" (formula "1") (term "0,0")) + (rule "commute_or_2" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (ifseqformula "5")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= k_0) & !f_0 = java.lang.Object:: FALSE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "all_pull_out3" (formula "16") (term "0")) + (rule "shift_paren_or" (formula "16") (term "0,0")) + (rule "shift_paren_or" (formula "16") (term "0,0,0")) + (rule "all_pull_out3" (formula "21") (term "0")) + (rule "shift_paren_or" (formula "21") (term "0,0")) + (rule "shift_paren_or" (formula "21") (term "0,0,0")) + (rule "allLeft" (formula "15") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "15") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100020011_4" (formula "15") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,1,0")) + (rule "add_zero_right" (formula "15") (term "0,1,0")) + (rule "qeq_literals" (formula "15") (term "1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "3") (term "1,0") (ifseqformula "15")) + (rule "applyEq" (formula "25") (term "0,0,0") (ifseqformula "15")) + (rule "allLeft" (formula "1") (inst "t=k_0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "15")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "allLeft" (formula "1") (inst "t=begin<>")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_commuteGeq" (formula "1") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,1,0")) + (rule "add_literals" (formula "1") (term "0,1,0")) + (rule "qeq_literals" (formula "1") (term "1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_zero_right" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "3") (term "0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: o_0 = values FALSE" + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "replace_known_right" (formula "3") (term "1,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "28"))) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "17")) + (rule "polySimp_homoEq" (formula "20") (term "1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1")) + (rule "mul_literals" (formula "20") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "27")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "precOfInt" (formula "29")) + (rule "inEqSimp_ltToLeq" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "14") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,1")) + (rule "add_zero_right" (formula "29") (term "0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1")) + (rule "add_zero_left" (formula "29") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "29") (term "0,1")) + (rule "add_literals" (formula "29") (term "1,0,1")) + (rule "times_zero_1" (formula "29") (term "0,1")) + (rule "leq_literals" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_leqRight" (formula "29")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "applyEq" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "1")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_zero_right" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "polySimp_homoEq" (formula "18")) + (rule "polySimp_homoEq" (formula "21") (term "1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,1")) + (rule "inEqSimp_geqRight" (formula "27")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1")) + (rule "add_zero_right" (formula "3") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0")) + (rule "applyEqRigid" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEqRigid" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "applyEqRigid" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "1")) + (rule "polySimp_elimOne" (formula "2") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "4")) + (rule "applyEqReverse" (formula "23") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_antiSymm" (formula "18") (ifseqformula "2")) + (rule "applyEq" (formula "24") (term "0,2,2,0") (ifseqformula "18")) + (rule "applyEq" (formula "24") (term "0,0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "qeq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "2") (term "0,1") (ifseqformula "17")) + (rule "applyEq" (formula "24") (term "0,2,0") (ifseqformula "17")) + (rule "applyEq" (formula "23") (term "0,2,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "22") (term "1,1,0") (ifseqformula "17")) + (rule "polySimp_pullOutFactor2" (formula "22") (term "1,0")) + (rule "add_literals" (formula "22") (term "1,1,0")) + (rule "times_zero_1" (formula "22") (term "1,0")) + (rule "applyEq" (formula "19") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_pullOutFactor1" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,0")) + (rule "times_zero_1" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "true_left" (formula "18")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "17")) + (rule "applyEq" (formula "16") (term "1,1") (ifseqformula "17")) + (rule "applyEq" (formula "19") (term "1,1") (ifseqformula "17")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_contradEq7" (formula "19") (term "1") (ifseqformula "12")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,1")) + (rule "add_literals" (formula "19") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "19") (term "1,0,0,1")) + (rule "add_zero_right" (formula "19") (term "0,0,1")) + (rule "leq_literals" (formula "19") (term "0,1")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "12")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_contradInEq1" (formula "2") (term "1") (ifseqformula "7")) + (rule "qeq_literals" (formula "2") (term "0,1")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "2")) + (rule "times_zero_1" (formula "8") (term "0,0")) + (rule "add_zero_left" (formula "8") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "polySimp_addComm0" (formula "9") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "0")) + (rule "polySimp_elimOne" (formula "9") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "9") (ifseqformula "1")) + (rule "andLeft" (formula "9")) + (rule "inEqSimp_homoInEq1" (formula "9")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0")) + (rule "add_literals" (formula "9") (term "1,1,0")) + (rule "times_zero_1" (formula "9") (term "1,0")) + (rule "add_zero_right" (formula "9") (term "0")) + (rule "leq_literals" (formula "9")) + (rule "closeFalse" (formula "9")) + ) + ) + (branch "if x_3 false" + (builtin "One Step Simplification" (formula "29")) + (builtin "One Step Simplification" (formula "1")) + (rule "compound_less_than_comparison_2" (formula "29") (term "1") (inst "#v1=x_1") (inst "#v0=x")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_5")) + (rule "assignment" (formula "29") (term "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "variableDeclarationAssign" (formula "29") (term "1")) + (rule "variableDeclaration" (formula "29") (term "1") (newnames "x_6")) + (rule "assignment_array2" (formula "29")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "29")) + (rule "pullOutSelect" (formula "29") (term "0,1,0") (inst "selectSK=arr_3")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29")) (ifInst "" (formula "6"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_4")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "30")) (ifInst "" (formula "7"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "less_than_comparison_simple" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "methodCallEmpty" (formula "31") (term "1")) + (rule "emptyModality" (formula "31") (term "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "impRight" (formula "31")) + (rule "notLeft" (formula "1")) + (rule "assignment_to_primitive_array_component" (formula "32")) + (branch "Normal Execution (_values != null)" + (builtin "One Step Simplification" (formula "32")) + (rule "blockEmpty" (formula "32") (term "1")) + (rule "preincrement" (formula "32") (term "1")) + (rule "compound_int_cast_expression" (formula "32") (term "1") (inst "#v=x")) + (rule "variableDeclarationAssign" (formula "32") (term "1")) + (rule "variableDeclaration" (formula "32") (term "1") (newnames "x_7")) + (rule "remove_parentheses_right" (formula "32") (term "1")) + (rule "assignmentAdditionInt" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "translateJavaAddInt" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,0")) + (rule "widening_identity_cast_5" (formula "32") (term "1")) + (rule "assignment" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "tryEmpty" (formula "32") (term "1")) + (rule "methodCallEmpty" (formula "32") (term "1")) + (rule "emptyModality" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "andRight" (formula "32")) + (branch "Case 1" + (rule "eqTermCut" (formula "25") (term "0") (inst "s=seqDef{int j;}(begin, + end, + any::select(store(anon(anon(heap, + arrayRange(values, + begin, + add(Z(neglit(1(#))), + end)), + anon_heap_LOOP<>), + arrayRange(values, + begin, + k_0), + anon_heap_LOOP_0<>), + values, + arr(hole_0), + arr_0<>), + values, + arr(j)))") (userinteraction)) + (branch "Assume de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)], values, arr(j))), begin * -1 + hole_0, arr_0<>) = seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] [values[hole_0] := arr_0<>], values, arr(j)))" + (rule "applyEqReverse" (formula "33") (term "0") (ifseqformula "25") (userinteraction)) + (rule "narrowSelectArrayType" (formula "33") (term "2,1") (ifseqformula "6") (ifseqformula "32") (userinteraction)) + (rule "close" (formula "33") (ifseqformula "26") (userinteraction)) + ) + (branch "Assume de.wiesler.Sorter::seqUpd(seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)], values, arr(j))), begin * -1 + hole_0, arr_0<>) != seqDef{int j;}(begin, end, any::select(heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] [values[hole_0] := arr_0<>], values, arr(j)))" + (rule "notLeft" (formula "25") (userinteraction)) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0") (userinteraction)) + (rule "equalityToSeqGetAndSeqLenRight" (formula "29") (inst "iv=iv") (userinteraction)) + (rule "andRight" (formula "29") (userinteraction)) + (branch "Case 1" + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,0")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "0")) + (rule "eqSymm" (formula "29")) + (rule "polySimp_elimSub" (formula "29") (term "1,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "narrowSelectArrayType" (formula "33") (term "2,1") (ifseqformula "8") (ifseqformula "32")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "lenOfSeqConcat" (formula "31") (term "0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "times_zero_2" (formula "31") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,1,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "replace_known_left" (formula "31") (term "0,0,1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "orRight" (formula "31")) + (rule "polySimp_homoEq" (formula "32")) + (rule "times_zero_2" (formula "32") (term "1,0")) + (rule "add_zero_right" (formula "32") (term "0")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "polySimp_sepPosMonomial" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "polySimp_rightDist" (formula "32") (term "0,1")) + (rule "mul_literals" (formula "32") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "31")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "add_zero_left" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "31") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0")) + (rule "add_literals" (formula "31") (term "0,0")) + (rule "qeq_literals" (formula "31") (term "0")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "30") (term "3,0,2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_subsumption0" (formula "16") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0")) + (rule "add_zero_right" (formula "16") (term "0,0")) + (rule "qeq_literals" (formula "16") (term "0")) + (builtin "One Step Simplification" (formula "16")) + (rule "true_left" (formula "16")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "1")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + (branch "Case 2" + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,1,1,0,0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,0,1,0")) + (rule "allRight" (formula "29") (inst "sk=iv_0")) + (rule "impRight" (formula "29")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "31")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "2") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "lenOfSeqDef" (formula "2") (term "2,1,0,1")) + (rule "polySimp_elimSub" (formula "2") (term "1,2,1,0,1")) + (rule "polySimp_addComm0" (formula "2") (term "1,2,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "getOfSeqDef" (formula "31") (term "0")) + (rule "castDel" (formula "31") (term "2,0")) + (rule "castDel" (formula "31") (term "1,0")) + (rule "eqSymm" (formula "31")) + (rule "replace_known_left" (formula "31") (term "0,0,1") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "narrowSelectArrayType" (formula "35") (term "2,1") (ifseqformula "10") (ifseqformula "34")) + (rule "lenOfSeqConcat" (formula "4") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "lenOfSeqDef" (formula "33") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "33") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "33") (term "1,2,1,0,0")) + (rule "lenOfSeqSub" (formula "4") (term "1,1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,1,0,1")) + (rule "mul_literals" (formula "4") (term "0,0,1,1,0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,0,1,1,0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,0,1,1,0,1")) + (rule "polySimp_addComm0" (formula "4") (term "1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,1")) + (rule "polySimp_mulAssoc" (formula "33") (term "0,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "33") (term "0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "0,1,0,0,0,1")) + (rule "lenOfSeqConcat" (formula "4") (term "1,1")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_addComm0" (formula "4") (term "1,1")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "1")) + (rule "polySimp_addComm0" (formula "4") (term "0,1")) + (rule "inEqSimp_commuteLeq" (formula "3")) + (rule "inEqSimp_ltToLeq" (formula "33") (term "0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,2,1,0,0")) + (rule "lenOfSeqSub" (formula "4") (term "1,1")) + (rule "polySimp_elimSub" (formula "4") (term "1,1,1")) + (rule "mul_literals" (formula "4") (term "1,1,1,1")) + (rule "add_zero_right" (formula "4") (term "1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,1,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1,1,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1")) + (rule "add_zero_right" (formula "4") (term "0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,1,0,1")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,1,0,1,1")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1,0,1,1")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,1,0,1,1")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "0,1,0,0")) + (rule "mul_literals" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEq" (formula "5") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "replace_known_left" (formula "4") (term "0,0,1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "applyEq" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "5") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,1")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,1")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,1")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,1")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0,1")) + (rule "mul_literals" (formula "33") (term "0,0,1,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "33") (term "0,2,1,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,2,1,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,2,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_sepNegMonomial0" (formula "4") (term "0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,2,1,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,2,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,2,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,2,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,2,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,2,1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,2,1,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,2,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,2,1,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,2,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,2,1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,2,1,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,2,1,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,1,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "4") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "polySimp_addComm1" (formula "4") (term "1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,1,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "4") (term "0,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "32") (term "3,0,2,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "30") (term "0,1,0,0,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "30") (term "3,0,1,1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_commuteGeq" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "17") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "4") (term "0,0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "1,1,0,0")) + (rule "getOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,1,2,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,2,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0")) + (rule "times_zero_2" (formula "27") (term "1,1,1,1,0,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,0")) + (rule "times_zero_2" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1,2,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,2,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,1,2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,1,2,1,0")) + (rule "times_zero_2" (formula "27") (term "1,1,0,1,1,2,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,1,2,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,2,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0")) + (rule "inEqSimp_exactShadow3" (formula "16") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "16") (term "0,0")) + (rule "mul_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1")) + (rule "polySimp_rightDist" (formula "16") (term "1")) + (rule "mul_literals" (formula "16") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1")) + (rule "polySimp_elimOne" (formula "16") (term "1,1")) + (rule "getOfSeqSub" (formula "27") (term "2,0")) + (rule "castDel" (formula "27") (term "2,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0")) + (rule "castDel" (formula "27") (term "1,1,2,0")) + (rule "castDel" (formula "27") (term "2,1,2,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0")) + (rule "times_zero_2" (formula "27") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "7")) + (rule "polySimp_mulComm0" (formula "21") (term "0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "26") (term "0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_subsumption0" (formula "5") (term "0,0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "getOfSeqSub" (formula "26") (term "1,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,1,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,1,0")) + (rule "castDel" (formula "26") (term "1,1,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,1,1,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,1,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,1,1,1,0")) + (rule "pullOutSelect" (formula "26") (term "1,1,2,0") (inst "selectSK=arr_5")) + (rule "applyEq" (formula "27") (term "1,1,1,1,0") (ifseqformula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "narrowSelectArrayType" (formula "1") (term "1,0") (ifseqformula "19") (ifseqformula "28")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "1") (term "0,0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "1")) + (rule "pullOutSelect" (formula "27") (term "1,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "replaceKnownSelect_taclet110000000120011_10" (formula "1") (term "2,0")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "30")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "narrowSelectArrayType" (formula "2") (term "2,0") (ifseqformula "10") (ifseqformula "30")) + (rule "narrowSelectArrayType" (formula "2") (term "1,0") (ifseqformula "16") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "2") (term "0,0,0,0")) + (rule "replace_known_left" (formula "2") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,0,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "26") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "26")) + (rule "translateJavaAddInt" (formula "26") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "26") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0")) + (rule "wellFormedAnon" (formula "20") (term "1,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "10")) (ifInst "" (formula "16")) (ifInst "" (formula "21"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "28") (term "0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "28")) + (rule "eqSymm" (formula "28") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "28") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0")) + (rule "replace_known_left" (formula "28") (term "1,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "30") (term "0")) + (rule "translateJavaAddInt" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "30") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,2,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "30") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "nnf_notAnd" (formula "19") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "19") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "26") (term "0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "ifthenelse_split" (formula "7") (term "0")) + (branch "hole_0 <= -2 + end TRUE" + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "8") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "8") (term "0,1,0")) + (rule "mul_literals" (formula "8") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "8") (term "0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "polySimp_rightDist" (formula "8") (term "0,1")) + (rule "mul_literals" (formula "8") (term "0,0,1")) + (rule "replace_known_left" (formula "33") (term "0,1,2,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "8")) (ifInst "" (formula "8")) (ifInst "" (formula "8"))) + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "7")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "28") (term "0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "1")) + (rule "polySimp_addComm1" (formula "28") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_zero_right" (formula "28") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm1" (formula "28") (term "1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1,0,1")) + (rule "add_zero_right" (formula "28") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "28") (term "1") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_zero_right" (formula "28") (term "0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "cut_direct" (formula "25") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,1,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "21") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "32") (term "2,1,0,0,2,0") (ifseqformula "25")) + (rule "applyEq" (formula "20") (term "1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,2,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "26") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "29") (term "0,2,1") (ifseqformula "25")) + (rule "applyEqRigid" (formula "28") (term "2,1,0,2,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "3") (term "0,2,1") (ifseqformula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,2,0,0,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "31") (term "0,2,3,0,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "9") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "1") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "2") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "applyEqRigid" (formula "26") (term "0,2,1,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "29") (term "0,2,1,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "18") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "0,2,0,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "0,2,2,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,1,0,0")) + (rule "inEqSimp_subsumption0" (formula "9") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "9") (term "0,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0")) + (rule "add_literals" (formula "9") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "nnf_notAnd" (formula "18") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "18") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "24") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "24") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1,0,0,0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "andLeft" (formula "24")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "getOfSeqConcat" (formula "25") (term "1,1,0")) + (rule "eqSymm" (formula "25") (term "1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "25") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addComm0" (formula "25") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "25") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "25") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "25") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "25") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "25") (term "0,1,0,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "25")) + (rule "getOfSeqConcat" (formula "25") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "25") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "25") (term "2,1,0,1,0")) + (rule "castDel" (formula "25") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "25") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "25") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "times_zero_2" (formula "25") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "25") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "25") (term "0,1,0,2,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "25") (term "0,1,1,0,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "25") (term "2,0,1,0")) + (rule "castDel" (formula "25") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "25") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "25") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "25") (term "1,2,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "25") (term "1,1,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "25") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "25") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "25") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "commute_or" (formula "18") (term "0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "24") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "24")) + (rule "eqSymm" (formula "24") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "24") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "24") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "25"))) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1,1,1,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0,0")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "25") (term "0")) + (rule "polySimp_homoEq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "lenOfSeqSub" (formula "25") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "25") (term "0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "25") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,0,1,0")) + (rule "times_zero_2" (formula "25") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "25") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "25") (term "0,0,1,1") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "1")) + (rule "polySimp_addComm1" (formula "25") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addComm1" (formula "25") (term "1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "1,0,1")) + (rule "add_zero_right" (formula "25") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "25") (term "1") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1")) + (rule "polySimp_rightDist" (formula "25") (term "1")) + (rule "mul_literals" (formula "25") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1")) + (rule "ifthenelse_split" (formula "28") (term "2,1,0")) + (branch "iv_0 = begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "28") (term "1,2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "28") (term "1,1,1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "27") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0")) + (rule "qeq_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "orRight" (formula "27")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "2")) + (rule "applyEq" (formula "28") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "applyEq" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "iv_0 <= begin * -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "29") (term "1,1,1,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "29") (term "1,2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_strengthen0" (formula "1") (ifseqformula "27")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "replace_known_left" (formula "28") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "1"))) + (rule "closeTrue" (formula "28")) + ) + (branch "iv_0 <= begin * -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "29") (term "1,1,1,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "29") (term "1,2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "replace_known_right" (formula "28") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "28")) + (rule "orRight" (formula "28")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "28")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq7" (formula "28") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0")) + (rule "add_literals" (formula "28") (term "0,0")) + (rule "leq_literals" (formula "28") (term "0")) + (builtin "One Step Simplification" (formula "28")) + (rule "false_right" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_strengthen1" (formula "24") (ifseqformula "30")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "24")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "24") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "24") (term "0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "27") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "getOfSeqConcat" (formula "29") (term "1,1,0")) + (rule "eqSymm" (formula "29") (term "1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,0,0,0,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,0,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "2,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,2,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "29") (term "2,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "29") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,2,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "times_zero_2" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "ifthenelse_split" (formula "32") (term "2,1,0")) + (branch "iv_0 = begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "2") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "6") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "6") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "6") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0")) + (rule "applyEq" (formula "2") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,1,0,0")) + (rule "add_literals" (formula "2") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "2") (term "0,1,0,0")) + (rule "add_zero_left" (formula "2") (term "1,0,0")) + (rule "applyEq" (formula "32") (term "0,0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,2,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,2,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,2,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,2,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,2,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,2,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,2,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,2,0")) + (rule "add_zero_right" (formula "32") (term "0,0,2,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,2,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,2,0")) + (rule "add_literals" (formula "32") (term "0,0,2,0")) + (rule "leq_literals" (formula "32") (term "0,2,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,2,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,1,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,2,1,0")) + (rule "add_literals" (formula "2") (term "1,0,0,2,1,0")) + (rule "times_zero_1" (formula "2") (term "0,0,2,1,0")) + (rule "add_zero_left" (formula "2") (term "0,2,1,0")) + (rule "applyEq" (formula "2") (term "1,0,2,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "0,2,2,0")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0,0,2,2,0")) + (rule "add_literals" (formula "2") (term "1,0,0,2,2,0")) + (rule "times_zero_1" (formula "2") (term "0,0,2,2,0")) + (rule "add_zero_left" (formula "2") (term "0,2,2,0")) + (rule "applyEq" (formula "32") (term "0,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,1,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0")) + (rule "qeq_literals" (formula "32") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "applyEq" (formula "32") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "orRight" (formula "32")) + (rule "notRight" (formula "32")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = begin * -1 + hole_0 FALSE" + (rule "replace_known_right" (formula "1") (term "0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "k_0 >= begin + iv_0 TRUE" + (rule "applyEqReverse" (formula "33") (term "1,2,0") (ifseqformula "2")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "2")) + (rule "applyEqReverse" (formula "33") (term "1,1,1,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "28"))) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,1,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "27") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "28") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "1")) + (rule "polySimp_addComm1" (formula "28") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm1" (formula "28") (term "1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1,0,1")) + (rule "add_zero_right" (formula "28") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "28") (term "1") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1")) + (rule "polySimp_rightDist" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1")) + (rule "mul_literals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "commute_or_2" (formula "28") (term "0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqConcat" (formula "26") (term "1,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "26") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1,0,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqSub" (formula "26") (term "2,0,1,0")) + (rule "castDel" (formula "26") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,2,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "26") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "26") (term "2,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "26") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "26") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1,0,2,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "26") (term "1,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "commute_or" (formula "19") (term "0,0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000000120011_6" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_literals" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "27") (term "1,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "35") (term "3,0,2,0") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "1,2,1,0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "2") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "1,1,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "2,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "27") (term "1,1,1,0") (ifseqformula "18")) + (rule "ifthenelse_split" (formula "33") (term "1,0")) + (branch "iv_0 <= -1 + begin * -1 + hole_0 TRUE" + (rule "replace_known_left" (formula "34") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "orRight" (formula "34")) + (rule "orRight" (formula "35")) + (rule "inEqSimp_leqRight" (formula "34")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_geqRight" (formula "35")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "polySimp_rightDist" (formula "2") (term "0,1")) + (rule "mul_literals" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "inEqSimp_contradEq7" (formula "35") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "35") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "35") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "35") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "35") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "35") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "35") (term "0,0")) + (rule "polySimp_addComm1" (formula "35") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_literals" (formula "35") (term "0,0")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "iv_0 <= -1 + begin * -1 + hole_0 FALSE" + (rule "inEqSimp_leqRight" (formula "33")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "33")) + (rule "polySimp_addAssoc" (formula "1") (term "1")) + (rule "replace_known_left" (formula "34") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "34")) + (rule "orRight" (formula "34")) + (rule "notRight" (formula "34")) + (rule "inEqSimp_contradEq7" (formula "34") (ifseqformula "2")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_zero_right" (formula "34") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0")) + (rule "add_literals" (formula "34") (term "0,0")) + (rule "leq_literals" (formula "34") (term "0")) + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "2") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_literals" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) + (branch "k_0 >= begin + iv_0 FALSE" + (rule "applyEqReverse" (formula "33") (term "1,2,0") (ifseqformula "1")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "1")) + (rule "applyEqReverse" (formula "33") (term "1,1,1,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "30")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_rightDist" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1")) + (rule "mul_literals" (formula "1") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_literals" (formula "17") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "mul_literals" (formula "17") (term "1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "17")) + (rule "leq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "polySimp_rightDist" (formula "23") (term "0,1")) + (rule "mul_literals" (formula "23") (term "0,0,1")) + (rule "inEqSimp_contradEq7" (formula "32") (ifseqformula "23")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_literals" (formula "32") (term "0,0")) + (rule "leq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "false_right" (formula "32")) + (rule "inEqSimp_contradInEq1" (formula "32") (term "0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "orRight" (formula "32")) + (rule "inEqSimp_geqRight" (formula "32")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "polySimp_mulComm0" (formula "1") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "24")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + ) + (branch "hole_0 <= -2 + end FALSE" + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "mul_literals" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "polySimp_mulComm0" (formula "8") (term "0,1")) + (rule "replace_known_left" (formula "33") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "25")) + (rule "applyEq" (formula "31") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,0,0")) + (rule "applyEq" (formula "36") (term "0,2,0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "32") (term "1,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0")) + (rule "add_zero_left" (formula "32") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "applyEq" (formula "26") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0")) + (rule "add_literals" (formula "26") (term "1,0")) + (rule "times_zero_1" (formula "26") (term "0")) + (rule "qeq_literals" (formula "26")) + (rule "true_left" (formula "26")) + (rule "applyEq" (formula "6") (term "1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "6") (term "0,2,0")) + (rule "add_literals" (formula "6") (term "0,0,2,0")) + (rule "applyEq" (formula "33") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "33") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0,0")) + (rule "applyEq" (formula "32") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "10") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm1" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "0,0,0")) + (rule "applyEq" (formula "26") (term "1") (ifseqformula "1")) + (rule "applyEq" (formula "9") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "9") (term "1")) + (rule "polySimp_addComm0" (formula "9") (term "0,1")) + (rule "replace_known_left" (formula "33") (term "0,1,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "9"))) + (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "5") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "applyEq" (formula "2") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,0")) + (rule "times_zero_1" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "true_left" (formula "2")) + (rule "applyEq" (formula "31") (term "1,1,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,0,1,0")) + (rule "applyEq" (formula "29") (term "1,2,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "29") (term "2,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,0,0")) + (rule "applyEq" (formula "25") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "27") (term "1,1,0,1,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,0,1,1,0")) + (rule "applyEq" (formula "2") (term "1,1,0,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "2") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,1,0,0")) + (rule "applyEq" (formula "23") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "23") (term "1")) + (rule "add_literals" (formula "23") (term "0,1")) + (rule "applyEq" (formula "31") (term "1,1,0,2,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0,2,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,0,2,0")) + (rule "applyEq" (formula "27") (term "1,1,0,0,1,0") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "8")) + (rule "polySimp_mulLiterals" (formula "8") (term "0")) + (rule "polySimp_elimOne" (formula "8") (term "0")) + (rule "inEqSimp_antiSymm" (formula "23") (ifseqformula "8")) + (rule "replace_known_left" (formula "25") (term "1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEq" (formula "19") (term "3,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "24") (term "2,1,0,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "31") (term "2,1,0,0,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1") (ifseqformula "23")) + (rule "applyEq" (formula "29") (term "0,2,1,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "31") (term "0,2,3,0,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "0,2,2,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "1,1,1,0,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "24") (term "1,1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "25") (term "0,2,1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "28") (term "0,2,1") (ifseqformula "23")) + (rule "applyEq" (formula "27") (term "0,2,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "18") (term "1,1,0,0")) + (rule "add_literals" (formula "18") (term "0,1,1,0,0")) + (rule "applyEq" (formula "2") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "20") (term "1,1,1,0,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "20") (term "1,1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0,0")) + (rule "applyEq" (formula "24") (term "2,1,0,1,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0")) + (rule "mul_literals" (formula "17") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "2,1,0,1,2,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "8")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,0")) + (rule "times_zero_1" (formula "8") (term "0")) + (rule "qeq_literals" (formula "8")) + (rule "true_left" (formula "8")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "0,2,2,0,1,1,0") (ifseqformula "22")) + (rule "inEqSimp_sepNegMonomial0" (formula "16")) + (rule "polySimp_mulLiterals" (formula "16") (term "0")) + (rule "polySimp_elimOne" (formula "16") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "0,1,0,0")) + (rule "mul_literals" (formula "3") (term "0,0,1,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "3")) + (rule "applyEqReverse" (formula "27") (term "1,1,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "6")) + (rule "mul_literals" (formula "5") (term "0,0")) + (rule "add_zero_left" (formula "5") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "5") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "true_left" (formula "5")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "23") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "23")) + (rule "eqSymm" (formula "23") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "23") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_pullOutFactor1" (formula "23") (term "0,1,0")) + (rule "add_literals" (formula "23") (term "1,0,1,0")) + (rule "times_zero_1" (formula "23") (term "0,1,0")) + (rule "leq_literals" (formula "23") (term "1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,0,1")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "25"))) + (rule "true_left" (formula "24")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0,0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "24") (term "0")) + (rule "polySimp_homoEq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "lenOfSeqConcat" (formula "24") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "24") (term "0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "1")) + (rule "add_literals" (formula "24") (term "1,1")) + (rule "times_zero_1" (formula "24") (term "1")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "polySimp_mulComm0" (formula "24") (term "0,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_homoEq" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "1,0,1,1")) + (rule "add_zero_right" (formula "24") (term "0,1,1")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "1,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,0,0")) + (rule "inEqSimp_contradEq7" (formula "24") (term "1,1") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,1")) + (rule "add_literals" (formula "24") (term "0,0,1,1")) + (rule "leq_literals" (formula "24") (term "0,1,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1")) + (rule "add_literals" (formula "24") (term "0,0,1")) + (rule "qeq_literals" (formula "24") (term "0,1")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "commute_or" (formula "15") (term "0,0")) + (rule "inEqSimp_or_antiSymm0" (formula "15") (term "0,0")) + (rule "polySimp_homoEq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "1,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,1,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "15") (term "0,0,0,0")) + (rule "add_literals" (formula "15") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "15") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "22") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "22")) + (rule "eqSymm" (formula "22") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "22") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "22") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "22") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "22") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "22") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "22") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "22") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,1,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,1,1,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "22") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,1,1,1,0,0,0,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "22") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "22")) + (rule "polySimp_addAssoc" (formula "22") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0")) + (rule "leq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "andLeft" (formula "22")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "24") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "24") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,1,0,1,1,0")) + (rule "add_zero_left" (formula "24") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "24") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,2,1,0,1,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "24") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "getOfSeqConcat" (formula "24") (term "1,1,0")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,0,0,1,0")) + (rule "getOfSeqSingleton" (formula "24") (term "2,0,1,0")) + (rule "castDel" (formula "24") (term "2,2,0,1,0")) + (rule "castDel" (formula "24") (term "1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "24") (term "0,0,0,0,2,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,0,0,0,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,0,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,0,0,0,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,1,0,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "24") (term "0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0,0,0,0,2,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,0,0,2,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "24") (term "0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0,1,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,0,1,0,0,0,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24") (term "0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,1,0,2,0,1,0")) + (rule "replace_known_left" (formula "24") (term "0,1,0,2,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,1,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,1,1,0")) + (rule "eqSymm" (formula "24") (term "1,0")) + (rule "getOfSeqSub" (formula "24") (term "1,0,1,0")) + (rule "castDel" (formula "24") (term "2,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqDef" (formula "24") (term "1,1,0,1,0")) + (rule "castDel" (formula "24") (term "2,1,1,0,1,0")) + (rule "castDel" (formula "24") (term "1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,1,0,1,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "ifthenelse_split" (formula "28") (term "2,0")) + (branch "iv_0 = -1 + begin * -1 + end TRUE" + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "29")) + (rule "orRight" (formula "29")) + (rule "notRight" (formula "29")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "iv_0 = -1 + begin * -1 + end FALSE" + (rule "replace_known_right" (formula "2") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_strengthen0" (formula "5") (ifseqformula "27")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "polySimp_addAssoc" (formula "5") (term "0,1")) + (rule "add_literals" (formula "5") (term "0,0,1")) + (rule "replace_known_left" (formula "28") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "5"))) + (rule "closeTrue" (formula "28")) + ) + ) + ) + ) + ) + (branch + (rule "andRight" (formula "32")) + (branch + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "polySimp_rightDist" (formula "1") (term "0,0")) + (rule "mul_literals" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "13") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "13") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "1,1,0,0")) + (rule "times_zero_1" (formula "13") (term "1,0,0")) + (rule "add_zero_right" (formula "13") (term "0,0")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "true_left" (formula "13")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_contradInEq0" (formula "16") (ifseqformula "1")) + (rule "andLeft" (formula "16")) + (rule "inEqSimp_homoInEq1" (formula "16")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0")) + (rule "polySimp_addComm1" (formula "16") (term "0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0")) + (rule "add_literals" (formula "16") (term "1,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0")) + (rule "add_zero_right" (formula "16") (term "0")) + (rule "leq_literals" (formula "16")) + (rule "closeFalse" (formula "16")) + ) + (branch + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "1")) + (rule "polySimp_elimOne" (formula "3") (term "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "3")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "32") (inst "sk=x_0")) + (rule "impRight" (formula "32")) + (rule "andLeft" (formula "1")) + (rule "eqSymm" (formula "34")) + (rule "polySimp_homoEq" (formula "22")) + (rule "polySimp_homoEq" (formula "25") (term "1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "32")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_sepPosMonomial" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1")) + (rule "polySimp_rightDist" (formula "24") (term "1")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1")) + (rule "mul_literals" (formula "24") (term "0,1")) + (rule "polySimp_elimOne" (formula "24") (term "1,1")) + (rule "applyEqRigid" (formula "5") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "5") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "5") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "5") (term "0,2,2,0") (ifseqformula "24")) + (rule "applyEq" (formula "7") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0")) + (rule "mul_literals" (formula "7") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm0" (formula "7") (term "0,0")) + (rule "applyEqRigid" (formula "6") (term "1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "6") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "26") (term "1,0,0") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0")) + (rule "applyEq" (formula "27") (term "1,0,0,1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1")) + (rule "add_zero_left" (formula "27") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "9")) + (rule "polySimp_mulComm0" (formula "9") (term "1")) + (rule "polySimp_rightDist" (formula "9") (term "1")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1")) + (rule "mul_literals" (formula "9") (term "0,1")) + (rule "polySimp_elimOne" (formula "9") (term "1,1")) + (rule "replace_known_left" (formula "8") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "5") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "5") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "7")) + (rule "polySimp_mulLiterals" (formula "7") (term "0")) + (rule "polySimp_elimOne" (formula "7") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "31")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_sepNegMonomial0" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "replace_known_left" (formula "31") (term "0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "31")) + (rule "applyEqReverse" (formula "32") (term "0") (ifseqformula "31")) + (rule "hideAuxiliaryEq" (formula "31")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption1" (formula "14") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (term "0,0") (ifseqformula "18")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEqReverse" (formula "27") (term "2,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "31") (term "3,0,0") (ifseqformula "8")) + (rule "applyEqReverse" (formula "29") (term "1") (ifseqformula "8")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "8")) + (rule "hideAuxiliaryEq" (formula "8")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_commuteGeq" (formula "2")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "29")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "22") (ifseqformula "8")) + (rule "polySimp_mulComm0" (formula "22") (term "0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption0" (formula "6") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_subsumption0" (formula "8") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0,0")) + (rule "mul_literals" (formula "8") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0,0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,1,0,0")) + (rule "leq_literals" (formula "1") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "28")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "7"))) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0")) + (rule "inEqSimp_exactShadow3" (formula "8") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "8") (term "0,0")) + (rule "mul_literals" (formula "8") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm1" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "23") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "inEqSimp_subsumption0" (formula "22") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_exactShadow3" (formula "17") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "17") (term "0,0")) + (rule "mul_literals" (formula "17") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1")) + (rule "polySimp_rightDist" (formula "17") (term "1")) + (rule "mul_literals" (formula "17") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1")) + (rule "polySimp_elimOne" (formula "17") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "22")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "20"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "26") (term "0")) + (rule "wellFormedAnon" (formula "26") (term "1,0")) + (rule "wellFormedAnon" (formula "26") (term "0,1,0")) + (rule "replace_known_right" (formula "26") (term "0,0,0") (ifseqformula "30")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "21")) (ifInst "" (formula "27"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "27") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "27")) + (rule "translateJavaAddInt" (formula "27") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "18") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "28") (term "0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "28")) + (rule "eqSymm" (formula "28") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "28") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "28") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,1,0,0,0,1") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "28") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "andLeft" (formula "28")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "30") (term "0")) + (rule "translateJavaAddInt" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "30") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,2,1,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "30") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "20"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "27") (term "0")) + (rule "wellFormedAnon" (formula "27") (term "1,0")) + (rule "wellFormedAnon" (formula "27") (term "0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "34")) (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "22"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "30") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "30") (term "0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0,0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_imp2or" (formula "28") (term "0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "x_0 >= begin TRUE" + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "28") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "31") (term "0,0")) + (rule "translateJavaAddInt" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "31") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "lenOfSeqConcat" (formula "31") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "31") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "1")) + (rule "polySimp_addComm1" (formula "31") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1")) + (rule "add_zero_right" (formula "31") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_homoEq" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1,0,1")) + (rule "add_zero_right" (formula "31") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "31") (term "1") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1")) + (rule "add_zero_right" (formula "31") (term "0,0,1")) + (rule "qeq_literals" (formula "31") (term "0,1")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1")) + (rule "polySimp_rightDist" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1")) + (rule "mul_literals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "1,1")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "19") (term "0")) + (rule "wellFormedAnon" (formula "19") (term "1,0")) + (rule "replace_known_right" (formula "19") (term "0,0,0") (ifseqformula "34")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "20"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "28") (term "0")) + (rule "wellFormedAnon" (formula "28") (term "1,0")) + (rule "wellFormedAnon" (formula "28") (term "0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "35")) (ifInst "" (formula "8")) (ifInst "" (formula "14")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "29") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "29")) + (rule "translateJavaAddInt" (formula "29") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "29") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "cut_direct" (formula "27") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "applyEq" (formula "30") (term "1,1,0,0,1,0") (ifseqformula "27")) + (rule "applyEq" (formula "31") (term "1,1,1,0,0") (ifseqformula "27")) + (rule "applyEq" (formula "29") (term "2,1,0,1,1,0") (ifseqformula "27")) + (rule "applyEq" (formula "21") (term "1,1,0,0,1,0") (ifseqformula "27")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "27")) + (rule "applyEq" (formula "31") (term "2,1,0,0,1,0") (ifseqformula "27")) + (rule "applyEqRigid" (formula "30") (term "2,1,0,0,1,0,1,0") (ifseqformula "27")) + (rule "applyEqRigid" (formula "19") (term "3,0") (ifseqformula "27")) + (rule "applyEq" (formula "17") (term "0") (ifseqformula "27")) + (rule "applyEq" (formula "27") (term "3,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "25") (term "0") (ifseqformula "26")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,0")) + (rule "times_zero_1" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "true_left" (formula "25")) + (rule "applyEqRigid" (formula "4") (term "0") (ifseqformula "25")) + (rule "applyEq" (formula "28") (term "2,1,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "20") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "26") (term "2,1,0,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "29") (term "2,1,0,1,2,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "30") (term "2,1,0,2,0,0,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "29") (term "0,2,1,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "31") (term "0,2,1") (ifseqformula "24")) + (rule "applyEq" (formula "2") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "25") (term "2,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "19") (term "1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,1,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "30") (term "0,2,0,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "30") (term "2,1,0,2,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "26") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "16") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "3") (term "0,2,1") (ifseqformula "24")) + (rule "applyEq" (formula "29") (term "0,2,2,0,1,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "29") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "24")) + (rule "inEqSimp_contradEq7" (formula "2") (term "0,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "leq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "22") (term "0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "18")) (ifInst "" (formula "23"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0,0,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "2,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,2,1,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "commute_or" (formula "16") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "27"))) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1,1,1,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "26") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "1")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "27") (term "1") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1")) + (rule "polySimp_rightDist" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1")) + (rule "mul_literals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "14")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0,0,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,2,1,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,1,0,1,0,1,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "2,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0,1,0")) + (rule "commute_or_2" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "all_pull_out3" (formula "22") (term "0")) + (rule "all_pull_out3" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "allLeft" (formula "15") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_2" (formula "15") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet100000120011_9" (formula "15") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,1,0")) + (rule "add_literals" (formula "15") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "15") (term "1,0,1,0")) + (rule "add_literals" (formula "15") (term "0,1,0")) + (rule "qeq_literals" (formula "15") (term "1,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_contradInEq0" (formula "15") (term "0") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "15") (term "0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "leq_literals" (formula "15") (term "0,0")) + (builtin "One Step Simplification" (formula "15")) + (rule "applyEq" (formula "25") (term "1,0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "27") (term "1,0,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "26") (term "2,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "2") (term "1") (ifseqformula "15")) + (rule "applyEq" (formula "28") (term "1,2,1,0,1,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "25") (term "2,0,1,1,0") (ifseqformula "15")) + (rule "applyEq" (formula "28") (term "1,1,1,0,0") (ifseqformula "15")) + (rule "applyEq" (formula "27") (term "2,0,1,1,0") (ifseqformula "15")) + (rule "allLeft" (formula "16") (inst "t=x_0")) + (rule "replaceKnownSelect_taclet100000120011_12" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0100000120011_13" (formula "16") (term "0,1")) + (rule "replace_known_right" (formula "16") (term "1") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "3") (ifseqformula "16")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_literals" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_strengthen1" (formula "26") (ifseqformula "35")) + (rule "inEqSimp_contradEq7" (formula "35") (ifseqformula "26")) + (rule "polySimp_mulComm0" (formula "35") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "35") (term "0,0")) + (rule "add_literals" (formula "35") (term "1,1,0,0")) + (rule "times_zero_1" (formula "35") (term "1,0,0")) + (rule "add_zero_right" (formula "35") (term "0,0")) + (rule "leq_literals" (formula "35") (term "0")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "inEqSimp_exactShadow3" (formula "26") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_subsumption0" (formula "25") (ifseqformula "26")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "25")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "17") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0")) + (rule "add_zero_right" (formula "17") (term "0,0")) + (rule "qeq_literals" (formula "17") (term "0")) + (builtin "One Step Simplification" (formula "17")) + (rule "true_left" (formula "17")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "32") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "32")) + (rule "eqSymm" (formula "32") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "32") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "32") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "32") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "32") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "32") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "32") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,0,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,1,1,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "32") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,1,1,1,0,0,0,1") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "32") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "32") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "andLeft" (formula "32")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "34") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "34") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "34") (term "0,2,1,0,1,1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "34") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "getOfSeqConcat" (formula "34") (term "1,1,0")) + (rule "eqSymm" (formula "34") (term "1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "34") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_addComm0" (formula "34") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "34") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "34")) + (rule "getOfSeqSub" (formula "34") (term "2,0,1,0")) + (rule "castDel" (formula "34") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "34") (term "1,2,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "34") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "34") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "34") (term "2,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "34") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "34") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,2,1,0,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "34") (term "1,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "34") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "34") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "commute_or" (formula "21") (term "0,0,1,0")) + (rule "commute_or" (formula "30") (term "0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "32") (term "0")) + (rule "ifthenelse_split" (formula "2") (term "0")) + (branch "x_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "eqSymm" (formula "38")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "1") (term "0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "38") (term "0,2,1") (ifseqformula "2")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "6") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_contradInEq0" (formula "25") (ifseqformula "5")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0")) + (rule "add_literals" (formula "25") (term "1,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0")) + (rule "add_literals" (formula "25") (term "0")) + (rule "leq_literals" (formula "25")) + (rule "closeFalse" (formula "25")) + ) + (branch "x_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "39") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "eqSymm" (formula "38")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "32") (term "0,0")) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "32") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "32") (term "0")) + (rule "polySimp_homoEq" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "lenOfSeqSub" (formula "32") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "32") (term "0,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "32") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "32")) + (rule "polySimp_mulLiterals" (formula "32") (term "0")) + (rule "polySimp_elimOne" (formula "32") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "32") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1")) + (rule "polySimp_rightDist" (formula "32") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "32") (term "1")) + (rule "polySimp_addComm1" (formula "32") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,1")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1")) + (rule "add_zero_right" (formula "32") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addComm1" (formula "32") (term "1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_homoEq" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "1,0,1")) + (rule "add_zero_right" (formula "32") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "32") (term "1")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1")) + (rule "polySimp_elimOne" (formula "32") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "32") (term "1") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,1")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,1")) + (rule "qeq_literals" (formula "32") (term "0,1")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_homoInEq1" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1")) + (rule "mul_literals" (formula "32") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "32") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0")) + (rule "add_zero_right" (formula "32") (term "0,0")) + (rule "qeq_literals" (formula "32") (term "0")) + (builtin "One Step Simplification" (formula "32")) + (rule "true_left" (formula "32")) + (rule "allLeft" (formula "17") (inst "t=x_0")) + (rule "replaceKnownSelect_taclet100000120011_12" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0100000120011_13" (formula "17") (term "0,1")) + (rule "replace_known_right" (formula "17") (term "1") (ifseqformula "38")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "17")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_zero_right" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + ) + ) + (branch "x_0 >= begin FALSE" + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_geqRight" (formula "33")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "1")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "18") (ifseqformula "5")) + (rule "andLeft" (formula "18")) + (rule "inEqSimp_homoInEq1" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0")) + (rule "mul_literals" (formula "18") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0")) + (rule "add_literals" (formula "18") (term "1,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0")) + (rule "add_zero_right" (formula "18") (term "0")) + (rule "leq_literals" (formula "18")) + (rule "closeFalse" (formula "18")) + ) + ) + ) + (branch "Case 2" + (rule "orLeft" (formula "23") (userinteraction)) + (branch " de.wiesler.Functions.isSortedSlice(values, begin, 1 + k_0) @heap[anon(arrayRange(values, begin, -1 + end), anon_heap_LOOP<>)] [anon(arrayRange(values, begin, k_0), anon_heap_LOOP_0<>)] = TRUE" + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "28") (term "3,0,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "10") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "10") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "true_left" (formula "10")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "19") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "19") (term "0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19")) + (rule "polySimp_mulLiterals" (formula "19") (term "0")) + (rule "polySimp_elimOne" (formula "19") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "3") (term "0,0") (ifseqformula "19")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0,0,0")) + (rule "qeq_literals" (formula "3") (term "0,0,0")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "20") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "20")) + (rule "translateJavaSubInt" (formula "20") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,2,1,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "1,1,0,0")) + (rule "add_literals" (formula "20") (term "0,1,1,0,0")) + (rule "add_zero_left" (formula "20") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "20") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "15") (term "0")) + (rule "wellFormedAnon" (formula "15") (term "1,0")) + (rule "replace_known_right" (formula "15") (term "0,0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "23") (term "0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "23")) + (rule "eqSymm" (formula "23") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "23") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "23") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1,0,0,0,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_addAssoc" (formula "23") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,1,1,1") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "23") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "23") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0")) + (rule "replace_known_left" (formula "23") (term "0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "23")) + (rule "andLeft" (formula "23")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "28") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "28")) + (rule "translateJavaSubInt" (formula "28") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "28") (term "0,2,1,1,0")) + (rule "allRight" (formula "28") (inst "sk=i_1_0")) + (rule "impRight" (formula "28")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "pullOutSelect" (formula "2") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "2")) + (builtin "One Step Simplification" (formula "2")) + (rule "castDel" (formula "2") (term "1,0")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "polySimp_sepPosMonomial" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "33")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "2") (term "2,0") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "2")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "33")) (ifInst "" (formula "12"))) + (rule "elementOfArrayRangeConcrete" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_commuteLeq" (formula "2") (term "1,0,0")) + (rule "replace_known_left" (formula "2") (term "1,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2") (term "0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "2") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "2") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "2") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "2") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "2") (term "0,0,0,0")) + (rule "qeq_literals" (formula "2") (term "0,0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "9")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0")) + (rule "nnf_notAnd" (formula "21") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "30") (term "0,0")) + (rule "translateJavaAddInt" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "30") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "30") (term "0")) + (rule "polySimp_homoEq" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "30") (term "0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "30") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "30") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,0,1,0")) + (rule "mul_literals" (formula "30") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "30") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,0,1,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,1,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,1,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "30")) + (rule "polySimp_mulLiterals" (formula "30") (term "0")) + (rule "polySimp_elimOne" (formula "30") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "30") (term "0,0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "1")) + (rule "polySimp_addComm1" (formula "30") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "30") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addComm1" (formula "30") (term "1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,1,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,1,0")) + (rule "add_literals" (formula "30") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_homoEq" (formula "30") (term "1")) + (rule "mul_literals" (formula "30") (term "1,0,1")) + (rule "add_zero_right" (formula "30") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "30") (term "1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "30")) + (rule "replace_known_left" (formula "30") (term "1") (ifseqformula "25")) + (rule "polySimp_addAssoc" (formula "30") (term "1,0")) + (rule "add_literals" (formula "30") (term "0,1,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "true_left" (formula "30")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "29") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "29")) + (rule "eqSymm" (formula "29") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "29") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "29") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "29") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,0,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0")) + (rule "replace_known_left" (formula "29") (term "1,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,1,1,1,0,0,0,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "29") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "29") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0")) + (rule "qeq_literals" (formula "29") (term "0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "andLeft" (formula "29")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "31") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "31") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "31") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,2,1,0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "getOfSeqConcat" (formula "31") (term "1,1,0")) + (rule "eqSymm" (formula "31") (term "1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "31") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "31") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "31") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "31") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "31") (term "0,0,0,0,0,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "31") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "31") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "31") (term "2,1,0,1,0")) + (rule "castDel" (formula "31") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "31") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "31") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "31") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "31") (term "0,1,0,2,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "31") (term "1,1,0,1,0")) + (rule "castDel" (formula "31") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "31") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "31") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "31") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "31") (term "2,0,1,0")) + (rule "castDel" (formula "31") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "31") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "31") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "31") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "31") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "31") (term "1,2,0,1,0")) + (rule "castDel" (formula "31") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "31") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "31") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "31") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,0,0,2,0,1,0")) + (rule "nnf_imp2or" (formula "29") (term "0")) + (rule "commute_or" (formula "21") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = hole_0 TRUE" + (rule "applyEqReverse" (formula "4") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "inEqSimp_homoInEq0" (formula "3")) + (rule "polySimp_addComm1" (formula "3") (term "0")) + (rule "applyEq" (formula "2") (term "0,0,0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "2") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0,0,0")) + (rule "add_literals" (formula "2") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "2") (term "1,0,0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "equal_literals" (formula "2") (term "0,0")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "0,1,0,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0,2,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_subsumption1" (formula "25") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0")) + (rule "qeq_literals" (formula "25") (term "0")) + (builtin "One Step Simplification" (formula "25")) + (rule "true_left" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "3") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "1,1,0,0")) + (rule "times_zero_1" (formula "3") (term "1,0,0")) + (rule "add_zero_right" (formula "3") (term "0,0")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_7" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_zero_right" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "27") (term "2,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "26") (term "1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "2") (term "1,1") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "1,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "1,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "26") (term "2,0,1,1,0") (ifseqformula "18")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "24") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_1" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "24") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "33")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption1" (formula "24") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "allLeft" (formula "25") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "replace_known_left" (formula "25") (term "1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "34")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "allLeft" (formula "27") (inst "t=begin")) + (rule "replaceKnownSelect_taclet0010000120011_22" (formula "27") (term "1,1")) + (rule "replaceKnownSelect_taclet0010000120011_20" (formula "27") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010000120011_23" (formula "27") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet0010000120011_21" (formula "27") (term "0,1")) + (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "allLeft" (formula "21") (inst "t=begin")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_zero_right" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0")) + (rule "pullOutSelect" (formula "21") (term "1,1") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "35")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_13")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "35")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1")) + (rule "allLeft" (formula "27") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_1" (formula "27") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "27") (term "1,1")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,1,0")) + (rule "leq_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_14")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "36")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27")) + (rule "inEqSimp_exactShadow3" (formula "27") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "27") (ifseqformula "35")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0")) + (rule "add_literals" (formula "27") (term "1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0")) + (rule "add_zero_right" (formula "27") (term "0")) + (rule "leq_literals" (formula "27")) + (rule "closeFalse" (formula "27")) + ) + (branch "i_1_0 = hole_0 FALSE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "33") (term "0") (ifseqformula "1")) + (rule "polySimp_homoEq" (formula "33")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0")) + (rule "polySimp_addComm0" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0")) + (rule "add_literals" (formula "33") (term "1,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0")) + (rule "add_literals" (formula "33") (term "0")) + (rule "equal_literals" (formula "33")) + (rule "false_right" (formula "33")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "applyEqRigid" (formula "5") (term "1,1") (ifseqformula "1")) + (rule "polySimp_addAssoc" (formula "5") (term "1")) + (rule "add_literals" (formula "5") (term "0,1")) + (rule "add_zero_left" (formula "5") (term "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "2")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "allLeft" (formula "18") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_7" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_literals" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "2,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "31") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "5") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "1,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "2,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "1,1,1,0") (ifseqformula "18")) + (rule "nnf_notAnd" (formula "28") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "allLeft" (formula "26") (inst "t=begin")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "37")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0") (ifseqformula "17")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "37")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1,0,0")) + (rule "replace_known_left" (formula "26") (term "1,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26")) + (rule "allLeft" (formula "27") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "27") (term "0,2,0,1")) + (rule "add_literals" (formula "27") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "27") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_1" (formula "27") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_5" (formula "27") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1,0")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_contradInEq1" (formula "27") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "38")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "27")) + (rule "allLeft" (formula "28") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet010000120011_12" (formula "28") (term "1,1")) + (rule "replaceKnownSelect_taclet010000120011_14" (formula "28") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_13" (formula "28") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet010000120011_15" (formula "28") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1,0")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0,0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "28") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "28")) + (rule "andLeft" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "leq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + ) + (branch "-1 + k_0 = i_0" + (rule "polySimp_homoEq" (formula "23")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm0" (formula "23") (term "0,0")) + (rule "inEqSimp_ltRight" (formula "29")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEqRigid" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "applyEq" (formula "6") (term "0,2,2,0") (ifseqformula "25")) + (rule "applyEq" (formula "6") (term "0,2,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "29") (term "0,1,0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "29") (term "1,0,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,1,0,0")) + (rule "add_literals" (formula "29") (term "1,0,1,0,0")) + (rule "times_zero_1" (formula "29") (term "0,1,0,0")) + (rule "leq_literals" (formula "29") (term "1,0,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEq" (formula "26") (term "2,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "26") (term "3,0") (ifseqformula "25")) + (rule "applyEq" (formula "32") (term "1,3,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "17") (term "0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "18") (term "1,1,0,0") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0")) + (rule "leq_literals" (formula "4") (term "0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "2") (term "0,1,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "applyEq" (formula "22") (term "0,1,0") (ifseqformula "23")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0")) + (rule "add_literals" (formula "22") (term "1,0")) + (rule "times_zero_1" (formula "22") (term "0")) + (rule "leq_literals" (formula "22")) + (rule "true_left" (formula "22")) + (rule "applyEq" (formula "24") (term "2,1,0,2,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "18") (term "3,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "16") (term "0") (ifseqformula "22")) + (rule "applyEq" (formula "29") (term "2,1,0,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "6") (term "1,0") (ifseqformula "22")) + (rule "applyEq" (formula "25") (term "0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "26") (term "2,0") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "0")) + (rule "polySimp_elimOne" (formula "4") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "replace_known_left" (formula "3") (term "0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "inEqSimp_sepNegMonomial0" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "24") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "0") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "replace_known_left" (formula "4") (term "0,0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "26") (term "3,0,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "24") (term "1") (ifseqformula "4")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "4")) + (rule "applyEqReverse" (formula "23") (term "2,0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "18") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0")) + (rule "allRight" (formula "22") (inst "sk=i_1_0")) + (rule "impRight" (formula "22")) + (rule "andLeft" (formula "1")) + (rule "polySimp_elimSub" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1")) + (rule "polySimp_addComm1" (formula "2") (term "1")) + (rule "add_literals" (formula "2") (term "0,1")) + (rule "add_zero_left" (formula "2") (term "1")) + (rule "inEqSimp_leqRight" (formula "24")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "2")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "pullOutSelect" (formula "1") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "1") (term "0,0")) + (rule "inEqSimp_contradEq3" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "25")) (ifInst "" (formula "10"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "0,0,0")) + (rule "replace_known_left" (formula "1") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_subsumption0" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "pullOutSelect" (formula "1") (term "0") (inst "selectSK=arr_6")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "polySimp_homoEq" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "2")) + (rule "polySimp_addComm1" (formula "2") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "3") (term "0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "26")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "0,1,0,0")) + (rule "replace_known_left" (formula "1") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "1") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0,0,0")) + (rule "qeq_literals" (formula "1") (term "0,0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "23") (term "0")) + (rule "translateJavaAddInt" (formula "23") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "23") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "23") (term "0,2,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "23") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,2,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "23") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "ifthenelse_split" (formula "1") (term "0")) + (branch "i_1_0 = -1 + hole_0 TRUE" + (rule "applyEqReverse" (formula "3") (term "1,1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "4")) + (rule "polySimp_pullOutFactor1" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,0")) + (rule "times_zero_1" (formula "4") (term "0")) + (rule "qeq_literals" (formula "4")) + (rule "true_left" (formula "4")) + (rule "applyEq" (formula "2") (term "0,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "4") (ifseqformula "2")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch "i_1_0 = -1 + hole_0 FALSE" + (rule "applyEqReverse" (formula "2") (term "1,1") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_homoInEq1" (formula "1")) + (rule "polySimp_addComm1" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_strengthen0" (formula "3") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "3") (term "1")) + (rule "add_literals" (formula "3") (term "0,1")) + (rule "inEqSimp_contradEq3" (formula "24") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_literals" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "false_right" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "2") (term "0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm0" (formula "2") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "7") (term "1,0,0")) + (rule "mul_literals" (formula "7") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0,0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0,0")) + (rule "add_literals" (formula "7") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_literals" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_exactShadow3" (formula "2") (ifseqformula "7")) + (rule "polySimp_rightDist" (formula "2") (term "0,0")) + (rule "mul_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_literals" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "allLeft" (formula "16") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_2" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_6" (formula "16") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_9" (formula "16") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "16") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,1,0")) + (rule "add_literals" (formula "16") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "16") (term "1,0,1,0")) + (rule "add_literals" (formula "16") (term "0,1,0")) + (rule "qeq_literals" (formula "16") (term "1,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_contradInEq0" (formula "16") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "16") (term "0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "16") (term "0,0,0")) + (rule "add_literals" (formula "16") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "16") (term "1,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0")) + (rule "leq_literals" (formula "16") (term "0,0")) + (builtin "One Step Simplification" (formula "16")) + (rule "applyEq" (formula "24") (term "1") (ifseqformula "16")) + (rule "applyEq" (formula "23") (term "0,1,0,0") (ifseqformula "16")) + (rule "applyEq" (formula "6") (term "1") (ifseqformula "16")) + (rule "allLeft" (formula "18") (inst "t=i_1_0")) + (rule "inEqSimp_contradInEq1" (formula "18") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "18") (term "1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "18")) + (builtin "One Step Simplification" (formula "18") (ifInst "" (formula "27")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "replace_known_left" (formula "18") (term "0,0,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "18")) + (rule "pullOutSelect" (formula "19") (term "0") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "19")) + (builtin "One Step Simplification" (formula "19") (ifInst "" (formula "28")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "19") (term "0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "19") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "19") (term "0,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,0,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "19") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "19")) + (rule "allLeft" (formula "25") (inst "t=i_1_0")) + (rule "replaceKnownSelect_taclet110000120011_11" (formula "25") (term "1,1")) + (rule "replaceKnownSelect_taclet110000120011_14" (formula "25") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_12" (formula "25") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet110000120011_15" (formula "25") (term "0,1")) + (rule "inEqSimp_contradInEq1" (formula "25") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "leq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq0" (formula "25") (term "1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,1")) + (rule "leq_literals" (formula "25") (term "0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "25")) + (rule "andLeft" (formula "5")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "1,1,0")) + (rule "times_zero_1" (formula "5") (term "1,0")) + (rule "add_literals" (formula "5") (term "0")) + (rule "leq_literals" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Case 2" + (rule "allRight" (formula "32") (inst "sk=f_0")) + (rule "allRight" (formula "32") (inst "sk=o_0")) + (rule "orRight" (formula "32")) + (rule "orRight" (formula "32")) + (rule "eqSymm" (formula "34")) + (rule "eqSymm" (formula "32") (term "0,0,0,1")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "polySimp_sepPosMonomial" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1")) + (rule "polySimp_rightDist" (formula "22") (term "1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1")) + (rule "mul_literals" (formula "22") (term "0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1")) + (rule "applyEq" (formula "3") (term "0,2,2,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "4") (term "1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "3") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0")) + (rule "polySimp_addComm1" (formula "23") (term "0,0")) + (rule "add_literals" (formula "23") (term "0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "5") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0")) + (rule "mul_literals" (formula "5") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0")) + (rule "applyEq" (formula "3") (term "0,0,0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq0" (formula "3") (term "0,0")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0,0,0")) + (rule "mul_literals" (formula "3") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0,0,0")) + (rule "add_literals" (formula "3") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "3") (term "0,0,0,0")) + (rule "applyEq" (formula "24") (term "1,0,0") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "25") (term "1,0,0,1") (ifseqformula "22")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,1")) + (rule "add_zero_left" (formula "25") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "25") (term "1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "0")) + (rule "polySimp_elimOne" (formula "1") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "replace_known_left" (formula "6") (term "1,0,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "6")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "17")) + (rule "polySimp_mulLiterals" (formula "17") (term "0")) + (rule "polySimp_elimOne" (formula "17") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "23")) + (rule "polySimp_mulLiterals" (formula "23") (term "0")) + (rule "polySimp_elimOne" (formula "23") (term "0")) + (rule "replace_known_left" (formula "28") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "28")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "3") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "29") (term "0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "applyEqReverse" (formula "30") (term "0") (ifseqformula "29")) + (rule "hideAuxiliaryEq" (formula "29")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "1") (term "0") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption1" (formula "11") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "11") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "true_left" (formula "11")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "1") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "31") (term "3,0,0") (ifseqformula "5")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "5")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption1" (formula "20") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "pullOutSelect" (formula "28") (term "0") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfStore" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "castDel" (formula "1") (term "1,0")) + (rule "eqSymm" (formula "29")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "eqSymm" (formula "1") (term "1,0,0")) + (rule "inEqSimp_exactShadow3" (formula "15") (ifseqformula "6")) + (rule "polySimp_rightDist" (formula "15") (term "0,0")) + (rule "mul_literals" (formula "15") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0")) + (rule "polySimp_addComm1" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1")) + (rule "polySimp_rightDist" (formula "15") (term "1")) + (rule "mul_literals" (formula "15") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1")) + (rule "polySimp_elimOne" (formula "15") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_1")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0,0")) + (rule "pullOutSelect" (formula "1") (term "2,0") (inst "selectSK=f_0_2")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEqReverse" (formula "2") (term "2,0") (ifseqformula "1")) + (rule "hideAuxiliaryEq" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0")) + (rule "polySimp_addComm1" (formula "5") (term "0,0")) + (rule "add_literals" (formula "5") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_right" (formula "17") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "18")) + (rule "translateJavaAddInt" (formula "18") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "18") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "18") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "24") (term "0")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_left" (formula "24") (term "1,1,0") (ifseqformula "19")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "28")) (ifInst "" (formula "7")) (ifInst "" (formula "13")) (ifInst "" (formula "25"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "25")) + (rule "translateJavaSubInt" (formula "25") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,0,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,0,0,0")) + (rule "nnf_imp2or" (formula "23") (term "0,0")) + (rule "nnf_imp2or" (formula "18") (term "0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "replace_known_left" (formula "26") (term "1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "commute_and" (formula "2") (term "0,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "17") (term "0")) + (rule "wellFormedAnon" (formula "17") (term "1,0")) + (rule "replace_known_left" (formula "17") (term "1,1,0") (ifseqformula "13")) + (builtin "One Step Simplification" (formula "17") (ifInst "" (formula "31")) (ifInst "" (formula "7")) (ifInst "" (formula "18"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "18") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "18") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "cut_direct" (formula "33") (term "0,0")) + (branch "CUT: o_0 = null TRUE" + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "replace_known_left" (formula "2") (term "0,0,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEq" (formula "2") (term "1,2,0") (ifseqformula "1")) + (rule "applyEqRigid" (formula "2") (term "0,0,0,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "0,0,0,0")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "3") (term "2,0") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEq" (formula "2") (term "0,1,0,0") (ifseqformula "1")) + (rule "eqSymm" (formula "2") (term "1,0,0")) + (rule "replace_known_right" (formula "2") (term "1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "2")) + (rule "applyEqReverse" (formula "33") (term "1") (ifseqformula "2")) + (rule "hideAuxiliaryEq" (formula "2")) + (rule "applyEqRigid" (formula "32") (term "1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "closeTrue" (formula "32")) + ) + (branch "CUT: o_0 = null FALSE" + (builtin "One Step Simplification" (formula "34")) + (rule "notRight" (formula "34")) + (rule "replace_known_left" (formula "2") (term "0,0,1,1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "34"))) + (rule "cut_direct" (formula "33") (term "0")) + (branch "CUT: o_0 = values TRUE" + (builtin "One Step Simplification" (formula "34")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "4")) + (rule "replace_known_left" (formula "3") (term "0,0,0,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEq" (formula "3") (term "1,1,0") (ifseqformula "1")) + (rule "applyEq" (formula "3") (term "1,2,0") (ifseqformula "1")) + (rule "applyEq" (formula "35") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "35") (term "1,0") (ifseqformula "1")) + (rule "applyEq" (formula "2") (term "1,0") (ifseqformula "1")) + (rule "nnf_ex2all" (formula "33")) + (rule "nnf_imp2or" (formula "20") (term "0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "1") (term "0")) + (rule "inEqSimp_notLeq" (formula "1") (term "1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "1") (term "0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "20") (term "0,1,0")) + (rule "nnf_imp2or" (formula "27") (term "0,1,0")) + (rule "nnf_notAnd" (formula "1") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "1") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "30") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "30") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0")) + (rule "mul_literals" (formula "30") (term "1,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1,0,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addAssoc" (formula "30") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "30") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "30") (ifInst "" (formula "31"))) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "replace_known_left" (formula "30") (term "0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "31") (term "0,0")) + (rule "translateJavaAddInt" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "31") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "31") (term "0")) + (rule "polySimp_homoEq" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0")) + (rule "lenOfSeqConcat" (formula "31") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "polySimp_rightDist" (formula "31") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "31") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "31") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "31") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "31") (term "1,0,1,0")) + (rule "mul_literals" (formula "31") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "31") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "31") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "31")) + (rule "polySimp_mulLiterals" (formula "31") (term "0")) + (rule "polySimp_elimOne" (formula "31") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "31") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_mulComm0" (formula "31") (term "1,1")) + (rule "polySimp_rightDist" (formula "31") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "31") (term "1")) + (rule "polySimp_addComm1" (formula "31") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,1")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1")) + (rule "add_zero_right" (formula "31") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "31") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_addComm1" (formula "31") (term "1,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,1,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "31") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "polySimp_homoEq" (formula "31") (term "1")) + (rule "mul_literals" (formula "31") (term "1,0,1")) + (rule "add_zero_right" (formula "31") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "31") (term "1")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1")) + (rule "polySimp_elimOne" (formula "31") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "31") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "31") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "31") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "31") (term "0,0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "31") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "inEqSimp_homoInEq1" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "31") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "31") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "31") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "31") (term "0,0")) + (rule "polySimp_addAssoc" (formula "31") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "31") (term "0,0,0,0")) + (rule "add_literals" (formula "31") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "31") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "31") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "31") (term "0")) + (rule "polySimp_mulComm0" (formula "31") (term "1,0")) + (rule "polySimp_rightDist" (formula "31") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "31") (term "1,1,0")) + (rule "mul_literals" (formula "31") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "31") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "31")) + (rule "replace_known_left" (formula "31") (term "1") (ifseqformula "24")) + (rule "polySimp_addAssoc" (formula "31") (term "1,0")) + (rule "add_literals" (formula "31") (term "0,1,0")) + (builtin "One Step Simplification" (formula "31")) + (rule "true_left" (formula "31")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "19") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "19")) + (rule "translateJavaAddInt" (formula "19") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "19") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "19") (term "1,1,0,0")) + (rule "mul_literals" (formula "19") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "19") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "19") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0,1,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "19") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "19") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "19") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "19") (term "1,1,1,0,0")) + (rule "cut_direct" (formula "26") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "applyEqRigid" (formula "31") (term "2,1,0,2,0,0,0,0") (ifseqformula "26")) + (rule "applyEqRigid" (formula "17") (term "0") (ifseqformula "26")) + (rule "applyEq" (formula "26") (term "2,1,0,1,1,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "5") (term "0,2,1") (ifseqformula "25")) + (rule "applyEq" (formula "27") (term "2,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "30") (term "2,1,0,2,0,1,0") (ifseqformula "25")) + (rule "applyEq" (formula "26") (term "1,1,0,0,1,0") (ifseqformula "25")) + (rule "applyEqRigid" (formula "31") (term "0,2,1") (ifseqformula "25")) + (rule "applyEq" (formula "26") (term "1,1,0,0") (ifseqformula "25")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_pullOutFactor1" (formula "24") (term "0")) + (rule "add_literals" (formula "24") (term "1,0")) + (rule "times_zero_1" (formula "24") (term "0")) + (rule "leq_literals" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEq" (formula "25") (term "2,1,0,0,1,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "0,2,1,0,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,1,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "18") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "27") (term "2,1,0,1,2,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "28") (term "2,1,0,1,2,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "26") (term "1,1,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "29") (term "0,2,0,1,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "3") (term "1,1,0,0,0,0") (ifseqformula "24")) + (rule "applyEqRigid" (formula "19") (term "1,1,0,0,1,0") (ifseqformula "24")) + (rule "applyEq" (formula "8") (term "0") (ifseqformula "24")) + (rule "applyEq" (formula "27") (term "0,2,1,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "18") (term "1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "19") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "26") (term "0,2,2,0,1,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "27") (term "0,2,2,0,1,1,0") (ifseqformula "23")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "26") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,1,0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0")) + (rule "replace_known_left" (formula "25") (term "0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,2,1,0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqConcat" (formula "26") (term "1,1,0")) + (rule "eqSymm" (formula "26") (term "1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "26") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1,0,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "getOfSeqConcat" (formula "26") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "26") (term "2,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "26") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "26") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "26") (term "0,1,0,2,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "26") (term "1,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "26") (term "2,0,1,0")) + (rule "castDel" (formula "26") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "26") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "26") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "26") (term "1,2,0,1,0")) + (rule "castDel" (formula "26") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "26") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,0,0,2,0,1,0")) + (rule "commute_or" (formula "23") (term "0,0,1,0")) + (rule "commute_or" (formula "17") (term "0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "27"))) + (rule "true_left" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "26") (term "0,0")) + (rule "translateJavaAddInt" (formula "26") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "26") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "26") (term "0")) + (rule "polySimp_homoEq" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0")) + (rule "lenOfSeqConcat" (formula "26") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "26") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,0,1,0")) + (rule "mul_literals" (formula "26") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "26") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "26")) + (rule "polySimp_mulLiterals" (formula "26") (term "0")) + (rule "polySimp_elimOne" (formula "26") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "26") (term "0,0,1,1") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "26") (term "1")) + (rule "polySimp_addComm1" (formula "26") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addComm1" (formula "26") (term "1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_homoEq" (formula "26") (term "1")) + (rule "mul_literals" (formula "26") (term "1,0,1")) + (rule "add_zero_right" (formula "26") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "26")) + (rule "replace_known_left" (formula "26") (term "1") (ifseqformula "21")) + (rule "polySimp_addAssoc" (formula "26") (term "1,0")) + (rule "add_literals" (formula "26") (term "0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "true_left" (formula "26")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= hole_0) & !f_0 = java.lang.Object:: TRUE" + (rule "andLeft" (formula "3")) + (rule "notLeft" (formula "4")) + (rule "exLeft" (formula "3") (inst "sk=iv_0")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "applyEqReverse" (formula "7") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "eqSymm" (formula "3")) + (rule "applyEq" (formula "6") (term "2,2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "6") (term "2,0") (ifseqformula "21") (ifseqformula "32")) + (rule "applyEqRigid" (formula "6") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqRigid" (formula "1") (term "1,0,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "31") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "31")) + (rule "false_right" (formula "31")) + (rule "applyEq" (formula "32") (term "2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "32") (term "0") (ifseqformula "10") (ifseqformula "31")) + (rule "eqSymm" (formula "32")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulLiterals" (formula "4") (term "1")) + (rule "polySimp_elimOne" (formula "4") (term "1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "commute_or_2" (formula "28") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "all_pull_out3" (formula "25") (term "0")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "27")) + (rule "andLeft" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,0,1")) + (rule "qeq_literals" (formula "28") (term "0,0,1")) + (builtin "One Step Simplification" (formula "28")) + (rule "nnf_imp2or" (formula "27") (term "0")) + (rule "nnf_notAnd" (formula "27") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,2,1,0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "getOfSeqConcat" (formula "28") (term "1,1,0")) + (rule "eqSymm" (formula "28") (term "1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "28") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1,0,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "getOfSeqConcat" (formula "28") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "28") (term "2,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "28") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "28") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1,0,2,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "28") (term "0,1,1,0,1,0,1,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "28") (term "1,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "28") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "28") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "getOfSeqSub" (formula "28") (term "2,0,1,0")) + (rule "castDel" (formula "28") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "28") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "28") (term "1,2,0,1,0")) + (rule "castDel" (formula "28") (term "1,1,2,0,1,0")) + (rule "castDel" (formula "28") (term "2,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "28") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,0,0,2,0,1,0")) + (rule "commute_or" (formula "1") (term "0,0")) + (rule "commute_or" (formula "29") (term "0,0")) + (rule "shift_paren_or" (formula "25") (term "0,0")) + (rule "shift_paren_or" (formula "19") (term "0,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "27") (term "0,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "27")) + (rule "eqSymm" (formula "27") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "27") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "27") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "27") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1,0,0,0,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,1") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "28"))) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "replace_known_left" (formula "27") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "28") (term "0,0")) + (rule "translateJavaAddInt" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "28") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "28") (term "0")) + (rule "polySimp_homoEq" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0")) + (rule "lenOfSeqConcat" (formula "28") (term "0,1,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "28") (term "1,0,1,0,0")) + (rule "lenOfSeqSub" (formula "28") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "28") (term "1,0,1,0")) + (rule "mul_literals" (formula "28") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "28") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "28") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "28")) + (rule "polySimp_mulLiterals" (formula "28") (term "0")) + (rule "polySimp_elimOne" (formula "28") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "28") (term "0,0,1,1") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1")) + (rule "polySimp_rightDist" (formula "28") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "28") (term "1")) + (rule "polySimp_addComm1" (formula "28") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,1")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1")) + (rule "add_literals" (formula "28") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,1,1,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,1,1,0")) + (rule "add_literals" (formula "28") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "28") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_addComm1" (formula "28") (term "1,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,1,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,1,0")) + (rule "add_literals" (formula "28") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_homoEq" (formula "28") (term "1")) + (rule "mul_literals" (formula "28") (term "1,0,1")) + (rule "add_zero_right" (formula "28") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "28") (term "1")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1")) + (rule "polySimp_elimOne" (formula "28") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "28") (term "0,0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_homoInEq1" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "28") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,0")) + (rule "polySimp_addAssoc" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "28") (term "0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "28") (term "0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,1,0")) + (rule "mul_literals" (formula "28") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "28")) + (rule "replace_known_left" (formula "28") (term "1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "28") (term "1,0")) + (rule "add_literals" (formula "28") (term "0,1,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "true_left" (formula "28")) + (rule "allLeft" (formula "18") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_2" (formula "18") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_9" (formula "18") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,1,0")) + (rule "add_literals" (formula "18") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "18") (term "1,0,1,0")) + (rule "add_literals" (formula "18") (term "0,1,0")) + (rule "qeq_literals" (formula "18") (term "1,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "inEqSimp_contradInEq0" (formula "18") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq1" (formula "18") (term "0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0")) + (rule "leq_literals" (formula "18") (term "0,0")) + (builtin "One Step Simplification" (formula "18")) + (rule "applyEq" (formula "28") (term "1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "31") (term "0,1,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "6") (term "1,0") (ifseqformula "18")) + (rule "applyEq" (formula "32") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "1,2,1,0,0,0,0") (ifseqformula "18")) + (rule "applyEq" (formula "7") (term "1") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "1,2,1,0,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "28") (term "2,0,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "29") (term "1,1,1,0") (ifseqformula "18")) + (rule "applyEq" (formula "30") (term "1,1,0,0,0") (ifseqformula "18")) + (rule "allLeft" (formula "27") (inst "t=begin")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "pullOutSelect" (formula "27") (term "1,1") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "35")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1,1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "35")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1,0,0")) + (rule "replace_known_left" (formula "27") (term "1,0,0") (ifseqformula "9")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "1,1") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "1")) + (rule "allLeft" (formula "21") (inst "t=begin")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "36")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "replace_known_left" (formula "21") (term "0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "36")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "8")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "allLeft" (formula "22") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0")) + (rule "elimGcdGeq" (formula "22") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "22") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "polySimp_pullOutFactor0" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "1,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "37")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "22") (term "0,0,0")) + (rule "mul_literals" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "22") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0,0,1,0,0,0,0")) + (rule "sub_literals" (formula "22") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "22") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "polySimp_pullOutFactor0b" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "22") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "pullOutSelect" (formula "23") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "38")) (ifInst "" (formula "11"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "23") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "elimGcdLeq" (formula "23") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "allLeft" (formula "32") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "32") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,1,0")) + (rule "elimGcdGeq" (formula "32") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "32") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "32") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "32") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "32") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_pullOutFactor0" (formula "32") (term "0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "pullOutSelect" (formula "32") (term "1,1") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "32")) + (builtin "One Step Simplification" (formula "32") (ifInst "" (formula "40")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet00011000120011_23" (formula "32") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "32") (term "0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "32") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,0")) + (rule "inEqSimp_invertInEq1" (formula "32") (term "0,0,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "32") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,0,0,0,0")) + (rule "sub_literals" (formula "32") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "32") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "32") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "32") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_pullOutFactor0b" (formula "32") (term "0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "32") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "pullOutSelect" (formula "33") (term "0,1") (inst "selectSK=arr_12")) + (rule "simplifySelectOfAnon" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "41")) (ifInst "" (formula "11"))) + (rule "replaceKnownSelect_taclet00011000120011_24" (formula "33") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "33") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "33") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "33") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "0,0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "33") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "33") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "33") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "polySimp_pullOutFactor0" (formula "33") (term "0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "commute_or_2" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "leq_literals" (formula "1") (term "0,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "29") (ifseqformula "1")) + (rule "andLeft" (formula "29")) + (rule "inEqSimp_homoInEq1" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0")) + (rule "add_literals" (formula "29") (term "1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0")) + (rule "add_literals" (formula "29") (term "0")) + (rule "leq_literals" (formula "29")) + (rule "closeFalse" (formula "29")) + ) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= hole_0) & !f_0 = java.lang.Object:: FALSE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "allLeft" (formula "1") (inst "t=hole_0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "21")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "3") (term "0,0") (ifseqformula "28")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "31"))) + (rule "closeFalse" (formula "3")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_strengthen1" (formula "25") (ifseqformula "33")) + (rule "inEqSimp_contradEq7" (formula "33") (ifseqformula "25")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0")) + (rule "add_zero_right" (formula "33") (term "0,0")) + (rule "leq_literals" (formula "33") (term "0")) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "inEqSimp_exactShadow3" (formula "25") (ifseqformula "8")) + (rule "polySimp_rightDist" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "inEqSimp_subsumption0" (formula "24") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0")) + (rule "add_zero_right" (formula "24") (term "0,0")) + (rule "qeq_literals" (formula "24") (term "0")) + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "inEqSimp_exactShadow3" (formula "7") (ifseqformula "24")) + (rule "polySimp_rightDist" (formula "7") (term "0,0")) + (rule "mul_literals" (formula "7") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "7") (term "0")) + (rule "polySimp_addComm1" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1")) + (rule "polySimp_rightDist" (formula "7") (term "1")) + (rule "polySimp_mulLiterals" (formula "7") (term "1,1")) + (rule "mul_literals" (formula "7") (term "0,1")) + (rule "polySimp_elimOne" (formula "7") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0,0")) + (rule "mul_literals" (formula "6") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0,0")) + (rule "polySimp_addComm1" (formula "6") (term "0,0,0")) + (rule "add_literals" (formula "6") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0")) + (rule "qeq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "29") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "29") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "29") (term "0,2,1,0,1,1,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "29") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "getOfSeqConcat" (formula "29") (term "1,1,0")) + (rule "eqSymm" (formula "29") (term "1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "29") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "getOfSeqConcat" (formula "29") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "29") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "29") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "29") (term "2,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "29") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "29") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "29") (term "0,1,0,2,1,0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "2,0,1,0")) + (rule "castDel" (formula "29") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,2,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "29") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "29") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "29") (term "1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "29") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "29") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "commute_or" (formula "20") (term "0,0,1,0")) + (rule "nnf_imp2or" (formula "19") (term "0")) + (rule "commute_or" (formula "27") (term "0,0,1,0")) + (rule "ifthenelse_split" (formula "3") (term "0")) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= k_0) & !f_0 = java.lang.Object:: TRUE" + (rule "andLeft" (formula "3")) + (rule "notLeft" (formula "4")) + (rule "exLeft" (formula "3") (inst "sk=iv_0")) + (rule "andLeft" (formula "3")) + (rule "andLeft" (formula "3")) + (rule "applyEqReverse" (formula "7") (term "2,0") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "eqSymm" (formula "3")) + (rule "inEqSimp_commuteLeq" (formula "5")) + (rule "applyEqRigid" (formula "1") (term "1,0,0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "1")) + (rule "applyEq" (formula "37") (term "2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "37") (term "0") (ifseqformula "11") (ifseqformula "36")) + (rule "eqSymm" (formula "37")) + (rule "applyEqRigid" (formula "6") (term "0,0,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqRigid" (formula "35") (term "0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "35")) + (rule "false_right" (formula "35")) + (rule "applyEqRigid" (formula "6") (term "2,2,0") (ifseqformula "3")) + (rule "narrowSelectArrayType" (formula "6") (term "2,0") (ifseqformula "24") (ifseqformula "35")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "10")) + (rule "polySimp_mulComm0" (formula "5") (term "0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "5")) + (rule "polySimp_mulComm0" (formula "4") (term "0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "4") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0")) + (rule "add_literals" (formula "4") (term "0,0")) + (rule "qeq_literals" (formula "4") (term "0")) + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "nnf_notAnd" (formula "33") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "0,0,0")) + (rule "mul_literals" (formula "33") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "33") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "33") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "0,1,1,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0")) + (rule "allLeft" (formula "21") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "21") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_7" (formula "21") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,1,0")) + (rule "add_literals" (formula "21") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "21") (term "1,0,1,0")) + (rule "add_literals" (formula "21") (term "0,1,0")) + (rule "qeq_literals" (formula "21") (term "1,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_contradInEq0" (formula "21") (term "0") (ifseqformula "11")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "leq_literals" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEq" (formula "34") (term "0,1,0,0") (ifseqformula "21")) + (rule "applyEq" (formula "35") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "33") (term "1,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "8") (term "1") (ifseqformula "21")) + (rule "applyEq" (formula "32") (term "1,2,1,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "7") (term "1,0") (ifseqformula "21")) + (rule "applyEq" (formula "33") (term "2,0,1,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "32") (term "1,1,1,0") (ifseqformula "21")) + (rule "allLeft" (formula "24") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "24") (term "0,2,0,1")) + (rule "add_literals" (formula "24") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "24") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_2" (formula "24") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_9" (formula "24") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "24") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "1,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,1,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,1,0")) + (rule "leq_literals" (formula "24") (term "0,1,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_contradInEq1" (formula "24") (term "0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "24") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "pullOutSelect" (formula "24") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "38")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteLeq" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "24") (term "0,0,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_subsumption0" (formula "24") (term "0,0") (ifseqformula "29")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "24") (term "0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "applyEqReverse" (formula "25") (term "1") (ifseqformula "24")) + (rule "hideAuxiliaryEq" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "24")) + (rule "commute_or" (formula "1") (term "0,0")) + (rule "commute_and" (formula "33") (term "0,2,0,1,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "34") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "34") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "34") (term "0,2,1,0,1,1,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "34") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "getOfSeqConcat" (formula "34") (term "1,1,0")) + (rule "eqSymm" (formula "34") (term "1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "34") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_addComm0" (formula "34") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "34") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,0,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "34")) + (rule "getOfSeqConcat" (formula "34") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "34") (term "2,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "34") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "34") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "34") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,1,0,2,1,0,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "34")) + (rule "inEqSimp_sepNegMonomial0" (formula "34") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "34") (term "0,1,1,0,1,0,1,0") (ifseqformula "10")) + (builtin "One Step Simplification" (formula "34")) + (rule "polySimp_addAssoc" (formula "34") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "34") (term "2,0,1,0")) + (rule "castDel" (formula "34") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "34") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "34") (term "1,2,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "34") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "34") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "34") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "34") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "34") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "34") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "34") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "34") (term "1,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "34") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "34") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "34") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "34") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "34") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "34") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "34") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "34") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "34") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "34") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "allLeft" (formula "25") (inst "t=begin")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "39")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteGeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "pullOutSelect" (formula "25") (term "0,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "25")) + (builtin "One Step Simplification" (formula "25") (ifInst "" (formula "39")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "9")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "applyEqReverse" (formula "26") (term "1,1") (ifseqformula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "allLeft" (formula "26") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_2" (formula "26") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_9" (formula "26") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "26") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "leq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "pullOutSelect" (formula "26") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "26")) + (builtin "One Step Simplification" (formula "26") (ifInst "" (formula "40")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_commuteGeq" (formula "27") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0")) + (rule "replace_known_left" (formula "26") (term "1,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0") (ifseqformula "10")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "applyEqReverse" (formula "27") (term "1,1") (ifseqformula "26")) + (rule "hideAuxiliaryEq" (formula "26")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "1")) + (rule "allLeft" (formula "27") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0")) + (rule "elimGcdGeq" (formula "27") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0,0,0")) + (rule "sub_literals" (formula "27") (term "0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "27") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "27") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "27") (term "0,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "27")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "41")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "27") (term "0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_commuteGeq" (formula "28") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "27") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,1,0,0")) + (rule "elimGcdLeq" (formula "27") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "27") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "27") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_pullOutFactor0" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "pullOutSelect" (formula "28") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "28")) + (builtin "One Step Simplification" (formula "28") (ifInst "" (formula "42")) (ifInst "" (formula "13"))) + (rule "elementOfArrayRangeConcrete" (formula "28") (term "0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "inEqSimp_commuteLeq" (formula "29") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "28") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "28") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "28") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "28") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "28") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "28") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "28") (term "1,1,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "28") (term "0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "28") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "28") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "28") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "28") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "0,0,0,1,0,0,0,0")) + (rule "mul_literals" (formula "28") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "28") (term "0,0,1,0,0,0,0")) + (rule "polySimp_addLiterals" (formula "28") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "28") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "28") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "polySimp_pullOutFactor0b" (formula "28") (term "0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "28") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "28") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "28") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "28")) + (rule "all_pull_out3" (formula "23") (term "0")) + (rule "all_pull_out3" (formula "36") (term "0")) + (rule "commute_or_2" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "4") (ifseqformula "1")) + (rule "andLeft" (formula "4")) + (rule "inEqSimp_homoInEq1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0")) + (rule "mul_literals" (formula "4") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0")) + (rule "add_literals" (formula "4") (term "1,1,0")) + (rule "times_zero_1" (formula "4") (term "1,0")) + (rule "add_literals" (formula "4") (term "0")) + (rule "leq_literals" (formula "4")) + (rule "closeFalse" (formula "4")) + ) + (branch " exists int iv; (arr(iv) = f_0 & iv >= begin & iv <= k_0) & !f_0 = java.lang.Object:: FALSE" + (rule "applyEqReverse" (formula "4") (term "2,0") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "nnf_notAnd" (formula "29") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "29") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "29") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "29") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "29") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "29") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "29") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "29") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "29") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "29") (term "0,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "29") (term "0,0,0")) + (rule "mul_literals" (formula "29") (term "1,0,0,0")) + (rule "nnf_notAnd" (formula "18") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "18") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0,1,0,0")) + (rule "add_literals" (formula "18") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "18") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "18") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "18") (term "1,1,1,0,0")) + (rule "allLeft" (formula "17") (inst "t=k_0")) + (rule "replaceKnownSelect_taclet0011_0" (formula "17") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_7" (formula "17") (term "0,1")) + (rule "inEqSimp_homoInEq0" (formula "17") (term "1,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,1,0")) + (rule "add_literals" (formula "17") (term "1,1,0,1,0")) + (rule "times_zero_1" (formula "17") (term "1,0,1,0")) + (rule "add_zero_right" (formula "17") (term "0,1,0")) + (rule "qeq_literals" (formula "17") (term "1,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "inEqSimp_contradInEq0" (formula "17") (term "0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "17") (term "0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "17") (term "0,0,0")) + (rule "add_literals" (formula "17") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "17") (term "1,0,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0")) + (rule "leq_literals" (formula "17") (term "0,0")) + (builtin "One Step Simplification" (formula "17")) + (rule "applyEq" (formula "30") (term "0,1,0,0") (ifseqformula "17")) + (rule "applyEq" (formula "28") (term "1,2,1,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "3") (term "1,0") (ifseqformula "17")) + (rule "applyEq" (formula "4") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "29") (term "1,0,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "31") (term "1") (ifseqformula "17")) + (rule "applyEq" (formula "29") (term "2,0,1,1,0") (ifseqformula "17")) + (rule "applyEq" (formula "28") (term "1,1,1,0") (ifseqformula "17")) + (rule "allLeft" (formula "20") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "20") (term "0,2,0,1")) + (rule "add_literals" (formula "20") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "20") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_2" (formula "20") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_9" (formula "20") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "20") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "1,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,1,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_contradInEq1" (formula "20") (term "0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq1" (formula "20") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "leq_literals" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "pullOutSelect" (formula "20") (term "0") (inst "selectSK=arr_5")) + (rule "simplifySelectOfAnon" (formula "20")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "35")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "20") (term "0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_commuteLeq" (formula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0,0")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,1,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "20") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "20") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "20")) + (rule "inEqSimp_sepNegMonomial1" (formula "20") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "0,0,0")) + (rule "inEqSimp_subsumption0" (formula "20") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0,0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "qeq_literals" (formula "20") (term "0,0,0")) + (builtin "One Step Simplification" (formula "20")) + (rule "applyEqReverse" (formula "21") (term "1") (ifseqformula "20")) + (rule "hideAuxiliaryEq" (formula "20")) + (rule "inEqSimp_commuteGeq" (formula "20")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "30") (term "0,1,1,0") (inst "x=x_8")) + (builtin "One Step Simplification" (formula "30")) + (rule "eqSymm" (formula "30") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "30") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "30") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "1,2,0,1,0,0,1")) + (rule "castDel" (formula "30") (term "2,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "30") (term "1,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "30") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0")) + (rule "times_zero_2" (formula "30") (term "1,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "30") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1")) + (rule "add_literals" (formula "30") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,1,1,1,0,0,0,1") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "30") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "30") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "30")) + (rule "polySimp_addAssoc" (formula "30") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "30") (term "0,0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "inEqSimp_homoInEq1" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "30") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "30") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "30") (term "0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "30") (term "1,1,0")) + (rule "mul_literals" (formula "30") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "30") (term "1,1,0")) + (rule "inEqSimp_subsumption0" (formula "30") (term "0") (ifseqformula "24")) + (rule "inEqSimp_homoInEq0" (formula "30") (term "0,0")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "30") (term "1,0,0,0")) + (rule "mul_literals" (formula "30") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "30") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "30") (term "0,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0,0")) + (rule "add_literals" (formula "30") (term "0,0,0")) + (rule "qeq_literals" (formula "30") (term "0,0")) + (builtin "One Step Simplification" (formula "30")) + (rule "andLeft" (formula "30")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "32") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "32") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "32") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "32") (term "0,2,1,0,1,1,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "32") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "getOfSeqConcat" (formula "32") (term "1,1,0")) + (rule "eqSymm" (formula "32") (term "1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "32") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addComm0" (formula "32") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "32") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "32") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "32") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "32") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,0,0,1,0")) + (rule "replace_known_left" (formula "32") (term "0,1,0,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "32")) + (rule "getOfSeqSub" (formula "32") (term "2,0,1,0")) + (rule "castDel" (formula "32") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "32") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "32") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "32") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "32") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "32") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "32") (term "1,2,0,1,0")) + (rule "castDel" (formula "32") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "32") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "32") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "32") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "32") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "32") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "32") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqConcat" (formula "32") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "32") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "times_zero_2" (formula "32") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "lenOfSeqSub" (formula "32") (term "0,0,1,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,0,0,1,2,1,0,1,0")) + (rule "mul_literals" (formula "32") (term "1,1,0,0,1,2,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,0,0,1,2,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "32") (term "2,1,0,1,0")) + (rule "castDel" (formula "32") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "32") (term "1,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "32") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "32") (term "0,1,0,2,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_sepNegMonomial0" (formula "32") (term "0,1,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,0,1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,0,1,1,0,1,0,1,0")) + (rule "replace_known_left" (formula "32") (term "0,1,1,0,1,0,1,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "32")) + (rule "polySimp_addAssoc" (formula "32") (term "1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "32") (term "1,1,0,1,0")) + (rule "castDel" (formula "32") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "times_zero_2" (formula "32") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "32") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "32") (term "1,1,1,1,0,1,0")) + (rule "castDel" (formula "32") (term "2,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "32") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "32") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "32") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "32") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "32") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "32") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "32") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "32") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "nnf_imp2or" (formula "30") (term "0")) + (rule "commute_and" (formula "29") (term "0,2,0,1,0")) + (rule "allLeft" (formula "21") (inst "t=hole_0")) + (rule "replaceKnownSelect_taclet20011_2" (formula "21") (term "1,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_9" (formula "21") (term "1,1")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "1,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0")) + (rule "inEqSimp_contradInEq1" (formula "21") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "leq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "pullOutSelect" (formula "21") (term "0,1") (inst "selectSK=arr_6")) + (rule "simplifySelectOfAnon" (formula "21")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "37")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "21") (term "0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_commuteGeq" (formula "22") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,1,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "0,1,0,0")) + (rule "replace_known_left" (formula "21") (term "1,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "21") (term "0,0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq0" (formula "21") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "21") (term "0,0,0,0")) + (rule "add_literals" (formula "21") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "21") (term "1,0,0,0,0")) + (rule "add_literals" (formula "21") (term "0,0,0,0")) + (rule "qeq_literals" (formula "21") (term "0,0,0")) + (builtin "One Step Simplification" (formula "21")) + (rule "applyEqReverse" (formula "22") (term "1,1") (ifseqformula "21")) + (rule "hideAuxiliaryEq" (formula "21")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1")) + (rule "allLeft" (formula "22") (inst "t=begin")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq1" (formula "22") (term "0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0")) + (rule "mul_literals" (formula "22") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0")) + (rule "pullOutSelect" (formula "22") (term "1,1") (inst "selectSK=arr_7")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "38")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "pullOutSelect" (formula "22") (term "0,1") (inst "selectSK=arr_8")) + (rule "simplifySelectOfAnon" (formula "22")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "38")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "22") (term "0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_commuteGeq" (formula "23") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0")) + (rule "inEqSimp_subsumption1" (formula "22") (term "0,0") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0,0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,0")) + (rule "qeq_literals" (formula "22") (term "0,0,0")) + (builtin "One Step Simplification" (formula "22")) + (rule "applyEqReverse" (formula "23") (term "1,1") (ifseqformula "22")) + (rule "hideAuxiliaryEq" (formula "22")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1")) + (rule "allLeft" (formula "23") (inst "t=mul(begin, Z(neglit(1(#))))")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "23") (term "0,0,0")) + (rule "inEqSimp_homoInEq1" (formula "23") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0")) + (rule "elimGcdGeq" (formula "23") (term "0,0") (inst "elimGcdRightDiv=Z(1(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0,0,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,1,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,1,0,0,0")) + (rule "add_literals" (formula "23") (term "0,1,0,0,0")) + (rule "leq_literals" (formula "23") (term "1,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "23") (term "1,1") (inst "selectSK=arr_9")) + (rule "simplifySelectOfAnon" (formula "23")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "39")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "23") (term "0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "23") (term "0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "23") (term "0,0,0")) + (rule "polySimp_pullOutFactor3" (formula "23") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "inEqSimp_invertInEq1" (formula "23") (term "0,0,0")) + (rule "mul_literals" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "23") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,0,0,0,0,0")) + (rule "sub_literals" (formula "23") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,0,1,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "add_zero_right" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,0,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0" (formula "23") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "23") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "polySimp_pullOutFactor0b" (formula "23") (term "0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "23") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "23") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "23")) + (rule "pullOutSelect" (formula "24") (term "0,1") (inst "selectSK=arr_10")) + (rule "simplifySelectOfAnon" (formula "24")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "40")) (ifInst "" (formula "9"))) + (rule "elementOfArrayRangeConcrete" (formula "24") (term "0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_commuteGeq" (formula "25") (term "1")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "24") (term "0,0,0")) + (rule "polySimp_pullOutFactor3b" (formula "24") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "24") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0")) + (rule "elimGcdLeq" (formula "24") (term "0,0,0") (inst "elimGcdRightDiv=Z(0(#))") (inst "elimGcdLeftDiv=begin") (inst "elimGcd=Z(2(#))")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,0,0,0,0,0,0")) + (rule "sub_literals" (formula "24") (term "0,0,0,0,0,0,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "0,0,0,0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "1,0,0,0,0,0,0,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,0,0,0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor0b" (formula "24") (term "0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,1,0,1,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "1,0,1,0,0,0,0")) + (rule "add_literals" (formula "24") (term "0,1,0,0,0,0")) + (rule "qeq_literals" (formula "24") (term "1,0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "polySimp_pullOutFactor0" (formula "24") (term "0,0,0,0,0")) + (rule "add_literals" (formula "24") (term "1,0,0,0,0,0")) + (rule "times_zero_1" (formula "24") (term "0,0,0,0,0")) + (rule "leq_literals" (formula "24") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "24")) + (rule "all_pull_out3" (formula "19") (term "0")) + (rule "all_pull_out3" (formula "32") (term "0")) + (rule "allLeft" (formula "33") (inst "t=add(Z(neglit(1(#))), hole_0)")) + (rule "polySimp_addAssoc" (formula "33") (term "0,2,0,1")) + (rule "add_literals" (formula "33") (term "0,0,2,0,1")) + (rule "add_zero_left" (formula "33") (term "0,2,0,1")) + (rule "replaceKnownSelect_taclet20011_1" (formula "33") (term "0,1")) + (rule "replaceKnownAuxiliaryConstant_taclet1000120011_5" (formula "33") (term "0,1")) + (rule "inEqSimp_commuteGeq" (formula "33") (term "1")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "1,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,1,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,0,1,0")) + (rule "add_zero_left" (formula "33") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "33") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "33") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "1,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,1,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,1,0")) + (rule "add_literals" (formula "33") (term "0,0,1,0")) + (rule "leq_literals" (formula "33") (term "0,1,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_contradInEq1" (formula "33") (term "0") (ifseqformula "6")) + (rule "inEqSimp_homoInEq1" (formula "33") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0")) + (rule "leq_literals" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "pullOutSelect" (formula "33") (term "0") (inst "selectSK=arr_11")) + (rule "simplifySelectOfAnon" (formula "33")) + (builtin "One Step Simplification" (formula "33") (ifInst "" (formula "42")) (ifInst "" (formula "9"))) + (rule "replaceKnownSelect_taclet11011000120011_15" (formula "33") (term "2,0")) + (rule "replaceKnownAuxiliaryConstant_taclet11011000120011_16" (formula "33") (term "2,0")) + (rule "elementOfArrayRangeConcrete" (formula "33") (term "0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_commuteLeq" (formula "34")) + (rule "inEqSimp_commuteLeq" (formula "33") (term "1,0,0")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "33") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "33") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "33") (term "1,1,0,0,0")) + (rule "replace_known_left" (formula "33") (term "0,0,0") (ifseqformula "6")) + (builtin "One Step Simplification" (formula "33")) + (rule "inEqSimp_subsumption1" (formula "33") (term "0,0") (ifseqformula "30")) + (rule "inEqSimp_homoInEq0" (formula "33") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "33") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "33") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "33") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "33") (term "0,0,0,0")) + (rule "polySimp_addComm1" (formula "33") (term "0,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "33") (term "0,0,0,0")) + (rule "add_literals" (formula "33") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "33") (term "1,0,0,0,0")) + (rule "add_literals" (formula "33") (term "0,0,0,0")) + (rule "qeq_literals" (formula "33") (term "0,0,0")) + (builtin "One Step Simplification" (formula "33")) + (rule "applyEqReverse" (formula "34") (term "1") (ifseqformula "33")) + (rule "hideAuxiliaryEq" (formula "33")) + (rule "inEqSimp_commuteGeq" (formula "33")) + (rule "allLeft" (formula "1") (inst "t=hole_0")) + (rule "eqSymm" (formula "1") (term "0,0,0")) + (rule "inEqSimp_contradInEq1" (formula "1") (term "1,0") (ifseqformula "7")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1,0")) + (rule "add_literals" (formula "1") (term "0,0,1,0")) + (rule "leq_literals" (formula "1") (term "0,1,0")) + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_contradInEq0" (formula "1") (term "1") (ifseqformula "30")) + (rule "inEqSimp_homoInEq1" (formula "1") (term "0,1")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0,1")) + (rule "mul_literals" (formula "1") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0,1")) + (rule "polySimp_addComm0" (formula "1") (term "0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0,1")) + (rule "add_literals" (formula "1") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "1") (term "1,0,0,1")) + (rule "add_literals" (formula "1") (term "0,0,1")) + (rule "leq_literals" (formula "1") (term "0,1")) + (builtin "One Step Simplification" (formula "1")) + (rule "notLeft" (formula "1")) + (rule "replace_known_right" (formula "3") (term "0,0") (ifseqformula "40")) + (builtin "One Step Simplification" (formula "3") (ifInst "" (formula "43"))) + (rule "closeFalse" (formula "3")) + ) + ) + ) + (branch "CUT: o_0 = values FALSE" + (builtin "One Step Simplification" (formula "34")) + (rule "false_right" (formula "34")) + (rule "replace_known_right" (formula "3") (term "1,0,0") (ifseqformula "33")) + (builtin "One Step Simplification" (formula "3")) + (rule "applyEqReverse" (formula "35") (term "1") (ifseqformula "3")) + (rule "hideAuxiliaryEq" (formula "3")) + (rule "replace_known_right" (formula "2") (term "0,0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "2") (ifInst "" (formula "34"))) + (rule "closeFalse" (formula "2")) + ) + ) + ) + ) + (branch + (rule "polySimp_homoEq" (formula "23") (term "1")) + (rule "polySimp_homoEq" (formula "20")) + (rule "polySimp_mulComm0" (formula "32") (term "1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_rightDist" (formula "32") (term "1,0")) + (rule "mul_literals" (formula "32") (term "0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,1")) + (rule "mul_literals" (formula "23") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0")) + (rule "polySimp_addComm0" (formula "32") (term "0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,1")) + (rule "polySimp_addComm0" (formula "23") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "precOfInt" (formula "32")) + (rule "inEqSimp_ltToLeq" (formula "7")) + (rule "polySimp_mulComm0" (formula "7") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "24") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "19") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "17") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "32") (term "1")) + (rule "polySimp_rightDist" (formula "32") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "32") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "32") (term "1,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "32") (term "0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "32") (term "0,1")) + (rule "add_literals" (formula "32") (term "1,1,0,1")) + (rule "times_zero_1" (formula "32") (term "1,0,1")) + (rule "add_zero_right" (formula "32") (term "0,1")) + (rule "polySimp_addAssoc" (formula "32") (term "0,1")) + (rule "polySimp_addComm1" (formula "32") (term "0,0,1")) + (rule "add_literals" (formula "32") (term "0,0,0,1")) + (rule "add_zero_left" (formula "32") (term "0,0,1")) + (rule "polySimp_pullOutFactor2" (formula "32") (term "0,1")) + (rule "add_literals" (formula "32") (term "1,0,1")) + (rule "times_zero_1" (formula "32") (term "0,1")) + (rule "leq_literals" (formula "32") (term "1")) + (builtin "One Step Simplification" (formula "32")) + (rule "inEqSimp_leqRight" (formula "32")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1,0")) + (rule "polySimp_elimOne" (formula "1") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "1") (term "0,1,0")) + (rule "mul_literals" (formula "1") (term "0,0,1,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEq" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_contradInEq1" (formula "8") (ifseqformula "1")) + (rule "andLeft" (formula "8")) + (rule "inEqSimp_homoInEq1" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0")) + (rule "polySimp_rightDist" (formula "8") (term "1,0")) + (rule "mul_literals" (formula "8") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "8") (term "0")) + (rule "polySimp_addComm0" (formula "8") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0")) + (rule "add_literals" (formula "8") (term "1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0")) + (rule "add_zero_right" (formula "8") (term "0")) + (rule "leq_literals" (formula "8")) + (rule "closeFalse" (formula "8")) + ) + ) + (branch "Null Reference (_values = null)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but hole Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "32"))) + (builtin "One Step Simplification" (formula "33")) + (rule "false_right" (formula "33")) + (rule "polySimp_homoEq" (formula "21")) + (rule "polySimp_homoEq" (formula "24") (term "1")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,1")) + (rule "mul_literals" (formula "24") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "24") (term "0,1")) + (rule "polySimp_addComm0" (formula "24") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "30")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "polySimp_addComm0" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "31")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "18")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "18") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "25")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3") (term "1")) + (rule "times_zero_1" (formula "3") (term "1,0,0,1")) + (rule "add_zero_right" (formula "3") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "23")) + (rule "polySimp_mulComm0" (formula "23") (term "1")) + (rule "polySimp_rightDist" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1")) + (rule "mul_literals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "1,1")) + (rule "applyEq" (formula "4") (term "0,0,0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "0,0,0,0,0")) + (rule "add_zero_left" (formula "4") (term "0,0,0,0")) + (rule "applyEqRigid" (formula "4") (term "0,2,2,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "24") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "24")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0")) + (rule "polySimp_addComm1" (formula "24") (term "0,0")) + (rule "add_literals" (formula "24") (term "0,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0")) + (rule "applyEq" (formula "5") (term "1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "5") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "4") (term "0,2,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "23")) + (rule "inEqSimp_homoInEq1" (formula "6")) + (rule "polySimp_mulComm0" (formula "6") (term "1,0")) + (rule "polySimp_rightDist" (formula "6") (term "1,0")) + (rule "mul_literals" (formula "6") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "6") (term "0")) + (rule "polySimp_addComm0" (formula "6") (term "0,0")) + (rule "applyEqRigid" (formula "25") (term "1,0,0") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0")) + (rule "add_literals" (formula "25") (term "0,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0")) + (rule "applyEqRigid" (formula "26") (term "1,0,0,1") (ifseqformula "23")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,1")) + (rule "add_zero_left" (formula "26") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "26") (term "1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "2")) + (rule "polySimp_mulLiterals" (formula "2") (term "0")) + (rule "polySimp_elimOne" (formula "2") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "20") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "20") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "8")) + (rule "polySimp_mulComm0" (formula "8") (term "1")) + (rule "polySimp_rightDist" (formula "8") (term "1")) + (rule "polySimp_mulLiterals" (formula "8") (term "1,1")) + (rule "mul_literals" (formula "8") (term "0,1")) + (rule "polySimp_elimOne" (formula "8") (term "1,1")) + (rule "replace_known_left" (formula "7") (term "1,0,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "7")) + (rule "inEqSimp_sepPosMonomial0" (formula "3") (term "1")) + (rule "mul_literals" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial1" (formula "4") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "4") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "24")) + (rule "polySimp_mulLiterals" (formula "24") (term "0")) + (rule "polySimp_elimOne" (formula "24") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "30")) + (rule "replace_known_left" (formula "29") (term "0,0,0") (ifseqformula "24")) + (builtin "One Step Simplification" (formula "29")) + (rule "inEqSimp_sepNegMonomial0" (formula "6")) + (rule "polySimp_mulLiterals" (formula "6") (term "0")) + (rule "polySimp_elimOne" (formula "6") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25")) + (rule "polySimp_mulLiterals" (formula "25") (term "0")) + (rule "polySimp_elimOne" (formula "25") (term "0")) + (rule "replace_known_left" (formula "30") (term "0,0") (ifseqformula "25")) + (builtin "One Step Simplification" (formula "30")) + (rule "applyEqReverse" (formula "31") (term "0") (ifseqformula "30")) + (rule "hideAuxiliaryEq" (formula "30")) + (rule "inEqSimp_subsumption1" (formula "5") (term "0,0") (ifseqformula "25")) + (rule "inEqSimp_homoInEq0" (formula "5") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "5") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "5") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "5") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "5") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "5") (term "0,0,0,0")) + (rule "add_literals" (formula "5") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "5") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "5") (term "0,0,0,0")) + (rule "qeq_literals" (formula "5") (term "0,0,0")) + (builtin "One Step Simplification" (formula "5")) + (rule "applyEqReverse" (formula "2") (term "0") (ifseqformula "5")) + (rule "hideAuxiliaryEq" (formula "5")) + (rule "inEqSimp_subsumption0" (formula "18") (ifseqformula "7")) + (rule "inEqSimp_homoInEq0" (formula "18") (term "0")) + (rule "polySimp_mulComm0" (formula "18") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "18") (term "1,0,0")) + (rule "mul_literals" (formula "18") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "18") (term "0,0")) + (rule "add_literals" (formula "18") (term "1,1,0,0")) + (rule "times_zero_1" (formula "18") (term "1,0,0")) + (rule "add_zero_right" (formula "18") (term "0,0")) + (rule "qeq_literals" (formula "18") (term "0")) + (builtin "One Step Simplification" (formula "18")) + (rule "true_left" (formula "18")) + (rule "inEqSimp_subsumption1" (formula "22") (ifseqformula "5")) + (rule "inEqSimp_homoInEq0" (formula "22") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "1,1,0,0")) + (rule "times_zero_1" (formula "22") (term "1,0,0")) + (rule "add_zero_right" (formula "22") (term "0,0")) + (rule "qeq_literals" (formula "22") (term "0")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "inEqSimp_subsumption1" (formula "12") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "12") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "1,1,0,0")) + (rule "times_zero_1" (formula "12") (term "1,0,0")) + (rule "add_zero_right" (formula "12") (term "0,0")) + (rule "qeq_literals" (formula "12") (term "0")) + (builtin "One Step Simplification" (formula "12")) + (rule "true_left" (formula "12")) + (rule "inEqSimp_subsumption1" (formula "6") (term "0,0") (ifseqformula "16")) + (rule "inEqSimp_homoInEq0" (formula "6") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "6") (term "0,0,0,0")) + (rule "add_literals" (formula "6") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "6") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "6") (term "0,0,0,0")) + (rule "qeq_literals" (formula "6") (term "0,0,0")) + (builtin "One Step Simplification" (formula "6")) + (rule "applyEqReverse" (formula "26") (term "1") (ifseqformula "6")) + (rule "applyEqReverse" (formula "24") (term "2,0") (ifseqformula "6")) + (rule "applyEqReverse" (formula "2") (term "1") (ifseqformula "6")) + (rule "hideAuxiliaryEq" (formula "6")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "6")) + (rule "polySimp_mulComm0" (formula "20") (term "0,0")) + (rule "polySimp_addComm0" (formula "20") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "replace_known_left" (formula "25") (term "0,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "hideAuxiliaryEq" (formula "25")) + (rule "inEqSimp_subsumption0" (formula "4") (term "0,0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "4") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "4") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "4") (term "0,1,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0,0,0,0")) + (rule "polySimp_addComm0" (formula "4") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "14") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "14") (term "0,0")) + (rule "mul_literals" (formula "14") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0")) + (rule "polySimp_addComm1" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14")) + (rule "polySimp_mulComm0" (formula "14") (term "1")) + (rule "polySimp_rightDist" (formula "14") (term "1")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1")) + (rule "mul_literals" (formula "14") (term "0,1")) + (rule "polySimp_elimOne" (formula "14") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "16") (term "0")) + (rule "wellFormedAnon" (formula "16") (term "1,0")) + (rule "replace_known_right" (formula "16") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "16") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "17") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "17")) + (rule "translateJavaSubInt" (formula "17") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "17") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "17") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "17") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "6")) (ifInst "" (formula "12")) (ifInst "" (formula "18")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,0,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "17") (term "0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "17") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "17") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "17") (term "0,0,1,0,0")) + (rule "add_literals" (formula "17") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "17") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,1,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,1,0,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "commute_or" (formula "3")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0") (inst "x=x_7")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "replace_known_left" (formula "25") (term "1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "23")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "nnf_imp2or" (formula "23") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "mul_literals" (formula "25") (term "1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,0,1,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,1,1,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "16") (term "0,1,0")) + (rule "nnf_imp2or" (formula "23") (term "0,1,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "16") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0,1,0")) + (rule "nnf_notAnd" (formula "23") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "23") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "23") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,0,1,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,0,0,0,1,0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "26") (term "0,0") (inst "x=x_7")) + (builtin "One Step Simplification" (formula "26")) + (rule "eqSymm" (formula "26") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,1")) + (rule "lenOfSeqDef" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "getOfSeqDef" (formula "26") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "26") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "26") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "mul_literals" (formula "26") (term "1,0,0,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "0,0,0,1,0,0,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "26") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,0,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "26") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_homoInEq1" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "26") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "26") (term "0,0,0,1,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,0")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "26") (term "1,0")) + (rule "polySimp_mulComm0" (formula "26") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "26") (term "1,1,0")) + (rule "polySimp_mulLiterals" (formula "26") (term "1,1,1,0")) + (rule "mul_literals" (formula "26") (term "0,1,1,0")) + (rule "polySimp_elimOne" (formula "26") (term "1,1,1,0")) + (rule "replace_known_left" (formula "26") (term "1,0") (ifseqformula "20")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0,1,1,1,0,0,0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "26") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "26") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "26") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "26") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "26")) + (rule "polySimp_addAssoc" (formula "26") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "26") (term "0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "26") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "26") (term "0,0,0")) + (rule "add_literals" (formula "26") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "26") (term "1,0,0,0")) + (rule "add_literals" (formula "26") (term "0,0,0")) + (rule "qeq_literals" (formula "26") (term "0,0")) + (builtin "One Step Simplification" (formula "26")) + (rule "andLeft" (formula "26")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1")) + (rule "qeq_literals" (formula "27") (term "0,0,1")) + (builtin "One Step Simplification" (formula "27") (ifInst "" (formula "28"))) + (rule "true_left" (formula "27")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0")) + (rule "polySimp_homoEq" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,0,1,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,0,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_sepNegMonomial" (formula "27")) + (rule "polySimp_mulLiterals" (formula "27") (term "0")) + (rule "polySimp_elimOne" (formula "27") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,1")) + (rule "replace_known_left" (formula "27") (term "0,0,1,1") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1")) + (rule "polySimp_rightDist" (formula "27") (term "1,1")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,1")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,1")) + (rule "polySimp_addAssoc" (formula "27") (term "1")) + (rule "polySimp_addComm1" (formula "27") (term "0,1")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1")) + (rule "add_zero_right" (formula "27") (term "0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm1" (formula "27") (term "1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_homoEq" (formula "27") (term "1")) + (rule "mul_literals" (formula "27") (term "1,0,1")) + (rule "add_zero_right" (formula "27") (term "0,1")) + (rule "polySimp_sepNegMonomial" (formula "27") (term "1")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1")) + (rule "polySimp_elimOne" (formula "27") (term "0,1")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0")) + (rule "qeq_literals" (formula "27") (term "0,0,0,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_homoInEq1" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,0,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0")) + (rule "inEqSimp_or_weaken0" (formula "27")) + (rule "replace_known_left" (formula "27") (term "1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "27") (term "1,0")) + (rule "add_literals" (formula "27") (term "0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "true_left" (formula "27")) + (rule "cut_direct" (formula "22") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "23")) + (rule "true_left" (formula "23")) + (rule "applyEq" (formula "23") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "17") (term "1,1,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "0,2,0,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "14") (term "0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,2,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "2") (term "0,2,1") (ifseqformula "21")) + (rule "applyEqRigid" (formula "24") (term "0,2,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,1,2,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "26") (term "2,1,0,2,0,0,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "15") (term "1,1,0,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "25") (term "0,2,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "5") (term "0") (ifseqformula "21")) + (rule "applyEq" (formula "22") (term "2,1,0,1,1,0") (ifseqformula "20")) + (rule "applyEq" (formula "21") (term "1,1,0,0,1,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "22") (term "1,1,1,0,0") (ifseqformula "20")) + (rule "applyEqRigid" (formula "19") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,0")) + (rule "times_zero_1" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEqRigid" (formula "13") (term "1,1,1,0,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "20") (term "2,1,0,0,1,0,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,2,0,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "25") (term "0,2,1") (ifseqformula "19")) + (rule "applyEqRigid" (formula "14") (term "1,1,0,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "23") (term "0,2,2,0,1,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "22") (term "0,2,2,0,1,1,0") (ifseqformula "19")) + (rule "applyEq" (formula "22") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "19")) + (rule "applyEqRigid" (formula "23") (term "2,1,0,2,0,0,1,1,0") (ifseqformula "19")) + (rule "cut_direct" (formula "3") (term "1")) + (branch "CUT: values.length <= hole_0 TRUE" + (builtin "One Step Simplification" (formula "4")) + (rule "true_left" (formula "4")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "10") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "polySimp_mulLiterals" (formula "10") (term "1")) + (rule "polySimp_elimOne" (formula "10") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "19")) + (rule "andLeft" (formula "10")) + (rule "inEqSimp_homoInEq1" (formula "10")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0")) + (rule "polySimp_rightDist" (formula "10") (term "1,0")) + (rule "mul_literals" (formula "10") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "10") (term "0")) + (rule "polySimp_addComm0" (formula "10") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0")) + (rule "add_literals" (formula "10") (term "1,1,0")) + (rule "times_zero_1" (formula "10") (term "1,0")) + (rule "add_zero_right" (formula "10") (term "0")) + (rule "leq_literals" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + (branch "CUT: values.length <= hole_0 FALSE" + (builtin "One Step Simplification" (formula "3")) + (rule "inEqSimp_leqRight" (formula "26")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq0" (formula "10") (ifseqformula "5")) + (rule "qeq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "closeFalse" (formula "10")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_strengthen1" (formula "21") (ifseqformula "29")) + (rule "inEqSimp_contradEq7" (formula "29") (ifseqformula "21")) + (rule "polySimp_mulComm0" (formula "29") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "29") (term "0,0")) + (rule "add_literals" (formula "29") (term "1,1,0,0")) + (rule "times_zero_1" (formula "29") (term "1,0,0")) + (rule "add_zero_right" (formula "29") (term "0,0")) + (rule "leq_literals" (formula "29") (term "0")) + (builtin "One Step Simplification" (formula "29")) + (rule "false_right" (formula "29")) + (rule "inEqSimp_exactShadow3" (formula "21") (ifseqformula "5")) + (rule "polySimp_rightDist" (formula "21") (term "0,0")) + (rule "mul_literals" (formula "21") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "0")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "inEqSimp_subsumption0" (formula "20") (ifseqformula "21")) + (rule "inEqSimp_homoInEq0" (formula "20") (term "0")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0,0")) + (rule "mul_literals" (formula "20") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0,0")) + (rule "add_literals" (formula "20") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "1,1,0,0")) + (rule "times_zero_1" (formula "20") (term "1,0,0")) + (rule "add_zero_right" (formula "20") (term "0,0")) + (rule "qeq_literals" (formula "20") (term "0")) + (builtin "One Step Simplification" (formula "20")) + (rule "true_left" (formula "20")) + (rule "inEqSimp_exactShadow3" (formula "4") (ifseqformula "20")) + (rule "polySimp_rightDist" (formula "4") (term "0,0")) + (rule "mul_literals" (formula "4") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "4") (term "0")) + (rule "polySimp_addComm1" (formula "4") (term "0,0")) + (rule "add_literals" (formula "4") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "4")) + (rule "polySimp_mulComm0" (formula "4") (term "1")) + (rule "polySimp_rightDist" (formula "4") (term "1")) + (rule "mul_literals" (formula "4") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "4") (term "1,1")) + (rule "polySimp_elimOne" (formula "4") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "nnf_imp2or" (formula "26") (term "0")) + (rule "Contract_axiom_for_seqUpd_in_Sorter" (formula "25") (term "0,1,1,0") (inst "x=x_7")) + (builtin "One Step Simplification" (formula "25")) + (rule "eqSymm" (formula "25") (term "1,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "lenOfSeqDef" (formula "25") (term "1,1,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,1,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,1,1")) + (rule "getOfSeqDef" (formula "25") (term "2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "2,2,0,1,0,0,1")) + (rule "castDel" (formula "25") (term "1,2,0,1,0,0,1")) + (rule "polySimp_elimSub" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "0,2,1,2,0,1,0,0,1")) + (rule "polySimp_addComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,0,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,0,1,0,2,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,2,0,1,0,0,1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "times_zero_2" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,2,0,1,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,2,0,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,2,0,1,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "0,1,1,0,2,0,1,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,0,1,1,0,2,0,1,0,0,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,1,1,1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_homoInEq1" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,1,0,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "25") (term "0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,0") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,1,1,1,0,0,0,1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,1,1,1,0,0,0,1")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,1,1,1,0,0,0,1")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,1,1,1,0,0,0,1")) + (rule "add_zero_right" (formula "25") (term "0,0,0,1,1,1,0,0,0,1")) + (rule "qeq_literals" (formula "25") (term "0,0,1,1,1,0,0,0,1")) + (builtin "One Step Simplification" (formula "25")) + (rule "polySimp_addAssoc" (formula "25") (term "1,1,0,0,0,1")) + (rule "inEqSimp_subsumption0" (formula "25") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0")) + (rule "qeq_literals" (formula "25") (term "0,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "andLeft" (formula "25")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "27") (term "0,1,1,0")) + (rule "translateJavaAddInt" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,1,1,0,1,1,0")) + (rule "lenOfSeqDef" (formula "27") (term "2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,2,1,0,1,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "inEqSimp_subsumption1" (formula "27") (term "0,2,1,0,1,1,0") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,1,0,1,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,2,1,0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,0,2,1,0,1,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,0,2,1,0,1,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,1,0,1,1,0")) + (rule "qeq_literals" (formula "27") (term "0,0,2,1,0,1,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "getOfSeqConcat" (formula "27") (term "1,1,0")) + (rule "eqSymm" (formula "27") (term "1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "1,0,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,0,1,0")) + (rule "lenOfSeqConcat" (formula "27") (term "0,0,1,2,0,1,0")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,0,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,1,0,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,1,0,0,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,1,2,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,1,2,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,2,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,0,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,0,0,0,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,0,0,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,0,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,1,0,0,1,0")) + (rule "getOfSeqConcat" (formula "27") (term "1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,2,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "getOfSeqSingleton" (formula "27") (term "2,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,2,1,0,1,0")) + (rule "lenOfSeqSub" (formula "27") (term "0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,0,0,0,0,2,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,0,0,0,2,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,0,0,0,2,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_sepPosMonomial" (formula "27") (term "0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,2,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,0,1,0,0,0,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,0,1,0,0,0,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,0,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,0,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "27") (term "0,1,0,2,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,0,1,0,2,1,0,1,0")) + (rule "replace_known_left" (formula "27") (term "0,1,0,2,1,0,1,0") (ifseqformula "4")) + (builtin "One Step Simplification" (formula "27")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "0,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,1,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "2,0,1,0")) + (rule "castDel" (formula "27") (term "2,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,0,1,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "0,0,1,1,2,0,1,0")) + (rule "polySimp_pullOutFactor1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,0,1,1,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "0,1,1,2,0,1,0")) + (rule "add_zero_left" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,0,0,1,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor2b" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,2,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,2,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,2,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,2,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "1,1,0,0,1,0,2,0,1,0")) + (rule "times_zero_1" (formula "27") (term "1,0,0,1,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addComm1" (formula "27") (term "0,0,1,0,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,0,1,0,2,0,1,0")) + (rule "add_literals" (formula "27") (term "0,0,0,0,1,0,2,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,2,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,2,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,2,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "27") (term "0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,0,0,0,2,0,1,0")) + (rule "add_zero_right" (formula "27") (term "0,0,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,2,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "27") (term "0,0,2,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,2,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,0,0,2,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,0,0,2,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,0,0,2,0,1,0")) + (rule "getOfSeqSub" (formula "27") (term "1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "add_zero_right" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "getOfSeqDef" (formula "27") (term "1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "2,1,1,1,0,1,0")) + (rule "castDel" (formula "27") (term "1,1,1,1,0,1,0")) + (rule "polySimp_elimSub" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "0,2,1,1,1,1,0,1,0")) + (rule "polySimp_addComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulAssoc" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "0,0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "0,1,0,0,1,0,1,1,1,0,1,0")) + (rule "polySimp_addAssoc" (formula "27") (term "0,0,1,0,1,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "27") (term "0,0,1,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "27") (term "1,0,1,1,1,0,1,0")) + (rule "polySimp_mulComm0" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "1,1,0,1,1,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "27") (term "1,1,1,0,1,1,1,0,1,0")) + (rule "polySimp_rightDist" (formula "27") (term "0,1,1,0,1,1,1,0,1,0")) + (rule "mul_literals" (formula "27") (term "0,0,1,1,0,1,1,1,0,1,0")) + (rule "cut_direct" (formula "2") (term "1")) + (branch "CUT: values.length <= hole_0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "2")) + (rule "mul_literals" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "12") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulLiterals" (formula "12") (term "1")) + (rule "polySimp_elimOne" (formula "12") (term "1")) + (rule "inEqSimp_contradInEq0" (formula "12") (ifseqformula "22")) + (rule "andLeft" (formula "12")) + (rule "inEqSimp_homoInEq1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1,0")) + (rule "polySimp_rightDist" (formula "12") (term "1,0")) + (rule "mul_literals" (formula "12") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm0" (formula "12") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "12") (term "0")) + (rule "add_literals" (formula "12") (term "1,1,0")) + (rule "times_zero_1" (formula "12") (term "1,0")) + (rule "add_literals" (formula "12") (term "0")) + (rule "leq_literals" (formula "12")) + (rule "closeFalse" (formula "12")) + ) + (branch "CUT: values.length <= hole_0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "31")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "5") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "5") (term "0,0")) + (rule "mul_literals" (formula "5") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "5") (term "0")) + (rule "add_literals" (formula "5") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "5")) + (rule "polySimp_mulLiterals" (formula "5") (term "0")) + (rule "polySimp_elimOne" (formula "5") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "5") (ifseqformula "11")) + (rule "qeq_literals" (formula "5") (term "0")) + (builtin "One Step Simplification" (formula "5")) + (rule "closeFalse" (formula "5")) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (rule "false_right" (formula "30")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but i Out of Bounds!)" + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "29"))) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "polySimp_homoEq" (formula "19")) + (rule "polySimp_homoEq" (formula "22") (term "1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,1")) + (rule "polySimp_addComm1" (formula "19") (term "0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,1")) + (rule "polySimp_addComm0" (formula "22") (term "0,0,1")) + (rule "inEqSimp_ltRight" (formula "28")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "15") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "22")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "polySimp_sepPosMonomial" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1")) + (rule "polySimp_rightDist" (formula "20") (term "1")) + (rule "polySimp_mulLiterals" (formula "20") (term "1,1")) + (rule "mul_literals" (formula "20") (term "0,1")) + (rule "polySimp_elimOne" (formula "20") (term "1,1")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "applyEqRigid" (formula "2") (term "1,0") (ifseqformula "20")) + (rule "applyEq" (formula "2") (term "1,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "2") (term "0,1")) + (rule "add_literals" (formula "2") (term "0,0,1")) + (rule "add_zero_left" (formula "2") (term "0,1")) + (rule "applyEq" (formula "21") (term "0") (ifseqformula "20")) + (rule "inEqSimp_homoInEq1" (formula "21")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,0")) + (rule "mul_literals" (formula "21") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "21") (term "0")) + (rule "polySimp_addComm1" (formula "21") (term "0,0")) + (rule "add_literals" (formula "21") (term "0,0,0")) + (rule "add_zero_left" (formula "21") (term "0,0")) + (rule "applyEqRigid" (formula "22") (term "1,0,0") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0")) + (rule "add_literals" (formula "22") (term "0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0")) + (rule "applyEq" (formula "23") (term "1,0,0,1") (ifseqformula "20")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1")) + (rule "add_literals" (formula "23") (term "0,0,0,1")) + (rule "add_zero_left" (formula "23") (term "0,0,1")) + (rule "polySimp_sepNegMonomial" (formula "23") (term "1")) + (rule "polySimp_mulLiterals" (formula "23") (term "0,1")) + (rule "polySimp_elimOne" (formula "23") (term "0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "17") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "17") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "17") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "17") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "17") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "17") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "15")) + (rule "polySimp_mulLiterals" (formula "15") (term "0")) + (rule "polySimp_elimOne" (formula "15") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "5")) + (rule "polySimp_mulComm0" (formula "5") (term "1")) + (rule "polySimp_rightDist" (formula "5") (term "1")) + (rule "polySimp_mulLiterals" (formula "5") (term "1,1")) + (rule "mul_literals" (formula "5") (term "0,1")) + (rule "polySimp_elimOne" (formula "5") (term "1,1")) + (rule "replace_known_left" (formula "4") (term "1,0,0") (ifseqformula "5")) + (builtin "One Step Simplification" (formula "4")) + (rule "inEqSimp_sepNegMonomial0" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_sepNegMonomial0" (formula "21")) + (rule "polySimp_mulLiterals" (formula "21") (term "0")) + (rule "polySimp_elimOne" (formula "21") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "27")) + (rule "replace_known_left" (formula "26") (term "0,0,0") (ifseqformula "21")) + (builtin "One Step Simplification" (formula "26")) + (rule "inEqSimp_sepNegMonomial0" (formula "22")) + (rule "polySimp_mulLiterals" (formula "22") (term "0")) + (rule "polySimp_elimOne" (formula "22") (term "0")) + (rule "replace_known_left" (formula "27") (term "0,0") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "27")) + (rule "applyEqReverse" (formula "28") (term "0") (ifseqformula "27")) + (rule "hideAuxiliaryEq" (formula "27")) + (rule "inEqSimp_subsumption1" (formula "4") (term "0,0") (ifseqformula "15")) + (rule "inEqSimp_homoInEq0" (formula "4") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "4") (term "0,0,0,0")) + (rule "add_literals" (formula "4") (term "1,1,0,0,0,0")) + (rule "times_zero_1" (formula "4") (term "1,0,0,0,0")) + (rule "add_zero_right" (formula "4") (term "0,0,0,0")) + (rule "qeq_literals" (formula "4") (term "0,0,0")) + (builtin "One Step Simplification" (formula "4")) + (rule "applyEqReverse" (formula "25") (term "2,0") (ifseqformula "4")) + (rule "applyEqReverse" (formula "27") (term "1") (ifseqformula "4")) + (rule "hideAuxiliaryEq" (formula "4")) + (rule "inEqSimp_subsumption0" (formula "15") (ifseqformula "4")) + (rule "inEqSimp_homoInEq0" (formula "15") (term "0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "15") (term "0,0")) + (rule "add_literals" (formula "15") (term "1,1,0,0")) + (rule "times_zero_1" (formula "15") (term "1,0,0")) + (rule "add_zero_right" (formula "15") (term "0,0")) + (rule "qeq_literals" (formula "15") (term "0")) + (builtin "One Step Simplification" (formula "15")) + (rule "true_left" (formula "15")) + (rule "inEqSimp_subsumption1" (formula "19") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_subsumption1" (formula "9") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0")) + (rule "add_zero_right" (formula "9") (term "0,0")) + (rule "qeq_literals" (formula "9") (term "0")) + (builtin "One Step Simplification" (formula "9")) + (rule "true_left" (formula "9")) + (rule "inEqSimp_exactShadow3" (formula "18") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "18") (term "0,0")) + (rule "polySimp_addComm0" (formula "18") (term "0")) + (rule "inEqSimp_sepNegMonomial1" (formula "18")) + (rule "polySimp_mulLiterals" (formula "18") (term "0")) + (rule "polySimp_elimOne" (formula "18") (term "0")) + (rule "replace_known_left" (formula "23") (term "0,0") (ifseqformula "18")) + (builtin "One Step Simplification" (formula "23")) + (rule "hideAuxiliaryEq" (formula "23")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0")) + (rule "polySimp_addComm1" (formula "13") (term "0,0")) + (rule "add_literals" (formula "13") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1")) + (rule "polySimp_rightDist" (formula "13") (term "1")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1")) + (rule "mul_literals" (formula "13") (term "0,1")) + (rule "polySimp_elimOne" (formula "13") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "18")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,0,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "14") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_left" (formula "21") (term "0,1") (ifseqformula "22")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "25")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "20") (term "0,0")) + (rule "wellFormedAnon" (formula "20") (term "1,0")) + (rule "wellFormedAnon" (formula "20") (term "0,1,0")) + (rule "replace_known_right" (formula "20") (term "0,0,0") (ifseqformula "26")) + (builtin "One Step Simplification" (formula "20") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "21") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "21")) + (rule "translateJavaAddInt" (formula "21") (term "0,2,1,1,0,0")) + (rule "translateJavaSubInt" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_elimSub" (formula "21") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "21") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "21") (term "1,1,0,0,0")) + (rule "add_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "21") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "23") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "23")) + (rule "translateJavaSubInt" (formula "23") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "23") (term "1,1,0,0")) + (rule "mul_literals" (formula "23") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "23") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "23") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "23") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "23") (term "0,0,1,0,0")) + (rule "add_literals" (formula "23") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "23") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "23") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "23") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "23") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "23") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "23") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "23") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "15") (term "0")) + (rule "wellFormedAnon" (formula "15") (term "1,0")) + (rule "replace_known_right" (formula "15") (term "0,0,0") (ifseqformula "27")) + (builtin "One Step Simplification" (formula "15") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "16"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "16") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "16")) + (rule "translateJavaAddInt" (formula "16") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "16") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "16") (term "1,1,0,0")) + (rule "mul_literals" (formula "16") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "16") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "16") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "16") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_imp2or" (formula "16") (term "0")) + (rule "commute_or" (formula "2")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "16") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "16") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "16") (term "0,0,1,0,0")) + (rule "add_literals" (formula "16") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "16") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "16") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "16") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "16") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "16") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "16") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "16") (term "1,1,0,0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "Definition_axiom_for_seqUpd_in_de_wiesler_Sorter" (formula "25") (term "0")) + (rule "translateJavaAddInt" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "1,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "0,1,1,0")) + (rule "lenOfSeqDef" (formula "25") (term "2,1,0")) + (rule "polySimp_elimSub" (formula "25") (term "1,2,1,0")) + (rule "polySimp_addComm0" (formula "25") (term "1,2,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "25") (term "0,2,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "0,0,2,1,0")) + (rule "inEqSimp_subsumption1" (formula "25") (term "0,2,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "25") (term "0,0,2,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,2,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,0,2,1,0")) + (rule "polySimp_addComm1" (formula "25") (term "0,0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,0,0,2,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "25") (term "0,0,0,2,1,0")) + (rule "add_literals" (formula "25") (term "1,1,0,0,0,2,1,0")) + (rule "times_zero_1" (formula "25") (term "1,0,0,0,2,1,0")) + (rule "add_zero_right" (formula "25") (term "0,0,0,2,1,0")) + (rule "qeq_literals" (formula "25") (term "0,0,2,1,0")) + (builtin "One Step Simplification" (formula "25")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_left" (formula "23") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "28")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "24")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0,1,0")) + (rule "nnf_notAnd" (formula "24") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "24") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "21") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "21")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "21") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "21") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "21") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "21") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "0,0,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "21") (term "1,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,1")) + (rule "nnf_imp2or" (formula "21") (term "0,1")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "21") (term "0,1,0,1")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0")) + (rule "nnf_notAnd" (formula "21") (term "0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "21") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "21") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,0,0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "21") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "21") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "21") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "21") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "21") (term "1,1,1,0,0,1,0,1")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,1,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "23") (term "0")) + (rule "wellFormedAnon" (formula "23") (term "1,0")) + (rule "wellFormedAnon" (formula "23") (term "0,1,0")) + (rule "replace_known_right" (formula "23") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "23") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "24"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "24") (term "0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "24")) + (rule "translateJavaAddInt" (formula "24") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "24") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "24") (term "1,1,0,0")) + (rule "mul_literals" (formula "24") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "24") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "24") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "24") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "24") (term "0")) + (rule "nnf_notAnd" (formula "24") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "24") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "24") (term "0,0,1,0,0")) + (rule "add_literals" (formula "24") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "24") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "24") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "24") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "24") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "24") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "24") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "24") (term "1,1,0,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "21") (term "0,0")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "29")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "17"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "22") (term "0,0") (inst "i=i_1")) + (builtin "One Step Simplification" (formula "22")) + (rule "translateJavaSubInt" (formula "22") (term "1,1,0,0,0")) + (rule "translateJavaAddInt" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_elimSub" (formula "22") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "1,1,1,0,0,0")) + (rule "polySimp_addComm0" (formula "22") (term "0,2,1,1,0,0")) + (rule "polySimp_addComm1" (formula "22") (term "1,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "1,1,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,0")) + (rule "nnf_imp2or" (formula "22") (term "0,0")) + (rule "nnf_notAnd" (formula "22") (term "0,0,0")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,0")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,0")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,0")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,0")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,0")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,0")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0")) + (rule "commute_or" (formula "25") (term "0,0,1,0")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "24") (term "0")) + (rule "wellFormedAnon" (formula "24") (term "1,0")) + (rule "wellFormedAnon" (formula "24") (term "0,1,0")) + (rule "replace_known_left" (formula "24") (term "1,1,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "24") (ifInst "" (formula "30")) (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "25"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "25") (term "0") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "25")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "25") (term "1,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0")) + (rule "nnf_notAnd" (formula "25") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "25") (term "0,1,0")) + (rule "nnf_notAnd" (formula "25") (term "0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "25") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "25") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "25") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "25") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "25") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "25") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "25") (term "1,1,0,0,0,1,0")) + (rule "cut_direct" (formula "23") (term "1")) + (branch "CUT: k_0 = hole_0 TRUE" + (builtin "One Step Simplification" (formula "24")) + (rule "true_left" (formula "24")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,1,0,1,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "1,1,1,0,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "26") (term "2,1,0,0,1,0,1,0") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,0") (ifseqformula "23")) + (rule "applyEq" (formula "14") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "16") (term "1,1,1,0,0") (ifseqformula "23")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,1,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "22") (term "2,1,0,0,1,0,1,0,1") (ifseqformula "23")) + (rule "applyEq" (formula "13") (term "0") (ifseqformula "23")) + (rule "applyEq" (formula "25") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "23") (term "3,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "27") (term "0,2,0,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "25") (term "1,0,0,0,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "21") (term "2,1,0,1,1,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "20") (term "2,1,0,0,1") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,1,0") (ifseqformula "22")) + (rule "applyEq" (formula "21") (term "1,1,0,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "21") (term "1,1,1,0,0,1,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "24") (term "2,1,0,0,1,0,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "26") (term "2,1,0,0,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "25") (term "2,1,0,1,1,0,1,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "20") (term "1,3,0,1") (ifseqformula "22")) + (rule "applyEqRigid" (formula "20") (term "1,3,0,0") (ifseqformula "22")) + (rule "applyEqRigid" (formula "24") (term "1,1,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "27") (term "2,1,0,2,0,0,0,0") (ifseqformula "22")) + (rule "applyEq" (formula "19") (term "0") (ifseqformula "22")) + (rule "inEqSimp_homoInEq1" (formula "19")) + (rule "polySimp_pullOutFactor1" (formula "19") (term "0")) + (rule "add_literals" (formula "19") (term "1,0")) + (rule "times_zero_1" (formula "19") (term "0")) + (rule "leq_literals" (formula "19")) + (rule "true_left" (formula "19")) + (rule "applyEqRigid" (formula "22") (term "2,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "27") (term "0,2,1") (ifseqformula "21")) + (rule "applyEq" (formula "14") (term "1,1,0,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "14") (term "1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "25") (term "1,1,1,0,0") (ifseqformula "21")) + (rule "applyEqRigid" (formula "23") (term "1,1,0,0,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "25") (term "2,1,0,1,1,0") (ifseqformula "21")) + (rule "applyEq" (formula "4") (term "0") (ifseqformula "21")) + (rule "cut_direct" (formula "2") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "2")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "8")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "27")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "1") (ifseqformula "18")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "10") (ifseqformula "4")) + (rule "times_zero_1" (formula "10") (term "0,0")) + (rule "add_zero_left" (formula "10") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "10")) + (rule "mul_literals" (formula "10") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "4")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq1" (formula "20") (ifseqformula "11")) + (rule "andLeft" (formula "20")) + (rule "inEqSimp_homoInEq1" (formula "20")) + (rule "polySimp_mulComm0" (formula "20") (term "1,0")) + (rule "polySimp_rightDist" (formula "20") (term "1,0")) + (rule "mul_literals" (formula "20") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "20") (term "0")) + (rule "polySimp_addComm1" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "20") (term "0")) + (rule "add_literals" (formula "20") (term "1,1,0")) + (rule "times_zero_1" (formula "20") (term "1,0")) + (rule "add_zero_right" (formula "20") (term "0")) + (rule "leq_literals" (formula "20")) + (rule "closeFalse" (formula "20")) + ) + ) + (branch "CUT: k_0 = hole_0 FALSE" + (builtin "One Step Simplification" (formula "23")) + (rule "replace_known_left" (formula "22") (term "0") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_strengthen1" (formula "20") (ifseqformula "30")) + (rule "inEqSimp_contradEq7" (formula "30") (ifseqformula "20")) + (rule "polySimp_mulComm0" (formula "30") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "30") (term "0,0")) + (rule "add_literals" (formula "30") (term "1,1,0,0")) + (rule "times_zero_1" (formula "30") (term "1,0,0")) + (rule "add_zero_right" (formula "30") (term "0,0")) + (rule "leq_literals" (formula "30") (term "0")) + (builtin "One Step Simplification" (formula "30")) + (rule "false_right" (formula "30")) + (rule "inEqSimp_exactShadow3" (formula "20") (ifseqformula "4")) + (rule "polySimp_rightDist" (formula "20") (term "0,0")) + (rule "mul_literals" (formula "20") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "20") (term "0")) + (rule "polySimp_addAssoc" (formula "20") (term "0,0")) + (rule "add_literals" (formula "20") (term "0,0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "20")) + (rule "polySimp_mulLiterals" (formula "20") (term "0")) + (rule "polySimp_elimOne" (formula "20") (term "0")) + (rule "inEqSimp_subsumption0" (formula "19") (ifseqformula "20")) + (rule "inEqSimp_homoInEq0" (formula "19") (term "0")) + (rule "polySimp_mulComm0" (formula "19") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "19") (term "1,0,0")) + (rule "mul_literals" (formula "19") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "19") (term "0,0")) + (rule "polySimp_addComm1" (formula "19") (term "0,0,0")) + (rule "add_literals" (formula "19") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "19") (term "0,0")) + (rule "add_literals" (formula "19") (term "1,1,0,0")) + (rule "times_zero_1" (formula "19") (term "1,0,0")) + (rule "add_zero_right" (formula "19") (term "0,0")) + (rule "qeq_literals" (formula "19") (term "0")) + (builtin "One Step Simplification" (formula "19")) + (rule "true_left" (formula "19")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "19")) + (rule "polySimp_rightDist" (formula "3") (term "0,0")) + (rule "mul_literals" (formula "3") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm1" (formula "3") (term "0,0")) + (rule "add_literals" (formula "3") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_subsumption1" (formula "1") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "1") (term "0")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "polySimp_addComm1" (formula "1") (term "0,0,0")) + (rule "add_literals" (formula "1") (term "0,0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "1,1,0,0")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "true_left" (formula "1")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "21") (term "0,1")) + (rule "wellFormedAnon" (formula "21") (term "1,0")) + (rule "wellFormedAnon" (formula "21") (term "0,1,0")) + (rule "replace_known_right" (formula "21") (term "0,0,0") (ifseqformula "31")) + (builtin "One Step Simplification" (formula "21") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "17"))) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "22") (term "0,0")) + (rule "wellFormedAnon" (formula "22") (term "1,0")) + (rule "wellFormedAnon" (formula "22") (term "0,1,0")) + (rule "replace_known_right" (formula "22") (term "0,0,0") (ifseqformula "32")) + (builtin "One Step Simplification" (formula "22") (ifInst "" (formula "5")) (ifInst "" (formula "11")) (ifInst "" (formula "17")) (ifInst "" (formula "23"))) + (rule "true_left" (formula "22")) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "22") (term "0,1") (inst "i=i_1") (inst "j=j")) + (builtin "One Step Simplification" (formula "22")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1,0,1")) + (rule "inEqSimp_ltToLeq" (formula "22") (term "1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,1,0,0,1")) + (rule "polySimp_addAssoc" (formula "22") (term "0,0,1,0,0,1")) + (rule "add_literals" (formula "22") (term "0,0,0,1,0,0,1")) + (rule "add_zero_left" (formula "22") (term "0,0,1,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "1,0,1,0,1")) + (rule "inEqSimp_commuteLeq" (formula "22") (term "0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,1")) + (rule "nnf_imp2or" (formula "22") (term "0,1")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1")) + (rule "nnf_imp2or" (formula "22") (term "0,1,0,1")) + (rule "nnf_notAnd" (formula "22") (term "0,0,1,0,1")) + (rule "inEqSimp_notGeq" (formula "22") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "22") (term "0,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,0,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,0,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,0,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,0,0,0,1,0,1")) + (rule "inEqSimp_notLeq" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,0,0,1,0,0,1,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "22") (term "1,0,0,1,0,1")) + (rule "polySimp_mulComm0" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_rightDist" (formula "22") (term "1,1,0,0,1,0,1")) + (rule "polySimp_mulLiterals" (formula "22") (term "1,1,1,0,0,1,0,1")) + (rule "mul_literals" (formula "22") (term "0,1,1,0,0,1,0,1")) + (rule "polySimp_elimOne" (formula "22") (term "1,1,1,0,0,1,0,1")) + (rule "replace_known_left" (formula "22") (term "1") (ifseqformula "23")) + (builtin "One Step Simplification" (formula "22")) + (rule "true_left" (formula "22")) + (rule "commute_or" (formula "15") (term "0,0,1,0")) + (rule "cut_direct" (formula "1") (term "0")) + (branch "CUT: hole_0 <= 0 TRUE" + (builtin "One Step Simplification" (formula "2")) + (rule "true_left" (formula "2")) + (rule "inEqSimp_exactShadow3" (formula "3") (ifseqformula "1")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "polySimp_rightDist" (formula "3") (term "0")) + (rule "mul_literals" (formula "3") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "3")) + (rule "polySimp_mulLiterals" (formula "3") (term "0")) + (rule "polySimp_elimOne" (formula "3") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9")) + (rule "qeq_literals" (formula "3") (term "0")) + (builtin "One Step Simplification" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: hole_0 <= 0 FALSE" + (builtin "One Step Simplification" (formula "1")) + (rule "inEqSimp_leqRight" (formula "30")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_zero_right" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "mul_literals" (formula "1") (term "1")) + (rule "inEqSimp_exactShadow3" (formula "11") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "11") (term "0,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm0" (formula "11") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1")) + (rule "polySimp_rightDist" (formula "11") (term "1")) + (rule "polySimp_mulLiterals" (formula "11") (term "1,1")) + (rule "mul_literals" (formula "11") (term "0,1")) + (rule "polySimp_elimOne" (formula "11") (term "1,1")) + (rule "inEqSimp_contradInEq0" (formula "11") (ifseqformula "21")) + (rule "andLeft" (formula "11")) + (rule "inEqSimp_homoInEq1" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0")) + (rule "polySimp_rightDist" (formula "11") (term "1,0")) + (rule "mul_literals" (formula "11") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "11") (term "0")) + (rule "polySimp_addComm1" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0")) + (rule "add_literals" (formula "11") (term "1,1,0")) + (rule "times_zero_1" (formula "11") (term "1,0")) + (rule "add_zero_right" (formula "11") (term "0")) + (rule "leq_literals" (formula "11")) + (rule "closeFalse" (formula "11")) + ) + ) + ) + ) + ) + ) + (branch "Null Reference (_values = null)" + (rule "false_right" (formula "18")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "closeFalse" (formula "1")) + ) + (branch "Index Out of Bounds (_values != null, but k Out of Bounds!)" + (rule "false_right" (formula "18")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "inEqSimp_ltRight" (formula "16")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "13")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "2") (term "1")) + (rule "times_zero_1" (formula "2") (term "1,0,0,1")) + (rule "add_zero_right" (formula "2") (term "0,0,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1")) + (rule "polySimp_rightDist" (formula "3") (term "1")) + (rule "polySimp_mulLiterals" (formula "3") (term "1,1")) + (rule "mul_literals" (formula "3") (term "0,1")) + (rule "polySimp_elimOne" (formula "3") (term "1,1")) + (rule "inEqSimp_sepNegMonomial0" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "1,1")) + (rule "inEqSimp_subsumption0" (formula "14") (ifseqformula "3")) + (rule "inEqSimp_homoInEq0" (formula "14") (term "0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "14") (term "0,0")) + (rule "add_literals" (formula "14") (term "1,1,0,0")) + (rule "times_zero_1" (formula "14") (term "1,0,0")) + (rule "add_zero_right" (formula "14") (term "0,0")) + (rule "qeq_literals" (formula "14") (term "0")) + (builtin "One Step Simplification" (formula "14")) + (rule "true_left" (formula "14")) + (rule "inEqSimp_subsumption1" (formula "8") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "qeq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "true_left" (formula "8")) + (rule "inEqSimp_exactShadow3" (formula "12") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "12") (term "0,0")) + (rule "mul_literals" (formula "12") (term "0,0,0")) + (rule "polySimp_addAssoc" (formula "12") (term "0")) + (rule "polySimp_addComm1" (formula "12") (term "0,0")) + (rule "add_literals" (formula "12") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "12")) + (rule "polySimp_mulComm0" (formula "12") (term "1")) + (rule "polySimp_rightDist" (formula "12") (term "1")) + (rule "mul_literals" (formula "12") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "12") (term "1,1")) + (rule "polySimp_elimOne" (formula "12") (term "1,1")) + (rule "nnf_imp2or" (formula "13") (term "0")) + (rule "nnf_notAnd" (formula "13") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0,0,0")) + (rule "polySimp_addAssoc" (formula "13") (term "0,0,0,0,0")) + (rule "add_literals" (formula "13") (term "0,0,0,0,0,0")) + (rule "add_zero_left" (formula "13") (term "0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "13") (term "0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,0,0,0")) + (rule "inEqSimp_notGeq" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,1,0,0")) + (rule "Contract_axiom_for_isSortedSlice_in_Functions" (formula "14") (term "0")) + (rule "wellFormedAnon" (formula "14") (term "1,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "4")) (ifInst "" (formula "10")) (ifInst "" (formula "15"))) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "15")) + (rule "translateJavaSubInt" (formula "15") (term "1,1,0,0")) + (rule "translateJavaAddInt" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_elimSub" (formula "15") (term "1,1,0,0")) + (rule "mul_literals" (formula "15") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "15") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "commute_or" (formula "2")) + (rule "Contract_axiom_for_isSortedSliceTransitive_in_Functions" (formula "14") (term "0")) + (rule "wellFormedAnon" (formula "14") (term "1,0")) + (rule "replace_known_right" (formula "14") (term "0,0,0") (ifseqformula "17")) + (builtin "One Step Simplification" (formula "14") (ifInst "" (formula "4")) (ifInst "" (formula "10")) (ifInst "" (formula "15"))) + (rule "Definition_axiom_for_isSortedSliceTransitive_in_de_wiesler_Functions" (formula "15") (term "0") (inst "i=i") (inst "j=j")) + (builtin "One Step Simplification" (formula "15")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "inEqSimp_ltToLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "1,0,1,0")) + (rule "inEqSimp_commuteLeq" (formula "15") (term "0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0")) + (rule "nnf_notAnd" (formula "15") (term "0,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0")) + (rule "nnf_imp2or" (formula "15") (term "0,1,0")) + (rule "nnf_notAnd" (formula "15") (term "0,0,1,0")) + (rule "inEqSimp_notGeq" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "15") (term "0,0,0,1,0")) + (rule "polySimp_mulComm0" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,0,1,0")) + (rule "inEqSimp_notLeq" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_rightDist" (formula "15") (term "1,0,0,1,0,0,1,0")) + (rule "mul_literals" (formula "15") (term "0,1,0,0,1,0,0,1,0")) + (rule "polySimp_addAssoc" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "add_literals" (formula "15") (term "0,0,0,1,0,0,1,0")) + (rule "add_zero_left" (formula "15") (term "0,0,1,0,0,1,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "15") (term "1,0,0,1,0")) + (rule "polySimp_mulLiterals" (formula "15") (term "1,1,0,0,1,0")) + (rule "polySimp_elimOne" (formula "15") (term "1,1,0,0,1,0")) + (rule "Definition_axiom_for_isSortedSlice_in_de_wiesler_Functions" (formula "14") (term "0") (inst "i=i")) + (builtin "One Step Simplification" (formula "14")) + (rule "translateJavaAddInt" (formula "14") (term "0,2,1,1,0")) + (rule "translateJavaSubInt" (formula "14") (term "1,1,0,0")) + (rule "polySimp_elimSub" (formula "14") (term "1,1,0,0")) + (rule "mul_literals" (formula "14") (term "1,1,1,0,0")) + (rule "polySimp_addComm0" (formula "14") (term "0,2,1,1,0")) + (rule "polySimp_addComm0" (formula "14") (term "1,1,0,0")) + (rule "inEqSimp_ltToLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "14") (term "1,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "nnf_imp2or" (formula "14") (term "0")) + (rule "nnf_notAnd" (formula "14") (term "0,0")) + (rule "inEqSimp_notGeq" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "14") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,0,0,0")) + (rule "inEqSimp_notLeq" (formula "14") (term "1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,0,0,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,0,0,1,0,0")) + (rule "polySimp_addAssoc" (formula "14") (term "0,0,1,0,0")) + (rule "add_literals" (formula "14") (term "0,0,0,1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "14") (term "1,0,0")) + (rule "polySimp_mulComm0" (formula "14") (term "1,1,0,0")) + (rule "polySimp_rightDist" (formula "14") (term "1,1,0,0")) + (rule "polySimp_mulLiterals" (formula "14") (term "1,1,1,0,0")) + (rule "mul_literals" (formula "14") (term "0,1,1,0,0")) + (rule "polySimp_elimOne" (formula "14") (term "1,1,1,0,0")) + (rule "commute_or" (formula "14") (term "0,0,1,0")) + (rule "all_pull_out3" (formula "14") (term "0")) + (rule "shift_paren_or" (formula "14") (term "0,0")) + (rule "shift_paren_or" (formula "14") (term "0,0,0")) + (rule "cut_direct" (formula "2") (term "1")) + (branch "CUT: values.length <= k_0 TRUE" + (builtin "One Step Simplification" (formula "3")) + (rule "true_left" (formula "3")) + (rule "inEqSimp_exactShadow3" (formula "9") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "9") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9")) + (rule "polySimp_mulLiterals" (formula "9") (term "1")) + (rule "polySimp_elimOne" (formula "9") (term "1")) + (rule "inEqSimp_contradInEq1" (formula "3") (ifseqformula "9")) + (rule "andLeft" (formula "3")) + (rule "inEqSimp_homoInEq1" (formula "3")) + (rule "polySimp_mulComm0" (formula "3") (term "1,0")) + (rule "polySimp_rightDist" (formula "3") (term "1,0")) + (rule "mul_literals" (formula "3") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "3") (term "0")) + (rule "polySimp_addComm0" (formula "3") (term "0,0")) + (rule "polySimp_pullOutFactor1b" (formula "3") (term "0")) + (rule "add_literals" (formula "3") (term "1,1,0")) + (rule "times_zero_1" (formula "3") (term "1,0")) + (rule "add_zero_right" (formula "3") (term "0")) + (rule "leq_literals" (formula "3")) + (rule "closeFalse" (formula "3")) + ) + (branch "CUT: values.length <= k_0 FALSE" + (builtin "One Step Simplification" (formula "2")) + (rule "inEqSimp_leqRight" (formula "16")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulComm0" (formula "1") (term "1")) + (rule "polySimp_rightDist" (formula "1") (term "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1,1")) + (rule "mul_literals" (formula "1") (term "0,1")) + (rule "polySimp_elimOne" (formula "1") (term "1,1")) + (rule "inEqSimp_exactShadow3" (formula "13") (ifseqformula "3")) + (rule "polySimp_rightDist" (formula "13") (term "0,0")) + (rule "mul_literals" (formula "13") (term "0,0,0")) + (rule "polySimp_addComm1" (formula "13") (term "0")) + (rule "add_literals" (formula "13") (term "0,0")) + (rule "inEqSimp_sepNegMonomial1" (formula "13")) + (rule "polySimp_mulLiterals" (formula "13") (term "0")) + (rule "polySimp_elimOne" (formula "13") (term "0")) + (rule "inEqSimp_contradInEq1" (formula "13") (ifseqformula "8")) + (rule "qeq_literals" (formula "13") (term "0")) + (builtin "One Step Simplification" (formula "13")) + (rule "closeFalse" (formula "13")) + ) + ) + ) + (branch "if x_2 false" + (builtin "One Step Simplification" (formula "18")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + ) + (branch "Use Case" + (builtin "One Step Simplification" (formula "8")) + (builtin "One Step Simplification" (formula "11")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,2,0,0,0,0")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1")) + (rule "translateJavaSubInt" (formula "8") (term "2,1,0,0,1,0,1,0")) + (rule "translateJavaSubInt" (formula "11") (term "2,1,0,1,1,0")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "8")) + (rule "andLeft" (formula "9")) + (rule "polySimp_elimSub" (formula "15") (term "2,1,0,1,1,0")) + (rule "mul_literals" (formula "15") (term "1,2,1,0,1,1,0")) + (rule "polySimp_elimSub" (formula "12") (term "2,1,0,0")) + (rule "mul_literals" (formula "12") (term "1,2,1,0,0")) + (rule "polySimp_elimSub" (formula "11") (term "2,1,0,0,1,0")) + (rule "mul_literals" (formula "11") (term "1,2,1,0,0,1,0")) + (rule "polySimp_elimSub" (formula "8") (term "2,1,0,2,0")) + (rule "mul_literals" (formula "8") (term "1,2,1,0,2,0")) + (rule "polySimp_addComm0" (formula "15") (term "2,1,0,1,1,0")) + (rule "polySimp_addComm0" (formula "12") (term "2,1,0,0")) + (rule "polySimp_addComm0" (formula "11") (term "2,1,0,0,1,0")) + (rule "polySimp_addComm0" (formula "8") (term "2,1,0,2,0")) + (rule "narrowSelectArrayType" (formula "8") (term "2,1") (ifseqformula "1") (ifseqformula "14")) + (rule "inEqSimp_commuteLeq" (formula "11") (term "0,0,0")) + (rule "variableDeclarationAssign" (formula "15") (term "1")) + (rule "variableDeclaration" (formula "15") (term "1") (newnames "b_1")) + (rule "commute_and" (formula "11") (term "0,0")) + (rule "less_than_comparison_simple" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "methodCallEmpty" (formula "15") (term "1")) + (rule "emptyModality" (formula "15") (term "1")) + (builtin "One Step Simplification" (formula "15")) + (rule "impRight" (formula "15")) + (rule "notLeft" (formula "1")) + (rule "methodCallEmpty" (formula "16") (term "1")) + (rule "tryEmpty" (formula "16") (term "1")) + (rule "emptyModality" (formula "16") (term "1")) + (rule "andRight" (formula "16")) + (branch + (rule "andRight" (formula "16")) + (branch + (rule "andRight" (formula "16")) + (branch + (builtin "One Step Simplification" (formula "16")) + (rule "narrowSelectArrayType" (formula "16") (term "2,1") (ifseqformula "1") (ifseqformula "15")) + (rule "close" (formula "16") (ifseqformula "8")) + ) + (branch + (builtin "One Step Simplification" (formula "16")) + (rule "inEqSimp_ltRight" (formula "14")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "14")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "inEqSimp_antiSymm" (formula "1") (ifseqformula "11")) + (rule "applyEq" (formula "14") (term "3,0") (ifseqformula "1")) + (rule "close" (formula "16") (ifseqformula "14")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "16")) + (rule "closeTrue" (formula "16")) + ) + ) + (branch + (builtin "One Step Simplification" (formula "16")) + (rule "allRight" (formula "16") (inst "sk=f_0")) + (rule "allRight" (formula "16") (inst "sk=o_0")) + (rule "orRight" (formula "16")) + (rule "orRight" (formula "16")) + (rule "eqSymm" (formula "18")) + (rule "eqSymm" (formula "16") (term "0,0,0,1")) + (rule "inEqSimp_ltRight" (formula "14")) + (rule "mul_literals" (formula "1") (term "0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0")) + (rule "inEqSimp_ltRight" (formula "14")) + (rule "polySimp_mulComm0" (formula "1") (term "0,0")) + (rule "inEqSimp_ltToLeq" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0,0,0")) + (rule "inEqSimp_ltToLeq" (formula "11")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_addComm1" (formula "11") (term "0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_sepPosMonomial0" (formula "13") (term "0,0,0")) + (rule "polySimp_mulComm0" (formula "13") (term "1,0,0,0")) + (rule "polySimp_rightDist" (formula "13") (term "1,0,0,0")) + (rule "polySimp_mulLiterals" (formula "13") (term "1,1,0,0,0")) + (rule "mul_literals" (formula "13") (term "0,1,0,0,0")) + (rule "polySimp_elimOne" (formula "13") (term "1,1,0,0,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "11")) + (rule "polySimp_mulLiterals" (formula "11") (term "0")) + (rule "polySimp_elimOne" (formula "11") (term "0")) + (rule "inEqSimp_subsumption1" (formula "7") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "7") (term "0")) + (rule "polySimp_pullOutFactor1b" (formula "7") (term "0,0")) + (rule "add_literals" (formula "7") (term "1,1,0,0")) + (rule "times_zero_1" (formula "7") (term "1,0,0")) + (rule "add_zero_right" (formula "7") (term "0,0")) + (rule "qeq_literals" (formula "7") (term "0")) + (builtin "One Step Simplification" (formula "7")) + (rule "true_left" (formula "7")) + (rule "pullOutSelect" (formula "17") (term "0") (inst "selectSK=f_0_0")) + (rule "simplifySelectOfAnon" (formula "1")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "17"))) + (rule "eqSymm" (formula "18")) + (rule "elementOfArrayRange" (formula "1") (term "0,0,0") (inst "iv=iv")) + (rule "eqSymm" (formula "1") (term "0,0,0,1,0,0,0")) + (rule "inEqSimp_commuteLeq" (formula "1") (term "1,0,0,1,0,0,0")) + (rule "replace_known_right" (formula "1") (term "0,0,0") (ifseqformula "16")) + (builtin "One Step Simplification" (formula "1") (ifInst "" (formula "18"))) + (rule "closeFalse" (formula "1")) + ) + ) +) +) +} diff --git a/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__seqUpd(_seq,int,int)).JML model_behavior operation contract.0.proof b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__seqUpd(_seq,int,int)).JML model_behavior operation contract.0.proof new file mode 100644 index 0000000..80df881 --- /dev/null +++ b/src/main/key/Sorter/de.wiesler.Sorter(de.wiesler.Sorter__seqUpd(_seq,int,int)).JML model_behavior operation contract.0.proof @@ -0,0 +1,477 @@ +\profile "Java Profile"; + +\settings { +"#Proof-Settings-Config-File +#Tue Oct 24 17:58:04 CEST 2023 +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:off , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:off , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_INVARIANT +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_ON +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=7000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../../java/de/wiesler"; + +\proofObligation "#Proof Obligation Settings +#Tue Oct 24 17:58:04 CEST 2023 +contract=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:seqUpd(\\\\seq,int,int)].JML model_behavior operation contract.0 +name=de.wiesler.Sorter[de.wiesler.Sorter\\:\\:seqUpd(\\\\seq,int,int)].JML model_behavior operation contract.0 +class=de.uka.ilkd.key.proof.init.FunctionalOperationContractPO +"; + +\proof { +(keyLog "0" (keyUser "mattias" ) (keyVersion "e1a85b31e7")) + +(autoModeTime "605") + +(branch "dummy ID" +(rule "impRight" (formula "1") (newnames "heapAtPre_0,heapBefore,o,f")) + (builtin "One Step Simplification" (formula "1")) + (builtin "One Step Simplification" (formula "2")) +(rule "translateJavaAddInt" (formula "2") (term "1,1,0,0,1,0")) +(rule "andLeft" (formula "1")) +(rule "andLeft" (formula "2")) +(rule "andLeft" (formula "1")) +(rule "allRight" (formula "5") (inst "sk=x_0")) +(rule "impRight" (formula "5")) +(rule "andLeft" (formula "1")) +(rule "eqSymm" (formula "7")) +(rule "polySimp_addComm0" (formula "7") (term "1,1,0,1")) +(rule "inEqSimp_ltToLeq" (formula "6")) +(rule "polySimp_mulComm0" (formula "6") (term "1,0,0")) +(rule "polySimp_addComm1" (formula "6") (term "0")) +(rule "inEqSimp_ltToLeq" (formula "2")) +(rule "polySimp_mulComm0" (formula "2") (term "1,0,0")) +(rule "polySimp_addComm1" (formula "2") (term "0")) +(rule "inEqSimp_commuteLeq" (formula "5")) +(rule "inEqSimp_commuteLeq" (formula "1")) +(rule "inEqSimp_sepNegMonomial0" (formula "6")) +(rule "polySimp_mulLiterals" (formula "6") (term "0")) +(rule "polySimp_elimOne" (formula "6") (term "0")) +(rule "inEqSimp_sepNegMonomial0" (formula "2")) +(rule "polySimp_mulLiterals" (formula "2") (term "0")) +(rule "polySimp_elimOne" (formula "2") (term "0")) +(rule "getOfSeqConcat" (formula "7") (term "1")) +(rule "eqSymm" (formula "7")) +(rule "polySimp_elimSub" (formula "7") (term "1,2,0")) +(rule "lenOfSeqConcat" (formula "7") (term "1,0,0")) + (builtin "One Step Simplification" (formula "7")) +(rule "polySimp_addComm0" (formula "7") (term "1,0,0")) +(rule "lenOfSeqConcat" (formula "7") (term "0,1,1,2,0")) + (builtin "One Step Simplification" (formula "7")) +(rule "polySimp_mulComm0" (formula "7") (term "1,1,2,0")) +(rule "polySimp_addComm0" (formula "7") (term "1,1,1,2,0")) +(rule "polySimp_rightDist" (formula "7") (term "1,1,2,0")) +(rule "mul_literals" (formula "7") (term "0,1,1,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "1,2,0")) +(rule "polySimp_addComm0" (formula "7") (term "0,1,2,0")) +(rule "lenOfSeqSub" (formula "7") (term "1,1,0,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,1,1,0,0")) +(rule "times_zero_2" (formula "7") (term "1,1,1,1,0,0")) +(rule "add_zero_right" (formula "7") (term "1,1,1,0,0")) +(rule "lenOfSeqSub" (formula "7") (term "0,1,1,2,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,2,0")) +(rule "times_zero_2" (formula "7") (term "1,1,0,1,1,2,0")) +(rule "add_zero_right" (formula "7") (term "1,0,1,1,2,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,1,0,0")) +(rule "add_zero_right" (formula "7") (term "0,0,1,1,0,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,1,0,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,1,2,0")) +(rule "add_zero_right" (formula "7") (term "0,0,0,1,1,2,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,1,1,2,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,0")) +(rule "polySimp_rightDist" (formula "7") (term "1,0,0,0,0")) +(rule "mul_literals" (formula "7") (term "0,1,0,0,0,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,0,0,0")) +(rule "add_literals" (formula "7") (term "0,0,0,0,0")) +(rule "add_zero_left" (formula "7") (term "0,0,0,0")) +(rule "polySimp_addComm0" (formula "7") (term "0,0,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,1,2,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,1,2,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,1,2,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,0,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0,0,0")) +(rule "getOfSeqConcat" (formula "7") (term "1,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,2,1,0")) +(rule "lenOfSeqSub" (formula "7") (term "1,0,1,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,1,0,1,0")) +(rule "times_zero_2" (formula "7") (term "1,1,1,0,1,0")) +(rule "add_zero_right" (formula "7") (term "1,1,0,1,0")) +(rule "lenOfSeqSub" (formula "7") (term "0,1,1,2,1,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,0,1,1,2,1,0")) +(rule "mul_literals" (formula "7") (term "1,1,0,1,1,2,1,0")) +(rule "add_zero_right" (formula "7") (term "1,0,1,1,2,1,0")) +(rule "getOfSeqSingleton" (formula "7") (term "2,1,0")) +(rule "castDel" (formula "7") (term "2,2,1,0")) +(rule "castDel" (formula "7") (term "1,2,1,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0,1,0")) +(rule "add_zero_right" (formula "7") (term "0,0,1,0,1,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0,1,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,0,1,0,0,2,1,0")) +(rule "add_zero_right" (formula "7") (term "0,0,0,1,0,0,2,1,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,1,0,0,2,1,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "0,1,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,0,1,0")) +(rule "polySimp_addComm1" (formula "7") (term "0,0,1,0")) +(rule "polySimp_sepNegMonomial" (formula "7") (term "0,2,1,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,2,1,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,2,1,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,1,0,0,1,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,1,0,0,1,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0,1,0,0,1,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,0,0,2,1,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,0,2,1,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0,0,2,1,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "0,1,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,1,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,1,0")) +(rule "getOfSeqSub" (formula "7") (term "2,0")) +(rule "castDel" (formula "7") (term "2,2,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,1,0,2,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,1,1,0,2,0")) +(rule "polySimp_addComm1" (formula "7") (term "1,1,2,0")) +(rule "polySimp_addComm1" (formula "7") (term "0,1,1,2,0")) +(rule "polySimp_rightDist" (formula "7") (term "1,1,1,0,2,0")) +(rule "mul_literals" (formula "7") (term "0,1,1,1,0,2,0")) +(rule "polySimp_addComm0" (formula "7") (term "1,1,0,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,0,1,1,2,0")) +(rule "add_literals" (formula "7") (term "0,0,0,1,1,2,0")) +(rule "add_zero_left" (formula "7") (term "0,0,1,1,2,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "1,0,2,0")) +(rule "polySimp_rightDist" (formula "7") (term "1,0,0,1,0,2,0")) +(rule "polySimp_rightDist" (formula "7") (term "0,1,0,0,1,0,2,0")) +(rule "mul_literals" (formula "7") (term "0,0,1,0,0,1,0,2,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "1,0,1,0,0,1,0,2,0")) +(rule "polySimp_elimOne" (formula "7") (term "1,0,1,0,0,1,0,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,0,1,0,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,0,0,1,0,2,0")) +(rule "add_literals" (formula "7") (term "0,0,0,0,1,0,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,1,0,2,0")) +(rule "polySimp_addComm1" (formula "7") (term "0,0,1,0,2,0")) +(rule "polySimp_addAssoc" (formula "7") (term "0,0,0,1,0,2,0")) +(rule "polySimp_addComm1" (formula "7") (term "0,0,0,0,1,0,2,0")) +(rule "add_literals" (formula "7") (term "0,0,0,0,0,1,0,2,0")) +(rule "inEqSimp_homoInEq0" (formula "7") (term "0,0,2,0")) +(rule "times_zero_2" (formula "7") (term "1,0,0,0,2,0")) +(rule "add_zero_right" (formula "7") (term "0,0,0,2,0")) +(rule "inEqSimp_sepNegMonomial0" (formula "7") (term "1,0,2,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,1,0,2,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,1,0,2,0")) +(rule "inEqSimp_sepNegMonomial1" (formula "7") (term "0,0,2,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "0,0,0,2,0")) +(rule "polySimp_elimOne" (formula "7") (term "0,0,0,2,0")) +(rule "getOfSeqSub" (formula "7") (term "1,1,0")) +(rule "castDel" (formula "7") (term "2,1,1,0")) +(rule "add_zero_right" (formula "7") (term "1,1,1,1,0")) +(rule "polySimp_elimSub" (formula "7") (term "1,1,0,1,1,0")) +(rule "times_zero_2" (formula "7") (term "1,1,1,0,1,1,0")) +(rule "add_zero_right" (formula "7") (term "1,1,0,1,1,0")) +(rule "inEqSimp_ltToLeq" (formula "7") (term "1,0,1,1,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,0,1,0,1,1,0")) +(rule "inEqSimp_commuteLeq" (formula "7") (term "0,0,1,1,0")) +(rule "replace_known_left" (formula "7") (term "0,0,1,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "7")) +(rule "inEqSimp_sepPosMonomial0" (formula "7") (term "0,1,1,0")) +(rule "polySimp_mulComm0" (formula "7") (term "1,0,1,1,0")) +(rule "polySimp_rightDist" (formula "7") (term "1,0,1,1,0")) +(rule "mul_literals" (formula "7") (term "0,1,0,1,1,0")) +(rule "polySimp_mulLiterals" (formula "7") (term "1,1,0,1,1,0")) +(rule "polySimp_elimOne" (formula "7") (term "1,1,0,1,1,0")) +(rule "lenNonNegative" (formula "6") (term "0")) +(rule "inEqSimp_commuteLeq" (formula "6")) +(rule "ifthenelse_split" (formula "8") (term "0,0,0")) +(branch "idx >= 1 TRUE" + (rule "replace_known_left" (formula "9") (term "0,0,0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "1")) (ifInst "" (formula "1")) (ifInst "" (formula "1")) (ifInst "" (formula "1"))) + (rule "eqSymm" (formula "9") (term "0,2,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "1,1,2,0")) + (rule "polySimp_pullOutFactor1" (formula "9") (term "0,1,1,2,0")) + (rule "add_literals" (formula "9") (term "1,0,1,1,2,0")) + (rule "times_zero_1" (formula "9") (term "0,1,1,2,0")) + (rule "add_zero_left" (formula "9") (term "1,1,2,0")) + (rule "inEqSimp_commuteGeq" (formula "9") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,2,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,1,0,2,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "9") (term "0,0,0,1,0,2,0")) + (rule "add_literals" (formula "9") (term "1,1,0,0,0,1,0,2,0")) + (rule "times_zero_1" (formula "9") (term "1,0,0,0,1,0,2,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,1,0,2,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,1,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,2,0")) + (rule "polySimp_addComm1" (formula "9") (term "0,0,0,2,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,2,0")) + (rule "replace_known_left" (formula "9") (term "1,0,2,0") (ifseqformula "3")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,2,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,2,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,2,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,2,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0")) + (rule "polySimp_mulComm0" (formula "9") (term "1,0,1,0")) + (rule "polySimp_rightDist" (formula "9") (term "1,0,1,0")) + (rule "mul_literals" (formula "9") (term "0,1,0,1,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "1,1,0,1,0")) + (rule "polySimp_elimOne" (formula "9") (term "1,1,0,1,0")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "1")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "ifthenelse_split" (formula "8") (term "1")) + (branch "x_0 = idx TRUE" + (rule "replace_known_left" (formula "9") (term "0,2,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "9")) + (rule "applyEq" (formula "3") (term "0") (ifseqformula "1")) + (rule "applyEq" (formula "4") (term "1,1") (ifseqformula "1")) + (rule "applyEq" (formula "8") (term "0,0,1,1,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,1,1,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,1,1,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,1,1,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,1,1,0")) + (rule "add_zero_right" (formula "8") (term "0,0,1,1,0")) + (rule "qeq_literals" (formula "8") (term "0,1,1,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "8") (term "0,0,2,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq1" (formula "8") (term "0,2,0")) + (rule "polySimp_pullOutFactor1b" (formula "8") (term "0,0,2,0")) + (rule "add_literals" (formula "8") (term "1,1,0,0,2,0")) + (rule "times_zero_1" (formula "8") (term "1,0,0,2,0")) + (rule "add_literals" (formula "8") (term "0,0,2,0")) + (rule "leq_literals" (formula "8") (term "0,2,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "8") (term "0,0,0") (ifseqformula "1")) + (rule "inEqSimp_homoInEq0" (formula "8") (term "0,0")) + (rule "polySimp_pullOutFactor1" (formula "8") (term "0,0,0")) + (rule "add_literals" (formula "8") (term "1,0,0,0")) + (rule "times_zero_1" (formula "8") (term "0,0,0")) + (rule "qeq_literals" (formula "8") (term "0,0")) + (builtin "One Step Simplification" (formula "8")) + (rule "orRight" (formula "8")) + (rule "notRight" (formula "8")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "2")) + (rule "inEqSimp_homoInEq0" (formula "1")) + (rule "polySimp_pullOutFactor1b" (formula "1") (term "0")) + (rule "add_literals" (formula "1") (term "1,1,0")) + (rule "times_zero_1" (formula "1") (term "1,0")) + (rule "add_literals" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "x_0 = idx FALSE" + (rule "replace_known_right" (formula "9") (term "0,2,1,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9")) + (rule "ifthenelse_split" (formula "9") (term "1,0")) + (branch "x_0 <= -1 + idx TRUE" + (rule "replace_known_left" (formula "10") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "orRight" (formula "10")) + (rule "orRight" (formula "11")) + (rule "eqSymm" (formula "12")) + (rule "inEqSimp_leqRight" (formula "10")) + (rule "polySimp_mulComm0" (formula "1") (term "1,0,0")) + (rule "inEqSimp_geqRight" (formula "11")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1")) + (rule "polySimp_rightDist" (formula "2") (term "1")) + (rule "mul_literals" (formula "2") (term "0,1")) + (rule "polySimp_mulLiterals" (formula "2") (term "1,1")) + (rule "polySimp_elimOne" (formula "2") (term "1,1")) + (rule "inEqSimp_sepPosMonomial0" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_contradEq3" (formula "11") (ifseqformula "3")) + (rule "polySimp_mulComm0" (formula "11") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "11") (term "0,0")) + (rule "add_literals" (formula "11") (term "1,1,0,0")) + (rule "times_zero_1" (formula "11") (term "1,0,0")) + (rule "add_zero_right" (formula "11") (term "0,0")) + (rule "qeq_literals" (formula "11") (term "0")) + (builtin "One Step Simplification" (formula "11")) + (rule "false_right" (formula "11")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "3")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_mulComm0" (formula "2") (term "1,0")) + (rule "polySimp_rightDist" (formula "2") (term "1,0")) + (rule "mul_literals" (formula "2") (term "0,1,0")) + (rule "polySimp_addAssoc" (formula "2") (term "0")) + (rule "polySimp_addComm1" (formula "2") (term "0,0")) + (rule "add_literals" (formula "2") (term "0,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + (branch "x_0 <= -1 + idx FALSE" + (rule "inEqSimp_leqRight" (formula "9")) + (rule "polySimp_rightDist" (formula "1") (term "1,0,0")) + (rule "mul_literals" (formula "1") (term "0,1,0,0")) + (rule "polySimp_addAssoc" (formula "1") (term "0,0")) + (rule "add_literals" (formula "1") (term "0,0,0")) + (rule "add_zero_left" (formula "1") (term "0,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "1")) + (rule "polySimp_mulLiterals" (formula "1") (term "1")) + (rule "polySimp_elimOne" (formula "1") (term "1")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "9")) + (rule "replace_known_left" (formula "10") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "10")) + (rule "orRight" (formula "10")) + (rule "notRight" (formula "10")) + (rule "eqSymm" (formula "11")) + (rule "inEqSimp_contradEq7" (formula "10") (ifseqformula "2")) + (rule "polySimp_mulComm0" (formula "10") (term "1,0,0")) + (rule "polySimp_pullOutFactor1b" (formula "10") (term "0,0")) + (rule "add_literals" (formula "10") (term "1,1,0,0")) + (rule "times_zero_1" (formula "10") (term "1,0,0")) + (rule "add_zero_right" (formula "10") (term "0,0")) + (rule "leq_literals" (formula "10") (term "0")) + (builtin "One Step Simplification" (formula "10")) + (rule "false_right" (formula "10")) + (rule "inEqSimp_contradInEq0" (formula "2") (ifseqformula "1")) + (rule "andLeft" (formula "2")) + (rule "inEqSimp_homoInEq1" (formula "2")) + (rule "polySimp_pullOutFactor1b" (formula "2") (term "0")) + (rule "add_literals" (formula "2") (term "1,1,0")) + (rule "times_zero_1" (formula "2") (term "1,0")) + (rule "add_zero_right" (formula "2") (term "0")) + (rule "leq_literals" (formula "2")) + (rule "closeFalse" (formula "2")) + ) + ) +) +(branch "idx >= 1 FALSE" + (rule "replace_known_right" (formula "9") (term "0,0,1,0,2,0") (ifseqformula "8")) + (builtin "One Step Simplification" (formula "9") (ifInst "" (formula "8")) (ifInst "" (formula "8")) (ifInst "" (formula "8")) (ifInst "" (formula "8"))) + (rule "times_zero_2" (formula "9") (term "1,1,1,2,0")) + (rule "add_zero_right" (formula "9") (term "1,1,2,0")) + (rule "eqSymm" (formula "9") (term "0,2,1,0")) + (rule "inEqSimp_geqRight" (formula "8")) + (rule "mul_literals" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "add_zero_left" (formula "1") (term "0")) + (rule "inEqSimp_commuteGeq" (formula "9") (term "0,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "1,0,2,0")) + (rule "times_zero_2" (formula "9") (term "1,0,1,0,2,0")) + (rule "add_zero_right" (formula "9") (term "0,1,0,2,0")) + (rule "inEqSimp_homoInEq0" (formula "9") (term "0,0,2,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,0,2,0")) + (rule "add_zero_right" (formula "9") (term "0,0,0,2,0")) + (rule "inEqSimp_homoInEq1" (formula "9") (term "0,1,0")) + (rule "times_zero_2" (formula "9") (term "1,0,0,1,0")) + (rule "add_zero_right" (formula "9") (term "0,0,1,0")) + (rule "inEqSimp_sepNegMonomial0" (formula "9") (term "1,0,2,0")) + (rule "polySimp_mulLiterals" (formula "9") (term "0,1,0,2,0")) + (rule "polySimp_elimOne" (formula "9") (term "0,1,0,2,0")) + (rule "inEqSimp_sepPosMonomial1" (formula "9") (term "0,0,2,0")) + (rule "mul_literals" (formula "9") (term "1,0,0,2,0")) + (rule "inEqSimp_sepPosMonomial0" (formula "9") (term "0,1,0")) + (rule "mul_literals" (formula "9") (term "1,0,1,0")) + (rule "inEqSimp_contradInEq1" (formula "9") (term "0,1,0") (ifseqformula "2")) + (rule "qeq_literals" (formula "9") (term "0,0,1,0")) + (builtin "One Step Simplification" (formula "9")) + (rule "inEqSimp_antiSymm" (formula "6") (ifseqformula "1")) + (rule "applyEq" (formula "1") (term "0") (ifseqformula "6")) + (rule "leq_literals" (formula "1")) + (rule "true_left" (formula "1")) + (rule "applyEq" (formula "6") (term "0") (ifseqformula "5")) + (rule "qeq_literals" (formula "6")) + (rule "true_left" (formula "6")) + (rule "applyEq" (formula "7") (term "1,1") (ifseqformula "5")) + (rule "add_zero_right" (formula "7") (term "1")) + (rule "applyEq" (formula "8") (term "1,0,1,1,0,2,0") (ifseqformula "5")) + (rule "add_zero_right" (formula "8") (term "0,1,1,0,2,0")) + (rule "replace_known_left" (formula "8") (term "1,0,2,0") (ifseqformula "2")) + (builtin "One Step Simplification" (formula "8")) + (rule "applyEq" (formula "8") (term "0,1,1,2,0") (ifseqformula "5")) + (rule "add_zero_left" (formula "8") (term "1,1,2,0")) + (rule "applyEq" (formula "8") (term "1,0,1") (ifseqformula "5")) + (rule "inEqSimp_subsumption1" (formula "6") (ifseqformula "7")) + (rule "leq_literals" (formula "6") (term "0")) + (builtin "One Step Simplification" (formula "6")) + (rule "true_left" (formula "6")) + (rule "ifthenelse_split" (formula "7") (term "1")) + (branch "x_0 = 0 TRUE" + (rule "replace_known_left" (formula "8") (term "0,1,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "orRight" (formula "8")) + (rule "inEqSimp_leqRight" (formula "8")) + (rule "times_zero_1" (formula "1") (term "1,0,0")) + (rule "add_literals" (formula "1") (term "0,0")) + (rule "applyEq" (formula "9") (term "1,1,0") (ifseqformula "2")) + (rule "applyEqRigid" (formula "1") (term "1,0") (ifseqformula "2")) + (rule "add_zero_right" (formula "1") (term "0")) + (rule "qeq_literals" (formula "1")) + (rule "closeFalse" (formula "1")) + ) + (branch "x_0 = 0 FALSE" + (rule "replace_known_right" (formula "8") (term "0,1,0") (ifseqformula "7")) + (builtin "One Step Simplification" (formula "8")) + (rule "inEqSimp_strengthen1" (formula "1") (ifseqformula "7")) + (rule "add_zero_right" (formula "1") (term "1")) + (rule "replace_known_left" (formula "8") (term "0,2,0") (ifseqformula "1")) + (builtin "One Step Simplification" (formula "8")) + (rule "orRight" (formula "8")) + (rule "notRight" (formula "8")) + (rule "eqSymm" (formula "9")) + (rule "inEqSimp_contradEq7" (formula "8") (ifseqformula "2")) + (rule "times_zero_1" (formula "8") (term "1,0,0")) + (rule "add_zero_right" (formula "8") (term "0,0")) + (rule "leq_literals" (formula "8") (term "0")) + (builtin "One Step Simplification" (formula "8")) + (rule "false_right" (formula "8")) + (rule "inEqSimp_contradInEq1" (formula "1") (ifseqformula "2")) + (rule "qeq_literals" (formula "1") (term "0")) + (builtin "One Step Simplification" (formula "1")) + (rule "closeFalse" (formula "1")) + ) +) +) +} diff --git a/src/main/key/Tree/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof b/src/main/key/Tree/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof index 87d2ff1..ddd0469 100644 --- a/src/main/key/Tree/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/Tree/de.wiesler.Tree(de.wiesler.Tree__Tree((I,(I,int)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../../main/java"; +\javaSource "../../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Mon Apr 11 20:15:26 CEST 2022 diff --git a/src/main/key/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof b/src/main/key/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof index 9903e89..e4b9d17 100644 --- a/src/main/key/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/de.wiesler.Increment(de.wiesler.Increment__Increment(boolean,int)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../main/java"; +\javaSource "../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Mon Apr 11 19:48:09 CEST 2022 diff --git a/src/main/key/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof b/src/main/key/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof index 32a1ce9..a7d0e8a 100644 --- a/src/main/key/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/de.wiesler.PartitionResult(de.wiesler.PartitionResult__PartitionResult(int,boolean)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../main/java"; +\javaSource "../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Thu Apr 07 11:58:32 CEST 2022 diff --git a/src/main/key/de.wiesler.SampleParameters(de.wiesler.SampleParameters__SampleParameters(int)).JML normal_behavior operation contract.0.proof b/src/main/key/de.wiesler.SampleParameters(de.wiesler.SampleParameters__SampleParameters(int)).JML normal_behavior operation contract.0.proof index 09abeba..b53d6fd 100644 --- a/src/main/key/de.wiesler.SampleParameters(de.wiesler.SampleParameters__SampleParameters(int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/de.wiesler.SampleParameters(de.wiesler.SampleParameters__SampleParameters(int)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../main/java"; +\javaSource "../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Thu Apr 07 11:58:47 CEST 2022 diff --git a/src/main/key/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof b/src/main/key/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof index e008114..d350a5b 100644 --- a/src/main/key/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof +++ b/src/main/key/de.wiesler.Storage(de.wiesler.Storage__Storage()).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../main/java"; +\javaSource "../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Mon Apr 17 12:28:36 CEST 2023 diff --git a/src/main/key/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof b/src/main/key/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof index 22fc2b8..54248bf 100644 --- a/src/main/key/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof +++ b/src/main/key/de.wiesler.Storage(de.wiesler.Storage__createArray(int)).JML normal_behavior operation contract.0.proof @@ -47,7 +47,7 @@ " } -\javaSource "../../main/java"; +\javaSource "../../main/java-constr"; \proofObligation "#Proof Obligation Settings #Thu Apr 07 12:00:18 CEST 2022 diff --git a/src/main/key/project-constr.key b/src/main/key/project-constr.key new file mode 100644 index 0000000..de731cf --- /dev/null +++ b/src/main/key/project-constr.key @@ -0,0 +1,50 @@ +\settings { +"#Proof-Settings-Config-File +#Thu May 05 18:49:23 CEST 2022 +[NewSMT]NoTypeHierarchy=false +[Labels]UseOriginLabels=true +[StrategyProperty]QUERYAXIOM_OPTIONS_KEY=QUERYAXIOM_ON +[NewSMT]Presburger=false +[SMTSettings]invariantForall=false +[Strategy]ActiveStrategy=JavaCardDLStrategy +[StrategyProperty]USER_TACLETS_OPTIONS_KEY1=USER_TACLETS_OFF +[StrategyProperty]QUANTIFIERS_OPTIONS_KEY=QUANTIFIERS_NON_SPLITTING_WITH_PROGS +[StrategyProperty]USER_TACLETS_OPTIONS_KEY2=USER_TACLETS_OFF +[Choice]DefaultChoices=JavaCard-JavaCard\\:on , Strings-Strings\\:on , assertions-assertions\\:safe , bigint-bigint\\:on , finalFields-finalFields\\:immutable , floatRules-floatRules\\:strictfpOnly , initialisation-initialisation\\:disableStaticInitialisation , intRules-intRules\\:arithmeticSemanticsIgnoringOF , integerSimplificationRules-integerSimplificationRules\\:full , javaLoopTreatment-javaLoopTreatment\\:efficient , mergeGenerateIsWeakeningGoal-mergeGenerateIsWeakeningGoal\\:off , methodExpansion-methodExpansion\\:modularOnly , modelFields-modelFields\\:treatAsAxiom , moreSeqRules-moreSeqRules\\:on , permissions-permissions\\:off , programRules-programRules\\:Java , reach-reach\\:on , runtimeExceptions-runtimeExceptions\\:ban , sequences-sequences\\:on , wdChecks-wdChecks\\:off , wdOperator-wdOperator\\:L +[StrategyProperty]LOOP_OPTIONS_KEY=LOOP_SCOPE_INV_TACLET +[StrategyProperty]INF_FLOW_CHECK_PROPERTY=INF_FLOW_CHECK_FALSE +[SMTSettings]UseBuiltUniqueness=false +[SMTSettings]explicitTypeHierarchy=false +[SMTSettings]instantiateHierarchyAssumptions=true +[StrategyProperty]NON_LIN_ARITH_OPTIONS_KEY=NON_LIN_ARITH_DEF_OPS +[SMTSettings]SelectedTaclets= +[StrategyProperty]DEP_OPTIONS_KEY=DEP_OFF +[StrategyProperty]AUTO_INDUCTION_OPTIONS_KEY=AUTO_INDUCTION_OFF +[Strategy]MaximumNumberOfAutomaticApplications=10000 +[StrategyProperty]STOPMODE_OPTIONS_KEY=STOPMODE_DEFAULT +[StrategyProperty]CLASS_AXIOM_OPTIONS_KEY=CLASS_AXIOM_DELAYED +[SMTSettings]useConstantsForBigOrSmallIntegers=true +[StrategyProperty]MPS_OPTIONS_KEY=MPS_MERGE +[StrategyProperty]SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OPTIONS_KEY=SYMBOLIC_EXECUTION_NON_EXECUTION_BRANCH_HIDING_OFF +[Strategy]Timeout=-1 +[StrategyProperty]SYMBOLIC_EXECUTION_ALIAS_CHECK_OPTIONS_KEY=SYMBOLIC_EXECUTION_ALIAS_CHECK_NEVER +[StrategyProperty]QUERY_NEW_OPTIONS_KEY=QUERY_OFF +[SMTSettings]useUninterpretedMultiplication=true +[NewSMT]sqrtSMTTranslation=SMT +[StrategyProperty]BLOCK_OPTIONS_KEY=BLOCK_CONTRACT_INTERNAL +[StrategyProperty]METHOD_OPTIONS_KEY=METHOD_CONTRACT +[StrategyProperty]USER_TACLETS_OPTIONS_KEY3=USER_TACLETS_OFF +[NewSMT]identifier=OPEN +[SMTSettings]maxGenericSorts=2 +[StrategyProperty]OSS_OPTIONS_KEY=OSS_ON +[NewSMT]Axiomatisations=false +[StrategyProperty]SPLITTING_OPTIONS_KEY=SPLITTING_DELAYED +[SMTSettings]integersMinimum=-2147483645 +[StrategyProperty]VBT_PHASE=VBT_SYM_EX +[SMTSettings]integersMaximum=2147483645 +" +} + +\javaSource "../java-constr"; + +\chooseContract diff --git a/statistics-constructors.json b/statistics-constructors.json deleted file mode 100644 index 9e26dfe..0000000 --- a/statistics-constructors.json +++ /dev/null @@ -1 +0,0 @@ -{} \ No newline at end of file diff --git a/tools/key-2.11.0-o-exe.jar b/tools/key-2.11.0-o-exe.jar index 13eece9..ac6f096 100644 Binary files a/tools/key-2.11.0-o-exe.jar and b/tools/key-2.11.0-o-exe.jar differ